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Incremental Column-Wise Verification of Arithmetic
Circuits Using Computer Algebra
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Abstract Verifying arithmetic circuits and most prominently multiplier circuits
is an important problem which in practice still requires substantial manual ef-
fort. The currently most effective approach uses polynomial reasoning over pseudo
boolean polynomials. In this approach a word-level specification is reduced by a
Gröbner basis which is implied by the gate-level representation of the circuit. This
reduction returns zero if and only if the circuit is correct. We give a rigorous for-
malization of this approach including soundness and completeness arguments. Fur-
thermore we present a novel incremental column-wise technique to verify gate-level
multipliers. This approach is further improved by extracting full- and half-adder
constraints in the circuit which allows to rewrite and reduce the Gröbner basis.
We also present a new technical theorem which allows to rewrite local parts of the
Gröbner basis. Optimizing the Gröbner basis reduces computation time substan-
tially. In addition we extend these algebraic techniques to verify the equivalence
of bit-level multipliers without using a word-level specification. Our experiments
show that regular multipliers can be verified efficiently by using off-the-shelf com-
puter algebra tools, while more complex and optimized multipliers require more
sophisticated techniques. We discuss in detail our complete verification approach
including all optimizations.
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1 Introduction

Formal verification of arithmetic circuits is important to help to prevent issues like
the famous Pentimum FDIV bug. Even more than 20 years after detecting this bug
the problem of verifying arithmetic circuits and especially multiplier circuits is still
considered to be hard. A common approach models the verification problem as a
satisfiability (SAT) problem, in which the circuit is translated into a formula in
conjunctive normal form (CNF) which is then passed on to SAT-solvers. In order
to stimulate the development of fast SAT solving techniques for arithmetic circuit
verification, a large set of these benchmarks was generated and the CNF encodings
were submitted to the SAT 2016 competition. They are publicly available [4]. The
competition results confirmed that miters of even small multipliers produce very
hard SAT problems. The weak performance of SAT solvers on this benchmark set
lead to the conjecture that verifying miters of multipliers and other ring properties
after encoding them into CNF needs exponential sized resolution proofs [6], which
would imply exponential run-time of CDCL SAT solvers. However, this conjecture
was recently rebutted. In [2] it was shown that such ring properties do admit
polynomial sized resolution proofs. But since proof search is non-deterministic,
this theoretical result still needs to be transferred into practical SAT solving.

Alternative verification techniques use decision diagrams [9,10], more specifi-
cally binary decision diagrams (BDDs) and binary moment diagrams (BMDs) are
used for circuit verification. The drawback of BDDs is their high usage of memory
for this kind of benchmarks [9]. This issue can be resolved by using BMDs which
remain linear in the number of input bits of a multiplier. Actually BMDs and
variants of them have been shown to be capable of detecting the Pentium FDIV
bug. However, the BMD approach is not robust, it still requires explicit structural
knowledge of the multipliers [14]. It is important to determine the order in which
BMDs are built, because it has tremendous influence on performance. Actually
only a row-wise backward substitution approach seems to be feasible [13], which
in addition assumes a simple carry-save-adder (CSA) design.

The currently most effective approach for gate-level verification of arithmetic
circuits uses computer algebra [15,24,27,28,29,30,31,35]. For each gate in the cir-
cuit a polynomial is introduced which represents the relation of the gate output
and the inputs of the gate. To ensure that variables in the circuit are restricted to
boolean values, additional so-called “field polynomials” are introduced. Further-
more the word-level specification of the multiplier is modeled as a polynomial. If
the circuit variables are ordered according to their reverse topological appearance
in the circuit, i.e., a gate output variable is greater than the input variables of the
gate, then the gate polynomials and field polynomials form a Gröbner basis. As
a consequence, the question if a gate-level circuit implements a correct multiplier
can be answered by reducing the multiplier specification polynomial by the circuit
Gröbner basis. The multiplier is correct if and only if the reduction returns zero.

Related work [15,35] uses a similar algebraic approach, which is called func-
tion extraction. The word-level output of the circuit is rewritten using the gate
relations and the goal is to derive a unique polynomial representation of the gate
inputs. In order to verify correctness of the circuit this polynomial is then com-
pared to the circuit specification. This rewriting method is essentially the same as
Gröbner basis reduction and is able to handle very large clean multipliers but fails
on slightly optimized multiplier architectures. The authors of [24,27,37] focus on
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verification of Galois field multipliers using Gröbner basis theory. In contrast we
focus in our work [28,29,8] on integer multipliers as the authors of [15,30,31,35]
do. In [30,31] the authors propose a sophisticated reduction scheme which is used
to rewrite and simplify the Gröbner basis, which as a consequence reduces compu-
tation time substantially. Several optimizations are introduced which made their
verification technique scale to large multipliers of various architectures [19], but
their arguments for soundness and completeness are rather imprecise and neither
the tools nor details about experiments are publicly available.

Inspired by these ideas we presented in [28] an incremental column-wise veri-
fication technique for integer multipliers where a multiplier circuit is decomposed
into columns. In each column the partial products can be uniquely identified and
we can define a distinct specification for each slice relating the partial products,
incoming carries, slice output and outgoing carries of the slice. We incrementally
apply Gröbner basis reduction on the slices to verify the circuit. The incremental
column-wise checking algorithm is improved in [8,29]. The idea in this work is to
simplify the Gröbner basis by introducing linear adder specifications. We search for
full- and half-adder structures in the gate-level circuit and eliminate the internal
gates of the adder structures, with the effect of reducing the number of polynomi-
als in the Gröbner basis. Furthermore we are able to include adder specifications
in the Gröbner basis. Reducing by these linear polynomials leads to substantial
improvements in terms of computation time.

Alternatively to circuit verification using a word-level specification, it is also
common to check the equivalence of a gate-level circuit and a given reference cir-
cuit. This technique is extremely important when it is not possible to write down
the word-level specification of a circuit in a canonical expression. In [32] equiva-
lence checking of multiplier circuits is achieved by first extracting half-adder cir-
cuits from the accumulation of partial products and then checking the equivalence
of these extracted half-adder circuits. Proofs of soundness and completeness are
lacking. More recently [31] proposes an algebraic variant of combinational equiva-
lence checking based on Gröbner basis theory. It is similar to SAT sweeping [23],
and compares the circuits bit-wise, e.g., output bit by output bit, again without
soundness nor completeness proof.

As a further contribution we present an extension of our incremental column-
wise verification approach, which can be used to incrementally derive the equiva-
lence of two arbitrary gate-level circuits in a column-wise fashion. We prove sound-
ness and completeness for this method.

This article extends and revises work presented earlier in [8,28,29]. Extend-
ing [28], we provide a more detailed description of the algebraic approach, in-
cluding several examples. In Sect. 4 we introduce additional rewriting methods,
called “Partial Product Elimination” and “Adder-Rewriting” [8,29], which help to
further simplify the Gröbner basis. We present the theory behind these rewriting
approaches in Sect. 5 including a theoretical theorem [8], which allows that only a
local part of the Gröbner basis is rewritten without losing the Gröbner basis prop-
erty. In Sect. 8 we generalize our incremental column-wise verification approach
to an incremental equivalence checking approach [29].

For this article we revised our engineering techniques and discuss a new method
to derive our column-wise slices in Sect. 9, which reduces the need of reallocating
gates. Furthermore we were able to improve the computation time of the experi-
ments in [28] by adjusting the order of polynomials during printing, cf. Sect. 9.
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2 Algebra

Following [8,15,24,27,28,29,30,31,35], we model the behavior of a circuit using
multivariate polynomials. For each input and output of a logical gate a variable
is introduced. The behavior of a gate, i.e., the relation of the gate inputs to the
output of a gate is translated into a polynomial. The set of all these polynomials
builds a comprehensive description of the circuit. We show that the circuit is
correct if and only if the circuit specification, a polynomial describing the relation
of the circuit inputs and outputs, is implied by the gate-level polynomials.

The appropriate formalism for such a reasoning is the theory of Gröbner
bases [11,12,16]. Throughout this section let K[X] = K[x1, . . . , xn] denote the
ring of polynomials in variables x1, . . . , xn with coefficients in the field K.

Definition 1 A term (or power product) is a product of the form xe11 · · ·x
en
n for

certain non-negative exponents e1, . . . , en ∈ N. The set of all terms is denoted
by [X]. A monomial is a constant multiple of a term, αxe11 · · ·x

en
n with α ∈ K. A

polynomial is a finite sum of monomials.

On the set of terms we fix an order such that for all terms τ, σ1, σ2 we have
1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. Such an order is called a lexicographic term order

if for all terms σ1 = xu1
1 · · ·x

un
n , σ2 = xv1

1 · · ·x
vn
n we have σ1 < σ2 iff there exists an

index i with uj = vj for all j < i, and ui < vi.
Since every polynomial p 6= 0 contains only finitely many terms and they are

ordered according to our fixed order <, we can determine the largest term in a
polynomial. We call it the leading term of p and write lt(p). If p = cτ + · · · and
lt(p) = τ , then lc(p) = c is called the leading coefficient and lm(p) = cτ is called the
leading monomial of p. The tail of p is defined by p− cτ .

Definition 2 A nonempty subset I ⊆ K[X] is called an ideal if

∀ p, q ∈ I : p+ q ∈ I and ∀ p ∈ K[X] ∀ q ∈ I : pq ∈ I.

If I ⊆ K[X] is an ideal, then a set P = {p1, . . . , pm} ⊆ K[X] is called a basis of I
if I = {q1p1 + · · · + qmpm | q1, . . . , qm ∈ K[X]}, i.e., if I consists of all the linear
combinations of the pi with polynomial coefficients. We denote this by I = 〈P 〉
and say I is generated by P .

In general, an ideal I has many bases which generate the ideal. We are partic-
ularly interested in bases with certain structural properties, called Gröbner bases.

Definition 3 A basis G = {g1, . . . , gn} of an ideal I ⊆ K[X] is called a Gröbner

basis (w.r.t. the fixed order ≤) if the leading term of every nonzero element of I is
a multiple of (at least) one of the leading terms lt(g1), . . . , lt(gn).

Lemma 1 Every ideal I ⊆ K[X] has a Gröbner basis w.r.t. a fixed term order.

Proof Cor. 6 in Chap. 2 §5 of [16]. ut

The following Lemma 2 describes Buchberger’s Criterion, which states when a
basis of an ideal is a Gröbner basis. Given an arbitrary basis of an ideal, Buch-
berger’s algorithm [11] is able to compute a Gröbner basis for it in finitely many
steps. The algorithm is based on repeated computation of so-called S-polynomials.



Title Suppressed Due to Excessive Length 5

a b a b a b c

g

s

l r

r

t

u v w

Fig. 1: And-Inverter Graphs (AIGs) [23] used in Ex. 1 and later in Sect. 4.

Lemma 2 Let G ⊆ K[X]\{0} be a basis of an ideal I = 〈G〉. We define S-polynomials

spol(p, q) := lcm(lt(p), lt(q))

(
p

lm(p)
− q

lm(q)

)
for all p, q ∈ K[X] \ {0}, with lcm the least common multiple. Then G is a Gröbner

basis of the ideal I if and only if the remainder of the division of spol(p, q) by G is zero

for all pairs (p, q) ∈ G×G.

