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Abstract. We provide some first experimental data about generating functions of restricted lattice

walks with small steps in N4.

1. Introduction

A lattice walk is a sequence of points P0, P1, . . . , Pn in Zd. The points P0 and Pn are its starting and
end points, respectively, the consecutive differences Pi+1 − Pi its steps, and n is its length. Given a set
S ⊆ Zd, called the step set, and a set D ⊆ Zd, called the domain, and elements P and Q of D, we are
interested in the number a(P,Q;n) of walks of length n that start at P , have all their steps in S, have all
their points in D, and end at Q. Is there a simple formula in terms of the coordinates of the end point
and the length of the walks, and if not, can we at least say something about the asymptotic behaviour
of these numbers as n goes to infinity? A first step towards answering these questions can be done by
considering the generating function

f(x, t) =
∑
n≥0

(∑
Q∈D

a(P,Q;n)xQ
)
tn ∈ Q(x)[[t]]

that is associated with these numbers and determining whether it has one of the following two properties:

Definition 1. Let C be a field.

(1) A series f ∈ C((t)) is called algebraic if there are polynomials p0, . . . , pr−1 and a non-zero poly-
nomial pr in C[t] such that p0(t) + p1(t)f(t) + · · ·+ pr(t)f(t)r = 0.

(2) A series f ∈ C((t)) is called D-finite if there are polynomials p0, . . . , pr−1 and a non-zero poly-
nomial pr in C[t] such that p0(t)f(t) + p1(t)f ′(t) + · · ·+ pr(t)f (r) = 0.

It is well-known that every algebraic series is D-finite, but not vice versa. Knowing that a formal power
series is algebraic, or D-finite, not only allows a finite representation of and basic operations to be
performed effectively on it, but also makes available a variety of algorithms dealing with tasks ranging
from the fast computation of their coefficients and determining their asymptotic behaviour to deciding
whether there is a simple formula for them.

For D = Z2 or D = Z × N, the generating function is always algebraic, regardless of the choice of S,
see [6, Proposition 18], but for D = N2, it was observed by Bousquet-Mélou and Mishna [11] that
the nature of the generating function does depend on the step set. Even if we restrict the step sets
to subsets of {−1, 0, 1}2, sets of so-called small steps, we find that for some step sets the generating
function is algebraic, for others it is not algebraic but still D-finite, and for yet others it is not even D-
finite. This observation sparked an intensive research activity to which many authors have contributed,
see [15, 9, 20, 7, 12, 2, 4, 13] for some of the milestones and for further references. As a result of this
work, the classical setting of walks in the quarter plane is relatively well understood, and the focus of
interest is now shifting to the study of variations and generalizations. One such generalization concerns
the situation in higher dimensions. A first step was taken by Bostan and Kauers in [8], who used
automated guessing to identify potentially D-finite step sets of size up to 5 in three dimensions. This
work was extended by Bostan, Bousquet-Mélou, Kauers, and Melczer [5] to step sets of size up to 6.
They introduced the notions of dimension of a lattice walk model and Hadamard decomposition of a step
set, which allow to reduce some of the problem to walks in lattices of lower dimension, and they used
these new concepts as well as the classical orbit sum method for proving D-finiteness in certain cases.
Bacher, Kauers and Yatchak [1] have extended this work to step sets of arbitrary size, Du, Hou, and Wang
provided non-D-finiteness results for many cases [14], and most recently, Bogosel, Perrollaz, Raschel, and
Trotignon [3] have systematically explored the asymptotic behaviour of counting sequences for walks in
the octant and observed a striking relation between the nature of the generating function and the angles
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of certain triangles on the sphere. Despite all this progress, there are still many open questions related
to walks in the octant. In particular, there is a list of 170 models whose nature remains unclear. For
example, this list includes the 3D version of the classical 2D Kreweras model [19, 10, 11], the step set
{(−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 1, 1)}. Although the 2D version has an algebraic generating function,
the current asymptotic estimates suggest (without proof) that the 3D version is not D-finite.

In this short note, we have nothing new to say about the 3D cases. Instead, our aim is to open the
discussion for 4D. When the dimension of the lattice increases, the classification problem becomes more
difficult in two ways. First, and most importantly, the total number of models explodes. For dimension D,

there are 23
D−1 step sets, which evaluates to more than 1024 when D = 4. There is no way to go through

all of them in a reasonable time, even if we spend only a tiny amount of computation time per model.
The second problem is that it won’t be enough to spend only a tiny amount of computation time per
model, because with increasing dimension it also becomes more costly to analyze a particular model.
For example, computing the first N terms of a counting sequence using the standard recurrence requires
O(ND+1) time and O(ND) memory. For D = 4, this means that on a computer with 1 Tb of main
memory, we were only able to compute N = 700 terms of a counting sequence.

