
Challenges in
Verifying Arithmetic Circuits

Using Computer Algebra
Armin Biere Manuel Kauers Daniela Ritirc

Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
armin.biere@jku.at manuel.kauers@jku.at daniela.ritirc@jku.at

Abstract—Verifying arithmetic circuits is an important prob-
lem which still requires considerable manual effort. For instance
multipliers are considered difficult to verify. The currently
most effective approach for arithmetic circuit verification uses
computer algebra. In this approach the circuit is modeled as a
set of pseudo-boolean polynomials and it is checked if the given
word-level specification is implied by the circuit polynomials. For
this purpose the theory of Gröbner bases is used. In this paper
we give a summary of two recent papers on this work. We reword
the theory and illustrate the results of these papers by examples.
We also present a new technical theorem which allows to rewrite
local parts of the Gröbner basis. Rewriting the Gröbner basis
has tremendous effect on computation time.

I. INTRODUCTION

Even more than 20 years after the famous Pentium FDIV
bug the problem of arithmetic circuit verification, especially
multipliers, is still considered to be hard [13]. Up to now
several techniques have been used for circuit verification. One
approach models the verification problem as a satisfiability
(SAT) problem, where the circuit is translated into a con-
junctive normal form (CNF). In the SAT 2016 competition a
large set of such CNF-encodings was introduced for multiplier
circuits [1]. However the results of the competition show that
even small multipliers produce very hard SAT problems.

Alternative verification techniques use decision dia-
grams [2], [5], more specifically binary decision diagrams
(BDDs) and binary moment diagrams (BMDs). The drawback
of BDDs is their high usage of memory [2]. This issue is
prohibited by BMDs which remain linear in size, but require
explicit structural knowledge of the multiplier [5].

The currently most effective approach for the verification
of gate-level arithmetic circuits uses computer algebra [6],
[11], [12], [13], [14], [15], [16], [18]. In this approach each
circuit gate output is represented by a variable. For each gate
a polynomial is introduced which represents the relation of the
gate output and the inputs of the gate. To ensure that variables
in the circuit are restricted to boolean values, additional so-
called “field polynomials” are introduced.

Furthermore the word-level specification of the multiplier is
modeled as a polynomial. Note, that we use the field Q instead
of Z2 as coefficient domain, because it is unclear how to
model a word-level specification in Z2. If the circuit variables

are ordered according to their reverse topological appearance
in the circuit, i.e., a gate output variable is greater than the
input variables of the gate, then the gate polynomials and
field polynomials form a Gröbner basis. As a consequence, the
question if a gate-level circuit implements a correct multiplier
can be answered by reducing the multiplier specification poly-
nomial by the circuit Gröbner basis. The multiplier is correct
if and only if the reduction returns zero. In [13] we showed
soundness and completeness of this verification approach for
integer multipliers. In this paper we only summarize this
approach but also provide more detailed examples.

Related work [6], [18] uses a similar algebraic approach.
On the circuit so-called function extraction is applied. The
word-level output of the circuit is rewritten to derive a unique
polynomial representation of the gate inputs, which is then
compared to the circuit specification. This rewriting method is
essentially the same as Gröbner basis reduction. The authors
of [11], [12] focus on verification of Galois field multipliers
using Gröbner bases. We focus in our work [13], [14] on
integer multipliers as the authors of [6], [15], [16], [18]. In
this recent work [15], [16] the authors propose a reduction
scheme which rewrites and simplifies the Gröbner basis and
thus has a substantial effort on the computation time. Inspired
by these ideas we presented in [13] an incremental column-
wise verification technique for integer multipliers where a
multiplier can be decomposed into columns as depicted in
Fig. 1. In each column the partial products can be uniquely
identified and we can define a distinct specification for each
slice which relates the partial products, incoming carries, slice
output and outgoing carries. Then we incrementally apply
Gröbner basis reduction to verify the circuit.

We improved the incremental column-wise checking algo-
rithm in [14]. The idea in that work was to simplify the
Gröbner basis by introducing linear adder specifications. We
search for full- and half-adder structures in the gate-level
circuit and eliminate internal gates, with the effect of including
adder specifications in the Gröbner basis. Reducing by these
linear polynomials leads to substantial improvements in terms
of computation time. In this paper we present a new theorem
which allows to rewrite local parts of the Gröbner basis,
and thus provides a formal proof for the correctness of such
rewriting techniques.