Proof Thm. 6 in Chap. 2 §6 of [16]. ut

To reduce the computation effort of Buchberger’s algorithm several optimiza-
tions exist which decrease the number of S-polynomial computations. We will
heavily make use of the following optimization.

Lemma 3 (Product criterion) If p, q ∈ K[X] \ {0} are such that the leading terms

are coprime, i.e., lcm(lt(p), lt(q)) = lt(p) lt(q), then spol(p, q) reduces to zero mod

{p, q}.

Proof Prop. 4 in Chap. 2 §9 of [16]. ut

Since {p, q} ⊆ G, Lemma 3 suggests that if all leading terms of the polynomials
in a basis G of an ideal I are coprime, i.e., we cannot find any pair of polynomials
p, q ∈ G such that lt(p) and lt(q) have any variable in common, then the product
criterion holds for all pairs of polynomials of G and thus G is automatically a
Gröbner basis for the ideal I.

To answer the question if a circuit is correct and hence fulfills its specification
we need to check if the specification polynomial is contained in the ideal generated
by the circuit relations, as we discuss in detail in Sect. 3. The theory of Gröbner
bases offers a decision procedure for this so-called ideal membership problem: Given
a polynomial f ∈ K[X] and an ideal I = 〈G〉 ⊆ K[X], determine if f ∈ I.

Given an arbitrary basis G of the ideal I, it is not so obvious how to check
whether the polynomial f belongs to the ideal I = 〈G〉. However, if G is a Gröbner
basis of I, then the membership question can be answered using a multivariate
version of polynomial division with remainder, cf. Alg. 1, as derivation procedure.
It can be shown that whenever G is a Gröbner basis, then f belongs to the ideal
generated by G if and only if the remainder of division of f by G is zero. In the
following we will introduce this approach more formally.
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Algorithm 1: Multivariate Division Algorithm [16]

Input : p1, . . . , ps, f

Output: h1, . . . , hs, r

1 h1 = 0, . . . , hs = 0, r = 0;
2 p = f ;
3 while p 6= 0 do

4 i = 1, division = false;
5 while i ≤ s ∧ division = false do

6 if lt(pi) | lt(p) then

7 hi = hi + lt(p)/ lt(pi);
8 p = p− pi · lt(p)/ lt(pi);
9 division = true;

10 else

11 i = i+ 1;

12 if division = false then

13 r = r + lt(p);
14 p = p− lt(p);

15 return h1, . . . , hs, r

Lemma 4 (Multivariate Division with Remainder) Let the set of terms be or-

dered according to a fixed order < and let P = (p1, . . . , ps) be an ordered list of poly-

nomials in K[X]. Then every f ∈ K[X] can be written as:

f = h1p1 + . . .+ hsps + r

where h1, . . . , hs, r ∈ K[X]. The remainder r is either zero or is a polynomial ∈ K[X],
such that no term in r is a multiple of some lt(pi). The complete division algorithm is

listed in Alg. 1. We call the polynomials hi the co-factors of f and the polynomial r is

called the remainder of f with respect to P .

Proof Thm. 3 in Chap. 2 §3 of [16]. ut

Example 1 Figure 1 depicts several And-Inverter-Graphs (AIGs) [23]. A node in
an AIG represents logical conjunction of the two inputs, depicted by edges on the
lower half of the node. The output is depicted by an edge in the upper half of the
node. An edge containing a marker negates the variable.

Let K = Q. Hence for the AIG on the left of Fig. 1, we have the relation
g = a(1−b) for all a, b, g ∈ {0, 1}. Furthermore, we always have g(g−1) = a(a−1) =
b(b− 1) = 0 since a, b, g ∈ {0, 1}. To show that we always have gb = 0, it suffices to
check if the polynomial gb ∈ Q[g, a, b] is contained in the ideal I ⊆ Q[g, a, b] with

I = 〈−g + a(1− b), g(g − 1), a(a− 1), b(b− 1)〉.

Multivariate polynomial division yields

gb =

h1

↓
(−b) (−g + a(1− b)) +

h4

↓
(−a) b(b− 1) +

remainder r
↓
0,

with h2 = h3 = 0, and therefore gb ∈ I and thus gb = 0 in the left AIG of Fig. 1.
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As shown in this example, we can view an ideal I = 〈G〉 ⊆ K[X] as an equational
theory, where the basis G = {g1, . . . , gm} defines the set of axioms. The ideal
I = 〈G〉 contains exactly those polynomials f for which the equation “f = 0” can
be derived from the axioms “g1 = · · · = gm = 0” through repeated application of
the rules u = 0 ∧ v = 0⇒ u+ v = 0 and u = 0⇒ uw = 0 (compare to Def. 2).

Lemma 5 If G = {g1, . . . , gm} is a Gröbner basis, then every f ∈ K[X] has a unique

remainder r with respect to G. Furthermore it holds that f − r ∈ 〈G〉.

Proof Prop. 1 in Chap. 2 §6 of [16]. ut

Ultimately the following Lemma provides the answer on how we can solve the
ideal membership problem with the help of Gröbner basis and thus can check
whether a polynomial belongs to an ideal or not.

Lemma 6 Let G = {g1, . . . , gm} ⊆ K[X] be a Gröbner basis, and let f ∈ K[X]. Then

f is contained in the ideal I = 〈G〉 iff the remainder of f with respect to G is zero.

Proof Cor. 2 in Chap. 2 §6 of [16]. ut

3 Ideals associated to Circuits

We consider circuits C with two bit-vectors a0, . . . , an−1 and b0, . . . , bn−1 of size n as
inputs, and a bit-vector s0, . . . , s2n−1 of size 2n as output. The circuit is represented
by a number of logical gates where the output of some gate may be input to some
other gate, but cycles in the circuit are not allowed. Additionally to the variables
ai, bi, si for the inputs and outputs of the circuit, we associate a variable g1, . . . , gk
to each internal gate output. In our setting let K = Q. By R we denote the ring
Q[a0, . . . , an−1, b0, . . . , bn−1, g1, . . . , gk, s0, . . . , s2n−1], containing all polynomials in
the above variables with coefficients in Q. At first glance it may seem surprising
that we use Q instead of Z2 as ground field although all our variables are restricted
to boolean values. The reason for this choice is that we want to verify correctness
of integer multiplication. As we will see in Def. 5, using Q as base field allows us to
describe the desired behavior of the circuit by connecting it to the multiplication
in Q. It would also be possible to use Z2, but in this case, specifying the desired
behavior of the circuit in terms of polynomial equations would not be much easier
than constructing a circuit in the first place. Such a specification would not be
more trustworthy than the circuit that we want to verify.

The semantic of each circuit gate implies a polynomial relation among the
input and output variables, such as the following ones:

u = ¬v implies 0 = −u+ 1− v
u = v ∧ w implies 0 = −u+ vw

u = v ∨ w implies 0 = −u+ v + w − vw
u = v ⊕ w implies 0 = −u+ v + w − 2vw.

(1)

The polynomials in R are chosen such that the boolean roots of the polyno-
mials are the solutions of the corresponding gate constraints and vice versa. We
denote these polynomials by gate polynomials. To ensure that we only find boolean
solutions of the polynomials we add the relations u(u− 1) = 0 for each variable u.
We call this relations field polynomials.
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Example 2 The possible boolean solutions for the gate constraint p00 = a0 ∧ b0
of Fig. 2 represented as (p00, a0, b0) are (1, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0) which are
all solutions of the polynomial −p00 + a0b0 = 0, when a0, b0 are restricted to the
boolean domain.

Since the logical gates in a circuit are functional, the values of all the variables
g1, . . . , gk, s0, . . . , s2n−1 in a circuit are uniquely determined as soon as the inputs
a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} are fixed. This motivates the following definition.

Definition 4 Let C be a circuit. A polynomial p ∈ R is called a polynomial circuit

constraint (PCC) for C if for every choice of

(a0, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n

and the resulting values g1, . . . , gk, s0, . . . , s2n−1 which are implied by the gates of
the circuit C, the substitution of all these values into the polynomial p gives zero.
The set of all PCCs for C is denoted by I(C).

It can easily be verified that I(C) is an ideal of R. Since it contains all PCCs,
this ideal includes all relations that hold among the values at the different points
in the circuit. Therefore, the circuit fulfills a certain specification if and only if the
polynomial relation corresponding to the specification of the circuit is contained
in the ideal I(C).

Definition 5 A circuit C is called a multiplier if the word-level specification

2n−1∑
i=0

2isi −
(n−1∑

i=0

2iai

)(n−1∑
i=0

2ibi

)
∈ I(C).

Thus checking whether a given circuit C is a correct multiplier reduces to an
ideal membership test. Definition 4 does not provide any information of a basis
of I(C), hence Gröbner basis technology is not directly applicable. However, we
can deduce at least some elements of I(C) from the semantics of circuit gates.

Definition 6 Let C be a circuit. Let G ⊆ R be the set which contains for each
gate of C the corresponding polynomial of Eqn. 1, where the variable u is replaced
by the output variable and v, w are replaced by the input variables of the gate.
Furthermore G contains the polynomials ai(ai − 1) and bi(bi − 1) for 0 ≤ i < n,
called input field polynomials. Then the ideal 〈G〉 ⊂ R is denoted by J(C).

Hence G is a basis for the ideal J(C) and we can decide membership using
Gröbner bases theory. Assume that we have a verifier which checks for a given
circuit C and a given specification polynomial p ∈ R if p is contained in the ideal
J(C). Because it holds that J(C) ⊆ I(C), such a verifier is sound. To show that
the verifier is also complete, we further need to show J(C) ⊇ I(C). For doing so,
we recall an important observation shown for instance in [24,33].

Theorem 1 Let C be a circuit, and let G be as in Def. 6. Furthermore let ≤ be a

reverse topological lexicographic term order where the variables are ordered such that

the variable of a gate output is always greater than the variables attached to the input

edges of that gate. Then G is a Gröbner basis with respect to the ordering ≤.
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Proof By the restrictions on the term order and the form of Eqns. 1, the leading
term of each gate polynomial is simply the output variable of the corresponding
gate. Furthermore, the leading terms of the input field polynomials ai(ai − 1)
and bi(bi−1) are a2i and b2i . Hence all leading terms are coprime and therefore, by
Lemma 3, division of spol(p, q) by {p, q} has remainder zero for any choice p, q ∈ G.
Since {p, q} ⊆ G for all p, q ∈ G, division of spol(p, q) by G gives the remainder
zero for all p, q ∈ G, and then, by Lemma 2, the claim follows. ut

Theorem 2 For all acyclic circuits C, we have J(C) = I(C).

Proof “⊆” (soundness): Immediately follows from the definition of J(C).
“⊇” (completeness): Let p ∈ R be a polynomial with p ∈ I(C). We show that
p ∈ J(C). Since C is acyclic, we can order the variables according to the needs
of Thm. 1. Hence by Thm. 1 we can derive a Gröbner basis G for J(C). Let r
be the remainder of division of p by G. Thus p − r ∈ J(C) by Lemma 5, and
r ∈ J(C) ⇐⇒ p ∈ J(C). Then, since J(C) ⊆ I(C) it holds that p − r ∈ I(C). By
p ∈ I(C) and p−r ∈ I(C) it follows that r ∈ I(C). Thus we need to show r ∈ J(C).

