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Abstract. Gessel walks are lattice walks in the quarter plane N2 which start
at the origin (0, 0) ∈ N2 and consist only of steps chosen from the set {←,

ւ,ր,→}. We prove that if g(n; i, j) denotes the number of Gessel walks of
length n which end at the point (i, j) ∈ N2, then the trivariate generating
series G(t; x, y) =

X

n,i,j≥0

g(n; i, j)xiyjtn is an algebraic function.

1. Introduction

The starting question in lattice path theory is the following: How many ways are
there to walk from the origin through the lattice Z2 to a specified point (i, j) ∈ Z2,
using a fixed number n of steps chosen from a given set S of admissible steps. The
question is not hard to answer. If we write f(n; i, j) for this number and define the
complete generating function

F (t; x, y) :=

∞
∑

n=0

(

∑

i,j∈Z

f(n; i, j)xiyj
)

tn ∈ Q[x, y, x−1, y−1][[t]]

then a simple calculation suffices to see that F (t; x, y) is rational, i.e., it agrees with
the series expansion at t = 0 of a certain rational function P/Q ∈ Q(t, x, y). This
is elementary and well-known.

Matters are getting more interesting if restrictions are imposed. For example, the
generating function F (t; x, y) will typically no longer be rational if lattice paths are
considered which, as before, start at the origin, consist of n steps, end at a given
point (i, j), but which, as an additional requirement, never step out of the right

half-plane. In was shown in [8, Prop. 2] that no matter which set S of admissible
steps is chosen, the complete generating function F for such walks is algebraic, i.e.,
it satisfies P (F, t, x, y) = 0 for some polynomial P ∈ Q[T, t, x, y].

If the walks are not restricted to a half-plane but to a quarter plane, say to the
first quadrant, then the generating function F might not even be algebraic. For
some step sets it is, for others it is not [6]. Among the series which are not algebraic,
there are some which are still D-finite with respect to t (i.e., they satisfy a linear
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differential equation in t with polynomial coefficients in Q[t, x, y]), and others which
are not even that [8, 20].

Bousquet-Mélou and Mishna [7] have systematically investigated all the walks
in the quarter plane with step sets S ⊆ {←, տ, ↑, ր, →, ց, ↓,ւ}. By discarding
trivial cases and applying symmetries, they reduce the 256 different step sets to 79
inherently different cases. They provide a unified way to prove that 22 of those are
D-finite, and give striking evidence that 56 are not D-finite. Only a single step set
sustained their attacks, and this is the step set that we consider here.

This critical step set is {←,ւ,ր,→}. The central object of the present article
are thus lattice walks in Z2 which

• start at the origin (0, 0),
• consist of n steps chosen from the step set {←,ւ,ր,→}, and
• never step out of the first quadrant N2 of Z2.

These walks are also known as Gessel walks. By g(n; i, j), we denote the number
of Gessel walks of length n which end at the point (i, j) ∈ Z2. The complete
generating function of this sequence is denoted by

G(t; x, y) =

∞
∑

n=0

(

∑

i,j∈Z

g(n; i, j)xiyj
)

tn.

Since g(n; i, j) = 0 if min(i, j) > n or max(i, j) < 0, the inner sum is a polynomial
in x and y for every fixed choice of n, and thus G(t; x, y) lives in Q[x, y][[t]].

Gessel [unpublished] considered the special end point i = j = 0, i.e., Gessel walks
returning to the origin, so-called excursions. Their counting sequence g(n; 0, 0)
starts as

1, 0, 2, 0, 11, 0, 85, 0, 782, 0, 8004, 0, 88044, 0, 1020162, 0, . . .

He observed empirically that these numbers admit a simple hypergeometric closed
form. His observation became known as the Gessel conjecture and remained open
for several years. Only recently, it was shown to be true:

Theorem 1. [14] G(t; 0, 0) = 3F2

(

5/6 1/2 1
5/3 2

∣

∣

∣

∣

16t2
)

=

∞
∑

n=0

(5/6)n(1/2)n

(5/3)n(2)n
(4t)2n.

This result obviously implies that G(t; 0, 0) is D-finite. Less obvious at this point,
and actually overlooked until now, is the fact that the power series G(t; 0, 0) is even
algebraic. Because of the alternative representation

3F2

(

5/6 1/2 1
5/3 2

∣

∣

∣

∣

16t2
)

=
1

t2

(

1

2
2F1

(

−1/6 −1/2
2/3

∣

∣

∣

∣

16t2
)

− 1

2

)

it was clear that algebraicity could be decided by reference to Schwarz’s classi-
fication [24] of algebraic 2F1’s, but as nobody recognized that the parameters
(−1/6,−1/2; 2/3) actually fit to Case III of Schwarz’s table, the rumor started
to circulate that G(t; 0, 0) is not algebraic. In fact:

Corollary 2. G(t; 0, 0) is algebraic.

With Theorem 1 and standard software packages like gfun [23, 18] at hand,
discovering and proving Cor. 2 is an easy computer algebra exercise. Compared to
a proof by table-lookup, the constructive proof given below has the advantage that
it applies similarly also in situations where no classification results are available.
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Proof. The idea is to come up with a polynomial P (T, t) in Q[T, t] and prove that

P admits the power series g(t) =
∑

∞

n=0
(5/6)n(1/2)n

(5/3)n(2)n
(16t)n as a root. Using Thm. 1,

this implies that P (T, t2) is an annihilating polynomial for G(t; 0, 0), so that the
latter series is indeed algebraic.