2. Search Procedure

In order to identify potentially interesting models, we have applied a similar search procedure as Bacher,
Kauers, and Yatchak [1] did in their search for interesting models in 3D. The procedure can be summarized
as follows:

Only step sets S ⊆ {−1, 0, 1}4 \ {(0, 0, 0, 0)} with |S| ≤ 7 or |S| ≥ 73 were considered. This
restriction has no combinatorial motivation but was only made to reduce the computational cost to a
manageable amount, similar as it was done in [8, 5] for 3D. Note that the number

7∑
k=0

(
34 − 1

k

)
+

80∑
k=73

(
34 − 1

k

)
= 7005847194 ≈ 7 · 109

of remaining models is still quite big (though of course much smaller than 23
4−1 ≈ 1.2 · 1024).

Step sets containing unused steps were discarded. Recall from [5] that an element s of S is called
unused if it cannot appear in any walk of the model. For example, the step set S = {(1, 0,−1, 0),
(0, 1, 0,−1), (1, 1, 0, 0)} leads to the same generating function as the step set {(1, 1, 0, 0)}, because any
use of (1, 0,−1, 0) or (0, 1, 0,−1) would lead the walk out of N4, which is not allowed.

In order to check whether a given step set S ⊆ {−1, 0, 1}D contains unused steps, we successively
determine the ‘not unused’ steps, i.e., the steps which can occur in a walk. We start with the elements
of the step set that belong to {0, 1}D. Any of these steps can be the first step of a walk in the model,
and every walk in the model must start with one of these steps. The walks built only from these steps
can proceed arbitrarily far into a certain direction d ∈ {1, . . . , D} for which there is a step (s1, . . . , sD) ∈
S ∩ {0, 1}D with sd = 1. Set ud = true for these d and ud = false for all other d. We can next recognize
all steps of S as ‘not unused’ which only have negative entries in coordinate d for which ud is true. For
example, if u1 is true then (−1, 1, 0, 0) is not an unused step. For i = 1, . . . , D, we update ud to true if
any of these additional steps has a positive dth coordinate. With the updated values of u1, . . . , uD, we
can check whether further elements of S can be recognized as ‘not unused’. If so, we update u1, . . . , uD
again. We repeat the process until the step of recognized ‘not unused’ steps is saturated. The step set S
contains unused steps if and only if the set of recognized ‘not unused’ steps is a proper subset of S.

Only one step set from each symmetry class was considered. Permuting the coordinates of
the steps in a step set amounts to permuting the variables of the corresponding generating function. For
example, if f(x1, x2, x3, x4, t) is the generating function of the model with step set {(1, 0, 1, 1), (−1, 1, 0, 0),
(0, 0, 0, 1)}, then f(x2, x4, x1, x3, t) is the generating function for the model with step set {(0, 1, 1, 1),
(1, 0,−1, 0), (0, 1, 0, 0)}. Since permutation of variables preserves algebraicity and D-finiteness, it suffices
to consider one model per equivalence class. This filter reduces the number of cases to be considered by
roughly a factor of D! = 24.

For deciding whether two step sets {s1, . . . , sm}, {s′1, . . . , s′m} ⊆ {−1, 0, 1}D are equivalent, we need to
decide whether there is a permutation π ∈ SD such that {s1, . . . , sm} = {π · s′1, . . . , π · s′m}, where π · s′i
denotes the tuple obtained from s′i by permuting its coordinates according to π. Since D is small, we can
simply test this by trying out all π ∈ SD. However, what we really need is not a method for checking
whether two given step sets are equivalent: rather, when we go through all the step sets we are rather in
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the situation that we have a single step set at hand and have to decide whether we should consider it or
not. We do this by defining a total order on the step sets and rejecting a step set {s1, . . . , sm} whenever
there is a π ∈ SD such that {π · s1, . . . , π · sm} is smaller in the chosen order.

Step sets admitting a Hadamard decomposition were discarded. Recall from [5] that a step set
S ⊆ {−1, 0, 1}D is said to admit a d-Hadamard decomposition for some d ∈ {1, . . . , D − 1} if it can be
written as S = (V × {0}D−d) ∪ (U × W ) with V,U ⊆ Zd and W ⊆ ZD−d \ {0}. If this is the case,
the generating function for the lattice walk model for S can be expressed in terms of the Hadamard
product of the generating functions associated to the lower dimensional models corresponding to W and
a model with step set (U × {0}) ∪ (V × {1}). As the D-finiteness of models admitting a Hadamard
decomposition can be easily explained (see the explanation in Sect. 5 of [5] for details), we discard them
from consideration.