By the choice of the ordering of the terms and the observations about the
leading terms in G made in the proof of Thm. 1, from Lemma 5 it also follows
that r only contains input variables a0, . . . , an−1, b0, . . . , bn−1, and each of them has
a maximum degree of one. Simultaneously, r ∈ I(C) implies that all evaluations
of r for all choices ai, bj ∈ {0, 1} are zero.

We show r = 0, and thus r ∈ J(C). Assume r 6= 0. Suppose m is a monomial
of r with a minimal number of variables, including the case that m is a constant.
Since the exponents are at most one, no two monomials in r contain exactly the
same variables. Now select ai (bj) to evaluate to 1 iff ai ∈ m (bj ∈ m). Hence
all monomials of r except m evaluate to zero and thus vanish. By this choice r

evaluates to the (non-zero) coefficient of m, contradicting r ∈ I(C). Thus r = 0. ut

Example 3 In contrast to our definition of a circuit, where both input bit-vectors
have the same length, Fig. 2 shows a 3 × 2-bit multiplier. The leading terms of
the polynomials in the right column, read from top to bottom, follow a reverse
topological lexicographic ordering. Hence these polynomials form a Gröbner basis.

We conclude this section with the following simple but important observations.
First, the ideal I(C) is a so-called vanishing ideal. Therefore, it follows that J(C)
is a radical ideal. Hence testing ideal membership of the specification is sufficient
for verifying the correctness of a circuit, and we do not need to apply the stronger
radical membership test (cf. Chap. 4 §2 of [16]).

Second, since it holds that I(C) = J(C) contains all the field polynomials u(u−1)
for all variables u, not only for the inputs, we may add them to G.

Third, in the Gröbner basis G for gate-level circuits defined as given in Def. 6
using Eqn. 1 it holds that all polynomials have leading coefficient ±1. Thus during
reduction (division) no coefficient outside of Z (with non-trivial denominator) is
introduced. Hence all coefficient computations actually remain in Z. This formally
shows that the implementations, e.g., those from [35,30], used for proving ideal
membership to verify properties of gate-level circuits, actually can rely on com-
putation in Z without loosing soundness nor completeness. Of course it needs to
hold that the same term order as in Thm. 1 is used.
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a0 b0a0 b1a1 b0a1 b1a2 b0a2 b1

p00p01p10p11p20p21

c1

g1

g2

g0

c2

c3
s0s1s2s3s4

S0S1S2S3S4

s4 = c3 −s4 + c3,
c3 = p21 ∧ c2 −c3 + p21c2,
s3 = p21 ⊕ c2 −s3 + p21 + c2 − 2p21c2,
p21 = a2 ∧ b1 −p21 + a2b1,
c2 = g2 ∨ g1 −c2 + g2 + g1 − g2g1,
s2 = g0 ⊕ c1 −s2 + g0 + c1 − 2g0c1,
g2 = g0 ∧ c1 −g2 + g0c1,
g1 = p20 ∧ p11 −g1 + p20p11,
g0 = p20 ⊕ p11 −g0 + p20 + p11 − 2p20p11,
p20 = a2 ∧ b0 −p20 + a2b0,
p11 = a1 ∧ b1 −p11 + a1b1,
c1 = p10 ∧ p01 −c1 + p10p01,
s1 = p10 ⊕ p01 −s1 + p10 + p01 − 2p10p01,
p10 = a1 ∧ b0 −p10 + a1b0,
p01 = a0 ∧ b1 −p01 + a0b1,
s0 = p00 −s0 + p00,
p00 = a0 ∧ b0 −p00 + a0b0,

a2, a1, a0 ∈ {0, 1} a2(1− a2), a1(1− a1), a0(1− a0),
b1, b0 ∈ {0, 1} b1(1− b1), b0(1− b0)

Fig. 2: A 3x2-bit gate-level multiplier circuit, gate constraints, and polynomials. Colored gates
represent a full adder, cf. Sect. 5. Dashed lines depict column-wise slicing, cf. Sect. 7.

Fourth, we do not need Z as coefficient ring if we use computer algebra systems,
we can simply choose any field containing Z, e.g., Q, which actually improves
computation, because Z is not a field and ideal theory over rings is harder than
ideal theory over fields. In our experiments, using rational coefficients made a huge
difference for Singular [17] (but did not show any effect in Mathematica [34]).

Fifth, because the leading terms of G contain only one variable, computing a
remainder with respect to G has the same effect as substituting each leading term
with the corresponding tail until no further substitution is possible.

Sixth, given a circuit C, checking whether an assignment of the inputs exists,
which yields a certain value at an output is actually the same as (circuit) SAT,
and hence is NP complete:

Corollary 1 Consider the problem to decide, for a given polynomial p ∈ Q[X] and a

given Gröbner basis G ⊆ Q[X], whether p ∈ 〈G〉. Taking the bit-size of p and G in the

natural encoding as a measure for the problem size, this problem is co-NP-hard.

Proof Circuit SAT is the problem to decide for a given circuit with n gates and
one output bit whether it produces the output 1 for at least one choice of inputs.
This problem is known to be NP-hard. Consequently, the problem of deciding
whether a given circuit with n gates and one output bit s produces the output 1
for every choice of inputs is co-NP-hard. A circuit C returns 1 for every input iff
s − 1 ∈ J(C). As the Gröbner basis G for the circuit C has essentially the same
size as C, the circuit problem can be solved with at most polynomial overhead if
we have an algorithm for solving the membership problem. ut

The main point of this corollary is not that ideal membership is difficult, but that
it remains difficult even if we assume to be given a Gröbner basis of the ideal as
part of the input. For other results on the complexity of the ideal membership
problem, see [1,21].

As a final remark, in the case when a polynomial g is not contained in an
ideal I = 〈G〉, i.e., the remainder of dividing g by G is not zero, the last part
in the proof of Thm. 2, where the “smallest” monomial m is evaluated, allows to
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determine a concrete choice of input assignments for which g does not vanish. In our
application of multiplier verification these evaluations provide counter-examples,
in case a circuit is determined not to be a multiplier.

We claim that this section shows the first formalization of not only soundness
but also completeness arguments for recent successful algebraic approaches [30,35].
In previous work soundness and completeness was formally shown too but only for
other polynomial rings, i.e., over F2q to model circuits which implement Galois-
field multipliers [24,27], or for polynomial rings over Z2q which model arithmetic
circuit verification using overflow semantics [33]. In the work of [35] soundness
and completeness is discussed too, but refers to [24,27] instead of showing proofs,
which as discussed above uses coefficients in F2q and not Z, the coefficient ring the
approach [35] is actually working with.

4 Optimizations

In this section we extend the “XOR-Rewriting”, “Common-Rewriting” and “Van-
ishing Constraints” optimizations of [28] by the additional rewriting techniques of
“Adder-Rewriting” and “Partial Product Elimination” [8,29]. Picking up the state-
ment of Cor. 1, simply reducing the specification polynomial in the constructed
Gröbner basis of the circuit generally leads to an exponential number of monomi-
als in the intermediate reduction results. This conjecture was also made in [30].
Thus in practice to efficiently use polynomial reduction for verification of specific
circuits tailored heuristics which rewrite Gröbner bases and hence improve the
reduction process become very important to speed up computation. The (non-
reduced) Gröbner basis of an ideal is not unique, thus some Gröbner bases may
be better than others, for instance much smaller. A natural choice among all the
Gröbner bases is the unique reduced Gröbner basis [16], but it was shown empir-
ically in [29] that the computation of this basis for multipliers is not feasible in
practice, e.g., the computation of the unique reduced Gröbner basis for a 4-bit
multiplier took more than 20 minutes.

In [30] a logic reduction rewriting scheme consisting of XOR-Rewriting and
Common-Rewriting is proposed which helps to reduce the number of monomials by
partially reducing the Gröbner basis. Furthermore several specific monomials are
eliminated which fulfill a certain Vanishing Constraint.

The technique XOR-Rewriting of [30] eliminates all variables of the Gröbner
basis which are neither an input nor an output of an XOR-gate. Also the primary
input and output variables of the circuit are not eliminated in the Gröbner basis.

In our setting circuits are usually given as AIGs, hence we adopt this rewriting
for AIGs by matching XOR (XNOR) patterns in the AIG which represent an XOR
(XNOR) gate. This means we want to find a set of nodes for which the relation s =

(a ∧ b)∧(ā ∧ b̄) holds. We eliminate internal variables of these structures and define
the polynomial of the XOR (XNOR) output directly in terms of the grandchildren.

Example 4 The middle AIG in Fig. 1 depicts an XOR constraint. For this structure
we only use the polynomial −s + a + b − 2ab for describing the logical constraint
instead of the polynomials −l+ab,−r+ (1−a)(1− b), and −s+ (1− l)(1− r). This
deletes polynomials containing the variables l, r from the Gröbner basis, unless
they are used as an input of further gates.
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After applying XOR-Rewriting the Common-Rewriting [30] technique further
simplifies the Gröbner basis by eliminating all variables which are used exactly
once as an input of a further gate. This technique can be compared to bounded
variable elimination in SAT [18] after encoding a circuit to a CNF using, e.g.,
Tseitin encoding. This approach would also eliminate all variables in the CNF
representing gates in the circuit having only one parent [20].

Example 5 The right AIG of Fig. 1 contains several variables occurring only once,
hence Common-Rewriting eliminates gates t, u, v, and w. Thus the relation of r is
directly expressed in terms of a, b, c.

Although the concepts of XOR-Rewriting and Common-Rewriting seem rather
intuitive in the sense that we can simply rewrite and delete polynomials from the
Gröbner basis, we need sophisticated algebraic reasoning, i.e., elimination theory
of Gröbner bases. We will introduce this theory in Sect. 5, but before doing so we
want to complete the discussion of possible optimizations.

A further optimization presented in [30] was to add vanishing constraints, i.e.,
polynomials which are PCCs of the circuit C and because they are contained in
I(C), they can be added to the Gröbner basis. In [30] a specific constraint was
called the XOR-AND Vanishing Rule, denoting that an XOR-gate and AND-gate
which have the same input can never be 1 at the same time. An XOR- and AND-
gate with the same inputs logically represent a half-adder, where the XOR-gate
represents the sum output and the AND-gate represents the carry output. Because
a half-adder only sums up two bits, it can never happen that the sum output and
carry output is 1 at the same time.

Example 6 In the middle AIG of Fig. 1 the variable l represents an AND-gate and
s represents an XOR-gate. Both have a, b as input. Hence we can deduce sl = 0.

We adapt this rule by searching for (negative) children or grand-children of spe-
cific AND-gates in the circuit. We add a corresponding polynomial to our Gröbner
basis which deletes redundant monomials in intermediate reduction results.

Additionally to the above optimizations which we more or less adopted of [30],
we presented in [8,29] a further optimization called Adder-Rewriting, which is also
based on elimination theory of Gröbner basis. The core idea is to simplify the
Gröbner basis by introducing linear adder specifications.

Definition 7 A sub-circuit CS of a circuit C is a full-adder if

−2c− s+ a+ b+ i is a PCC for C

for outputs c, s and inputs a, b, i of CS and a half-adder if

−2c− s+ a+ b is a PCC for C.

