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ABSTRACT
We present an algorithm which for any given ideal I ⊆ K[x,y] finds
all elements of I that have the form f (x) − д(y), i.e., all elements in

which no monomial is a multiple of xy.
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1 INTRODUCTION
One of the fundamental problems in computer algebra and applied

algebraic geometry is the problem of elimination. Here, we are

given a polynomial ideal I ⊆ K[x1, . . . , xn,y1, . . . ,ym ] and the

task is to compute generators of the ideal I ∩ K[x1, . . . , xn ]. The
resulting ideal of K[x1, . . . , xn ] consists of all elements of I that do
not contain any terms that are a multiple of any of the variables yi .
It is well-known that this problem can be solved by computing a

Gröbner basis with respect to an elimination order that assigns

higher weight to terms involving y1, . . . ,ym than to terms not

involving these variables.

It is less clear how to use Gröbner bases (or any other standard

elimination techniques) for finding ideal elements that do not con-

tain any terms which are a multiple of certain prescribed terms

rather than certain prescribed variables. The problem considered

in this paper is an elimination problem of this kind. Here, given
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an ideal I ⊆ K[x1, . . . , xn,y1, . . . ,ym ], we are interested in all el-

ements of I that do not involve any terms which are multiples of

any of the terms xiyj (i = 1, . . . ,n, j = 1, . . . ,m). Note that, these

are precisely the elements of I which can be written as the sum of a

polynomial in x1, . . . , xn only and a polynomial in y1, . . . ,ym only,

so the problem under consideration is as follows.

Problem 1.1 (Separation).

Input An ideal I ⊆ K[x1, . . . , xn,y1, . . . ,ym ];
Output Description of all f − д ∈ I such that

f ∈ K[x1, . . . , xn ] and д ∈ K[y1, . . . ,ym ].

At first glance, it may seem that there should be a simple way to

solve this problem with Gröbner bases, similarly as for the classical

elimination problem. However, we were not able to come up with

such an algorithm. The obstruction seems to be that there is no

term order that ranks the term xy higher than both x2 and y2.
We ran into the need for such an algorithm when we tried to

automatize an interesting non-standard elimination step which

appears in Bousquet-Mélou’s “elementary” solution of Gessel’s

walks [9]. Dealing with certain power series, say u ∈ K[x][[t]] and
v ∈ K[x−1][[t]], she finds polynomials f ,д such that f (u)−д(v) = 0,

and then concludes that f (u) and д(v)must in fact belong to K[[t]].
Deriving a pair (f ,д) automatically from known relations among

u,v amounts to the problem under consideration.

The problem also arises when one wants to compute the inter-

section of two K-algebras. For example, suppose that for given

u,v ∈ K[t1, . . . , tn ] one wants to compute K[u] ∩K[v]. This can be

done by finding all pairs (f ,д) such that f (u) = д(v), i.e., all pairs
(f ,д) with f (x) − д(y) ∈ ⟨x − u,y − v⟩ ∩ K[x,y]. See [3, 13] for a
discussion of this and similar problems.

Definition 1.2. Let p ∈ K[x1, . . . , xn,y1, . . . ,ym ].
(1) p is called separated if there exist f ∈ K[x1, . . . , xn ] and

д ∈ K[y1, . . . ,ym ] such that p = f − д.
(2) p is called separable if there is aq ∈ K[x1, . . . , xn,y1, . . . ,ym ]

such that qp is separated.

Proposition 1.3. Let I be an ideal in K[x1, . . . , xn,y1, . . . ,ym ].
Then

A(I ) := { (f ,д) ∈ K[x1, . . . , xn ] × K[y1, . . . ,ym ] : f − д ∈ I }

is a unital K-algebra with respect to component-wise addition and
multiplication and component-wise multiplication by elements of K.
We refer to A(I ) as the algebra of separated polynomials of I .

https://doi.org/10.1145/3373207.3404028
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Proof. We just note that A(I ) is clearly a K-vector space, and
that it is closed under component-wise multiplication, as for any

(f ,д), (f ′,д′) ∈ A(I ) we have f − д ∈ I and f ′ − д′ ∈ I , so (f −

д)f ′ + д(f ′ − д′) = f f ′ − дд′ ∈ I . It is unital, because we always
have (1, 1) ∈ A(I ). □

Given ideal generators of I , we want to determineK-algebra gen-
erators of A(I ). This is in general too much to be asked for, because,

as shown in Example 5.1, A(I ) may not be finitely generated. On

the positive side, it is known that A(I ) is finitely generated if I is a
principal ideal in the ring of bivariate polynomials (see [15]).

The main result of the paper is Algorithm 4.3 for computing

generators of the algebraA(I ) for a given bivariate ideal I ⊆ K[x,y].
In particular, it implies that such an algebra is always finitely gen-

erated and yields an algorithm to compute a minimal separated

multiple of a bivariate polynomial [15, Definition 4.1]. An imple-

mentation of the algorithm in Mathematica can be found on the

website of the second author.

The general structure of the algorithm is the following. Every

bivariate ideal is the intersection of a zero-dimensional ideal and

a principal ideal. We solve the separation problem for the zero-

dimensional case (Section 2) and for the principal case (Section 3)

separately. Then we show how to compute the intersection of the

resulting algebras in Section 4. We conclude with discussing the

case of more than two variables in Section 5.

In the context of separated polynomials, many deep results have

been obtained for some kind of “inverse problem” to the problem

considered here, i.e., the study of the shape of factors of polynomials

of the form f (x) − д(y), see [6, 7, 10–12, 14, 15] and references

therein. We use techniques developed in [10] in our proofs (see

Section 3).

We assume throughout that the ground fieldK has characteristic

zero and that for a given element of an algebraic extension of K we

can decide whether it is a root of unity. This is true, for example,

for every number field (see Section 3.3).

It is an open question whether the assumption on the characteris-

tic of K can be eliminated. In positive characteristic, additional phe-

nomena have to be taken into account. For example, separable poly-

nomials need not be squarefree, as the example (x + y)2 ∈ Z3[x,y]
shows, which is separable because (x+y)(x+y)2 = (x+y)3 = x3+y3.