It is easy to decide whether a given step set S is d-Hadamard. Write π1 : RD → Rd for the projection
on the first d coordinates and π2 : RD → RD−d for the projection to the last D − d coordinates. Set
V = {s ∈ S : π2(s) = 0}, U = π1(S \V ), W = π2(S \V ) and check whether S = (V ×{0}D−d)∪ (U×W ).
We need to observe however that the definition of Hadamard decomposition as quoted implicitly assumes
a particular ordering of the coordinates. For example, while

{(1, 0, 0), (−1, 0, 0)} ∪ ({−1, 1} × {(1,−1)}) = {(1, 0, 0), (−1, 0, 0), (−1, 1,−1), (1, 1,−1)}
is 1-Hadamard, the equivalent step set {(0, 1, 0), (0,−1, 0), (1,−1,−1), (1, 1,−1)} strictly speaking is not.
Our program filters out all step sets which by a suitable permutation of coordinates can be mapped to a
Hadamard model. It does so by simply carrying out the test sketched above for all elements in the orbit
of the step set under consideration.

Step sets with dimension less than four were discarded. Recall from [5] that the dimension of a
model is defined as the number of coordinates for which the nonnegativity restriction is not redundant.
For example, for the step set {(1, 1, 1), (1,−1, 0), (1, 0,−1)}, the number of walks in N3 is the same as the
number of walks in Z× N2, because there is no way to get a negative first coordinate with the available
steps. As the restriction on the other two coordinates is essential, the dimension is 2 in this case. Since
lattice walk models in N4 whose dimension is less than 4 are equivalent to models in N3 (possibly with
multiple steps), it is fair to discard them.

Whether a given step set S = {s1, . . . , sm} ⊆ {−1, 0, 1}D has dimension less than D can be found out
by linear programming. Writing si,j for the ith coordinate of the jth step, the requirement is that there
is some i ∈ {1, . . . , D} such that for all nonnegative x1, . . . , xm ∈ R with

∑m
j=1 sk,jxj ≥ 0 for all k 6= i

we also have
∑m

j=1 si,jxj ≥ 0. Linear programming allows us to find the minimum value assumed by∑m
j=1 si,jxj when x1, . . . , xm ranges over all nonnegative real numbers with with

∑m
j=1 sk,jxj ≥ 0 for

all k 6= i. If the minimum is 0, then the ith coordinate is redundant, and the model has dimension less
than D and can be discarded. If none of the coordinates is recognized as redundant in this way, then the
model has dimension D.

Step sets whose associated group has more than 800 elements were discarded. Recall from [11,
5] that to every model of maximal dimension we can associate a certain group. Given a step set S ⊆
{−1, 0, 1}D \ {(0, . . . , 0)}, the group is constructed as follows. First define the step set polynomial

PS :=
∑

(s1,...,sD)∈S

xs11 · · ·x
sD
D

(also called the inventory by some authors). Then, for i = 1, . . . , D, let Φi be the rational map that sends

xj to itself for j 6= i and xi to x−1i
[x−1

i ]PS

[xi]PS
, where [x±1i ]PS refers to the coefficient of x±1i in PS when

PS is viewed as a Laurent polynomial in xi whose coefficients are Laurent polynomials in the remaining
variables. The group associated to S is the group generated by Φ1, . . . ,ΦD under composition.

For example, for S = {(−1,−1), (1,−1), (1, 0), (−1, 1), (1, 1)} we have PS = x−11 x−12 + x1x
−1
2 + x1 +

x−11 x2 + x1x2 and get

Φ1 =

(
x1
x2

)
7→

(
x−11

x2+x−1
2

x2+1+x−1
2

x2

)
and Φ2 =

(
x1
x2

)
7→
(
x1
x−12

)
,

and the group 〈Φ1,Φ2〉 turns out to have only four elements: id,Φ1,Φ2 and Φ1 ◦ Φ2.

A main result about the case D = 2 is that for full-dimensional models this group is finite if and only if
the generating function is D-finite [11, 5, 7]. While the experimental results for D = 3 suggest that there
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may be non-D-finite cases with finite group, we are not aware of any (conjectured) D-finite case with an
infinite group. For this reason, and also because a finite group gives the chance to apply the so-called
orbit sum method for proving D-finiteness, we have decided to restrict the search to models with finite
group.