HAFAHA

16s4 8s3 4s2 2s1 1s0++++

a0b0a1b0a0b1a1b1 a2b0a2b1

(4a2 + 2a1 + 1a0) ∗ (2b1 + 1b0)

Fig. 1. Column-wise slicing for a 3×2-bit multiplier.

II. ALGEBRA

In the verification approach using computer algebra the
circuit and the word-level specification are modeled as mul-
tivariate polynomials. For each circuit gate a pseudo-boolean
polynomial relating the gate output to its inputs is defined.
To gain correctness it is checked if the circuit specification is
implied by the gate polynomials [11], [12], [13], [14], [15],
[16]. In this section we summarize the theory behind this
approach following [3], [4], [7], [13], [14]:

• The ring Q[X] = Q[x1, . . . , xn] contains all polynomials
p in variables X = {x1, . . . , xn} with coefficients in Q.

• A term is a polynomial xu1
1 · · ·xun

n over the ring variables
X with non-negative exponents ui ∈ N. By [X] we
denote the set of all terms in Q[X].

• A monomial axu1
1 · · ·xun

n is a constant multiple of a term
with a coefficient a ∈ Q \ {0}.

• A polynomial is a finite sum of monomials.
• The set of terms is sorted according to an order ≤

compatible under multiplication such that for all terms
τ, σ1, σ2 it holds that 1 ≤ τ and σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2.

• An order ≤ is called a lexicographic term order if for
all terms σ1 = xu1

1 · · ·xun
n , σ2 = xv11 · · ·xvnn it holds that

σ1 < σ2 if and only if there exists an index i such that
uj = vj for all indices j < i, and ui < vi.

• The largest monomial of a polynomial p ∈ Q[X] \ {0}
(w.r.t. ≤) is called leading monomial lm(p). The corre-
sponding term is the leading term lt(p). The coefficient
of this monomial is called leading coefficient lc(p). We
define tl(p) = p− lm(p) as the tail of p.

• A remainder of a polynomial f ∈ Q[X] with respect
to a set P = {p1, . . . , pm} ⊆ Q[X] is a polynomial
r ∈ Q[X] such that no term in r is a multiple of some
lt(pi) and there exist polynomials q1, . . . , qm ∈ Q[X]
with f = q1p1 + . . .+ qmpm + r.

• A set of polynomials I ⊆ Q[X] is called an ideal if for
all f, g, h ∈ Q[X] (i) 0 ∈ I, (ii) if f, g ∈ I , also their
sum f + g ∈ I, (iii) if f ∈ I, h ∈ Q[X], then hf ∈ I.

• If I ⊆ Q[X] and J ⊆ Q[X] are ideals, then their sum is
the set I + J = {f + g | f ∈ I, g ∈ J}, which is also an
ideal in Q[X].

• A basis of an ideal I ⊆ Q[X] is a non-empty set P =
{p1, . . . , pm} ⊆ Q[X] such that I = {q1p1+· · ·+qmpm |
q1, . . . , qm ∈ Q[X]}. We say I is generated by P and
denote this by I = 〈p1, . . . , pm〉 = 〈P 〉.

• A Gröbner basis G = {g1, . . . , gm} of an ideal
I ⊆ Q[X] is a basis (w.r.t. ≤) with the property
〈lt(g1), . . . , lt(gm)〉 = 〈lt(I)〉.

Lemma 1. Every non-empty ideal I ⊆ Q[X] has a Gröbner
basis w.r.t. a fixed term order.

Proof: Cor. 6 in Chap. 2 §5 of [7].

Lemma 2. Let G ⊆ Q[X]\{0} be a basis of an ideal I = 〈G〉.
We define S-polynomials as

spol(p, q) := lcm(lt(p), lt(q))

(
p

lm(p)
− q

lm(q)

)
for all p, q ∈ Q[X]\{0}, with lcm the least common multiple.
Then G is a Gröbner basis of the ideal I if and only if the
remainder of the division of spol(p, q) by G is zero for all
pairs (p, q) ∈ G×G.