2 ZERO-DIMENSIONAL IDEALS
When I ⊆ K[x,y] has dimension zero, it is easy to separate variables.

In this case, there are nonzero polynomials p,q with I ∩K[x] = ⟨p⟩
and I ∩ K[y] = ⟨q⟩. Clearly, these univariate polynomials p and q
are separated. Also all K[x]-multiples of p and all K[y]-multiples

of q are separated elements of I .
An arbitrary pair (f ,д) ∈ K[x]×K[y] belongs toA(I ) if and only

if (f + up,д +vq) belongs to A(I ) for all u ∈ K[x] and v ∈ K[y]. In
particular, we have (f ,д) ∈ A(I ) ⇐⇒ (remx (f ,p), remy (д,q)) ∈
A(I ). It is therefore sufficient to find all pairs (f ,д) ∈ A(I ) with
degx f < degx p and degy д < degy q. These pairs can be found

with linear algebra.

Algorithm 2.1. Input: I ⊆ K[x,y] of dimension zero.
Output: generators of the K-algebra A(I ) ⊆ K[x] × K[y]
1 if I = ⟨1⟩, return {(1, 0), (x, 0), (0, 1), (0,y)}.

2 compute p ∈ K[x] and q ∈ K[y] such that

I ∩ K[x] = ⟨p⟩ and I ∩ K[y] = ⟨q⟩.

3 make an ansatz h =
∑degx p−1
i=0 aix

i −
∑degy q−1
j=0 bjy

j with un-
determined coefficients ai ,bj .

4 compute the normal form of h with respect to a Gröbner basis of I
and equate its coefficients to zero.

5 solve the resulting linear system over K for the unknowns ai ,bj
and let (f1,д1), . . . , (fd ,дd ) be the pairs of polynomials corre-
sponding to a basis of the solution space.

6 return (f1,д1), . . . , (fd ,дd ), (p, 0), . . . , (x
degx p−1p, 0),

(0,q), . . . , (0,ydegy q−1q).

Proposition 2.2. Algorithm 2.1 is correct.

Proof. It is clear by construction that all returned elements

belong to A(I ). It remains to show that they generate A(I ) as K-
algebra. This is clear if I = ⟨1⟩, because then A(I ) = K[x] × K[y].
Now suppose that I , ⟨1⟩ and let (f ,д) ∈ A(I ). Because of I , ⟨1⟩,

we have degx p, degy q > 0. Then ⟨p⟩ ⊆ K[x] is generated as a

K-algebra by p, xp, . . . , xdegx p−1p. To see this, we just note that,

by performing repeatedly division by p on a polynomial and the

resulting quotients, any u ∈ ⟨p⟩ can be written

u =
k∑
i=1

rip
i

where ri are polynomials with deg ri < degp. Hence, ⟨p⟩ is a subset

of the algebra generated by p, xp, . . . , xdegx p−1p, and clearly, the

reverse inclusion holds as well. For the same reason, ⟨q⟩ is generated

as K-algebra by q, xq, . . . , xdegx q−1q.
Hence (f ,д) can be expressed in terms of the given generators

if and only if (remx (f ,p), remy (д,q)) can be expressed in terms of

the given generators. Because of degx (remx (f ,p)) < degx (p) and
degy (remy (д,q)) < degy (q), the pair (remx (f ,p), remy (д,q)) is a

K-linear combination of (f1,д1), . . . , (fd ,дd ), as required. □

Example 2.3. Consider the 0-dimensional ideal I = ⟨x2y2−1,y5+
y3 + xy2 + x⟩. We have

I ∩K[x] = ⟨x10 + x8 − x2 − 1⟩ and I ∩K[y] = ⟨y10 +y8 −y2 − 1⟩.

Every separated polynomial of I therefore has the form

f (x) + u(x)(x10 + x8 − x2 − 1) − д(y) −v(y)(y10 + y8 − y2 − 1)

for certain f (x),д(y) of degree less than 10 and some u(x),v(y). To
find the pairs (f ,д), compute the normal form of h =

∑
9

i=0 aix
i −∑

9

i=0 bjy
j with respect to a Gröbner basis of I . Taking a degrevlex

Gröbner basis, this gives

(a0 + a8 − b0) + (a6 − b2)y
2 + (a7 + b5)xy

2 + · · · .

Equate the coefficients with respect to x,y to zero and solve the re-
sulting linear system for the unknowns a0, . . . ,a9,b0, . . . ,b9. The
following pairs of polynomials (f ,д) correspond to a basis of the
solution space:

(1, 1), (x − x9,y9 − y), (x2,y8 + y6 − 1), (x9 + x3,−y9 − y3)

(x4,−y8 + y4 + 1), (x5 − x9,y3 − y7), (x6,y8 + y2 − 1)

(x9 + x7,−y5 − y3), (x8, 2 − y8).
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These pairs together with the pairs (x i (x10 + x8 − x2 − 1), 0) and
(0,yi (y10 + y8 − y2 − 1)) for i = 0, . . . , 9 form a set of generators
of A(I ).

For an ideal I ⊆ K[x,y] to be zero-dimensional means that its

codimension as K-subspace of K[x,y] is finite. Note that, in this

case, alsoA(I ) has finite codimension as K-subspace of K[x] ×K[y].
Since we will need this feature later, let us record it as a lemma.

Lemma 2.4. If I ⊆ K[x,y] has dimension zero, then there is a
finite-dimensional K-subspace V of K[x] × K[y] such that the direct
sum V ⊕ A(I ) is equal to K[x] × K[y]. Moreover, we can compute a
basis of such aV , and for every (f ,д) ∈ K[x] ×K[y] we can compute
a ( ˜f , д̃) ∈ V such that (f ,д) − ( ˜f , д̃) ∈ A(I ).

Proof. Let p,q, (f1,д1), . . . , (fd ,дd ) be as in Algorithm 2.1. Note

that, as a K-vector space, A(I ) has the basis

{(f1,д1), . . . , (fd ,дd )} ∪ {(xkp, 0) : k ∈ N} ∪ {(0,ykq) : k ∈ N}.