A suitable polynomial P can be guessed automatically (cf. Sections 2.1 and 3.1).
This is how we discovered the polynomial P stated below.

By the implicit function theorem, this polynomial P admits a root r(t) ∈ Q[[t]]
with r(0) = 1. Since P (T, 0) = T − 1 has a single root in C, the series r(t) is
the unique root of P in C[[t]]. Now, r(t) being algebraic, it is D-finite, and thus
its coefficients satisfy a recurrence with polynomial coefficients. To complete the
proof, it is then sufficient to type the following commands into Maple.

> with(gfun):

> P:=(t,T) -> -1+48*t-576*t^2-256*t^3+(1-60*t+912*t^2-512*t^3)*T

+(10*t-312*t^2+624*t^3-512*t^4)*T^2+(45*t^2-504*t^3-576*t^4)*T^3

+(117*t^3-252*t^4-288*t^5)*T^4+189*t^4*T^5+189*t^5*T^6

+108*t^6*T^7+27*t^7*T^8:

> gfun:-diffeqtorec(gfun:-algeqtodiffeq(P(t,r), r(t)), r(t), g(n));

This outputs the first-order recurrence

(n + 2)(3n + 5)gn+1 − 4(6n + 5)(2n + 1)gn = 0, g0 = 1,

satisfied by the coefficients of r(t) =
∑

∞

n=0 gntn. Its solution is gn = (5/6)n(1/2)n

(5/3)n(2)n
16n,

and therefore g(t) and r(t) coincide, and thus g(t) is a solution of P , as claimed. �

The aim in the present article is to lift Corollary 2 to the complete generating
function, where x and y are kept as parameters. We are going to show:

Theorem 3. G(t; x, y) is algebraic.

This twofold improvement of Thm. 1 is a surprising result. Until now, it was
not even known whether G(t; x, y) is D-finite with respect to t or not, and both
cases seemed equally plausible in view of known results about other step sets.
Thm. 3 implies that G(t; x, y) is D-finite with respect to each of its variables, and in
particular that the sequence g(n; i, j) is P-finite (i.e., it satisfies a linear recurrence
with polynomial coefficients in n) for any choice of (i, j) ∈ N2. This settles several
conjectures made by Petkovšek and Wilf in [21, §2]. As noted in [21], even for simple
values of (i, j) the sequence g(n; i, j) is not hypergeometric, unlike the excursions
sequence g(2n; 0, 0). For instance, the sequence g(2n+1; 1, 0) satisfies a third order
linear recurrence, but it is not hypergeometric. Moreover, no closed formula seems
to exist for g(n; i, j), for arbitrary (i, j). All this indicates that counting general
walks is much more difficult that just counting excursions.

Theorem 3 will be established by obstinately using the approach based on auto-

matic guessing and proof promoted in [5], and by making heavy use of computer
algebra. In contrast to Corollary 2, we manage in our proof of Theorem 3 to avoid
exhibiting a polynomial that has G(t; x, y) as a root. This is fortunate, since a
posteriori estimates show that the minimal polynomial of G(t; x, y) is huge, having
a total size of about 30Gb.

Only annihilating polynomials of the section series G(t; x, 0) and G(t; 0, y) are
produced and manipulated during our proof of Theorem 3. But even the compu-
tations with these have led to expressions far too large to be included in a printed
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publication; too large even to be processed efficiently by standard computer algebra
systems like Maple or Mathematica. To complete our computations, we needed care-
ful implementations of sophisticated special purpose algorithms, on computers with
fast processors and large memory capacities. These computations were performed
using the computer algebra system Magma [2]. Our result is therefore interesting
not only because of its combinatorial significance, but it is also noteworthy because
of the immense computational effort that was deployed to establish it.

2. A Dry Run: Kreweras walks

The computations which were needed for proving Thm. 3 were performed by
means of efficient special purpose software running on fast hardware. It would not
be easy to redo these calculations in, say, Maple or Mathematica on a standard
computer. As a more easily reproducible calculation, we will show in this section
how to reprove the classical result that the generating function of Kreweras walks
is algebraic [17, 12, 6]. A slight variation of the very same reasoning, albeit with
intermediate expressions far too large to be spelled out here, is then used in the
next section to establish Thm. 3.

Kreweras walks differ from Gessel walks only in their choice of admissible steps.
They are defined as lattice walks in Z2 which

• start at the origin (0, 0),
• consist only of steps chosen from the step set {←, ↓,ր}, and
• never step out of the first quadrant N2 of Z2.

If f(n; i, j) denotes the number of Kreweras walks consisting of n steps and ending
at the point (i, j) ∈ Z2, then it follows directly from its combinatorial definition that
the sequence f(n; i, j) satisfies the multivariate recurrence with constant coefficients

(1) f(n + 1; i, j) = f(n; i + 1, j) + f(n; i, j + 1) + f(n; i− 1, j − 1),

for all n, i, j ≥ 0. Together with the boundary conditions f(n;−1, 0) = 0 and
f(n; 0,−1) = 0 (n ≥ 0) and f(0; i, j) = δi,j,0 (i, j ≥ 0), this recurrence equation
implies the functional equation

F (t; x, y) = 1 +
(

1
x + 1

y + xy
)

tF (t; x, y)− 1
y tF (t; x, 0)− 1

x tF (t; 0, y)

for the generating function

F (t; x, y) =

∞
∑

n=0

(

∞
∑

i,j=0

f(n; i, j)xiyj
)

tn.