Certain sufficient conditions have been used in 2D and 3D for proving that the groups for certain models
are infinite [11, 14]. However, checking these conditions is expensive, and, as they are just sufficient but
not necessary, carrying out these expensive calculations may not be conclusive. We have chosen a more

pragmatic approach. Starting from H = {id}, we set H ← H ∪
⋃D

i=1{Φi ◦ h : h ∈ H} until either H
stabilizes (then H is equal to the full group and the group is finite), or the size of H exceeds 800 (then
we give up and discard the model). The bound 800 was chosen as a compromise between reasonable
computing time and reasonable confidence that larger groups are in fact infinite.

3. Results

Out of the 7005847194 step sets with cardinality at most 7 or at least 73, there were 58 step sets which
survived all the filters specified above, the last filter being, by far, the strongest one. The surviving
models are listed at the end of the paper. They all have cardinality 5 or 7.

For models with a finite group, the orbit sum method is one approach to showing that the generating
function is D-finite. It rests on the observation that, when certain technical conditions are satisfied, the
generating function for a model can be expressed as

f(x1, . . . , xD, t) =
1

x1 · · ·xD
[x>1 . . . x

>
D]

1

1− tPS

∑
g∈G

sgn(g)g(x1 · · ·xD),

where G is the group, PS is the step set polynomial as introduced above, [x>1 . . . x
>
D] is the positive part

extraction operator, and sgn(g) refers to the sign of the group element g. Note that the expression to
which the positive part extraction operator is applied is a rational function. By the closure of D-finiteness
under taking positive parts, the formula above implies that the generating function is D-finite.

Example 2. The generating function f of walks in Z that start at 0, take their steps from S = {−1, 1}
and never leave the non-negative half-line Z≥0 satisfies the functional equation

(1− tPS)xf(x, t) = x− tf(0, t).

The step polynomial PS(x) = x−1 + x can be associated with a group G. It is finite and given by
G = {x 7→ x, x 7→ x−1} and acts on the equation above. The second group element transforms the
equation above to

(1− tPS)x−1f(x−1, t) = x−1 − tf(0, t).

Subtracting the two functional equations gives

xf(x, t)− x−1f(x−1, t) =
1

1− tPS
(x− x−1),

and since the series x−1f(x−1, t) only involves powers of x with negative exponents, it follows that

f(x, t) =
1

x
[x>]

1

1− tPS
(x− x−1).

As the rational function x−x−1

1−tPS
is D-finite and D-finiteness is preserved by taking positive parts, it follows

that f(x, t) is D-finite. Incidentally, in this particular example, f(x, t) is even algebraic, because the
positive part with respect to a single variable of a rational function can be shown to be always algebraic.
In the case of several variables however, in particular for models in dimension four, the positive part of
a rational function is still D-finite but in general not algebraic.

For 50 of the 58 step sets identified by the procedure of Section 2, the orbit sum
∑

g∈G sgn(g)g(x1 · · ·xD)
happens to be zero. In this case, the “technical conditions” alluded to above are not satisfied and
we cannot directly conclude D-finiteness. In the other eight cases, we have checked with Yatchak’s
algorithm [21] that the technical conditions are satisfied, so the generating functions of these models are
D-finite.

For the 50 cases whose orbit sum is zero, we have tried to detect recurrence equations or differential
equations via automated guessing, as systematically done in [8] for 3D models. As remarked in the
introduction, we were only able to compute 700 terms for each of these counting sequences, which only
in one case (number 13 in the listing below) was enough to find equations. For the generating function
of walks with arbitrary endpoint, f(1, . . . , 1, t), we found a linear differential equation of order 12 with
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polynomial coefficients of degree up to 135. Its coefficient sequence appears to satisfy a linear recurrence
of order 18 with polynomial coefficients of degree up to 113.

We suspect that further models are D-finite but only satisfy equations that are too large to be recovered
from 700 sequence terms, and we invite the lattice walk counting community to have a closer look at
these models. In the tables below, we write 1̄ instead of −1 for better readability. We also use a pictorial
description of the step sets, extending similar descriptions used in the literature for lower dimensions.
A step (s1, s2, s3, s4) ∈ {−1, 0, 1}4 is represented by a bullet at position (s1, s2, s3, s4), where s1 is the
column block (−1 = left, 0 = middle, 1 = right), s2 is the row block (1 = top, 0 = middle, −1 = bottom),
and s3, s4 are the column and row, respectively, within the block specified by s1, s2. Models with nonzero
orbit sum are highlighted. The orbit sums are stated in a separate table.