Using row-reduction, it can be arranged that the fi have pairwise
distinct degrees. Note that, all fi are nonzero by the choice of q. Let

V be the K-subspace of K[x] × K[y] generated by the pairs (xk , 0)
for all k < degx (p) which are not the degree of some fi and the

pairs (0,yk ) for all k < degy (q). We have V ⊕ A(I ) = K[x] × K[y].

Given (f ,д) ∈ K[x]×K[y], we compute (remx (f ,p), remy (д,q)),
and then eliminate all terms from the first component whose expo-

nent is the degree of an fi . The resulting pair ( ˜f , д̃) is an element

of V with (f ,д) − ( ˜f , д̃) ∈ A(I ). □

3 PRINCIPAL IDEALS
We now consider the case where I = ⟨p⟩ is a principal ideal of

K[x,y]. Ifp ∈ K[x]∪K[y], the algebraA(I ) of separated polynomials

is finitely generated, as we have seen in the proof of Proposition 2.2.

It was shown in [15, Theorem 4.2] that, if p is separable, there

is a separated multiple f (x) − д(y) of p that divides any other

separated multiple of it. We refer to f (x) − д(y) as the minimal
separated multiple of p. Moreover, [15, Theorem 2.3] implies that if

p < K[x]∪K[y], then (f ,д) is an algebra generator forA(I ). We note

that, [15, Theorem 2.3] was reproven in [8], and generalized further

in [1, 19]. The proof of [15, Theorem 4.2] was not constructive. In

the following we provide a criterion that allows to decide if p is

separable, and if it is, to compute its minimal separated multiple.

Our criterion is based on considering the highest graded com-

ponent of the polynomial with respect to a certain grading. The

separability of the highest component is a necessary but not a

sufficient condition for the separability of a polynomial itself. Sur-

prisingly, there is a weaker converse, that is, the minimal separated

multiple of the highest component is equal to the highest compo-

nent of the minimal separated multiple of p if the latter exists (see
Theorem 3.5). This allows us to reduce the problem for a general

not necessarily homogeneous polynomial to the same problem for

a homogeneous polynomial (which is solved in Section 3.1) and

solving a linear system. The resulting algorithm is presented in

Section 3.3.

Since the casep ∈ K[x]∪K[y] is trivial, for the rest of the section,
we assume that p ∈ K[x,y] \ (K[x] ∪ K[y]).

3.1 Homogeneous case
Definition 3.1.

(1) A function ω from the set of monomials in x and y to R is
called a weight function if there exist ωx ,ωy ∈ Z>0 such that
ω(x iy j ) = ωx i + ωy j for every i, j ∈ Z≥0.

(2) Two weight functions are considered to be equivalent if they
differ by a constant non-zero factor.

(3) For a weight functionω and a nonzero polynomial p ∈ K[x,y],
ω(p) is defined to be the maximum of the weights of the mono-
mials of p.

(4) For a weight function ω and a polynomial p ∈ K[x,y], we
define the ω-leading part of p (denoted by lpω (p)) as the sum
of the terms of p of weight ω(p).

In this subsection, we consider the case of p being homogeneous

with respect to some weight function ω, that is, lpω (p) = p.

Proposition 3.2. Letω be a weight function, and let p ∈ K[x,y]\
(K[x] ∪ K[y]) satisfy lpω (p) = p. Then p is separable if and only if

(1) p involves a monomial only in x , and
(2) all the roots ofp(x, 1) in the algebraic closureK ofK are distinct

and the ratio of every two of them is a root of unity.

Moreover, if p is separable and N is the minimal number such that
the ratio of every pair of roots of p(x, 1) is an N -th root of unity, then
the weight of the minimal separated multiple of p is Nωx .

Proof. Assume that p is separable, and let P be a separated

multiple. Replacing P with lpω (P) if necessary, we will further

assume that P = lpω (P). Since P < K[x] ∪ K[y] and is separated, P
involves a monomial in x only, and hence, so does p.

Since P is ω-homogeneous and separated, it is of the form axm −

byn for some a,b ∈ K \ {0}, so p(x, 1) | axm − b. All roots of the
latter are distinct and the ratio of each of them is anm-th root of

unity. Hence, the same is true for p(x, 1). This proves the only-if
part of the proposition.

To prove the remaining part of the proposition, let N be as in

the statement of the proposition, and γ ∈ K be a root of p(x, 1).
Consider the ω-homogeneous Puiseux polynomial

P := xN − γNyNωx /ωy .

We perform Euclidean division of P by p over the field F of Puiseux

series iny overK. This will yield a representation P = qp+r , where
q and r are alsoω-homogeneous. Since P(x, 1) is divisible by p(x, 1),
we see that r (x, 1) = 0. However, the ω-homogeneity of r implies

that each of its coefficients with respect to x is a Puiseux monomial

iny. Thus, r = 0. Next, assume that Nωx /ωy is not an integer. Then

there is an automorphism σ of the Galois group of F over K(y) that

moves yNωx /ωy
. Then

p | P − σ (P) ∈ F ,

which is impossible. Therefore, P is a separated polynomial divisible

by p of weight Nωx . □

Of course, because of symmetry, the statements of Proposition 3.2

also hold for y instead of x .
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3.2 Reduction to the homogeneous case
We will start with a necessary condition for p being separable.

Lemma 3.3. Let p ∈ K[x,y] \ (K[x] ∪ K[y]) be separable.
(1) There exists a unique (up to a constant factor) weight function

ω such that lpω (p) involves at least two monomials.
(2) The polynomial lpω (p) is separable.

Proof. Let q ∈ K[x,y] \ {0} be such that qp is separated. Let

degx qp =m and degy qp = n. Define ω(x iy j ) = ni +mj. If lpω (p)

contains only one monomial, then every monomial in lpω (qp) is
divisible by it. This is impossible since lpω (qp) involves both xm

and yn .
To prove the uniqueness, assume that there are two nonequiva-

lent weight functionsω1 andω2 with this property. Since lpωi (qp) =
lpωi (q) lpωi (p) for i = 1, 2, we have that both lpω1

(qp) and lpω2

(qp)
contain at least two monomials. However, the only monomials of

qp that can appear in the leading part are xm and yn , and there is a
unique weight function so that they have the same weight.