Noting that F (t; 0, y) and F (t; y, 0) are equal by the symmetry of the step set about
the main diagonal of N2, the last equation becomes

F (t; x, y) = 1 +
(

1
x + 1

y + xy
)

tF (t; x, y)− 1
y tF (t; x, 0)− 1

x tF (t; y, 0).

At the heart of our next arguments is the kernel method, a method commonly
attributed to Knuth [15, Solutions of Exercises 4 and 11 in §2.2.1] which has already
been used to great advantage in lattice path counting. After bringing the functional
equation for F (t; x, y) to the form

((x + y + x2y2)t− xy)F (t; x, y) = xtF (t; x, 0) + ytF (t; y, 0)− xy,(K)
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the kernel method consists of coupling x and y in such a way that this equation
reduces to a simpler one, from which useful information about the section series

F (t; x, 0) can be extracted. In the present case, the substitution

y → Y (t, x) =
x− t−

√
−4t2x3 + x2 − 2tx + t2

2tx2

= t + 1
x t2 + x3+1

x2 t3 + 3x3+1
x3 t4 + 2x6+6x3+1

x4 t5 + · · · ∈ Q[x, x−1][[t]],

which is legitimate since the power series Y (t, x) has positive valuation, puts the
left hand side of (K) to zero, and therefore shows that U = F (t; x, 0) is a solution
of the reduced kernel equation

(Kred) U(t, x) =
Y (t, x)

t
− Y (t, x)

x
U(t, Y (t, x)).

The key feature of Equation (Kred) is that its unique solution in Q[[x, t]] is U =
F (t; x, 0). This is a consequence of the following easy lemma. Here, and in the rest
of the article, ordv S denotes the valuation of a power series S with respect to some
variable v occurring in S.

Lemma 4. Let A, B, Y ∈ Q[x, x−1][[t]] be such that ordt B > 0 and ordt Y > 0.
Then there exists at most one power series U ∈ Q[[x, t]] with

U(t, x) = A(t, x) + B(t, x) · U(t, Y (t, x)).

Proof. By linearity, it suffices to show that the only solution in Q[[x, t]] of the
homogeneous equation U(t, x) = B(t, x) ·U(t, Y (t, x)) is the trivial solution U = 0,
for if U were non-zero, then the valuation of B(t, x) · U(t, Y (t, x)) would be at
least equal to ordt B + ordt U , thus strictly greater than the valuation of U , a
contradiction. �

We are now ready to reprove the following classical result.

Theorem 5. [12] F (t; x, y) is algebraic.

Proof. The computer-assisted part of the proof consists of three steps:

(1) Guess an algebraic equation for the series F (t; x, 0), by inspection of its
initial terms.

(2) Prove that the equation guessed in Step (1) admits exactly one solution in
Q[[x, t]], denoted Fcand(t; x, 0).

(3) Prove that the power series U = Fcand(t; x, 0) satisfies (Kred).

Once this has been accomplished, the fact that U = F (t; x, 0) also satisfies Equa-
tion (Kred), in conjunction with Lemma 4 (with the choice A(t, x) = Y (t, x)/t and
B(t, x) = −Y (t, x)/x), implies that Fcand(t; x, 0) and F (t; x, 0) coincide.

In particular, F (t; x, 0) satisfies the guessed equation, and this certifies that
F (t; x, 0) is an algebraic power series. Since Y (t, x) is algebraic as well, and since the
class of algebraic power series is closed under addition, multiplication and inversion,
it follows from (K) that F (t; x, y) is algebraic, too. This concludes the proof. �

In the rest of this section, we supply full details on the automated guessing
step (1) and on the proving steps (2) and (3).
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2.1. Guessing. Given the first few terms of a power series, it is possible to deter-
mine potential equations that the power series may satisfy, for example by making
a suitable ansatz with undetermined coefficients and solving a linear system. In
practice, either Gaussian elimination or fast special purpose algorithms based on
Hermite-Padé approximation [1] are used. The computation of such candidate
equations is known as automated guessing and is one of the most widely known
features of packages such as Maple’s gfun [23, 18].

If sufficiently many terms of the series are provided, automated guessing will
eventually find an equation whenever there is one. In principle, it may return false
equations, so that—in order to provide fully rigorous proofs—equations discovered
by this method must be subsequently proven by an independent argument. In
practice, if the method is applied properly, it virtually never delivers false equa-
tions, but it may happen that existing equations cannot be recovered because the
computation would require too many resources.

In the Kreweras case, the computations are feasible in Maple. We now provide
commented code which enables the discovery of an algebraic equation potentially
satisfied by F (t; x, 0). First, a function f is defined which computes the numbers
f(n; i, j) via the multivariate recurrence (1).

> f:=proc(n,i,j)

option remember;

if i<0 or j<0 or n<0 then 0

elif n=0 then if i=0 and j=0 then 1 else 0 fi

else f(n-1,i-1,j-1)+f(n-1,i,j+1)+f(n-1,i+1,j) fi

end:

Using this function, we compute “sufficiently many” coefficients of F (t; x, 0); by
trial and error we found that 80 terms are sufficient in our case. The terms are
polynomials in x with integer coefficients. We assign the truncated power series to
the variable S.