We search for such sub-circuits representing full- and half-adders in the gate-
level circuit C. Then we eliminate the internal variables of these sub-circuits,
cf. Sect. 5, which has the effect that the linear adder specifications are included
in the Gröbner basis. Reducing by these linear polynomials leads to substantial
improvements in terms of computation time. Furthermore we will also add a poly-
nomial representing the relation of s to the inputs a, b, i, because there are no
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restrictions on s. It can be used multiple times as a child of a gate and hence we
need a relation for it. In general, assuming that the carry output c is always larger
than the sum output s, the intermediate reduction polynomials includes the term
2c + s before we reduce c. Using the adder specification s is canceled in parallel
during the reduction of c. Hence in certain multiplier architectures which consist
only of full- and half-adders we never have to reduce s, cf. Sect. 10. But we have
to include polynomials with leading term s, otherwise we lose completeness of our
approach.

In [36] a similar strategy is given which detects embedded MAJ3 and XOR3
gates. In this approach the Gröbner basis of the circuit is not simplified, but the
MAJ3 and XOR3 gates are used to receive a more efficient reduction order.

Example 7 The middle AIG in Fig. 1 shows a half adder with outputs l and s as
carry and sum and inputs a, b. Hence we can derive the relations −2l − s + a + b

and −s+a+ b−2ab. In Fig. 2 the filled gates describe a full-adder. In this case we
can obtain the specification −2c2 − s2 + p20 + p11 + c1 by elimination of g0, g1, g2.

We apply the optimizations in the following order: Adder-Rewriting, XOR-
Rewriting, Common-Rewriting, Adding Vanishing Constraints. We start by elimi-
nating variables from bigger parts of the circuit and continue with rewriting smaller
parts and only in the end we add polynomials to the Gröbner basis.

In [29] we introduced a rewriting method which is different from the optimiza-
tions above, because in Partial Product Elimination we change the circuit specifica-
tion. In multipliers where a partial product is simply the conjunction of two input
bits, we find exactly n2 polynomials, representing the corresponding AND-gates.

We can eliminate these polynomials by cutting off these gates from the circuit
and verify them separately, e.g., we search for them in the AIG, but do not intro-
duce separate polynomials pi,j = aibj . Hence we change the specification of the
multiplier from Def. 5 to the specification given in Cor. 2.

Corollary 2 A circuit C is a multiplier if

2n−1∑
i=0

2isi −
n−1∑
i,j=0

2i+jpi,j ∈ I(C) with pi,j = aibj .

We can easily check that the specifications of Cor. 2 and Def. 5 are equivalent,
when we expand the sums and replace every occurring of pi,j with aibj in Cor. 2.

This approach works only in multipliers with a simple partial product gener-
ation, in multipliers using, e.g., Booth encoding [26] these patterns do not exist,
but it might be possible to find similar patterns in this situation too.

In the following we show how rewriting techniques, which are based on variable
elimination can be applied to circuit verification.

5 Variable Elimination

Section 4 actually relies on elimination theory of Gröbner bases to justify our
rewriting techniques. This section provides more details about this theory and
also presents a theorem which allows to rewrite only local parts of the Gröbner
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basis following [8]. To apply these rewriting techniques the circuit is split into
two parts by extracting a sub-circuit, which is then rewritten, without changing
the rest of the circuit. For example Adder-Rewriting is applied on an extracted
full- or half-adder and XOR-Rewriting is used for nodes in the AIG describing
an XOR-constraint. Consequently also the overall ideal I(C) and the Gröbner
basis G are split into two parts. In the extracted sub-circuit we want to eliminate
redundant internal variables, i.e., variables occurring only inside the sub-circuit.
For this purpose we use the elimination theory of Gröbner bases [16].

Recall, that if I ⊆ Q[X] and J ⊆ Q[X] are ideals, then their sum is the set
I + J = {f + g | f ∈ I, g ∈ J}, which in fact is also an ideal in Q[X].

Lemma 7 Let I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉 be two ideals in Q[X]. Then

I + J = 〈f1, . . . , fr, g1, . . . , gs〉. In particular 〈f1, . . . , fr〉 = 〈f1〉+ . . .+ 〈fr〉.

Proof Prop. 2 and Cor. 3 in Chap. 4 §3 of [16]. ut

In the simple case where all occurring polynomials are linear, the effect of
elimination theory can be easily illustrated with Gaussian elimination.

Example 8 (Gaussian elimination) Let us consider the following system of three
linear equations in Q[x, y, z]:

2x+ 4y − 3z + 4 = 0

3x+ 7y − 3z + 2 = 0

2x+ 5y − 4z + 5 = 0

Let V be the vector space consisting of all Q-linear combinations of the polynomials
on the left hand side, then each possible root (x, y, z) ∈ Q3 of the above system is
also a root of each polynomial contained in V. In this sense, V contains all linear
polynomials whose solutions can be deduced from the roots of the system, i.e., the
polynomials generating V .

If we are only interested in polynomials of V in which the variable x does not
occur, we can triangularize the above system using Gaussian elimination. This for
example leads to the equivalent system:

x+ 2y − 2z + 3 = 0

y + 3z − 7 = 0

z − 2 = 0

In Gaussian elimination new polynomials are derived by applying linear combi-
nations of the original polynomials. Hence the polynomials on the left hand side
belong to the vector space V . We see that two polynomials do not contain x.
In fact, every element of V which does not contain x can be written as a linear
combination of the polynomials y + 3z + 2 and z + 1 which are free of x.

Since Gaussian elimination is defined only for linear equations we cannot use
it for our setting, but using Gröbner bases theory we can extend the reasoning in
the example above to systems of nonlinear equations.

In linear polynomials a term consists of a single variable, hence for triangular-
ization we only have to order the terms in such a way that the variables which we
want to eliminate are the largest terms. This ordering is generalized to multivari-
ate terms by introducing an elimination order on the set of terms. In the following
assume that we want to eliminate the variables belonging to a subset Z of X.
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Definition 8 [16] Let X = Y
·
∪ Z. An order < on the set of terms of [X] is called

elimination order for Z if it holds for all terms σ, τ where a variable from Z is
contained in σ but not in τ , we obtain τ < σ. We denote this ordering by Y < Z.

In the case that Z = {x1, . . . , xi} and Y = {xi+1, . . . , xn}, the lexicographic
term order is such an elimination order. In Ex. 8 the elimination order Y < Z is
defined by a lexicographic ordering with Y = {y, z} and Z = {x}.

Definition 9 [16] Assume an ideal I ⊆ Q[X] = Q[Y,Z]. The ideal where the
Z-variables are eliminated is the elimination ideal J ⊆ Q[Y ] defined by

J = I ∩Q[Y ].

Theorem 3 [16] Given an ideal I ⊆ Q[X] = Q[Y,Z]. Further let G be a Gröbner

basis of I with respect to an elimination order Y < Z. Then the set

H = G ∩Q[Y ]

is a Gröbner basis of the elimination ideal J = I ∩Q[Y ], in particular 〈H〉 = J .

The requirements of Thm. 3 demand that we need to calculate a new Gröbner
basis H w.r.t. to an elimination order Y < Z for our circuit C. In general this means
that we really need to apply Buchberger’s algorithm and cannot simply rely on
the product criterion anymore as we did for G. Since Buchberger’s algorithm is
computationally expensive [16], this is practically infeasible. In [8,29] we derived a
method which allows that we split G into two smaller Gröbner basis GA and GB ,
where 〈GB〉 defines the ideal generated by the gate polynomials of the extracted
sub-circuit. The following theorem shows that in order to compute a basis of the
elimination ideal J = 〈G〉 ∩Q[Y ] it suffices to compute a basis of the elimination
ideal 〈GB〉 ∩Q[Y ].

Theorem 4 Let G ⊆ Q[X] = Q[Y,Z] be a Gröbner basis with respect to some term

order <. Let GA = G ∩ Q[Y ] and GB = G \ GA. Let <Z be an elimination order

for Z which agrees with < for all terms that are free of Z, i.e., terms free of Z are

equally ordered in < and <Z . Suppose that 〈GB〉 has a Gröbner basis HB with respect

to <Z which is such that every leading term in HB is free of Z or free of Y . Let

HB = HY ∪HZ , such that HZ consists of all polynomials with leading terms in Z and

HY = HB \HZ contains the remaining polynomials with leading terms in Y . Then

1. 〈G〉 ∩Q[Y ] = (〈GA〉+ 〈GB〉) ∩Q[Y ] = 〈GA〉+ (〈GB〉 ∩Q[Y ]).

2. H = GA∪HY is a Gröbner basis for 〈GA〉+(〈GB〉∩Q[Y ]) w.r.t. the ordering <Z .

Proof 1) The steps of the elimination process of this proof are depicted in Fig. 3.
Since Y <Z Z, it follows that the polynomials in HY cannot contain any variable
of Z. Furthermore by definition GA does not contain any polynomial containing
Z-variables, hence variables of Z only occur in HZ .

By Lemma 7 we derive

〈G〉 = 〈GA〉+ 〈GB〉 = 〈GA〉+ 〈HB〉
= 〈GA〉+ 〈HY 〉+ 〈HZ〉 = 〈GA ∪HY 〉+ 〈HZ〉.
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G

GA GB

HB

HY HZ

H

Step 1: original Gröbner basis G

Step 2: split G into two subbases

Step 3: change order of < to <Z

Step 4: eliminate the variables of Z

Step 5: rejoin bases H = GA ∪HY

Fig. 3: Each step of the elimination procedure of the proof of Thm. 4.

By GB(S, o) we denote an arbitrary Gröbner basis for S w.r.t. an ordering o.
Changing an arbitrary basis into a Gröbner basis does not affect the ideal, hence

〈GA ∪HY 〉+ 〈HZ〉 = 〈GB(GA ∪HY , <Z)〉+ 〈HZ〉
= 〈GB(GA ∪HY , <Z) ∪HZ〉.

Furthermore GB(GA∪HY , <Z)∪HZ is a Gröbner basis, because all S-polynomials
of pairs of polynomials p, q reduce to zero:

1. p, q ∈ GB(GA ∪HY , <Z): By Lemma 2, spol(p, q) reduces to zero.
2. p ∈ GB(GA∪HY , <Z), q ∈ HZ : The leading terms of HZ contain only variables

of Z, whereas the polynomials GA∪HY do not contain any variable of Z. Hence
by Lemma 3, spol(p, q) reduces to zero.

3. p, q ∈ HZ : Since HB = HY ∪ HZ is a Gröbner basis, it holds that spol(p, q)
reduces to zero w.r.t. HB . Consequently it reduces to zero w.r.t. GA ∪ HB =
GA∪HY ∪HZ . Since each leading term of GA∪HY is a multiple of a leading term
in GB(GA ∪HY , <Z), spol(p, q) reduces to zero w.r.t. GB(GA ∪HY , <Z)∪HZ .

Combining the above results we conclude that GB(GA∪HY , <Z)∪HZ is a Gröbner
basis for the ideal 〈GB(GA ∪HY , <Z) ∪HZ〉 = 〈G〉. Following Thm. 3 we receive

(〈GA〉+ 〈GB〉) ∩Q[Y ]

= 〈GB(GA ∪HY , <Z) ∪HZ〉 ∩Q[Y ]

= 〈GB(GA ∪HY , <Z)〉.