Proof: Thm. 6 in Chap. 2 §6 of [7].

Lemma 3. (Product criterion) If p, q ∈ Q[X] \ {0} are such
that lcm(lt(p), lt(q)) = lt(p) lt(q) then spol(p, q) reduces to
zero mod {p, q}.

Proof: Prop. 4 in Chap. 2 §9 of [7].
To answer the question if a circuit fulfills its specification

we need to check if the specification polynomial is an element
of the ideal generated by the circuit polynomials. This problem
is called ideal membership problem: Given a polynomial
f ∈ Q[X] and an ideal I = 〈p1, . . . , pm〉 = 〈P 〉 ⊆ Q[X],
determine if f ∈ I . In general, this question is not easy to
answer, but if we have a Gröbner basis for the ideal I , mem-
bership can be decided via multivariate polynomial division.

Lemma 4. If G = {g1, . . . , gm} is a Gröbner basis, then every
f ∈ Q[X] has a unique remainder with respect to G.

Proof: Prop. 1 in Chap. 2 §6 of [7].
Given f and G, we can compute the unique remainder of

f with respect to G by repeatedly subtracting from f suitable
multiples of elements of G such as to eliminate all the terms
that are not allowed to appear in a remainder. This process
will terminate after finitely many steps.

Lemma 5. Let G = {g1, . . . , gm} ⊆ Q[X] be a Gröbner
basis, and let f ∈ Q[X]. Then f ∈ 〈G〉 iff the remainder of
f with respect to G is zero.

Proof: Cor. 2 in Chap. 2 §6 of [7].
The theory presented so far covers the basic approach of

verifying circuits using computer algebra. In [14] we showed
a method where we rewrite the Gröbner basis by variable
elimination. To this end we need further results of Gröbner
bases theory [7].

Lemma 6. Let I = 〈f1, . . . , fr〉 and J = 〈g1, . . . , gs〉 be two
ideals in Q[X]. Then I + J = 〈f1, . . . , fr, g1, . . . , gs〉 and
furthermore 〈f1, . . . , fr〉 = 〈f1〉+ . . .+ 〈fr〉.

Proof: Prop. 2 and Cor. 3 in Chap. 4 §3 of [7].



In [14] we split the overall ideal of the circuit into two
smaller ideals where one ideal represents a full- or half-adder
and the other ideal represents the remaining circuit. In the ideal
describing the full- or half-adder we want to eliminate internal
adder variables. For this purpose we use the elimination theory
of Gröbner bases [7].

In the simple case where all polynomials are linear, we can
perform elimination by Gaussian elimination.

Example 1 (Gaussian elimination). Consider the following
system of linear equations in Q[x, y, z]:

3x+ 2y + 3z − 7 = 0

x+ y + 2z − 3 = 0

x+ y + z − 2 = 0

If V is the vector space consisting of all Q-linear combinations
of the polynomials on the left hand side, then every solution
(x, y, z) ∈ Q3 of the system is also a root of all polynomials
in V . In a sense, V contains all the linear polynomials whose
zeroness follows from the zeroness of the generators. In
order to find elements of V that do not contain x, we can
triangularize the system using Gaussian elimination. This may
lead to the equivalent system:

x+ 3y + 2z − 3 = 0

y + 3z + 2 = 0

z + 1 = 0

The polynomials on the left hand sides are obtained as
linear combinations of the polynomials in the original system,
therefore in particular they belong to V . More is true: the
elements of V which do not contain x are precisely the linear
combinations of the x-free polynomials in the triangularized
system: y + 3z + 2 and z + 1.

Using Gröbner bases, the reasoning in the example above
extends to systems of nonlinear equations.

Definition 1. [7] Write X = Y
·
∪ Z. A term order < on [X]

is called an elimination order for Z if for all terms σ, τ where
σ contains a variable from Z, but τ does not, we have τ < σ.
We denote this property of the elimination order by Y < Z.

For example, if Z = {x1, . . . , xi} and Y = {xi+1, . . . , xn},
then the lexicographic term order is an elimination order.