> S:=series(add(add(f(k,i,0)*x^i,i=0..k)*t^k,k=0..80),t,80):

Next, starting from S, the gfun guessing function seriestoalgeq discovers a can-
didate for an algebraic equation satisfied by F (t; x, 0). For efficiency reasons, we
do not use the built-in version of gfun, but a recent one which can be downloaded
from http://algo.inria.fr/libraries/papers/gfun.html

> gfun:-seriestoalgeq(S,Fx(t)):

> P:=collect(numer(subs(Fx(t)=T,%[1])),T);

The guessed polynomial reads:

P (T, t, x) = (16x3t4 + 108t4 − 72xt3 + 8x2t2 − 2t + x)

+ (96x2t5 − 48x3t4 − 144t4 + 104xt3 − 16x2t2 + 2t− x)T

+ (48x4t6 + 192xt6 − 264x2t5 + 64x3t4 + 32t4 − 32xt3 + 9x2t2)T 2

+ (192x3t7 + 128t7 − 96x4t6 − 192xt6 + 128x2t5 − 32x3t4)T 3

+ (48x5t8 + 192x2t8 − 192x3t7 + 56x4t6)T 4

+ (96x4t9 − 48x5t8)T 5 + 16x6t10T 6.

Running Maple12 on a modern laptop, the whole guessing computation requires
about 80Mb of memory and takes less than 20 seconds. Once the candidate poly-
nomial P is guessed, one could proceed to its empirical certification; this can be

http://algo.inria.fr/libraries/papers/gfun.html
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done in various ways, as explained in [5]. We do not need to do this here, since we
are going to prove that F (t; x, 0) is a root of P .

2.2. Proving Existence and Uniqueness. Since P (1, 0, x) = 0 and ∂P
∂T (1, 0, x) =

−x, the implicit function theorem implies that P admits a unique root Fcand(t; x, 0)
in Q((x))[[t]]. It follows that P has at most one root in Q[[x, t]] and that this root,
if it exists, belongs to Q[x, x−1][[t]].

Proving the existence of a root of P in Q[[x, t]] is less straightforward: this
time, the equalities P (1, 0, 0) = 0 and ∂P

∂T (1, 0, 0) = 0 prevent us from directly
invoking the implicit function theorem. We are thus faced with a clumsy technical
complication, since what we really need to prove is that the root Fcand(t; x, 0)
actually belongs to Q[[x, t]]: otherwise, the substitution of U = Fcand(t; x, 0) in
Equation (Kred), used in Step (3) of the proof of Thm. 5, would not be legitimate.

To circumvent this complication, we exploit the fact that, when seen in Q(x)[T, t],
the polynomial P (T, t, x) defines a curve of genus zero over Q(x), which can thus be
rationally parameterized. Precisely, using Maple’s algcurves package, the rational
functions R1(u, x) and R2(u, x) defined by:

R1(u, x) =
u(u + 1)(1 + 2u + u2 + u2x)2

h(u, x)
,

R2(u, x) =
(u4x2 + 2u2(u + 1)2x + 1 + 4u + 6u2 + 2u3 − u4)h(u, x)

(1 + u)2(1 + 2u + u2 + u2x)4
,

with

h(u, x) = u6x3 + 3u4(u + 1)2x2 + 3u2(u + 1)4x + (u + 1)3(5u3 + 3u2 + 3u + 1),

are found to share the following properties:

• P (R2(u, x), R1(u, x), x) = 0;
• there exists a (unique) power series

u0(t, x) = t + t2 + (x + 1)t3 + (2x + 5)t4 + (2x2 + 3x + 9)t5 + . . .

in Q[[x, t]] such that R1(u0, x) = t and u0(0, x) = 0.

While the first property is easily checked by direct calculation, the second one
is a consequence of the implicit function theorem, since Q(u, t, x) = R1(u, x) − t

satisfies Q(0, 0, 0) = 0 and ∂Q
∂u (0, 0, 0) = 1.

The existence proof of a power series solution of P is then completed using the
following argument: R2 having no pole at u = 0, and the valuation of u0 with
respect to t being positive, the composed power series R2(u0(t, x), x) is well defined
in Q[[x, t]] and it satisfies

P (R2(u0, x), t, x) = P (R2(u0, x), R1(u0, x), x) = 0.

Therefore, Fcand(t; x, 0) = R2(u0(t, x), x) is the unique solution of P in Q[[x, t]].

2.3. Proving compatibility with the reduced kernel equation. We finally
show that the series Fcand(t; x, 0) so defined satisfies (Kred). This can be done by
resorting to closure properties for algebraic power series. These closure properties
are performed by means of resultant computations, following Lemma 6 below.

One possibility is to first prove that the power series

S(t, x) =
Y (t, x)

t
− Y (t, x)

x
Fcand(t; Y (t, x), 0) ∈ Q[x, x−1][[t]]
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is a root of the polynomial P (T, t, x), and then to use the fact that P has only one
root in Q[x, x−1][[t]], namely Fcand(t; x, 0). This will imply that S and Fcand(t; x, 0)
coincide, and thus that Fcand(t; x, 0) satisfies (Kred), as desired.

The main point of this approach is that, since the power series Y and Fcand(t; x, 0)
are both algebraic, finding a polynomial which annihilates the series S can be done
in an exact manner, without having to appeal to guessing routines. Moreover, the
minimal polynomial of S can be determined by factoring an annihilating polyno-
mial obtained through a resultant computation, and, if necessary, by matching the
irreducible factors against the initial terms of the series S.

For the sake of completeness, we recall the following classical facts.

Lemma 6. Let K be a field and let P, Q ∈ K[T, t, x] be annihilating polynomials of

two algebraic power series A, B in K[x, x−1][[t]]. Then

• pA is algebraic for every p ∈ K(t, x), and it is a root of pdegT P P (T/p, t, x).
• A±B is algebraic, and it is a root of resz(P (z, t, x), Q(±(T − z), t, x)).
• AB is algebraic, and it is a root of resz(P (z, t, x), zdegT QQ(T/z, t, x)).
• If ordx B > 0, then A(t, B(t, x)) is algebraic, and it is a root of

resz(P (T, t, z), Q(z, t, x)).