The second claim of the lemma follows from lpω (q) lpω (p) =
lpω (qp). □

There is an analogous version of Lemma 3.3 with the lowest

homogeneous part in place of the leading homogeneous part. How-

ever, even when both the lowest and the leading homogeneous part

are separable, the whole polynomial need not be separable, as the

following example shows.

Example 3.4. For p = (x3 + x2y + xy2 +
y3) + y2 ∈ Q[x,y], the relevant weight func-
tion for the leading homogeneous part as in
Lemma 3.3 is given by ωx = ωy = 1. It leads
to the leading homogeneous part x3 + x2y +
xy2 + y3. Analogously, the relevant weight
function for the lowest homogeneous part is given by ωx = 2,ωy = 3.
It leads to the lowest homogeneous part x3 +y2. Both the leading and
the lowest homogeneous part are separable. We claim that p is not
separable.

x

y

Let ω be the weight function defined by ω(x iy j ) = 2i + 3j, so
that the lowest homogeneous part of p is x3 + y2 (weight 6), and the
next-to-lowest part is x2y (weight 7). With respect toω, any separated
polynomial involving both variables only consists of homogeneous
parts axn + bym whose weight 2n = 3m is a multiple of 6.

Assume that p is separable and let q ∈ Q[x,y]\ {0} be such that qp
is separated. Write q = q0 +q1 + · · · , where q0,q1, . . . are the lowest,
the next-to-lowest, etc. homogeneous parts of q with respect to ω. The
lowest homogeneous part of pq is then q0(x3 + y2), and since it must
be separated and involve both variables, we have ω(q0) = 0 mod 6.

Because of ω(q0x2y) = ω(q0(x
3 + y2)) + 1 = 1 mod 6, none of

the terms of q0x2y can appear in qp, so they must all be canceled by
something. We must therefore have ω(q1) = ω(q0) + 1 and q0x2y +
q1(x

3 + y2) = 0. This implies that x3 + y2 divides q0, which in turn
implies that the lowest homogeneous part q0(x3 + y2) of pq has a
multiple factor. On the other hand, q0(x3 + y2) = axn + bym for
some a,b , 0, and every such polynomial is squarefree. This is a
contradiction.

The main result of the section is the following “partial converse”

of Lemma 3.3.

Theorem 3.5. Let p ∈ K[x,y] \ (K[x] ∪ K[y]) be a separable
polynomial. Let ω be the weight function given by Lemma 3.3, and let
P be the minimal separated multiple of p. Then lpω (P) is the minimal
separated multiple of lpω (p).

Before proving the theorem, we will establish some combinato-

rial tools for dealing with divisors of separated polynomials extend-

ing the results of Cassels [10].

Notation 3.6. Consider a separated polynomial f (x) − д(y) with
degx f =m and degy д = n, wherem,n > 0, and a weight function
ω(x iy j ) = in + jm. We introduce a new variable t and consider two
auxiliary equations

f (x) = t and д(y) = t .

We solve these equations with respect to x and y in K(t), the algebraic
closure of K(t). Let the solutions be α0, . . . ,αm−1 and β0, . . . , βn−1,
respectively. Then every element π ofGal(K(t)/K(t)), the Galois group
of K(t) over K(t), acts on Zm × Zn by

π (i, j) := (i ′, j ′) ⇐⇒ (π (αi ), π (βj )) = (αi′, βj′).

Let G ⊆ Sm × Sn be the group of permutations induced on Zm × Zn
by this action.

Notation 3.7. For a subset T ⊆ Zm × Zn , and (i, j) ∈ Zm × Zn ,
we introduce

Ti ,∗ := {k | (i,k) ∈ T } and T∗, j := {k | (k, j) ∈ T }.

Lemma 3.8. Let T ⊆ Zm × Zn be a G-invariant subset. Then
|T0,∗ | = |T1,∗ | = . . . = |Tm−1,∗ | and |T∗,0 | = |T∗,1 | = . . . = |T∗,n−1 |.

Proof. We show that |T0,∗ | = |T1,∗ |, the rest is analogous. First,
we observe that f (x) − t is irreducible over K(t). If it was not, it
would be reducible over K[t] due to Gauss’s lemma. The latter

is impossible because f (x) − t is linear in t and does not have

factors in K[x]. The irreducibility of f (x) − t implies that its Galois

group acts transitively on the roots. In particular, there exists π ∈

Gal(K(t)/K(t)) such that π (α0) = α1. Hence, π maps T0,∗ to T1,∗,
andwe have |T0,∗ | ⩽ |T1,∗ |. The reverse inequality is analogous. □

Lemma 3.9 (cf. [10, p. 9-10]). Let T ⊆ Zm × Zn be a G-invariant
subset. There exists a divisor p of f (x) − д(y), unique up to a multi-
plicative constant, such that

T = {(i, j) ∈ Zm × Zn | p(αi , βj ) = 0}. (1)

Proof. Existence. Let T0,∗ = {j1, . . . , js }. Since f (α0) = t , we

have K(α0) ⊇ K(t), so every element of Gal(K(t)/K(α0)) leaves T
invariant. If α0 is fixed, then βj1 , . . . , βjs are permuted. Therefore,

the polynomial (y − βj1 )(y − βj2 ) . . . (y − βjs ) is invariant under the

action of Gal(K(t)/K(α0)). Hence, by the fundamental theorem of

Galois theory, it is a polynomial in K(α0)[y]. Since, by construction,
it divides f (α0) − д(y) over K(α0), and α0 and y are algebraically

independent, it in fact belongs to K[α0,y]. Replacing α0 by x , we
find a polynomial p ∈ K[x,y], which divides f (x) − д(y) in K[x,y].