Since computation of a Gröbner basis does not change the ideal, we have

〈GB(GA ∪HY , <Z)〉 = 〈GA ∪HY 〉 = 〈GA〉+ 〈HY 〉.

Because the set HY does not contain any variable of Z, it follows

〈HY 〉 = 〈HB〉 ∩Q[Y ] = 〈GB〉 ∩Q[Y ]

Altogether by composing the derived results we obtain

(〈GA〉+ 〈GB〉) ∩Q[Y ] = 〈GA〉+ (〈GB〉 ∩Q[Y ]).

2) We need to prove that for every term τ ∈ [Y ] which is also a leading term of a
polynomial in 〈G〉 it follows that there exists a polynomial f ∈ GA ∪HY such that
lt(f) | τ . Let τ be such a term.

Because G is a Gröbner basis it holds that there exists a g ∈ G with lt(g) | τ .
Since G = GA ∪GB it consequently follows that either g ∈ GA or g ∈ GB :
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1. g ∈ GA: It immediately follows that g ∈ GA ∪HY , hence f := g.
2. g ∈ GB : Since 〈GB〉 = 〈HB〉, there exists an element h ∈ HB with lt(h) | lt(g).

From this it follows that lt(h) | τ . Since τ ∈ [Y ] it further holds that lt(h) ∈ [Y ].
Hence h ∈ HY and altogether h ∈ GA ∪HY . In this case f := h.

So for each g ∈ G we find f ∈ GA ∪HY whose leading term divides τ . ut

The above theorem allows that we simply add the Gröbner basis HY of the
elimination ideal of the extracted sub-circuit 〈HY 〉 = 〈HB〉∩Q[Y ] = 〈GB〉∩Q[Y ] to
the Gröbner basis GA of the remaining circuit and obtain again a Gröbner basis,
preventing that we have to compute a new Gröbner basis w.r.t. to an elimination
order for the whole circuit C. Actually we only have to really compute one “small”
local Gröbner basis HB . Although in principle we can choose Z arbitrarily, we
apply the idea to sets of variables that only occur locally in the circuit. One
source of such variables are intermediate results of adders.

Example 9 We want to apply Adder-Rewriting on the full adder in the circuit C
of Fig. 2, which is depicted by the colored gates. The full adder has outputs c2
(carry) and s2 (sum) and three inputs p20, p11, c1. The internal gates g2, g1, g0 are
not used outside the full adder structure, hence we want to eliminate them and
include the specification 2c2 + s2 − p20 − p11 − c1 in the Gröbner basis G.

The Gröbner basis G which is depicted by polynomials in the right column in
Fig. 2 is split such that GA = G \GB and

GB = {−g0 + p20 + p11 − 2p20p11, −g1 + p20p11, −g2 + c1g0,

−s2 + c1 + g0 − 2c1g0, −c2 + g1 + g2 − g1g2}

We apply variable elimination only in GB . For this let Z = {g2, g1, g0}. Accord-
ing to the requirements of Thm. 3 we need to find an elimination order <Z such
that Y < Z. So far we used in Ex. 3 a lexicographic term ordering < with

b0 < b1 < a0 < a1 < a2 < p00 < s0 < p01 < p10 < s1 < c1 <

p11 < p20 < g0 < g1 < g2 < s2 < c2 < p21 < s3 < c3 < s4

We choose <Z such that < and <Z restricted on Y are equal, i.e., we move
g0, g1, g2 to be the largest variables in the lexicographic ordering, but do not change
the order of the remaining variables.

We compute a Gröbner basis HB w.r.t. <Z . During the computation we use

the notation f
P−→ r, meaning that r is the remainder f with respect to P . For

simplification we immediately reduce higher powers without showing this reduction
by the field polynomials explicitly. Initially HB contains:

f1 := −g0 − 2p20p11 + p20 + p11, f2 := −g1 + p20p11, f3 := −g2 + g0c1,

f4 := −2c1g0 + g0 − s2 + c1, f5 := −g2g1 + g2 + g1 − c2

According to Buchberger’s algorithm [11] we consider all possible pairs (fi, fj) ∈
HB ×HB and compute spol(fi, fj)

HB−−→ r. If r is not zero, we add r to HB . This
step is repeated until all spol(fi, fj) for (fi, fj) ∈ HB ×HB reduce to zero.
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Initially we only have to explicitly compute the remainders of spol(f1, f4),
spol(f2, f5) and spol(f3, f5), because all other S-Polynomials reduce to zero ac-
cording to the product criterion, cf. Lemma 3.

spol(f1, f4) = 2c1f1 − f4 = −g0 + s2 − 4p20p11c1 + 2p20c1 + 2p11c1 − c1
{f1}−−−→ s2 − 4p20p11c1 + 2p20p11 + 2p20c1 − p20 + 2p11c1 − p11 − c1 =: f6

The non-zero remainder f6 of spol(f1, f4) is added to HB . Since lt(f6) is coprime
to all other leading terms of HB , all spol(fi, f6) reduce to zero, cf. Lemma 3.

spol(f2, f5) = g2f2 − f5 = g2p20p11 − g2 − g1 + c2

{f3}−−−→ − g1 + g0p20p11c1 − g0c1 + c2

{f2}−−−→ g0p20p11c1 − g0c1 + c2 − p20p11
{f1}−−−→ c2 + 2p20p11c1 − p11c1 + p20c1 − p20p11 =: f7

We add f7 to HB and we again apply the product criterion for all S-Polynomials
containing f7.

spol(f3, f5) = g1f3 − f5 = −g2 + g1g0c1 − g1 + c2

{f3}−−−→ g1g0c1 − g1 − g0c1 + c2

{f2}−−−→ g0p20p11c1 − g0c1 + c2 − p20p11
{f1}−−−→ c2 + 2p20p11c1 − p11c1 + p20c1 − p20p11

{f7}−−−→ 0

At this point the algorithm terminates, because now all S-Polynomials reduce to
zero. Thus HB = {f1, f2, f3, f4, f5, f6, f7} is a Gröbner basis for 〈HB〉.

Although HB is already a Gröbner basis, we will modify it to cover our needs.
It is always allowed to add polynomials of 〈HB〉 to HB without violating the
Gröbner basis property. In order to add the specification of the full adder to HB

we construct f8 := 2f7 + f6 = 2c2 + s2 − p20 − p11 − c1 and add it to HB .

To reduce the size of the Gröbner basis HB we eliminate unnecessary polyno-
mials. Lemma 3 in Chap. 2 §7 of [16] tells us that we can remove a polynomial p
from our Gröbner Basis HB whenever we have a further polynomial q ∈ HB such
that lt(q) | lt(p). Thus we can eliminate f4, f5 and f7 and our final Gröbner basis
HB w.r.t. <Z is

HB = {g0 + 2p20p11 − p20 − p11, g1 − p20p11, g2 + g0c1,

s2 − 4p20p11c1 + 2p20p11 + 2p20c1 − p20 + 2p11c1 − p11 − c1,
2c2 + s2 − p20 − p11 − c1}.

We eliminate the first three colored polynomials containing variables of Z and
derive 〈H〉 = 〈GA〉+ 〈HY 〉 with HY = HB ∩Q[Y ].
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Fig. 4: Standard row-wise slicing (left) and our column-wise slicing (right) for a clean 3-bit
carry-save-adder based (CSA) multiplier. The numbers in the full-adders depict the order.

6 Order

As long as the gate and field polynomials are ordered according to a reverse topo-
logical lexicographic term order, the choice of order does not affect the correctness
of the approach, cf. Thm. 1. However the choice of order has an influence on the
number of monomials in the intermediate reduction result [35]. Hence, in addition
to rewriting and reducing the Gröbner basis G, choosing an appropriate term and
hence reduction order has a tremendous effect on computation time.

Given the two dimensional structure of multipliers, two orderings seem well
fitted, namely a row-wise and a column-wise ordering. The idea in both approaches
is to partition the gates of a circuit into slices, which are then totally ordered. The
gates within a slice are ordered reverse topologically. The combined order of the
variables has to be reverse topological, such that the requirements of Thm. 1 are
fulfilled and hence the gate and input field polynomials form a Gröbner basis.

In the row-wise approach the gates are ordered according to their backward
level. The ordering is abstractly depicted in the left circuit in Fig. 4, where the
order of the full-adders in a clean carry-save-adder based (CSA) multiplier is given.
Informally, a multiplier is clean when neither gate synthesis nor mapping is applied
and where the XOR-gates, partial products and the half/full adders can easily be
identified. Otherwise a multiplier is called dirty. In previous work the row-wise
approach is widely used. In the approach of [35] the gates are ordered according
on their logic level based on the circuit inputs. In [14] the row-wise order is used
to derive a word-level specification for a CSA step in a clean CSA multiplier.
Unfortunately, the variable order is only roughly discussed in [30].

In the column-wise order, cf. right side of Fig. 4, the multiplier is partitioned
vertically such that each slice contains exactly one output bit. We will use this
order to determine a more robust incremental checking approach.

In Fig. 4 we also list the sum of the partial products which occur in the row-wise
and column-wise slices. Assume we swap a1b2 and a2b1. In contrast to permuting
partial products within a row, permuting partial products within a column does
not affect the correctness of the multiplier. By exchanging a1b2 and a2b1 the given
sums of partial products for the row-wise slices are not valid anymore, whereas
in the column-wise slicing the sum of partial products is still correct, meaning we
can uniquely identify the partial products in a column-wise slice.
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7 Incremental Column-Wise Checking

The goal of an incremental checking algorithm is to divide the verification problem
into smaller, less complex and thus more manageable sub-problems. Because a
column-wise term order is robust under permutation of partial products, we use
such an order to define our incremental slices. Furthermore we split the word-level
specification of Def. 5 into smaller specifications which relate the partial products,
incoming carries, sum output bit and the outgoing carries of each slice.

Definition 10 Let C be a circuit which is partitioned according to a column-wise
term order, such that each slice contains exactly one output bit. For column i with
0 ≤ i < 2n let Pi =

∑
k+l=i akbl be the partial product sum (of column i).

Definition 11 Let C be a circuit, as defined in Sect. 3. A sequence of 2n + 1
polynomials C0, . . . , C2n over the variables of C is called a carry sequence if

−Ci + 2Ci+1 + si − Pi ∈ I(C) for all 0 ≤ i < 2n+ 1

Then the Ri = −Ci + 2Ci+1 + si − Pi polynomials are called the carry recurrence

relations for the sequence C0, . . . , C2n.

Based on these definitions we can obtain a general theorem which allows to
incrementally verify multiplier circuits using carry recurrence relations. For this
theorem it is not necessary to know how the carry sequence is actually derived.

Theorem 5 Let C be a circuit where all carry recurrence relations are contained in

I(C), i.e., C0, . . . , C2n define a carry sequence as in Def. 11. Then C is a multiplier

in the sense of Def. 5, if and only if C0 − 22nC2n ∈ I(C).

Proof By the condition of Def. 11, we have (modulo I(C))

2n−1∑
i=0

2isi =
2n−1∑
i=0

2i(Pi + Ci − 2Ci+1)

=
2n−1∑
i=0

2iPi +
2n−1∑
i=0

(2iCi − 2i+1Ci+1)︸ ︷︷ ︸
C0 − 22nC2n

.