Since z/t− z/xFcand(t; z, 0) is a root of (the numerator of) P (x/z(z/t− T ), t, z)
and since Y is a root of (x + T + x2T 2)t − xT , Lemma 6 suggests continuing our
Maple session by constructing a polynomial in Q[T, t, x] which has S as a root:

> ker := (T,t,x) -> (x+T+x^2*T^2)*t-x*T:

> pol := unapply(P,T,t,x):

> res := resultant(numer(pol(x/z*(z/t-T),t,z)), ker(z,t,x), z):

> factor(primpart(res,T));

The output of the last line is P (T, t, x)2, which proves that S is a root of P (T, t, x).
This completes the proof of Theorem 5.

2.4. Consequences. Setting x to 0 in P leads to the conclusion that the generating
series F (t; 0, 0) of Kreweras excursions is a root of the polynomial 64t6T 3+16t3T 2+
T − 72t3T + 54t3− 1. An argument similar to that used in the proof of Corollary 2
then implies that the coefficients an of F (t; 0, 0) satisfy the linear recursion

(n + 6)(2n + 9)an+3 − 54(n + 2)(n + 1)an = 0, a0 = 1, a1 = 0, a2 = 0,

which in turn provides an alternative proof of the classical fact [17, 12, 6] that the
series F (t; 0, 0) is both algebraic and hypergeometric, and it has the closed form

F (t; 0, 0) = 3F2

(

1/3 2/3 1
3/2 2

∣

∣

∣

∣

27 t3
)

=
∞
∑

n=0

4n
(

3n
n

)

(n + 1)(2n + 1)
t3n.

3. Gessel walks

For establishing the proof of Theorem 3, we apply essentially the same reasoning
that was applied in the previous section for proving Theorem 5. The main difference
is that the intermediate expressions get very big, so that they can only be handled
by special purpose software (see the data provided on our website [4]). There are
also some additional complications which require to vary the arguments slightly. In
this section, we point out these complications, describe how to circumvent them,
and we document our computations.
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The numbers g(n, i, j) of Gessel walks of length n ending at (i, j) ∈ Z2 satisfy
the recurrence equation

g(n + 1; i, j) = g(n; i− 1, j − 1) + g(n; i + 1, j + 1) + g(n; i− 1, j) + g(n; i + 1, j)

for n, i, j ≥ 0. Together with appropriate boundary conditions, this equation im-
plies that the generating function

G(t; x, y) =

∞
∑

n=0

(

∞
∑

i,j=0

g(n; i, j)xiyj
)

tn,

which we seek to prove algebraic, satisfies the equation

((1 + y + x2y + x2y2)t− xy)G(t; x, y) = (1 + y)t G(t; 0, y) + t G(t; x, 0)(KG)

− t G(t; 0, 0)− xy.

This is the starting point for the kernel method.
In this case, because of lack of symmetry with respect to x and y, there are two

different ways to put the left hand side to zero, using the two substitutions

y → Y (t, x) := −
(

tx2 − x + t +
√

(tx2 − x + t)2 − 4t2x2
)/

(2tx2)

= 1
x t + x2+1

x2 t2 + x4+3x2+1
x3 t3 + x6+6x4+6x2+1

x4 t4 + · · ·
and x→ X(t, y) :=

(

y −
√

y(y − 4t2(y + 1)2)
)/

(2ty(y + 1))

= y+1
y t + (y+1)3

y2 t3 + 2(y+1)5

y3 t5 + 5(y+1)7

y4 t7 + · · ·
They yield the equations

G(t; x, 0) = xY (t, x)/t + G(t; 0, 0)− (1 + Y (t, x))G(t; 0, Y (t, x)),

(1 + y)G(t; 0, y) = X(t, y)y/t + G(t; 0, 0)−G(t; X(t, y), 0),
(KG

red)

respectively. Note that the first equation is free of y while the second is free
of x. If we rename y to x in the second equation, then all quantities belong to
Q[x, x−1][[t]]. Note also that we can write G(t; x, 0) = G(t; 0, 0) + xU(t, x) and
G(t; 0, x) = G(t; 0, 0) + xV (t, x) for certain power series U, V ∈ Q[[x, t]]. In terms
of U and V , the two equations above are then equivalent to

xU(t, x) = xY (t, x)/t− (1 + Y (t, x))G(t; 0, 0)

− Y (t, x)(1 + Y (t, x))V (t, Y (t, x)),

(1 + x)xV (t, x) = X(t, x)x/t− (1 + x)G(t; 0, 0)−X(t, x)U(t, X(t, x)).

(KG,2
red )

The two equations (KG,2
red ) correspond to the equation (Kred) in Section 2. The

situation here is more complicated in two respects. First, we have two equations
and two unknown power series U and V rather than a single equation with a single
unknown power series F (t; x, 0); this difference originates from the lack of symmetry
of G(t; x, y) with respect to x and y, which itself comes from the asymmetry of the
Gessel step set with respect to the main diagonal of N2. Second, the two equations
for U and V still contain G(t; 0, 0) while there is no term F (t; 0, 0) present in
(Kred); this difference originates from the fact that Gessel’s step set contains the
admissible step ւ, as opposed to Kreweras’s step set. The occurrence of G(t; 0, 0)

in the equations (KG,2
red ) is not really problematic, as we know this power series

explicitly thanks to Theorem 1. As for the other difference, we need the following
variation of Lemma 4.
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Lemma 7. Let A1, A2, B1, B2, Y1, Y2 ∈ Q[x, x−1][[t]] be such that ordt B1 > 0,
ordt B2 > 0, ordt Y1 > 0 and ordt Y2 > 0. Then there exists at most one pair

(U1, U2) ∈ Q[[x, t]]2 with

U1(t, x) = A1(t, x) + B1(t, x)U2(t, Y1(t, x)),

U2(t, x) = A2(t, x) + B2(t, x)U1(t, Y2(t, x)).