Let (i, j) ∈ Zm × Zn . Since Gal(K(t)/K(t)) acts transitively on

the roots of f (x) − t (see the proof of Lemma 3.8), there is an

automorphism π with π (αi ) = α0. Let βj′ = π (βj ). We then have

p(αi , βj ) = 0 ⇐⇒ p(α0, βj′) = 0 ⇐⇒ j ′ ∈ T0,∗ ⇐⇒ (i, j) ∈ T .
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Uniqueness. It remains to prove that p is unique up to a multi-

plicative constant. Assume that p̃ is another divisor of f (x) − д(y)
such that p̃(αi , βj ) = 0 for all (i, j) ∈ T . The same argument which

proved that p is a divisor of f (x) − д(y) applies to show that p is a

divisor of p̃ in K[x,y], and vice versa. Hence, they only differ by a

multiplicative constant. □

Lemma 3.10. LetT ⊆ Zm×Zn be aG-invariant subset. The unique
factor p corresponding to T ⊆ Zm × Zn (see Lemma 3.9) is separated
if and only if

∀ i, j ∈ Zm : (Ti ,∗ ∩Tj ,∗ = ∅) or (Ti ,∗ = Tj ,∗) (2)

Proof. Assume that T satisfies (2), and let T0,∗ = {j1, . . . , js }.
Consider the corresponding polynomial p constructed in the proof

of Lemma 3.9, which is of the form

p(x,y) = ys + as−1(x)y
s−1 + · · · + a0(x),

where, for every 0 ⩽ i < s and 0 ⩽ j < m, ai (α j ) is (up to sign) the

s − i-th elementary symmetric polynomial in {βk | k ∈ Tj ,∗}.
Since p | f (x) − д(y), we have lpω (p) | lpω (f (x) − д(y)) =

axm − byn , with a,b ∈ K \ {0}. Hence, ys belongs to lpω (p), and
so ω(ai (x)y

i ) ⩽ ω(ys ) =ms for all i ∈ {0, . . . , s − 1}, This implies

degx ai (x) ⩽
ms −mi

n
= (s − i)

m

n
.

Since T is the disjoint union of the Ti ,∗’s and of the T∗, j ’s, re-
spectively, whose cardinality, by Lemma 3.8, does not depend on i
and j, and T0,∗, by definition, consists of s elements, we find that

ms = |T | = n |T∗, j1 |, in particular ℓ := |T∗, j1 | =
ms
n . Hence there

exist 0 = i1 < i2 < . . . < iℓ < m such that j1 ∈ Ti1,∗ ∩ . . . ∩Tiℓ ,∗
and so, by (2), Ti1,∗ = . . . = Tiℓ ,∗. This shows that the polynomial

aj (x) − aj (α0) has at least ℓ pairwise distinct roots, αi1 , . . . ,αiℓ ,
while it has degree less than ℓ for 0 < j < s . Hence, it is the zero
polynomial, and aj (x) is a constant (which we denote by aj ). There-
fore, p is separated and of the form p(x,y) = f0(x) − д0(y) with
f0(x) = a0(x) and д0(y) = −(ys + as−1y

s−1 + · · · + a1y).
To prove the other implication, let p(x,y) = f0(x) − д0(y) be a

separated factor of f (x) − д(y). It is sufficient to show that

(i, j), (i ′, j), (i, j ′) ∈ T =⇒ (i ′, j ′) ∈ T .

Indeed, (i, j), (i ′, j) ∈ T implies that f0(αi ) = f0(αi′), so that f0(αi )−
д0(βj′) = 0 implies that f0(αi′) − д0(βj′) = 0, i.e. (i ′, j ′) ∈ T . □

Lemma 3.10 motivates the following definition.

Definition 3.11. (1) A subset T ⊆ Zm × Zn is called sepa-

rated if it satisfies (2), that is

∀ i, j ∈ Zm : (Ti ,∗ ∩Tj ,∗ = ∅) or (Ti ,∗ = Tj ,∗).

(2) The intersection of all separated subsets containing T ⊆ Zm ×

Zn is called the separated closure of T and denoted by T sep.
Notice that the separated closure is separated.

Example 3.12. (1) Let f (x) = x4 and д(y) = y4 + 2y2 + 1. The
group of permutations on pairs of roots of f (x)−t andд(y)−t is
generated by ((0123), (0123)), ((0321), (03)(12)) and (id, (02)).
According to f (x) − д(y) having two separated irreducible
factors, x2 −y2 − 1 and x2 +y2 + 1, we find that there are two
orbits, each of them forming a separated set (Figure 1).
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Figure 1: The factors of x4 − (y2 + 1)2 in Q[x,y] and the sets
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Figure 2: The factors of x6 − y6 in Q[x,y] and the sets T ⊆ Z2
6

corresponding to them. For the unseparated cases, we high-
light one choice of two incompatible rows.

(2) Let f (x) −д(y) = x6 −y6. Let t1/6 ∈ C(t) be any 6th root of t ,
and let ϵ be a primitive 6th root of unity. Then the polynomials
f (x) − t and д(y) − t have the same roots, namely:

αi = βi = ϵi t1/6, i ∈ {0, . . . , 5}.

The Galois group of C(t) permutes these elements cyclically, so
the induced action on Z2

6
is generated by ((012345), (012345)).

Figure 2 shows the sets T for the various factors of x6 − y6.
Observe that T is separated if and only if the corresponding
factor is separated. Observe also that multiplying two factors
corresponds to taking the union of the corresponding sets T .
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Lemma 3.13. Let T ⊆ Zm × Zn be invariant with respect toG ⊆

Sm × Sn . Then T sep is also G-invariant.

Proof. Let π = (σ , τ ) ∈ Sm × Sn , and let S ⊆ Zm × Zn be

a separated set. Since π (S)i ,∗ = τ (Sσ (i),∗), we find that π (S) is
separated as well.

Assume thatT sep
is notG-invariant, that is, there exists a π ∈ G

such that π (T sep) , T sep
. As we have shown, π (T sep) is separated,

hence so is S := T sep ∩ π (T sep). Observe that, since π (T sep) , T sep
,

S ⊊ T sep
. Since T is G-invariant, T ⊆ π (T sep), so T ⊆ S . This

contradicts the minimality of T sep
. □

Proof of Theorem 3.5. We use Notation 3.6 with K(t) being
identified with a subfield of the field F of Puiseux series in t−1

overK. Letα0, . . . ,αm−1 and β0, . . . , βn−1 denote the roots of f (x)−

t and д(y) − t and α0, . . . ,αm−1 and β
0
, . . . , βn−1 their highest de-

gree terms. Observe that the highest degree terms are proportional

to t1/n and t1/m , and hence they are the roots of lpω (f (x)) − t and
lpω (д(y)) − t , respectively. We define

T = {(i, j) ∈ Zm × Zn | p(αi , βj ) = 0},

T = {(i, j) ∈ Zm × Zn | lpω (p)(α i , β j ) = 0}.