4. Higher Dimension

Our experiments confirm a trend that was already observed in the investigations of lattice walks in 3D: the
number of cases with low dimension, with a Hadamard decomposition, or with a finite group is relatively
low. If we are interested in the models which have no Hadamard decomposition, have full dimension,
but have a finite group, this means that the Hadamard filter and the dimension filter are relatively weak
while the group size filter is relatively strong. We conclude the paper with three propositions which show
that this trend continues (and in fact, quite heavily) when the dimension grows.

Proposition 3. If L(D) is the number of step sets S ⊆ {−1, 0, 1}D \ {(0, . . . , 0)} whose dimension is

less than D, then we have L(D) ≤
(
3D−1
D−1

)
2

2
3 3

D

. In particular, limD→∞ L(D)/23
D−1 = 0.

Proof. We first show that for every step set S ⊆ {−1, 0, 1}D whose dimension is less than D, there is a
hyperplane H ⊆ RD generated as linear subspace by elements of {−1, 0, 1}D such that all elements of S
point to the same side of H. Indeed, consider the convex cone generated by S in RD. If S = {s1, . . . , sm}
does not have full dimension, then there exists an i ∈ {1, . . . , D} such that for all (x1, . . . , xm) ∈ Rm with
x1, . . . , xm ≥ 0, the vector x1s1 + · · · + xmsm cannot have a negative ith component unless one of the
other components is negative as well. This implies that the cone generated by S is not all of RD. The
cone therefore has facets, and we can take any hyperplane containing any of its facets as H.

To complete the proof, we now bound the number of step sets contained in a hyperplane generated by

elements of {−1, 0, 1}D. First, it is clear that there are no more than
(
3D−1
D−1

)
such hyperplanes. Second,

each particular hyperplane limits the choice of steps to roughly half of {−1, 0, 1}D, more precisely to at
most 2

33D − 1 steps. Combining both counts gives the announced bound. �

Proposition 4. If H(D) is the number of step sets S ⊆ {−1, 0, 1}D\{(0, . . . , 0)} which admit a Hadamard

decomposition, then we have H(D) ≤ (D − 1)2
2
3 (3

D+1). In particular, limD→∞H(D)/23
D−1 = 0.

Proof. For a d ∈ {1, . . . , D − 1}, a step set S is d-Hadamard if there are V,U ⊆ {−1, 0, 1}d and W ⊆
{−1, 0, 1}D−d such that S = (V × {0})∪ (U ×W ). There are 23

d

choices for V and U and 23
D−d

choices

for W , which makes 22 3d+3D−d

combinations (V,U,W ) for a specific d. The total number of Hadamard

models is therefore bounded by
∑D−1

d=1 22 3d+3D−d ≤ (D − 1)2
2
3 (3

D+1). �

Estimating the number of models with finite group is slightly less elementary. The idea is to reduce the
problem to the case of weighted models in the quarter plane. In a weighted model, each element of the
step set has an element of an integral domain A attached to it. In the step set polynomial, these elements
appear as coefficients of the terms. For example, 5x−11 x2 − 3x1 + 7x2 + x1x

−1
2 is the step set polynomial

of the model in which the step (−1, 1) has weight 5, the step (1, 0) has weight −3, etc. The group of a
weighted model is defined in the same way as for unweighted models. In [18] it was asked which choices
of weights lead to which groups, and it was found that weight vectors leading to a specific group form an
algebraic variety. From general results about groups on elliptic curves [16, Remark 5.1], it follows that
only finitely many different groups can arise as groups of a weighted walk (namely, the dihedral groups
with 4, 6, 8, 10, 12, or infinitely many elements). As there is an algebraic variety associated to each of
the finite groups, and the union of finitely many algebraic varieties is again an algebraic variety, we can
conclude that there exists a nonzero polynomial

Q ∈ Z[z−1,−1, z−1,0, z−1,1, z0,−1, z0,0, z0,1, z1,−1, z1,0, z1,1]

such that for all weight vectors (a−1,−1, . . . , a1,1) that correspond to a weighted model with a finite group
we have Q(a−1,−1, . . . , a1,1) = 0. We will use this observation in combination with the following lemma
to show that models with finite groups are rare.
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Lemma 5. (“Zippel’s Lemma”; Proposition 97 in [22]) Let A be an integral domain, Q ∈ A[z1, . . . , zn]
and the degree of Q in each variable zi be bounded by δ. Let Z(k) be the number of zeroes (ζ1, . . . , ζn)
of Q where each ζi is restricted to a set with k elements, for some k � δ. Then Z(k) ≤ nδkn−1.