Definition 2. [7] Given an ideal I ⊂ Q[Y,Z] the elimination
ideal J is an ideal of Q[Y ] defined by

J = I ∩Q[Y ].

Theorem 1. [7] Let I ⊂ Q[Y,Z] be an ideal and let G
be a Gröbner basis of I with respect to an elimination order
Y < Z. Then the set

H = G ∩Q[Y ]

is a Gröbner basis of the elimination ideal J = I ∩Q[Y ].

III. CIRCUIT VERIFICATION

We show how the theory of Section II is applied to verifi-
cation of multiplier circuits based on an example. We present
how the Gröbner basis is derived and how reduction works.

Figure 2 depicts the multiplier of Fig. 1 which takes a
bitvector A of size 3 and a bitvector B of size 2 as input
and computes the product S = A ∗ B. On the left side of
the figure the circuit representation is shown. The column
in the middle shows the gate representation of the circuit
and the right column shows for each gate the corresponding
polynomial representation. The polynomials in the ring Q[X]
are chosen in such a way that the roots of the polynomials are
the solutions of the corresponding gate constraints and vice
versa. Since the polynomials are elements of the ring Q[X]
this does not hold in general. It only holds because we restrict
the input variables to the boolean domain by adding for each
input variable a the “field polynomial” a(1 − a). Restricting
only the inputs to the boolean domain is enough because the
boolean property is propagated by gate polynomials.

Example 2 (Gate polynomials). The possible boolean solu-
tions for the gate constraint s0 = a0 ∧ b0 represented as
(s0, a0, b0) are (1, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0) which are
all solutions of the polynomial −s0 + a0b0 = 0, when a0, b0
are restricted to the boolean domain.

From now on we denote by G the set of all gate polynomials
and field polynomials for the circuit depicted in Fig. 2. The
set G is represented by the right column in Fig. 2. The circuit
is a correct multiplier if and only if

(16s4+8s3+4s2+2s1+s0)−(4a2+2a1+a0)(2b1+b0) ∈ 〈G〉.

To check this efficiently we need to find a Gröbner basis
for the ideal 〈G〉. Then we can reduce the specification by the
Gröbner basis using multivariate division with remainder.

Consequently we fix a lexicographic ordering on the vari-
ables. We choose a reverse topological ordering of the gate
variables, meaning that the output of a gate is always greater
than the inputs of the gate.

The polynomials in Fig. 2 follow such an ordering <G,
actually even a column-wise ordering as used in [13]:

b0 < b1 < a0 < a1 < a2 < p00 < s0 < p01 < p10 < s1 < c1 <

p11 < p20 < g0 < g1 < g2 < s2 < c2 < p21 < s3 < c3 < s4

For a reverse topological term ordering the leading term
of gate polynomials will always be the gate output itself. The
leading term of a field polynomial will always be the square of
an input variable. Thus all leading terms are coprime and we
can apply the product criterion to all possible pairs, meaning
that G is a Gröbner basis. To solve the ideal membership prob-
lem we compute a remainder of the specification polynomial
with respect to the Gröbner basis G.

Because the leading terms of G contain only one variable,
computing a remainder with respect to G has the same effect
as substituting each leading term with the corresponding tail
until no further substitution is possible.



a0b0a0b1a1b0a1b1a2b0a2b1

p00p01p10p11p20p21

c1g1

g2

g0

c2

c3

s0s1s2s3s4

G0G1G2G3G4

s4 = c3 −s4 + c3,
c3 = p21 ∧ c2 −c3 + p21c2,
s3 = p21 ⊕ c2 −s3 + p21 + c2 − 2p21c2,
p21 = a2 ∧ b1 −p21 + a2b1,
c2 = g2 ∨ g1 −c2 + g2 + g1 − g2g1,
s2 = g0 ⊕ c1 −s2 + g0 + c1 − 2g0c1,
g2 = g0 ∧ c1 −g2 + g0c1,
g1 = p20 ∧ p11 −g1 + p20p11,
g0 = p20 ⊕ p11 −g0 + p20 + p11 − 2p20p11,
p20 = a2 ∧ b0 −p20 + a2b0,
p11 = a1 ∧ b1 −p11 + a1b1,
c1 = p10 ∧ p01 −c1 + p10p01,
s1 = p10 ⊕ p01 −s1 + p10 + p01 − 2p10p01,
p10 = a1 ∧ b0 −p10 + a1b0,
p01 = a0 ∧ b1 −p01 + a0b1,
s0 = p00 −s0 + p00,
p00 = a0 ∧ b0 −p00 + a0b0,

a2, a1, a0 ∈ B a2(1− a2), a1(1− a1), a0(1− a0),
b1, b0 ∈ B b1(1− b1), b0(1− b0)