It remains to show
∑2n−1

i=0 2iPi = (
∑n−1

i=0 2iai)(
∑n−1

i=0 2ibi):

2n−1∑
i=0

2iPi =
2n−1∑
i=0

2i
k,l≤n−1∑
k+l=i
k,l≥0

akbl =
n−1∑
k=0

n−1∑
l=0

2k+lakbl = (
n−1∑
k=0

2kak)(
n−1∑
l=0

2lbl)

Putting the above calculations together yields:

2n−1∑
i=0

2isi︸ ︷︷ ︸
L

= (C0 − 22nC2n)︸ ︷︷ ︸
L1

+ (
n−1∑
k=0

2kak)(
n−1∑
l=0

2lbl)︸ ︷︷ ︸
L2

Since all Ri ∈ I(C), it holds that L−L1−L2 ∈ I(C). For soundness, we assume
L1 ∈ I(C), thus conclude L− L2 ∈ I(C), which proves that C is a multiplier. For
completeness, let L− L2 ∈ I(C) and thus L1 ∈ I(C). ut
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Fig. 5: Deriving input cones (left) and slices (right) for a clean 3-bit CSA multiplier.

For our incremental checking algorithm we determine for each output bit si its
input cone, namely the gates which si depends on (cf. left side of Fig. 5):

Ii := {gate g | g is in input cone of output si}

We derive slices Si as the difference of consecutive cones Ii (cf. right side of Fig. 5):

S0 := I0 Si+1 := Ii+1 \
i⋃

j=0

Sj

Definition 12 (Sliced Gröbner Bases) Let Gi be the set of polynomial repre-
sentations of the gates in a slice Si, cf. Eqn. (1), and the input field polynomials.
The terms are ordered such that the requirements of Thm. 1 are fulfilled.

Corollary 3 The set Gi is a Gröbner basis for the slice ideal 〈Gi〉.

Proof Follows from Thm. 1 with C replaced by Si and G replaced by Gi. ut

Since the ideal 〈Gi〉 contains all the field polynomials Fi for the gate variables
in Si, we may use them in the reduction process to eliminate exponents greater
than 1 in the intermediate reduction results. Our incremental checking algorithm,
cf. Alg. 2, works as follows: We start at the last output bit s2n−1 and compute the
polynomials Ci recursively as the remainder of dividing 2Ci+1 + si−Pi by Gi ∪Fi.
Hence a polynomial Ci is uniquely defined, given Pi and Ci+1. It remains to fix
the boundary polynomial C2n, where we simply choose C2n = 0.

Theorem 6 Algorithm 2 returns true iff C is a multiplier.

Proof By definition Ri := −Ci + 2Ci+1 + si − Pi ∈ 〈Gi ∪ Fi〉. Let F denote the set
of all field polynomials for the variables of C. Since Gi ⊆ G and Fi ⊆ F , we have
Gi ∪ Fi ⊆ G ∪ F . Furthermore 〈G ∪ F 〉 = 〈G〉 = J(C) and thus Ri ∈ J(C) = I(C).

We show inductively that Ci is reduced w.r.t. Ui, where Ui :=
⋃

j≥i(Gj ∪ Fj).
This requires that si and Pi are reduced w.r.t. to Ui+1, which holds due to the
construction of the sliced Gröbner bases Gi. By U0 = G∪F we can derive that the
final remainder C0 is reduced w.r.t. G ∪ F thus C0 = C0 − 22nC2n ∈ I(C) = J(C)
iff C0 = 0, which concludes the proof using Thm. 5. ut

Consequently Alg. 2 returns false iff a multiplier is incorrect, i.e., C0 6= 0.
As discussed in the final remark of Sect. 3 we can use C0 to receive a concrete
counter-example. It also is possible to abort the algorithm earlier if we find partial
products akbl of higher slices Sk+l = Sj in remainders Ci with i < j.
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Algorithm 2: Multiplier Checking Algorithm

Input : Circuit C with sliced Gröbner bases Gi

Output: Determine whether C is a correct multiplier
1 C2n ← 0;
2 for i← 2n− 1 to 0 do

3 Ci ← Remainder (2Ci+1 + si − Pi, Gi ∪ Fi )

4 return C0 = 0

8 Incremental Equivalence Checking

In this section we introduce an incremental equivalence checking algorithm [29]
generalizing our incremental checking approach to gate-level equivalence checking
of two multipliers, but the approach is not restricted to multiplier circuits only. The
presented theory applies to all acyclic circuits C,C′ which have the same inputs
and the same number of output bits. We generalize our definition of circuits of
Sect. 3 as follows.

Let C be a circuit with l boolean inputs a0, . . . , al−1 andm outputs s0, . . . , sm−1.
Internal gates are represented by g0, . . . , gj . Further let C′ be a circuit with the
same l boolean inputs, but m different outputs s′0, . . . , s

′
m−1. The gates of C′ are

defined by gate variables g′0, . . . , g
′
k. The union of C,C′ is denoted by C ∪ C′, for

which we can determine I(C ∪ C′) = J(C ∪ C′) as described in Sect. 3.

The core idea of equivalence checking is to verify that two circuits C and C′

compute the same output, given the same input. The benefit of equivalence check-
ing is that a circuit can be verified without requiring a word-level specification
by checking the equivalence of a circuit and a correct “golden” reference circuit.
In the following we show how we can derive an incremental equivalence checking
approach based on our column-wise checking algorithm of Sect. 7.

Definition 13 Let C,C′ be two circuits. They are equivalent, written C ≡ C′, if

si − s′i ∈ I(C ∪ C′) i = 0, . . . ,m− 1.

Lemma 8

C ≡ C′ iff

m−1∑
i=0

2i(si − s′i) ∈ I(C ∪ C
′)

Proof “⇒”: Follows from Def. 2.

“⇐”: Let ϕ : X → B ⊆ Q denote an evaluation of all variables X of C,C′, which
is implied by the functionality of the circuit gates, e.g., values of si, s

′
i in B are

uniquely determined given fixed inputs a0, . . . , al−1. We extend ϕ to an evalua-
tion of polynomials in the natural way (the unique homomorphic extension), i.e.,
ϕ : Q[X] → Q. For all PCCs f , i.e. f ∈ I(C ∪ C′), it holds by definition that
ϕ(f) = 0. Since ϕ(si), ϕ(s′i) ∈ B it is clear that ϕ(si − s′i) ∈ {−1, 0, 1}.
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Assume
∑m−1

i=0 2i(si − s′i) ∈ I(C ∪ C
′), but C 6≡ C′. Then there is a largest k

with 0 ≤ k < m and ϕ(sk − s′k) 6= 0, which gives the following contradiction

0 = ϕ(
m−1∑
i=0

2i(si − s′i)) =
k∑

i=0

2iϕ(si − s′i)

= 2kϕ(sk − s′k)︸ ︷︷ ︸
∈{−2k,2k}

+
k−1∑
i=0

2iϕ(si − s′i)︸ ︷︷ ︸
∈[−2k+1,2k−1]

6= 0

ut

As for the incremental checking algorithm we define a sequence of relations,
which is used to split the word-level equivalence specification. Based on the se-
quence we define an abstract incremental bit-level equivalence checking algorithm.

Definition 14 Let C,C′ be two circuits. A sequence of m polynomials ∆0, . . . ,∆m

over the variables of C, C′ is called a sequence of slice polynomials if

−∆i + 2∆i+1 + (si − s′i) ∈ I(C ∪ C
′) for all 0 ≤ i < m

The polynomials Ei = −∆i + 2∆i+1 + (si − s′i) are called slice relations for the
sequence ∆0, . . . ,∆m.

Theorem 7 Let C,C′ be two circuits and ∆0, . . . ,∆m be a sequence of slice polyno-

mials. Then C ≡ C′ in the sense of Def. 13 iff 2m∆m −∆0 ∈ I(C ∪ C′).

Proof Using Def. 14 we obtain modulo I(C ∪ C′)

m−1∑
i=0

2i(si − s′i) =
m−1∑
i=0

2i(2∆i+1 −∆i) = 2m∆m −∆0.

ut

Before we can define our incremental equivalence checking algorithm, we need
to find a Gröbner basis for the ideal I(C ∪C′) and similar to Sect. 7 we will define
input cones which are then used to define slices Si.

Lemma 9 Let C and C′ be two circuits. Let G,G′ be Gröbner bases for I(C), I(C′)
w.r.t. ≤,≤′, satisfying the conditions of Thm. 1. Further let ≤∪ be such that ≤,≤′ are

contained in ≤∪. Then G ∪G′ is a Gröbner basis for I(C ∪ C′) w.r.t. ≤∪.

Proof The set G ∪ G′ consists of all gate polynomials of C,C′ and input field
polynomials ai(ai − 1), but no more. Since all variables of C,C′ apart from the
input variables are unequal, G ∩G′ contains only the input field polynomials.

Since the variables a0, . . . , al−1 are the smallest elements in ≤,≤′ they are by
definition also the smallest elements in ≤∪. Furthermore the term orderings for
the gate polynomials of C and C′ are still valid in ≤∪. Hence by the constraints
on ≤∪ the leading term of a polynomial in G ∪G′ is either the output variable of
a circuit gate or the square of an input variable. Thus by Lemma 3 G ∪ G′ is a
Gröbner basis for I(C ∪ C′) w.r.t. ≤∪. ut
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For each pair of output bits si and s′i we determine its input cone

Ii := {gate g | g is in input cone of output si or s′i}.

The slices Si are defined as in Sect. 7 as difference of consecutive cones Ii. For
each slice we define a set of polynomials Gi according to Def. 12. By Cor. 3 such
a set is a Gröbner basis for the ideal generated by the input field polynomials and
the gate polynomials of a slice. Note that the ideal generated by Gi contains all
the field polynomials Fi for the gate variables in Si.

Using Thm. 7 we define our incremental equivalence checking algorithm, cf.
Alg 3. Setting the boundary 2m∆m to 0 we obtain the sequence of slice polynomials
∆0, . . . ,∆m−1 recursively by computing each ∆i as the remainder of 2∆i+1+si−s′i
modulo the sliced Gröbner bases Gi ∪Fi. This ensures that all Ei are contained in
〈Gi ∪ Fi〉 ⊆ I(C ∪C′). After computing ∆0, . . . ,∆m−1 we have to check if ∆0 = 0.

By similar arguments as in the proof of Thm. 6 we show correctness of Alg 3.

Algorithm 3: Equivalence Checking Algorithm

Input : Circuits C,C′ with sliced Gröbner bases Gi

Output: Decide if C and C′ are equivalent (C ≡ C′)
1 ∆m ← 0;
2 for i← m− 1 to 0 do

3 ∆i ← Remainder (2∆i+1 + si − s′i, Gi ∪ Fi)

4 return ∆0 = 0

Theorem 8 Algorithm 3 returns true iff (C ≡ C′).

Proof It holds by definition that Ei = −∆i + 2∆i+1 + (si − s′i) ∈ 〈Gi ∪ Fi〉. By F

we denote the set of all field polynomials of the variables of C,C′. We can derive
that Gi ∪ Fi ⊆ G ∪G′ ∪ F Therefore Ei ∈ 〈G ∪G′ ∪ F 〉 = I(C ∪ C′).