Proposition 6. If F (D) is the number of step sets S ⊆ {−1, 0, 1}D \{(0, . . . , 0)} whose associated group

is finite, then we have F (D) ≤ c2 8
9 3

D

, for some constant c. In particular, limD→∞ F (D)/23
D−1 = 0.

Proof. Consider a step set S ⊆ {−1, 0, 1}D with a finite group. Write its step set polynomial as

PS =

1∑
i,j=−1

pi,j(x3, . . . , xD)xi1x
j
2.

Since the group of S, which is generated by the involutions Φ1, . . . ,ΦD, is finite, so is in particular the
subgroup generated by the involutions Φ1 and Φ2. This subgroup is equal to the group of the weighted
2D model in which the weight associated to a step (i, j) ∈ {−1, 0, 1}2 is the polynomial pi,j(x3, . . . , xD).
Therefore, if Q is the polynomial discussed above, we have Q(p−1,−1, . . . , p1,1) = 0.

In summary, we have shown so far that there are no more step sets in {−1, 0, 1}D with finite group than
there are weighted models with finite group and with step set in {−1, 0, 1}2 whose weights are step set

polynomials in D−2 variables. There are k = 23
D−2

such polynomials. By Lemma 5, there is a constant δ

(bounding the degree of the polynomial Q) such that Q has at most 9δ(23
D−2

)9−1 = 9δ2
8
9 3

D

roots whose
coordinates all are such polynomials. Therefore, there are at most so many models in D dimensions with
a finite group. �

Tables

Table 7. Models with a group isomorphic to C2 × C2 × S3.

1

1, 2, 6, 18, 84, 340, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
••

•

•

•
••

1̄1̄1̄0, 1̄1̄01̄,
1̄1̄11, 1̄100,
101̄1̄, 1001,

1010.

2

1, 1, 3, 8, 33, 122, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•••

•
•
••

1̄1̄1̄0, 1̄1̄01,
1̄1̄11̄, 1̄100,
101̄1, 1001̄,

1010.

3

1, 1, 4, 13, 58, 245, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•
••

•

••
•

1̄1̄1̄1̄, 1̄1̄01,
1̄1̄10, 1̄100,
101̄0, 1001̄,

1011.

4

1, 1, 3, 9, 35, 125, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•••• •
•

•

•

1̄01̄0, 1̄001,
1̄011̄, 11̄1̄1,
11̄01̄, 1100,

11̄10.

5

1, 1, 4, 14, 60, 238, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••

•

••

•
11̄1̄1̄, 1̄001̄,
1̄01̄0, 1100,

11̄10, 11̄01,

1̄011.

6

1, 1, 4, 14, 63, 241, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••
••

•
••

•

1̄01̄1̄, 11̄1̄0,
11̄01̄, 1100,
1̄001, 1̄010,

11̄11.

7

1, 1, 4, 12, 62, 255, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••• •
••

1̄1̄00, 1̄11̄0,
1̄101, 1̄111̄,

101̄1, 1001̄,

1010.

8

1, 2, 8, 30, 166, 764, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••
•

•
••

1̄1̄00, 1̄11̄0,
1̄101̄, 1̄111,

101̄1̄, 1001,

1010.

9

1, 1, 6, 21, 126, 581, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

•

••

••
•

1̄11̄1̄, 1̄1̄00,
1̄101, 1̄110,

101̄0, 1001̄,

1011.

10

1, 2, 10, 46, 260, 1402, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•••
• •

•

•• 1̄01̄0, 1̄001̄,
1̄011, 111̄1̄,

11̄00, 1101,

1110.

11

1, 1, 7, 33, 197, 1065, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••
••

••

•

• 1̄01̄1̄, 1̄001,
1̄010, 111̄0,

1101̄, 11̄00,

1111.

12

1, 1, 5, 20, 102, 496, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••••

•

•

••
1̄01̄0, 1̄001,
1̄011̄, 111̄1,

11̄00, 1101̄,

1110.

Table 8. Models with a group isomorphic to S3 × S3.
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13

1, 1, 3, 9, 27, 117, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••
•

•

•

•

•
•

1̄01̄0, 01̄1̄1,
1̄001, 01̄01̄,

1100, 1̄011̄,

01̄10.

14

1, 1, 4, 14, 45, 223, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••
••

•
••

•

1̄01̄1̄, 01̄1̄0,
01̄01̄, 1100,

1̄001, 1̄010,

01̄11.

15

1, 3, 9, 37, 169, 759, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
••

•

•
••

•

1̄1̄1̄0, 1̄1̄01̄,
1̄1̄11, 011̄1̄,

0101, 0110,

1000.