Fig. 2. A gate-level 3x2 multiplier circuit, gate constraints, and polynomials. Dashed lines separate column-wise slices. Colored gates represent a full adder.

Example 3 (Reduction). The first two Gröbner basis reduction
steps according to the lexicographic term order <G for the
multiplier circuit of Fig. 2 are computed as follows:

(16s4 + 8s3 + 4s2 + 2s1 + s0)−

(4a2 + 2a1 + a0)(2b1 + b0)
−s4+c3−−−−−→

(16c3 + 8s3 + 4s2 + 2s1 + s0)−

(4a2 + 2a1 + a0)(2b1 + b0)
−c3+p21c2−−−−−−−→

(16p21c2 + 8s3 + 4s2 + 2s1 + s0)−
(4a2 + 2a1 + a0)(2b1 + b0)

In [13], [14] we solved the ideal membership problem
with the computer algebra systems Mathematica [17] and
Singular [8]. The code for verifying the circuit of Fig. 2 in
the open-source computer algebra system Singular can be seen
in Fig. 3. The order in which the variables are listed in the
definition of the ring R = Q[X] determines the lexicographic
term ordering of the variables. According to the column-
wise verification procedure of [13] we decompose the circuit
Gröbner basis G into sliced Gröbner bases Gi. The separation
of the slices is indicated by the dashed lines in Fig. 2. For each
sliced Gröbner basis the corresponding polynomials are listed
in the Singular encoding. Furthermore the field polynomials
are introduced in the set F . It can easily be seen that these
sliced Gröbner bases are again Gröbner bases, because the
product criterion holds for each slice.

In the non-incremental approach we reduce the whole word-
level specification by the overall Gröbner basis G. For the
incremental approach we further need to define the sum of
partial products for each slice. Then we incrementally reduce
the column-wise specification of each slice. In both approaches
Singular returns zero, i.e., the specification is contained in the
ideal and thus the circuit implements a correct multiplier.

More about the theory of the general approach of circuit
verification using computer algebra can be found in [13], [14],
[15], [16] for integer multipliers and in [11], [12] for Galois
field multipliers. For integer multipliers as the one in Fig. 2
soundness and completeness proofs of this algorithm are given
in [13], as well as proofs for the correctness of the discussed
column-wise incremental approach.

IV. REWRITING THE GRÖBNER BASIS BY VARIABLE
ELIMINATION

Simply reducing the specification by gate polynomials and
field polynomials, as shown in Fig. 3 generally leads to a blow-
up in the intermediate reduction results [9], [10], [13]. Opti-
mizations which improve the reduction process are necessary
to speed up computation. Since the (non-reduced) Gröbner
basis of an ideal is not unique, we might wonder whether
Gröbner bases are better than others. A natural choice among
all the Gröbner bases is the unique reduced Gröbner basis [7],
but it was shown empirically in [14] that the computation of
this basis for multipliers is not feasible in practice.

In recent work [15] an optimization called logic reduc-
tion rewriting was introduced which partially reduces the
Gröbner basis. The goal is to cancel vanishing monomials,
i.e., monomials which always evaluate to zero. We adapted
this optimization in [13]. We further simplified the circuit
Gröbner basis G by splitting it into sliced Gröbner bases Gi.
Additionally we also divide the specification polynomial into
carry recurrence relations, allowing that partial products are
eliminated directly in each slice.