Proof. By linearity, it suffices to show that the only solution (U1, U2) in Q[[x, t]]×
Q[[x, t]] of the homogeneous system

U1(t, x) = B1(t, x)U2(t, Y1(t, x)),

U2(t, x) = B2(t, x)U1(t, Y2(t, x))

is the trivial solution (U1, U2) = (0, 0), for otherwise, if both U1 and U2 were non-
zero, then the valuation of B1(t, x)U2(t, Y1(t, x)) would be strictly greater than the
valuation of U2, and the valuation of B2(t, x)U1(t, Y2(t, x)) would be strictly greater
than the valuation of U1, thus ordt(U1) > ordt(U2) > ordt(U1), a contradiction.
Therefore, one of U1, U2 is zero, and the system now implies that both are zero. �

By a slightly more careful analysis, the lemma could be refined further such as
to show that there is only one triple of power series (U, V, G) with U, V ∈ Q[[x, t]]

and G ∈ Q[[t]] (free of x) which satisfies (KG,2
red ) with G(t; 0, 0) replaced by G. In

this version, the proof could be completed without reference to the independent
proof of Thm. 1.

Either way, we can in principle proceed from this point as in Section 2. Out
of convenience, we choose to regard G(t; 0, 0) as known. Again, we divide the
remaining task in three steps:

(1) Guess defining algebraic equations for U and V , by inspecting the initial
terms of G(t; x, 0), resp. of G(t; 0, x).

(2) Prove that each of the guessed equations has a unique solution in Q[[x, t]],
denoted Ucand(t; x, 0), resp. Vcand(t; x, 0).

(3) Prove that Ucand and Vcand indeed satisfy the two equations in (KG,2
red ).

Once this has been accomplished, Lemma 7 implies that the candidate series are
actually equal to U and V , respectively, and so these series as well as G(t; x, 0) and
G(t; 0, y) are in particular algebraic. Then equation (KG) implies that G(t; x, y) is
algebraic, too. This then completes the proof of Thm. 3.

3.1. Guessing. In the beginning, we had no reason to suspect that G(t; x, y) is
algebraic, as even the specialization G(t; 0, 0) was widely believed to be transcen-
dental. Our goal was to find out whether G(t; x, y) is D-finite, and so we searched
in the beginning only for potential differential operators annihilating G(t; x, 0)
and G(t; 0, y), respectively. Since no such operators could be found by the guessers
implemented in packages like Maple’s gfun or Mathematica’s GeneratingFunctions, it
was clear that if they existed, they would be large. We computed the first 1000
terms of G(t; x, 0) and G(t; 0, y) and proceeded as follows.

For several specific evaluation points x0 = 1, 2, 3, . . . and several specific primes p,
we used a Magma implementation of the (FFT-based) Beckermann-Labahn super-
fast algorithm for Hermite-Padé approximation [1] to construct some differential

operators L(i)
p,x0
∈ Zp[t]〈Dt〉 (i = 1, 2, . . . ) with the property

L(i)
p,x0

G(t; x0, 0) = O(t1000) mod p.
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Several operators of order 14 with coefficients of degree at most 43 in t could be
found for each choice of x0 and p. They can be regarded as the homomorphic images
of certain (unknown) operators L(i) ∈ Q(x)[t]〈Dt〉 with L(i) G(t; x, 0) = O(t1000)
for which we expect L(i) G(t; x, 0) = 0.

For every choice of x0 and p, we next computed the greatest common right

divisor in Zp(t)〈Dt〉 of the operators L(i)
p,x0

using an algorithm of Grigoriev [13].
This yielded, for every choice x0 and p, a single operator Lp,x0

of order 11 with
coefficients of degree at most 96 in t. This operator is likely to be the homomorphic
image of the least order operator L ∈ Q(x)[t]〈Dt〉 with LG(t; x, 0) = 0.

From the operators Lp,x0
for various choices x0 and p we then constructed a

candidate for the preimage L using standard algorithms in computer algebra for ra-
tional function interpolation and rational number reconstruction [11]. We obtained
a convincing candidate operator of order 11 with degree 96 in t and degree 78 in x
whose longest integer coefficient has 61 decimal digits. This is the operator posted
on our website [4]. We post there also a candidate operator for G(t; 0, y) of order 11
and degree 68 in t and 28 in y containing integers with no more than 51 decimal
digits, which was found in the same way. (Applying the reconstruction algorithms

directly to the L(i)
p,x0

instead of Lp,x0
is prohibitively expensive because the degree

in x of their preimage is very large. In going via the gcrd, we gained a degree drop
in x from >1500 to 28 payed by a moderate degree raise in t from 43 to 96.)