If lpω (P) were not the minimal separated multiple of lpω (p), by

Lemma 3.10, we would have T
sep ⊊ Zm × Zn . Therefore, it is

sufficient to show that T
sep

= Zm × Zn .
Since

p(αi , βj ) = 0 =⇒ lpω (p)(αi , βj ) = 0,

we haveT ⊆ T . By assumption, P is the minimal separated multiple

of p, so, by Lemma 3.13, T sep = Zm × Zn . Since T
sep ⊆ T

sep

, this

implies that T
sep

= Zm × Zn , and finishes the proof. □

3.3 Algorithm
The algorithm for finding a generator of the algebra of separated

polynomials of a principal ideal ⟨p⟩ is based on the results above.

First, it uses Theorem 3.5 to reduce the situation to a homogeneous

polynomial for a suitable grading, then, it uses Proposition 3.2 to

find a degree bound for the minimal separated multiple, and finally,

it uses linear algebra to determine if such a multiple exists.

Algorithm 3.14. Input: p ∈ K[x,y] \ (K[x] ∪ K[y]).
Output: a ∈ K[x] × K[y] such that K[a] = A(⟨p⟩). The algorithm
returns a = (1, 1) iff A(⟨p⟩) � K.
1 let ωx ,ωy ∈ N be maximal such that p contains monomials

xωyy0 and x0yωx . Such parameters exist because p is not uni-
variate.

2 set h = lpω (p) with ω(x
iy j ) := ωx i + ωy j.

3 if h does not contain xωy , return (1, 1).
4 let {ζ1, . . . , ζm } ⊆ K be the roots of h(x, 1) ∈ K[x]. If any of

them is not a simple root, return (1, 1).
5 let N ∈ N be minimal such that (ζi/ζj )N = 1 for all i, j. If no

such N exists, return (1, 1).
6 make an ansatz

f =
N∑
i=0

aix
i , д =

Nωx /ωy∑
j=0

bjy
j ,

compute remx (f −д,p) inK(a0, . . . ,aN ,b0, . . . ,bNωx /ωy ,y)[x].
The result lives in K[a0, . . . ,aN ,b0, . . . ,bNωx /ωy ,y, x] because
the leading coefficient of p is in K.

7 equate the coefficients of remx (f − д,p) with respect to x,y to
zero and solve the resulting linear system for the unknowns ai ,bj .

8 if there is a nonzero solution, return the corresponding pair (f ,д),
otherwise return (1, 1).

WhenK is a number field, Step 5 can be carried out as follows: for

each ratio ζi/ζj , one should check whether the minimal polynomial

of this ratio over Q is a cyclotomic polynomial Φn and, if yes,

return such n. This check can be performed using a bound from [18,

Theorem 15] that yields the upper bound on n based on the degree

of the polynomial.

Proposition 3.15. Algorithm 3.14 is correct.

Proof. The algorithm consists of an application of the results of

the previous section and a handling of degenerate cases not covered

by these results. In Steps 3–5, it is correct to return (1, 1) in the

indicated situations because Proposition 3.2 implies that h is not

separable in these cases, which in combination with Lemma 3.3

implies that p is not separable either.

By Proposition 3.2, when h has a separated multiple at all, it

has one of weight Nωx , and by Theorem 3.5, when p has a sep-

arated multiple at all, it also has one of weight Nωx . Therefore,
if p has a separated multiple, it will have one of the shape set up

Step 6. For f − д to be a separated multiple of p is equivalent to

remx (f −д,p) = 0, which we can safely view as univariate division

with respect to the variable x because the leading coefficient of

p with respect to x does not contain y (nor any of the undeter-

mined coefficients). It is checked in Step 7 whether there is a way

to instantiate the undetermined coefficients in such a way that this

remainder becomes zero. If so, any such way translates into a sepa-

rated multiple, and by [15, Theorem 2.3], it is a generator of A(I ). If
there is no non-zero solution, it is correct to return (1, 1). □

4 ARBITRARY BIVARIATE IDEALS
The case of an arbitrary ideal I ⊆ K[x,y] is reduced to the two

cases discussed in Sections 2 and 3. Every ideal I ⊆ K[x,y] can be

written as I =
⋂k
i=1 Pi , where the Pi ’s are primary ideals. Unless

I = {0} or I = ⟨1⟩, these primary ideals have dimensions zero or

one. Primary ideals in K[x,y] of dimension 1 must be principal

ideals, because dim(Pi ) = 1 together with Bezout’s theorem implies

that Pi cannot contain any elements p,q with gcd(p,q) = 1, and

then Pi being primary implies that Pi is generated by some power

of an irreducible polynomial.

The intersection of zero-dimensional ideals is zero-dimensional

and the intersection of principal ideals is principal, so there exists a

zero-dimensional ideal I0 and a principal ideal I1 such that I = I0∩I1.
These ideals are obtained as the intersections of the respective

primary components of I . When I0 = ⟨1⟩ or I1 = ⟨1⟩, we have

I = I1 or I = I0, respectively, and are in one of the cases already

considered. Assume now that I1, I0 are both different from ⟨1⟩.

In order to use the results of Section 3, we have to make sure

that the generator of I1 contains both variables. If this is not the

case, say if I1 = ⟨h⟩ for some h ∈ K[x] \ K, then the separated

polynomials in I are precisely the elements of I ∩ K[x]. If p is such
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that ⟨p⟩ = I ∩K[x], then the pairs (x ip, 0) for i = 0, . . . , degx p − 1

are generators ofA(I ) (see the proof of Proposition 2.2), so this case

is settled. Therefore, from now on we assume that the generator of

I1 contains both the variables.