In [14] we further improved the incremental column-wise
checking approach by so-called Adder Rewriting. In nearly
every multiplier circuit full- and half-adders are found. The
idea of Adder Rewriting is to extract these adder structures
and then eliminate the internal gate polynomials of these



ring R = 0, (
s4,
c3, s3, p21,
c2, s2, g2, g1, g0, p20, p11,
c1, s1, p01, p10,
s0, p00,
b1, b0, a2, a1, a0

), lp;

ideal G0 =
-s0 + p00,
-p00 + a0 * b0;

ideal G1 =
-p10 + b0 * a1,
-p01 + a0 * b1,
-s1 + p10 + p01 - 2 * p10 * p01,
-c1 + p10 * p01;

ideal G2 =
-p11 + a1 * b1,
-p20 + a2 * b0,
-g0 + p20 + p11 - 2 * p20 * p11,
-g1 + p20 * p11,
-g2 + c1 * g0,
-s2 + c1 + g0 - 2 * c1 * g0,
-c2 + g1 + g2 - g1 * g2;

ideal G3 =
-p21 + a2 * b1,
-s3 + p21 + c2 - 2 * p21 * c2,
-c3 + p21 * c2;

ideal G4 =
-s4 + c3;

ideal F = -b0 + b0ˆ2, -b1 + b1ˆ2,
-a0 + a0ˆ2, -a1 + a1ˆ2, -a2 + a2ˆ2;

/*non incremental checking*/
poly spec =
(a0 + 2*a1 + 4*a2) * (b0 + 2*b1) -
(s0 + 2*s1 + 4*s2 + 8*s3 + 16*s4);

ideal G = F + G0 + G1 + G2 + G3 + G4;
reduce (spec, G);

/*incremental column-wise checking*/
poly P0 = a0 * b0;
poly P1 = a1 * b0 + a0 * b1;
poly P2 = a2 * b0 + a1 * b1;
poly P3 = a2 * b1;
poly P4 = 0;

reduce(s0 + 2 *
reduce(s1 + 2 *
reduce(s2 + 2 *
reduce(s3 + 2 *
reduce(s4 + 2 * 0 - P4, G4)

-P3, G3)
-P2, G2)

-P1, G1)
-P0, G0 + F);
quit;

Fig. 3. Singular code for verification of the circuit of Fig. 2.

adders. Thus fewer reduction steps are necessary. When G
is a Gröbner basis and f is any element of the ideal 〈G〉, then
G ∪ {f} is also a Gröbner basis for 〈G〉. We are therefore
allowed to add the specification polynomials 2c+s−a−b−i for
a full adder and 2c+s−a−b for a half adder to our basis. These
polynomials are linear. Reducing by a linear polynomial helps
to speed up computation and reduces the risk of a blow-up.
While adding ideal polynomials to a Gröbner basis is always
allowed, removing some polynomials is dangerous. We shall
explain how to do this based on the example of Fig. 2.

The slice G2 of Fig. 2 contains a full-adder, depicted by
the colored gates. This full adder consists of the carry gate c2,
the sum gate s2 and inputs p20, p11, c1. The gates g2, g1, g0
are only used internally in the full-adder and thus we want
to eliminate them. So in this setting the elimination variables
are Z = {g2, g1, g0}. Furthermore we want to include the
specification 2c2 + s2 − p20 − p11 − c1 in G respectively G2.

The requirements of Thm. 1 demand that the Gröbner basis
needs to be calculated w.r.t. an elimination ordering where
terms containing Z are the largest elements. This is not the
case for our Gröbner basis derived from the circuit using
a topological ordering <G. Thus we would really need to
calculate a Gröbner basis for the circuit ideal 〈G〉 for a
different ordering Y < Z, leading to the same computation
issues as for computing the unique reduced Gröbner basis [7].

In [14] we overcome this issue by splitting the overall
Gröbner basis G of the circuit into two smaller Gröbner bases
GA and GB . Since all leading terms of G are coprime, also the
leading terms of GA and GB have to be coprime and thus by
the product criterion GA and GB are Gröbner bases. Also the
circuit ideal 〈G〉 = 〈GA〉+ 〈GB〉 is split. The Gröbner basis
GB contains all polynomials in which variables of Z occur.
The Gröbner basis GA contains the remaining polynomials
GA = G \GB without any variables in Z.