There are a number of tests which can be performed to experimentally sustain
the evidence that a guessed differential operator s correct (see our paper [5] for
a collection of such tests), and our operators successfully pass them all. One of
the tests consists of checking whether the candidate operator L for G(t; x, 0) (and
analogously for G(t; 0, y)) is what is called globally nilpotent [10]. By definition, the
order 11 operator L is globally nilpotent if it right-divides for almost all primes p
the pure power D11p

t in Zp(x, t)〈Dt〉. When checking that this is the case for all
primes p < 100, we observed that the L in fact even right-divide Dp

t for all primes p
we checked. According to a famous conjecture of Grothendieck [22], this happens
if and only if the operator in question has only algebraic solutions. So even though
this conjecture is still wide open, there is definitely something interesting going on
here: either G(t; x, y) is algebraic or we have found operators which very much look
like counterexamples to Grothendieck’s conjecture.

This finally suggested to search for potential polynomial equations satisfied by
the power series U, V ∈ Q[[x, t]] defined by G(t; x, 0) = G(t; 0, 0) + xU(t, x) and
G(t; 0, x) = G(t; 0, 0) + xV (t, x). Using again guessing techniques based on fast
modular Hermite-Padé approximation, combined with an interpolation scheme, we
discovered two polynomials P1(T, t, x) ∈ Q[T, t, x] and P2(T, t, y) ∈ Q[T, t, y] satis-
fying

P1(U(t, x), t, x) = 0 mod t1200 and P2(V (t, y), t, y) = 0 mod t1200.

These polynomials are posted on our website [4]. The polynomial P1 has degrees
24, 44, and 32 with respect to T , t, and x, respectively, and involves integers with
no more than 21 decimal digits. The polynomial P2 has degrees 24, 46, and 56 with
respect to T , t, and y, respectively, and involves integers with no more than 27
decimal digits. Spelled out on paper, they would together fill about thirty pages.
(For comparison: the differential operators L would fill more than 500 pages.)

We now proceed to prove that the guessed polynomials P1 and P2 are correct.
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3.2. Proving Existence and Uniqueness. As in the case of Kreweras’s walks,
the implicit function theorem does not apply to these polynomials, but unlike in
the Kreweras case, an existence proof using a suitable rational parameterization is
not possible either, because the polynomials at hand define curves of positive genus,
and therefore a rational parameterization does not exist.

In order to obtain a proof in this situation, we proceeded as follows:

• First we used Theorem 3.6 of McDonald [19] to obtain the existence of a
series solution

∑

p,q∈Q

cp,qt
pxq

with cp,q = 0 for all (p, q) outside a certain halfplane H ⊆ Q2.
• Next, we computed a system of bivariate recurrence equations with poly-

nomial coefficients that the coefficients cp,q must necessarily satisfy. This
can be done in principle by software packages such as Chyzak’s mgfun [9]
or Koutschan’s HolonomicFunctions.m [16]. However, for reasons of effi-
ciency we used our own implementation of the respective algorithms.
• The form of the recurrences together with the shape of the halfplane H

imply that the coefficients cp,q of any solution can be nonzero only in a
finite union of cones v + Nu + Nw with vertices v ∈ Q2 and basis vectors
u, w ∈ Q2 that can be computed explicitly. If cp,q 6= 0 for some index (p, q)
in such a cone, then also the coefficient at the cone’s vertex is nonzero.
• Applying McDonald’s generalization of Puiseux’s algorithm, we determined

the first coefficients of series solutions to an accuracy that all further coef-
ficients belong to some translate of H which contains no vertices.
• As one of these partial solutions contained no terms with fractional powers,

it was possible to conclude that the entire series contains no terms with
fractional exponents. Reference to u and w implied that this partial solution
could also not contain any terms with negative integral exponents, so the
only remaining possibility was that the solution is in fact a power series.

A full description of the argument requires a somewhat lengthy discussion of a
number of technical details, which we prefer to avoid here. In a supplement to this
article provided on our website [4] we carry out existence proofs in full detail that
both P1 and P2 admit some power series solutions Ucand and Vcand, respectively.

3.3. Proving compatibility with the reduced kernel equation. It remains

to show that these solutions Ucand and Vcand satisfy the system (KG,2
red ). Because of

X(t, Y (t, x)) = x, the substitution x → Y (t, x) transforms the second equation of
that system to the first. Therefore, it suffices to prove the second equation:

(2) (1+x)xVcand(t; x, 0) = X(t, x)x/t−(1+x)G(t; 0, 0)−X(t, x)Ucand(t; X(t, x), 0).

If we define G1(t, x) = G(t; 0, 0) + xUcand(t; x, 0) and G2(t, x) = G(t; 0, 0) +
xVcand(t; x, 0), the last equation is equivalent to

(3) (1 + x)G2(t, x)−G(t; 0, 0) = xX(t, x)/t−G1(t, X(t, x)).

By Corollary 2 and Lemma 6, the power series

(1 + x)G2(t, x)−G(t; 0, 0) and xX(t, x)/t−G1(t, X(t, x))
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are algebraic and we can compute their minimal polynomials—at least in theory.
Now the polynomials P1 and P2 are so big that the required resultant computations
cannot be carried out by Maple or Mathematica.

There are efficient special purpose algorithms available for the particular kind of
resultants at hand [3] and our Magma implementation of these algorithms is able
to perform the necessary computations. It turns out that the minimal polynomials
for both power series are identical. It is provided electronically on the website to
this article. After determining a suitable number of initial terms of both series and
observing that they match, it can be concluded that Equations (3) and (2) hold.
This completes the proof of Theorem 3.

Note that we have shown that G(t; x, y) is algebraic without actually construct-
ing its minimal polynomial. This polynomial will, in fact, be pretty large. From
the sizes of the minimal polynomials of G(t; x, 0) and G(t; 0, y), which we know
explicitly, it can be deduced that the minimal polynomial p(T, t, x, y) of G(t; x, y)
will have degrees 72, 141, 263, and 287 with respect to T , t, x, and y, respectively,
and thus consist of more than 750 Mio terms.