16

1, 2, 5, 18, 72, 295, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•••

•
••

•

1̄1̄1̄0, 1̄1̄01,
1̄1̄11̄, 011̄1,

0101̄, 0110,

1000.

17

1, 2, 6, 26, 118, 548, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•
••

••
•

•

1̄1̄1̄1̄, 1̄1̄01,
1̄1̄10, 011̄0,

0101̄, 0111,

1000.

18

1, 1, 2, 5, 14, 47, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•••

•

•
••

01̄1̄0, 01̄01,
01̄11̄, 1000,

1̄11̄1, 1̄101̄,

1̄110.

19

1, 1, 3, 9, 27, 103, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••

•

••

•

1̄11̄1̄, 01̄1̄0,
01̄01̄, 1000,

1̄101, 1̄110,

01̄11.

20

1, 1, 2, 6, 19, 73, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••

•

••

• 01̄1̄1̄, 1̄101̄,
1̄11̄0, 1000,

01̄10, 01̄01,

1̄111.

21

1, 2, 8, 36, 184, 978, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••••
••

1̄1̄00, 011̄0,
0101, 0111̄,

101̄1, 1001̄,

1010.

22

1, 3, 14, 74, 425, 2515, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

•
••

••
•

1̄1̄00, 011̄1̄,
0101, 0110,

101̄0, 1001̄,

1011.

23

1, 2, 8, 34, 176, 908, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
••

•

•
•
••

1̄11̄0, 1̄101̄,
1̄111, 01̄00,

101̄1̄, 1001,

1010.

24

1, 1, 6, 24, 133, 695, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••
•

••
•

1̄11̄1̄, 101̄0,
1001̄, 01̄00,

1̄101, 1̄110,

1011.

25

1, 1, 4, 14, 66, 309, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•••

•

•
••

1̄11̄0, 1̄101,
1̄111̄, 01̄00,

101̄1, 1001̄,

1010.

26

1, 2, 10, 46, 244, 1358, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•••
•

•

•
•• 1̄01̄0, 1̄001̄,

1̄011, 01̄00,

111̄1̄, 1101,

1110.

27

1, 1, 7, 33, 181, 1025, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••
••

•

••
• 1̄01̄1̄, 1̄001,

1̄010, 01̄00,

111̄0, 1101̄,

1111.

28

1, 1, 5, 20, 94, 478, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••••
•

•
••

1̄01̄0, 1̄001,
1̄011̄, 01̄00,

111̄1, 1101̄,

1110.

29

1, 1, 4, 16, 65, 299, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••

••

•

••

• 1̄01̄1̄, 011̄0,
0101̄, 11̄00,

1̄001, 1̄010,

0111.

30

1, 2, 6, 22, 94, 414, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•••
••

••

•

1̄01̄0, 1̄001̄,
1̄011, 011̄1̄,

0101, 0110,

11̄00.

31

1, 1, 3, 10, 37, 151, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••••

•
••

•

1̄01̄0, 1̄001,
1̄011̄, 011̄1,

0101̄, 0110,

11̄00.

Table 9. Models with a group isomorphic to S5.

32

1, 2, 4, 10, 30, 98, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

•
•• •

1̄11̄1, 01̄00,
0001̄, 0010,

1000.

33

1, 1, 5, 21, 81, 325, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••

•
••

• 1̄000, 01̄00,
0001̄, 001̄0,

1111.

34

1, 4, 16, 64, 256, 1048, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••
•

•

1̄1̄1̄1̄, 0010,
0001, 0100,

1000.

35

1, 3, 9, 27, 87, 303, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

•

•• •

1̄11̄1̄, 01̄00,
0001, 0010,

1000.

36

1, 1, 2, 6, 21, 73, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

•• •

• 01̄00, 001̄0,
0001̄, 1000,
1̄111.

37

1, 1, 2, 4, 10, 26, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•• •

•

•
•

0001̄, 101̄0,
1̄100, 0010,

01̄01.

38

1, 1, 3, 9, 29, 99, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•••
•

•
•

0001̄, 001̄0,
1100, 1̄010,

01̄01.

39

1, 2, 6, 18, 60, 206, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••
•

•

1̄1̄00, 0010,
0001, 0101̄,

101̄0.

40

1, 2, 6, 20, 71, 269, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

• •

•
•

01̄01̄, 001̄0,
1010, 1̄100,

0001.

41

1, 3, 9, 31, 117, 467, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••

•

••

• 1̄01̄0, 01̄01̄,
0001, 0010,

1100.