In our example of Fig. 2 we derive for GA and GB :

GA = G0 ∪G1 ∪ {−p11 + a1b1,−p20 + a2b0} ∪
G3 ∪G4 ∪ F

GB = {−g0 + p20 + p11 − 2p20p11,
−g1 + p20p11,
−g2 + c1g0,
−s2 + c1 + g0 − 2c1g0,
−c2 + g1 + g2 − g1g2}

We apply variable elimination only in GB , because GA does
not contain any element of Z. We calculate a new Gröbner
basis HB w.r.t. an elimination order <H satisfying Y < Z.
The elimination order <H is chosen such that <G and <H

restricted on Y are equal. Thus the order of terms containing
only variables in Y is the same for GA and HB . From HB

we remove all polynomials containing variables of Z.



In our setting we define <G to be a lexicographic term
ordering. Thus the elimination order <H of Z is also a
lexicographic term ordering, where the variables of Z are
reordered to become the biggest elements. Computing the
Gröbner basis HB w.r.t. <H :

b0 < b1 < a0 < a1 < a2 < p00 < s0 < p01 < p10 < s1 < c1 <

p11 < p20 < s2 < c2 < p21 < s3 < c3 < s4 < g0 < g1 < g2

leads for instance to the following Gröbner basis

HB = {g0 + 2p20p11 − p20 − p11,
g1 − p20p11,
g2 + 2p20p11c1 − p20c1 − p11c1,
s2 − 4p20p11c1 + 2p20p11 + 2p20c1 − p20 +

2p11c1 − p11 − c1,
2c2 + s2 − p20 − p11 − c1}.

The first three colored polynomials contain variables of Z and
are eliminated. We denote the remaining set HY = HB∩Q[Y ].

In [14] we give an intuition why we can replace a part of the
Gröbner basis G of the circuit by another set of polynomials.
We will now show correctness of this approach more formally.
The theorem shows that in order to compute a basis of the
elimination ideal 〈G〉 ∩Q[Y ] it suffices to compute a basis of
the elimination ideal 〈GB〉 ∩Q[Y ].

Theorem 2. Let G ⊆ Q[X] = Q[Y, Z] be a Gröbner basis
with respect to some term order <G. Let GA = G∩Q[Y ] and
GB = G \GA. Let <H be an elimination order for Z which
agrees with <G for all terms that are free of Z, i.e., terms
free of Z are equally ordered in <G and <H . Suppose that
〈GB〉 has a Gröbner basis HB with respect to <H which is
such that every leading term in HB is free of Z or free of Y .
Then (〈GA〉+ 〈GB〉) ∩Q[Y ] = 〈GA〉+ (〈GB〉 ∩Q[Y ]).

Proof: The single steps of the elimination procedure of
this proof are depicted in Fig. 4. We split the Gröbner basis
HB into two disjoint subsets HB = HY ∪ HZ . The set HZ

contains all the polynomials with leading terms in Z and the
set HY = HB \ HZ contains the remaining polynomials of
HB with leading terms in Y .

Note that the polynomials contained in HY cannot contain
any variable of Z, because by definition of the ordering <H

it holds that Y < Z. Furthermore GA does not contain any
variable which is an element of Z. Thus HZ is the only set
containing polynomials which include Z.

Using Lemma 6 we derive

〈GA〉+ 〈GB〉 = 〈GA〉+ 〈HB〉
= 〈GA〉+ 〈HY 〉+ 〈HZ〉
= 〈GA ∪HY 〉+ 〈HZ〉.

Computing a Gröbner basis of an ideal basis does not change
the ideal. Using GB(S, o) to denote an arbitrary Gröbner basis

G

GA GB

HB

HY HZ

H

original basis

split basis

change order to <H

eliminate Z

combine both bases

Fig. 4. Gröbner basis transformation

for the set S w.r.t. the ordering o, we thus get

〈GA ∪HY 〉+ 〈HZ〉 = 〈GB(GA ∪HY , <H)〉+ 〈HZ〉
= 〈GB(GA ∪HY , <H) ∪HZ〉.