3.4. Consequences. The fact that G(t; x, y) is algebraic has some immediate con-
sequences which are of combinatorial interest, including the following:

Corollary 8. • The series G(t; 1, 1), G(t; 0, 1), G(t; 1, 0) are algebraic.

• For every specific point (i, j), the series Gi,j :=
∑

∞

n=0 g(n; i, j)tn is alge-

braic.

• The series G(t; x, y) is D-finite with respect to any of the variables x, y, t.
• For every fixed i and j, the number g(n; i, j) can be computed with O(n)

arithmetic operations.

• For every fixed x and y, the coefficient 〈tn〉G(t; x, y) can be computed with

O(n) arithmetic operations.

The second item confirms the conjecture of Petkovšek and Wilf [21] that g(n; 0, j)
is P-finite in n for every fixed j, and it refutes their conjecture that g(n; 2, 0) is not
P-finite.
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Appendix (by Mark van Hoeij)

The following formula holds:

(4) G(t; x, y) =

64(u(v+1)−2v)v3/2

x(u2−v(u2−8u+9−v))2 −
(w−1)4(wy+1)yv−3/2

t(y+1)(w+1)(w2y+1)2

(1 + y + x2y + x2y2)t− xy
− 1

tx(y + 1)

where v, u, and w are solutions of

(v − 1)(v + 3)3 − 256v3t2 = 0

x(v2 − 1)u3 − 2v(3x + 5xv − 8vt)u2 − xv(v2 − 24v − 9)u + 2v2(xv − 9x− 8vt) = 0

and

y(v − 1)w3 + y(v + 3)w2 + (v + 3)w + v − 1 = 0.

The only ingredients that were used to compute this formula were: (i) the min-
imal polynomials P1 and P2 for G(t; x, 0) and G(t; 0, y), as copied from [4], (ii)
techniques, explained below, to simplify an algebraic expression that is given by a
large minimal polynomial, and (iii) equation (KG) from Section 3.

Let F = Q(t, x) and consider the tower of algebraic extensions F ⊂ F (v) ⊂
F (v, u) ⊂ F (v, u,

√
v). Now G(t; x, 0) is a primitive element of F (v, u,

√
v) over F ,

and as for most primitive elements, its minimal polynomial P1 is large.

http://arxiv.org/abs/0807.3202
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Since primitive elements lead to large expressions, the reverse process (if F ⊂ K
is given by a single minimal polynomial, find a tower of subfields F ⊂ · · · ⊂ K) can
then be expected to lead to smaller expressions. Moreover, there exist algorithms
for computing subfields (e.g. by Klüners). In light of this it seemed very likely that
a smaller expression for G(t; x, 0) could be computed.

It is quite possible that there exist implementations that can directly simplify
(i.e. subfields or some other type of simplification) a polynomial relation the size
of P1. Nevertheless, it does not hurt to speed up the computation by first searching
for some simple simplifications that reduce the bitsize of this polynomial relation.
For instance, one can do the following:

(1) If P (T ) = anT n + an−1T
n−1 + · · · then one tries T 7→ T − an−1/(nan). If

this makes the bitsize smaller, then use it, otherwise, do not use it.
(2) If σ : T 7→ −T , and if monic(P ) = monic(σ(P )) then T 7→ T 1/2 will send P

to a polynomial in T of half the degree. Here “monic” is a procedure that
divides a polynomial by its leading coefficient.

(3) If P is a bivariate polynomial in x, t with coefficients in some field L = Q(T ),
so P ∈ L[x, t] ⊂ L(x, t), and if P is invariant under σ : (x, t) 7→ (−x,−t)
then P is also an element of the fixed field of σ, which in this example is
L(x2, tx). So in this case, we can introduce new variables x′, t′ to represent
x2 and tx, and rewrite P in terms of x′, t′.

(4) Suppose that P (T ) =
∑

aiT
i and suppose that many of the aj/ai have a

factor f with multiplicity close to j − i. Then monic(P (T/f)) is likely to
be smaller than P (T ).

(5) Suppose that P (x, t) is invariant under σ : (x, t) 7→ (t, x). As before,
compute the invariant subfield of L(x, t) to find L(x + t, xt) and introduce
new variables to rewrite P in terms of x + t and xt.

By taking steps (1), (2), (3), (4), (4), (5), (1), (2), (1), (1)+(4), the size (measured
by Maple’s length command) of the polynomial relation P1 was reduced from 58375
to: 21254, 21073, 20349, 21005, 20493, 10977, 6442, 6369, 6139, 5505 respectively
(some of the steps were meant to reduce the degree instead of the bitsize). Next,
a subfield was computed. This was done by substituting values for one parameter
(the other parameter was not involved in this first field extension), then computing
subfields, and then using reconstruction, although a more direct approach might
have worked as well. By reversing the above mentioned steps, the computed subfield
becomes F ⊂ F (v). The minimal polynomial P1 must then be reducible over F (v).
The same holds for the reduced polynomial obtained by the steps listed above, and
factoring reduces the size from 5505 to 322. A call to Maple’s parameterization
code leads to a further reduction. Reversing all these steps produces G(t; x, 0), and
a similar computation was done for G(t; 0, y). The steps of the computation are
given in detail on the website [4] of this article.

To verify correctness, one can substitute G(t; x, 0) and G(t; 0, y) into P1 and P2.
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