We can compute generators of the algebraA(I0) ⊆ K[x]×K[y] of
separated polynomials in I0 as described in Section 2 and a generator
of the algebra A(I1) ⊆ K[x] × K[y] of separated polynomials in I1
as described in Section 3. Clearly, the algebraA(I ) ⊆ K[x] ×K[y] of
separated polynomials in I isA(I ) = A(I0)∩A(I1). It thus remains to

compute generators for this intersection. In order to do so, we will

exploit that the codimension of A(I0) as K-subspace of K[x] ×K[y]
is finite (Lemma 2.4), and that A(I1) = K[a] for some a ∈ K[x] ×
K[y]. We have to find all polynomials p such that p(a) ∈ A(I0).
Polynomials p with a prescribed finite set of monomials can be

found with the help of Lemma 2.4 as follows.

Algorithm 4.1. Input: a ∈ K[x] × K[y], A(I0) and V as in
Lemma 2.4, and a finite set S = {s1, . . . , sm } ⊆ N.
Output: a K-vector space basis of the space of all polynomials p with
p(a) ∈ A(I0) such that p involves only monomials with exponents
in S .
1 for i = 1, . . . ,m, compute ri ∈ V such that asi − ri ∈ A(I0)

2 compute a basis B of the space of all (c1, . . . , cm ) ∈ Km with
c1r1 + · · · + cmrm = 0

3 for every element (c1, . . . , cm ) ∈ B, return c1ts1 + · · · + cmtsm .

Proposition 4.2. Algorithm 4.1 is correct.

Proof. If (c1, . . . , cm ) ∈ Km is such that

∑m
i=1 cia

si ∈ A(I0),
then

∑m
i=1 ciri ∈ A(I0), and since ri ∈ V for all i andA(I0)∩V = {0},

we have

∑m
i=1 ciri = 0. Therefore (c1, . . . , cm ) is among the vectors

computed in step 2, so the algorithm does not miss any solutions.

Conversely, if (c1, . . . , cm ) ∈ Km is such that

∑m
i=1 ciri = 0, then∑m

i=0 cia
si =

∑m
i=0 ci (a

si − ri ) ∈ A(I0), so the algorithm does not

return any wrong solutions. □

To find a set of generators ofA(I0)∩A(I1), we apply Algorithm 4.1

repeatedly. First call it with S = {1, . . . , dimV + 1}. Since |S | >
dimV , the output must contain at least one nonzero polynomial p1.
Ifd1 is its degree, we can restrict the search for further generators to
subsets S of N \d1N, because when q is such that q(a) ∈ A(I0), then
we can subtract a suitable linear combination of powers of p1 to
remove from q all monomials whose exponents are multiples of d1.
Whend1 = 1, we haveA(I0)∩A(I1) = K[a] and are done. Otherwise,
N \ d1N is still an infinite set, so we can choose S ⊆ N \ d1N
with |S | > dimV and call Algorithm 4.1 to find another nonzero

polynomial p2, say of degree d2. The search for further generators

can be restricted to polynomials consisting of monomials whose

exponents belong toN\(d1N+d2N). We can continue to find further

generators of degrees d3,d4, . . . with di ∈ N \ (d1N + · · · + di−1N)
for all i . Since the monoid (N,+) has the ascending chain condition,

this process must come to an end.

The end is clearly not reached as long as д := gcd(d1, . . . ,dm ) ,
1, because then N\дN is an infinite subset of N\ (d1N+ · · ·+dmN).
Once we have reached д = 1, it is well known [2, 17] thatN\(d1N+
· · ·+dmN) is a finite set, and there are algorithms [5] for computing

its largest element (known as the Frobenius number of d1, . . . ,dm ).

We can therefore constructively decide when all generators have

been found.

Putting all steps together, our algorithm for computing the sepa-

rated polynomials in an arbitrary ideal of K[x,y] works as follows.
We use the notation ⟨d1, . . . ,dm⟩ for the submonoidd1N+· · ·+dmN
generated by d1, . . . ,dm in N.

Algorithm 4.3. Input: an ideal I ⊆ K[x,y], given as a finite set
of ideal generators
Output: a finite set of generators for the algebra A(I ) of separated
polynomials of I
1 if dim I = 0, call Algorithm 2.1, return the result.
2 compute a zero-dimensional ideal I0 and a principal ideal I1 = ⟨h⟩

with I = I0 ∩ I1 (for example, using Gröbner bases [4] and the
remarks at the beginning of this section).

3 if h ∈ K[x], compute p such that ⟨p⟩ = I ∩K[x], return the pairs
(x ip, 0) for i = 0, . . . , degx p − 1. Likewise if h ∈ K[y].

4 call Algorithm 2.1 to get generators of A(I0), and let V be as in
Lemma 2.4.

5 call Algorithm 3.14 to get an a ∈ K[x] ×K[y] with A(I1) = K[a].
If A(I1) � K, return (1, 1).

6 G = ∅, ∆ = ∅.
7 while gcd(∆) , 1, do:
8 select a set S ⊆ N\⟨∆⟩ with |S | > dimV and call Algorithm 4.1

to find a nonzero polynomial p with p(a) ∈ A(I0) consisting
only of monomials with exponents in S .

9 G = G ∪ {p}, ∆ = ∆ ∪ {degx p}

10 call Algorithm 4.1 with S = N \ ⟨∆⟩ (which is now a computable
finite set) and add the resulting polynomials to G.

11 return G

An implementation of the algorithm in Mathematica can be

found on the website of the second author. Incidentally, the algo-

rithm also shows that A(I ) is always a finitely generated K-algebra.

Example 4.4. For the ideal

I = ⟨(x2 − xy + y2)(x3 − 2xy2 − 1), (x2 − xy + y2)(y3 − 2x2y − 1)⟩

we have I0 = ⟨x3 − 2xy2 − 1,y3 − 2x2y − 1⟩ and I1 = ⟨x2 − xy +y2⟩.
Algorithm 2.1 yields a somewhat lengthy list of generators for A(I0)
fromwhich it can be read off that a suitable choice forV is theK-vector
space generated by (0,yi ) for i = 0, . . . , 8. In particular, dimV = 9.
Algorithm 3.14 yields A(I1) = K[(x3,−y3)].