We show inductively that ∆i is reduced w.r.t. Ui :=
⋃

j≥i(Gj ∪ Fj). For the

induction it is required that si and s′i are reduced w.r.t. to Ui+1, which holds due
to the definition of the sliced Gröbner bases. With U0 = G ∪ G′ ∪ F we get ∆0 is
reduced w.r.t. G∪G′∪F thus ∆0 = 2m∆m−∆0 ∈ J(C∪C′) iff ∆0 = 0, concluding
the proof using Thm. 7. ut

9 Engineering

In this section we present the outline of our tool AigMulToPoly [28], cf. Alg. 4,
and present a novel approach to define column-wise slices. Our tool AigMul-

ToPoly, which is implemented in C, takes a circuit given as an AIG in AIGER
format [7] as input and returns a file which can be passed on to the computer
algebra systems Mathematica [34] and Singular [17].

In AigMulToPoly we define the cones-of-influence, which are used to define
the column-wise slices. In certain cases we have to optimize the slices by moving
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Algorithm 4: Outline of our tool AigMulToPoly

Input : Circuit in AIG format
Output: File f for computer algebra system

1 for i← 0 to 2n− 1 do

2 Si ← Define-Cones-of-Influence (i);
3 Merge (Si);
4 Promote (Si);
5 Levelize (Si);
6 Apply-Rewriting (Si);
7 Identify-Vanishing Constraints (Si);

8 f ← Print to file;

nodes from one slice to another slice, which we discuss further down. After slic-
ing an ordering is defined for the nodes inside a slice, the rewriting methods are
applied and as a last step everything including the computation instructions of
our incremental column-wise verification algorithm in the syntax of the computer
algebra system is printed to a file. In the computer algebra system the actual com-
putation (repeated multivariate division) of the incremental checking algorithm is
executed.

We generally define the column-wise slices based on the input cones, cf. Sect. 7.
But this is not always precise enough for dirty multipliers. It frequently happens,
that AIG-nodes which are not directly used to compute the output si of a slice are
allocated to later slices. This happens for example for carry outputs of full- and
half-adders when they do not share their nodes with the sum output.

Example 10 In Fig. 2 the dashed lines depict an optimal column-wise slicing. If we
would define the slices only based on input cones, then the AND-gate with output
c1 would belong to S2. Similar for the gates with outputs c2, g2, g1, c3, thus all the
full- and half-adders would be cut into two pieces.

We want to have these nodes in the same slice as the nodes computing the sum
output of an adder. Otherwise we cannot apply Adder-Rewriting. We informally
define those nodes in a slice Si which are used as inputs of nodes in a slice Sj with
j > i as carries of a slice Si. The size of the carry polynomial Ci can be reduced
by decreasing the number of carries of the corresponding slice Si. If the nodes
are not moved, larger carry polynomials Ci are generated and hence we get larger
intermediate reduction results than necessary. Therefore we eagerly move nodes
between slices in a kind of peephole optimization, backward (Merge) as well as
forward (Promote).

Merge Assume we find a node g in the AIG which belongs to a slice Si and
both children q and r belong to smaller slices Sj and Sk. Let l = max(j, k).
If the children q and r do not have any other parent than g in a bigger slice
than Sl, we move the node g back to slice Sl. This approach is depicted on
the left side of Fig. 6 for j = k = i− 1. Thus after merging g, the nodes q, r
are less likely to be carry variables any more, especially when j = k. We
apply merging repeatedly until completion and Sl and Si are updated after
each application. Merging nodes usually ensures that the complete logic of
a full- or half-adder is contained within one slice.
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Fig. 6: Moving nodes between slices by Merge (left side) and Promote (right side).

Example 11 In the circuit of Fig. 2 gate c1 is merged to slice S1. Gates g1, g2, c2
are repeatedly merged to S2 and gate c3 is merged from S4 to S3. Hence every
full- or half-adder logic is contained within one slice.

Promote In some multiplier architectures it happens the inputs of a node
g are contained in the same slice and all three nodes are carries. In this case
we decrease the number of carries by promoting g to the next bigger slice.
More precisely we search for nodes g in a slice Si−1 which have exactly one
parent contained in a larger slice Sj with j ≥ i − 1. If g would also be an
input of a node in Si−1, we cannot move g to slice Si without violating the
topological order. The inputs of g also have to be contained in Si−1 and
need to have at least one parent in a bigger slice Sj with j > i−1, i.e., they
are carries. Then we promote g to slice Si and thus decrease the number of
carries. Promoting is shown on the right side of Fig. 6 for j = i.

A node g which is merged can not be promoted back in the next round, because
merging and promoting have different requirements for the input nodes of g. This
prevents an endless alternate application of the above rules.

We can overcome the necessity of merging gates by defining slices based on
the output cones of the partial products, i.e., gates which depend on a partial
product. This approach works only if the partial products are generated by a
simple AND-gate. If for example Booth encoding of partial products is applied we
cannot identify all partial products in the AIG and thus cannot apply the approach
of defining slices based on the output cones.

Oi := {gate g | g is in output cone of a partial product akbl with k + l = i}

We derive slices Si as the difference of consecutive cones Oi:

Sn−2 := On−2 Si := Oi \
n−2⋃

j=i+1

Sj

The disadvantage of this approach is that the slice Sn−2 actually contains two
output bits, namely sn−2 and sn−1. In an AIG the output bit is usually introduced
by a relation of the form s = gk, i.e., renaming of a gate variable gk. To solve the
issue we simply define a slice Sn−1 which contains exactly the relation sn−1 = gk
for some gk. This constraint is removed from Sn−2.

It can be seen in Fig. 6 that slicing based on the output cones makes the
concept of merging superfluous. The node g in slice Si has inputs q and r, which
belong to smaller slices Sj and Sk. Hence g depends on the partial products of q
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and r. Thus g is in the same output cone than its children and it will be allocated
to Sl, with l = max(j, k). So it cannot belong to a different slice.

In contrast to merging, promoting a node is still necessary, because as it can
be seen in the right side of Fig. 6, nodes g, q, r all depend on the same partial
products, hence they will all be allocated to Si−1, which makes promoting of g
to Si still necessary. Since promoting is necessary in both approaches and slicing
based on the input cones also works for encodings, such as Booth encoding, we
will stick to the slicing based on input cones.

After merging and promoting, the allocation of nodes to a slice is fixed. The
slices are totally ordered starting from S2n−1 to S0. We order the nodes in a slice
according to their level seen from the circuit inputs. Ordering the nodes after
merging and slicing ensures that the variables are topologically sorted.

The rewriting techniques of Sect. 4 are applied in the order: Adder-Rewriting,
XOR-Rewriting and Common-Rewriting. Since the structures of full- and half-
adders usually do not change within a certain circuit, we do not have to compute
the Gröbner basis HB , cf. Sect. 5, every time we find a certain full- or half-adder
structure in the corresponding AIG. The polynomials describing the adder will
always have the same form. Thus it suffices that we know the structure of the
polynomials in HB and simply replace the polynomials describing the adder struc-
ture by the polynomials of HB with appropriate variables. The same applies to
structures describing an XOR- or XNOR-gate.

In order to simulate Common-Rewriting, we search in each slice Si for nodes
which are not used in another slice and have exactly one parent. We collect them
in the set Ui. Polynomials of nodes in Si which depend on nodes in Ui are reduced
first by the polynomials of nodes in Ui, thus eliminating the nodes of Ui.

After rewriting Si, we search for Vanishing Constraints in the remaining nodes
of Si. More precisely we search for products which always evaluate to zero, e.g.,
gb in Example 1. We store these constraints in a set Vi and during remainder
computation we also reduce against elements of Vi. Since these constraints are
contained in the ideal I(C), and because of Thm. 2, we can add these polynomials
to the Gröbner basis without violating the Gröbner basis property.

Partial Product Elimination is handled internally. We search for all n2 nodes
which define a partial product in the AIG and check if they are correct. We exclude
the original inputs from the AIG and treat these nodes as new inputs of the AIG.
In the printing process we simply rewrite the specification in terms of these nodes.

The polynomials of each slice together with computation instructions for the
incremental checking algorithm are written to a file which can be passed on to the
computer algebra systems Mathematica or Singular. Whereas Singular treats the
polynomials of the sliced Gröbner bases as a set which is then ordered internally
according to the given variable order, it seems that Mathematica actually treats
the set of polynomials as a list. Therefore it is necessary to print the polynomials in
the correct order. We did not obey this fact in [28], where we actually printed the
polynomials in reverse order. We started by printing the polynomials defining the
partial products and ended by printing the polynomial representation of the output
bit of each slice. By adjusting the printing order of the polynomials such that the
leading terms of the polynomials are ordered according to the given variable order
we were able to improve our computation results from [28].



28 Daniela Kaufmann et al.

HAFAFAHA

HAFAFAFA

HAFAFAFA

s7 s6 s5 s4 s3 s2 s1 s0

p00p01p10p11p20p21p30p31

p02p12p22p32

p03p13p23p33

HAFAFAHA

HAFAFAFA

HAFAFAFA

s7 s6 s5 s4 s3 s2 s1 s0

p00p01p10p02p11p20p12p21p30p22p31

p03p13p23p32

p33

Fig. 7: Multiplier architectures of “btor” (left) and “sp-ar-rc” (right) for input bit-width n = 4.

10 Experiments

In our work we focus on integer multipliers, as the authors of [15,30,31,35], which
take two n-bit vectors as inputs and return a bit-vector of size 2n. In the work
of [35,15] the authors used clean CSA multipliers, crafted from [22]. They further
used multipliers generated by ABC [3] on which synthesis and technology mapping
is applied. These multipliers are extremely hard to verify [35,15].

In our experiments we focus on two different architectures, called “btor” and
“sp-ar-rc”. The “btor” benchmarks are generated from Boolector [25] and can be
considered as clean multipliers. The “sp-ar-rc” multipliers are part of the bigger
AOKI benchmarks [19] and can be considered as dirty multipliers. The AOKI
benchmark set was used extensively in the experiments of [30,31]. The structure
of “btor” and “sp-ar-rc” multipliers is shown in Fig. 7. Both architectures can be
fully decomposed into full- and half-adders, which are then accumulated. In “btor”
these full- and half-adders are accumulated in a grid-like structure, whereas in “sp-
ar-rc” full- and half-adders are accumulated diagonally.

In addition to “btor” and “sp-ar-rc” multipliers, we will further use more com-
plex multiplier architectures of [35,15] and of the AOKI benchmarks. The archi-
tectures of the different AOKI benchmarks are indicated by the names of the
multipliers. The naming of the multipliers follows the following structure: “partial
product generation - accumulation - last step adder”, e.g., a “sp-ar-rc” multiplier
consists of simple partial product generation, which are accumulated in an array
structure and the adder in the last accumulation step is a ripple-carry adder. In our
experiments we will include “bp-ar-rc”, “sp-ar-cl” and “sp-wt-rc”, where bp defines
booth encoding [26] , cl defines a carry-lookahead adder and wt means accumula-
tion by a Wallace-tree structure, where the number of partial products is reduced
as soon as possible, which minimizes the overall delay of the multiplier [26].

Furthermore we use benchmarks which are synthesized and technology map-
ping is applied. The basis of these benchmarks is an “abc”-multiplier, which is
generated with ABC [3] and has the same clean structure as the “btor” bench-
marks. The different versions of synthesis and technology mapping should be the
same as in [35,15].