42

1, 2, 6, 20, 80, 318, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

•• •

• 1̄1̄00, 0001̄,
001̄0, 1010,

0101.

43

1, 1, 3, 8, 24, 78, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•••
•

•
•

001̄0, 0001̄,
1̄100, 01̄01,

1010.

44

1, 2, 5, 14, 42, 136, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••

•
•

01̄01̄, 101̄0,
0010, 1̄100,

0001.

45

1, 2, 5, 16, 57, 209, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•• ••
•

• 1̄01̄0, 0001̄,
01̄01, 0010,

1100.

46

1, 2, 6, 18, 63, 229, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••
•

•

1̄1̄00, 001̄0,
0001, 0101̄,

1010.

47

1, 2, 4, 10, 28, 82, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••
• •

1̄11̄0, 0001̄,
01̄01, 0010,

1000.

48

1, 1, 2, 4, 11, 31, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•
• ••

• 01̄00, 0001̄,
101̄0, 0010,

1̄101.

49

1, 1, 4, 14, 49, 183, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•• •••

• 1̄000, 001̄0,
0001̄, 01̄01,

1110.

50

1, 3, 10, 35, 126, 474, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

•••
• 1̄1̄01̄, 0010,

101̄0, 0001,

0100.

51

1, 2, 5, 15, 52, 185, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

•

•

• •

1̄101̄, 001̄0,
01̄00, 0001,

1010.

52

1, 2, 5, 14, 45, 159, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

• ••
• 01̄01̄, 001̄0,

1000, 0001,

1̄110.

53

1, 3, 9, 29, 99, 355, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

• •

•
•

01̄01̄, 0010,
1000, 1̄11̄0,

0001.

54

1, 2, 5, 13, 38, 119, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

•

•••
1̄101̄, 01̄00,
0010, 101̄0,

0001.

55

1, 1, 3, 9, 31, 109, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•
•• •

• 01̄00, 0001̄,
001̄0, 1010,

1̄101.

56

1, 1, 2, 5, 15, 47, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••• •
•

• 001̄0, 0001̄,
1000, 01̄01,

1̄110.

57

1, 2, 6, 22, 88, 358, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

••

•
••

• 1̄01̄0, 01̄00,
0001̄, 0010,

1101.

58

1, 3, 10, 35, 132, 534, . . .
··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

··
··
··
··
·

•
•

••
•

•

1̄1̄01̄, 001̄0,
0001, 0100,

1010.

Table 10. Nonzero orbit sums.
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idx orbit sum

4 (w2−z)(wz−1)(w−z2)(w2+z−wy2z+wz2)(w2x2−wy+x2z−w2yz+wx2y2z+wx2z2−yz2)
w3xyz3(w2+z+wy2z+wz2)

2 (w2−z)(wz−1)(w−z2)(w+w2z−wy2z+z2)(w2x2y−w2z+x2yz−wy2z−z2+wx2yz2−w)
w3xy2z3(w2+z+wz2)

7 (w2−z)(1−wz)(w−z2)(w2x2y−wy2−wz+x2yz−w2y2z+wx2yz2−y2z2)(wy2−wz+w2y2z+y2z2)
w2xy2z2(w+w2z+z2)(w2+z+wz2)

12 (w2−z)(1−wz)(w−z2)(w2y2−wz+y2z+wy2z2)(w2x2y2+wx2z−w2yz+x2y2z−yz2+wx2y2z2−wy)
w2xyz2(w2+z+wz2)(w2y2+wz+y2z+wy2z2)

18 (w2−z)(1−wz)(w−z2)(w+w2z−wxyz+z2)(w2x+xz−wy2z+wxz2)(w2x2−wy+x2z−w2yz+wx2z2−yz2)
w4x2y2z4(w2+z+wz2)

25 (w2−z)(1−wz)(w−z2)(w2x2−wy+x2z−w2yz+wx2z2−yz2)(w2xy−wz+xyz+wxyz2)(wy2−wxz+w2y2z+y2z2)
w2x2y2z2(w+w2z+z2)(w2+z+wz2)2

31 (w2−z)(wz−1)(w−z2)(wy−wx2z+w2yz+yz2)(w2xy−w2z+xyz−z2+wxyz2−w)(w2y2−wxz+y2z+wy2z2)
w3x2y2z3(w2+z+wz2)2

37 (w2−y)(wy−x)(wx−y2)(wx−z)(wz−1)(wz−xy)(xz−y)(w−yz)(x2−yz)(x−z2)
w4x4y4z4
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