Making an ansatz for a polynomial p of degree at most 10 such that
p(a) ∈ A(I0), we find a solution space of dimension 7. Its lowest degree
element is t4 − 2t2, giving rise to the element (x12 − 2x6,y12 − 2y6) of
A(I0) ∩A(I1). If we discard the other solutions and continue with the
next iteration, we search for polynomials p whose support is contained
{xs : s ∈ S} for S = {1, 2, 3, 5, 6, 7, 9, 10, 11, 13}. Again, the solution
space turns out to have dimension 7. The lowest degree element is
now 9t5 − 26t3 + 17. Since gcd(4, 5) = 1, we can exit the while loop.
In step 10 of the algorithm, we get S = {1, 2, 3, 6, 7, 11}, and this
exponent set leads to a solution space of dimension three, generated
by the polynomials 81t6 − 323t3, 81t7 − 539t3 + 458, and 6561t11 −
191125t3 + 184564. The resulting generators of A(I ) = A(I0) ∩A(I1)
are therefore the pairs p((x3,−y3)) where p runs through the five
polynomials found by the algorithm.
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5 MORE THAN TWO VARIABLES
It is a natural question whether anything more can be said about

the case of several variables. Incidentally, a multivariate version

would be needed in order to solve the combinatorial problem that

motivated this research in the first place.

Algorithm 2.1 for bivariate zero-dimensional ideals also holds for

zero-dimensional ideals of K[x1, . . . , xn,y1, . . . ,ym ] for arbitrary

n,m. Also Lemma 2.4 generalizes without problems. We believe that

with some further work, our results for principal ideals can also be

generalized to the case of several variables. However, in general,

not every polynomial ideal with more than two variables is the

intersection of a principal ideal and a zero-dimensional ideal, so the

route taken in Section 4 is blocked. Also, as the next example shows

we cannot expect an algorithm that finds the algebra of separated

polynomials for an arbitrary ideal I ⊆ K[x1, . . . , xn,y1, . . . ,ym ],

since it does not need to be finitely generated.

Example 5.1 (A(I ) is not necessarily finitely generated). It
is shown in [16, Example 1.3] that the algebra

R := C[t2
1
, t3
1
, t
2
] ∩ C[t2

1
, t
2
− t

1
] ⊂ C[t1, t2]

is not finitely generated. Consider the ideal

I = ⟨x1 − t2
1
, x2 − t3

1
, x3 − t

2
,

y1 − t2
1
,y2 − (t2 − t1)⟩ ∩ C[x1, x2, x3,y1,y2]

= ⟨x1 − y1,−x2 + x3y1 − y1y2, x
2

3
− y1 − 2x3y2 + y

2

2
⟩.

We claim that A(I ) � R as C-algebras, implying that A(I ) is not
finitely generated. We show that ϕ : A(I ) → R defined by ϕ(f ,д) =
f (t2

1
, t3
1
, t
2
) is an isomorphism:

• ϕ is well-defined (the image is contained in R ⊆ C[t2
1
, t3
1
, t
2
]).

To see this, note that, (f ,д) ∈ A(I ) means f − д ∈ I , which
by definition of I means f (t2

1
, t3
1
, t
2
) = д(t2

1
, t2 − t1). Therefore,

f (t2
1
, t3
1
, t
2
) ∈ C[t2

1
, t3
2
, t
2
] ∩ C[t2

1
, t2 − t1] = R.

• ϕ is surjective. For every p ∈ R there exist polynomials f ,д
with p = f (t2

1
, t3
1
, t
2
) = д(t2

1
, t2 − t1). By definition of I we

have f (x1, x2, x3) − д(y1,y2) ∈ I , hence (f ,д) ∈ A(I ). Now
ϕ(f ) = p, so p is in the image of ϕ.

• ϕ is injective. This follows from I ∩ C[y1,y2] = {0}. □

It would still make sense to ask for an algorithm that decides

whether A(I ) is nontrivial. We do not have such an algorithm, but

being able to solve the problem in the bivariate case gives rise to a

necessary condition.

Proposition 5.2. Let

ξ : K[x1, . . . , xn ] → K[x] and η : K[y1, . . . ,ym ] → K[y]

be two homomorphisms, and let I ⊆ K[x1, . . . , xn,y1, . . . ,ym ] be an
ideal such that

I ∩ K[y1, . . . ,ym ] = {0} and (id ⊗ η)(I ) ∩ K[x1, . . . , xn ] = {0}.

If the algebra of separated polynomials of I is non-trivial, then so is
the algebra of separated polynomials of J := (ξ ⊗ η)(I ) ⊆ K[x,y].

Proof. Let (f ,д) be an arbitrary, non-constant element of A(I ).
If (ξ (f ),η(д)) ∈ A(J ) were a K-multiple of (1, 1), we would find

that f − η(д) were an element of (id ⊗ η)(I ) ∩ K[x1, . . . , xn ], and
hence, by our assumption, that f itself were a constant. So f − д ∈

I ∩ K[y1, . . . ,ym ], and hence, by assumption, д = f is a constant

as well, contradicting that (f ,д) is not a constant. □

The examples below show different reasonable choices for ho-

momorphisms ξ and η.

Example 5.3. Consider the polynomial p = x2 + xy1y2 + y
2

1
+ y2

2
.

Let ξ = id and let η be defined by η(y1) = y, η(y2) = 2. Notice that η
is just the evaluation of y2 at 2. Then (ξ ⊗ η)(p) = x2 + 2xy1 +y

2

1
+ 4,

a polynomial that is not separable. Hence p is not separable.

Example 5.4. Consider the polynomial p = x2 +xy1 +y
2

1
+y4

2
. We

cannot use the same strategy as in the previous example because any
evaluation of y1 or y2 results in a separable polynomial. Nevertheless,
the homomorphism defined by ξ (x) = x , η(y1) = y2, and η(y2) = y
maps p to (ξ ⊗ η)(p) = x2 + xy2 + 2y4, a polynomial which is not
separable. So p is not separable either.
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