In all our experiments we used a standard Ubuntu 16.04 Desktop machine with
Intel i7-2600 3.40GHz CPU and 16 GB of main memory. The (wall-clock) time
limit was set to 1200 seconds and main memory was limited to 14GB. We measure
the time from starting our tool AigMulToPoly until Mathematica resp. Singular
are finished. This includes the time our tool AigMulToPoly needs to generate the
files for the computer algebra system, which in the worst case is around 3 seconds
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mult n
Mathematica Singular

+inc -inc +col -inc +row +inc -inc +col -inc +row
btor 16 2 3 4 1 1 2
btor 32 14 56 106 10 42 42
btor 64 131 MO MO MO MO MO
btor 128 TO TO TO EE EE EE

sp-ar-rc 16 4 9 11 1 TO TO
sp-ar-rc 32 30 326 425 28 TO TO
sp-ar-rc 64 300 MO MO MO MO MO
sp-ar-rc 128 TO TO TO EE EE EE

Table 1: Our column-wise incremental approach (+inc +col) vs. a non-incremental approach
using column-wise (-inc +col) and row-wise order (-inc +row) without Adder-Rewriting.

mult n
Mathematica Singular

+inc -xor -com -vc +inc -xor -com -vc
btor 16 2 5 2 3 1 1 1 1
btor 32 14 31 4 15 10 28 5 12
btor 64 131 292 22 128 MO MO MO MO
btor 128 TO TO 186 TO EE EE EE EE

sp-ar-rc 16 4 17 TO 4 1 6 TO 1
sp-ar-rc 32 30 171 TO 31 28 242 TO 28
sp-ar-rc 64 300 TO TO 303 MO EE MO MO
sp-ar-rc 128 TO TO TO TO EE EE EE EE

Table 2: Effect of turning off optimizations XOR-Rewriting (-xor), Common-Rewriting (-com)
and Vanishing Constraints (-vc) keeping Adder-Rewriting disabled.

for 128 bit multipliers. The results also include the time to launch Mathematica
resp. Singular. We mark unfinished experiments by TO (reached the time limit),
MO (reached the memory limit) or by an error state EE (reached the maximum
number of ring variables in Singular). Singular has a limit of 32767 on the number
of ring variables and multipliers of larger bit-width easily exceed this limitation.
We also mark some unfinished experiments by TO*, in this case the time limit
was set to 36000 seconds (10 hours). Experimental data, benchmarks and source
code is available at http://fmv.jku.at/fmsd18.

In Table 1 we compare our incremental column-wise verification approach
of Alg. 2 to a non-incremental verification approach, where the complete word-
level specification (Def. 5) is reduced. For the non-incremental approach we use
a column-wise as well as row-wise term ordering. In Table 1 all optimizations
are enabled (XOR-Rewriting, Common-Rewriting, Vanishing Constraints, Merge,
Promote), but Adder-Rewriting is disabled. The results show that our incremen-
tal verification approach is faster and uses less memory than the non-incremental
approaches. In the experiments of [28] Mathematica needed a lot more time than
Singular, but as discussed at the end of Sect. 9 we could improve the running time
of Mathematica by adjusting the printing order. Hence in the experiments pre-
sented in this work the computation time of Mathematica and Singular is nearly
the same. The big difference between the two computer algebra systems is that
Singular needs a lot of memory, verification of 64-bit multipliers needs more than
14 GB. As expected we get an error state for the 128-bit multipliers.

By default the adapted optimizations XOR-Rewriting, Common-Rewriting and
adding Vanishing Constraints of [30] are enabled in our incremental column-wise

http://fmv.jku.at/fmsd18
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mult n
Mathematica Singular

+inc -merge -prom +ocone +inc -merge -prom +ocone
btor 16 2 3 2 3 1 1 1 1
btor 32 14 21 15 15 10 10 10 11
btor 64 131 233 133 132 MO MO MO MO
btor 128 TO TO TO TO EE EE EE EE

sp-ar-rc 16 4 4 TO 4 1 1 TO 1
sp-ar-rc 32 30 39 TO 31 28 29 MO 28
sp-ar-rc 64 300 430 TO 301 MO MO MO MO
sp-ar-rc 128 TO TO TO TO EE EE EE EE

Table 3: Effect turning off Merge (-merge) and Promote (-prom). Furthermore the effect of
using slicing based on the output cones (+ocone).

checking algorithm. In the experiments shown in Table 2 we show the effects of
turning off exactly one of these optimizations (keeping Adder-Rewriting disabled).
For the “btor” multipliers turning off Common-Rewriting actually speeds up com-
putation time. In the “btor” multipliers only a few gates with only one parent ex-
ist and applying common-rewriting by splitting remainder computation increases
the run-time. In “sp-ar-rc” multipliers turning off Common-Rewriting increases
computation-time drastically, because structures containing nodes with only one
parent occur much more frequently. Turning off XOR-Rewriting is a downgrade
for both clean and dirty multipliers. Because of the additional number of gates we
already reach an error state for a 64-bit multiplier in Singular. In [28] turning off
Vanishing Constraints had a very bad effect for clean multipliers in Mathematica.
By printing the polynomials in a different order we could overcome this issue. Now
turning off Vanishing Constraints does not influence the behavior of neither Math-
ematica nor Singular for clean as well as dirty multipliers. Hence the question can
be asked if adding Vanishing Constraints in the current form is really necessary.
Summarized it can be said that the optimizations have both positive and negative
effects, depending on the structure of the multiplier.

In the experiments shown in Table 3 we investigate the effects of turning off
the engineering methods Merge and Promote. The computation time of disabling
Merge can considered to be the same. The difference can be seen in the size of Ci

in the log-files, e.g., in sp-ar-rc-8 the maximum number of monomials in any Ci is
38, whereas in the approach with Merge enabled the maximum number is 8. Fur-
thermore all Ci are linear. Turning off Promote does not affect “btor”-multipliers
but really slows down computation time of “sp-ar-rc” multipliers. Furthermore we
compare our incremental slicing based on the input cones to the slicing method
which is based on the output cones. Both slicing approaches lead to identical out-
put files for the computer algebra systems, hence we have the same computation
time in both approaches.

In Table 4 we apply Adder-Rewriting on top of our incremental verification
approach. In the first step we simply add the full- and half-adder specifications
(+as) to the Gröbner basis, without eliminating any internal variable. Comparing
the computation time, it seems that computer algebra systems cannot use this
additional redundant information, similar to Vanishing Constraints in Table 2.
Applying Adder-Rewriting by eliminating internal variables in the sliced Gröbner
bases has a tremendous effect on the computation time. Now also 128-bit multi-
pliers can be verified within roughly 100 seconds, while before verification timed
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mult n
Mathematica Singular

+inc +Adder Rew. +inc +Adder Rew.
+as +ppe -s +as +ppe -s

btor 16 2 2 1 1 0 1 0 1 0 0
btor 32 14 15 2 2 2 10 11 1 1 1
btor 64 131 132 11 6 5 MO MO 14 9 5
btor 128 TO TO 101 47 40 EE EE EE EE EE

sp-ar-rc 16 4 4 1 1 1 1 1 0 0 0
sp-ar-rc 32 30 30 2 2 1 28 28 2 1 1
sp-ar-rc 64 300 295 11 6 5 MO MO 16 10 5
sp-ar-rc 128 TO TO 102 48 41 EE EE EE EE EE

Table 4: Enabling Adder-Rewriting and Partial Product Elimination.

mult n Mathematica Singular
abc-resyn3-no-comp 4 1 0
abc-resyn3-no-comp 8 2 7
abc-resyn3-no-comp 16 TO TO

abc-resyn3-comp 4 1 0
abc-resyn3-comp 8 TO TO

bp-ar-rc 4 TO 287
bp-ar-rc 8 TO TO
sp-ar-cl 4 1 1
sp-ar-cl 8 TO TO

sp-wt-rc 4 1 1
sp-wt-rc 8 2 1
sp-wt-rc 16 TO TO

Table 5: Complex multiplier architectures, including synthesis and technology mapping.

out after 20 minutes. Additionally eliminating the partial products (+ppe) further
speeds-up computation time. We assume that the considered multipliers are cor-
rect and since they can fully be decomposed into full- and half-adders, we never
have to reduce by the sum output of a full- or half-adder separately. It is always
reduced in parallel with the carry output. Elimination of the polynomials where
the leading term is a sum-output of an adder from the Gröbner basis (-s) brings
further improvements, but loses completeness.

In the experiments shown in Table 5 we consider the more complex multiplier
architectures introduced at the beginning of this section. We apply our default
incremental-checking approach without Adder-Rewriting, because usually the reg-
ular full- and half-adder structures are destroyed by synthesis and technology
mappings. Synthesizing and application of complex mappings makes it very hard
to verify a circuit. Even an 8-bit multiplier cannot be verified any more, neither in
Mathematica nor in Singular. This confirms the results of [15,35]. It can further be
seen that more complex architectures cannot be verified with the state-of-the-art
approach, which makes more sophisticated reasoning necessary.

In the experiments of Table 6 we apply the column-wise equivalence checking
algorithm of Sect. 8 and check the equivalence of the “btor” and “sp-ar-rc” multi-
pliers. Despite their architectural similarities neither Lingeling [5] nor ABC [3] are
able to verify their equivalence for n = 16 within 10 hours, whereas it takes only
around a second using our approach based on computer algebra. In this experiment
we only use Mathematica as a computer algebra system, because it supports more
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mult n Lingeling [5] ABC [3] -Adder Rew. +Adder Rew.
btor vs. sp-ar-rc 8 14 12 2 1
btor vs. sp-ar-rc 16 TO* TO* 6 1
btor vs. sp-ar-rc 32 - - 44 3
btor vs. sp-ar-rc 64 - - 443 15
btor vs. sp-ar-rc 128 - - TO 115

Table 6: Incremental column-wise Equivalence checking with and without Adder-Rewriting.

variables. We check the equivalence using our incremental equivalence checking
algorithm with and without Adder-Rewriting. Enabling Adder-Rewriting again
substantially reduces computation time. We do not use Partial Product Elimina-
tion, because in this setting we would have to manually map the AND-gates which
generate the partial products of the two multipliers.

11 Conclusion

This article presents in detail our incremental column-wise verification approach
to formally verify integer multiplier circuits, as introduced in [8,28,29].

We give a precise mathematical formalization of the theory of arithmetic circuit
verification using computer algebra including rigorous soundness and complete-
ness arguments. Our incremental column-wise checking algorithm has tremen-
dously positive effects on computation time. We discuss several optimizations
which rewrite and simplify the Gröbner basis. For these optimizations we intro-
duce the necessary theory and present a technical theorem which allows to rewrite
local parts of the Gröbner basis based on [8]. Furthermore we show how our in-
cremental verification algorithm can be extended to equivalence checking [29]. As
a novel contribution we revise our engineering techniques and present a simple
alternative method to define column-wise slices. We further improve computation
times compared to [28] by changing the printing process of our tool.

As future work, we want to extend our methods to more complex architectures,
i.e., we want to efficiently verify multiplier architectures used in Table 5. We also
want to consider overflow-semantics and negative numbers. Furthermore we want
to investigate floating points and other word-level operators.
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