It does not matter if we choose the ordering <G or <H to
compute a Gröbner basis of GA ∪HY , because GA ∪HY is
a subset of Q[Y ] and we required the orderings <G and <H

to be the same for terms only involving variables from Y .
It further holds that

GB(GB(GA ∪HY , <H) ∪HZ , <H)

= GB(GA ∪HY , <H) ∪HZ ,

since all S-polynomials of pairs of polynomials {p, q} con-
tained in the set GB(GA ∪HY , <H) ∪HZ reduce to zero:

1) p, q ∈ GB(GA ∪ HY , <H): GB(GA ∪ HY , <H) is a
Gröbner basis and thus spol(p, q) reduces to zero.

2) p ∈ GB(GA ∪ HY , <H), q ∈ HZ : HZ contains only
polynomials with leading terms in Z, whereas the lead-
ing terms of polynomials in GA∪HY are elements of Y .
Thus spol(p, q) reduces to zero by the product criterion.

3) p, q ∈ HZ : The set HB = HY ∪HZ is a Gröbner basis.
Thus spol(p, q) reduces to zero w.r.t. HB . Then it also
reduces to zero w.r.t. GA∪HB = GA∪HY ∪HZ . Hence
it also reduces to zero w.r.t. GB(GA ∪HY , <H)∪HZ ,
because every leading term of GA ∪ HY is a multiple
of a leading term in GB(GA ∪HY , <H).

Altogether it follows that GB(GA ∪ HY , <H) ∪ HZ is a
Gröbner basis for the ideal 〈GA〉+ 〈GB〉 = 〈G〉.

By Thm. 1 we derive

(〈GA〉+ 〈GB〉) ∩Q[Y ]

= 〈GB(GA ∪HY , <H) ∪HZ〉 ∩Q[Y ]

= 〈GB(GA ∪HY , <H)〉.

Computing a Gröbner basis does not change the ideal, hence

〈GB(GA ∪HY , <H)〉 = 〈GA ∪HY 〉 = 〈GA〉+ 〈HY 〉.

Since HY = HB \HZ , i.e. HY does not contain any variable
of Z, we conclude:

〈HY 〉 = 〈HB〉 ∩Q[Y ] = 〈GB〉 ∩Q[Y ]



Composing the results we finally obtain

(〈GA〉+ 〈GB〉) ∩Q[Y ] = 〈GA〉+ (〈GB〉 ∩Q[Y ]).

In the proof we used 〈GA ∪HY 〉 = 〈GB(GA ∪HY , <H)〉.
In fact we do not compute a Gröbner basis, because it would
be practically infeasible. By choosing <H as in Thm. 2, the
set GA ∪HY is a Gröbner basis.

Theorem 3. Let G,GA, GB , HB , HY , HZ , <H , <G be as in
Thm. 2 resp. the proof of Thm. 2. Then H = GA ∪HY is a
Gröbner basis w.r.t. the ordering <H .

Proof: We need to show that for every term τ ∈ [Y ]
which is a leading term of an element in 〈G〉 it holds that
there is a g ∈ GA ∪HY with lt(g) | τ . Let τ be such a term.

Since G is a Gröbner basis it holds that there exists an
element g ∈ G with lt(g) | τ . Since G = GA ∪ GB it holds
that either g ∈ GA or g ∈ GB :

1) g ∈ GA: Then g ∈ GA ∪HY .
2) g ∈ GB : Because 〈GB〉 = 〈HB〉, there exists an element

h ∈ HB with lt(h) | lt(g) and consequently lt(h) | τ .
Since τ ∈ [Y ] it holds that lt(h) ∈ [Y ]. Thus h ∈ HY

and further h ∈ GA ∪HY .
So in each case g ∈ GA or g ∈ GB we find an element in
GA ∪HY whose leading term divides τ .

Theorem 3 allows us that we simply add the Gröbner basis
HY of the elimination ideal 〈HY 〉 = 〈HB〉 ∩ Q[Y ] to the
Gröbner basis GA and get again a Gröbner basis. This means
that in our elimination process, we only have to really compute
one “small” Gröbner basis locally, namely HB .

Example 4 (Reduced slice G2). All these simplifications lead
to the following representation of G2, given in Singular code:

ideal G2 =
-p11 + a1 * b1,
-p20 + a2 * b0,
-s2 + 4*p20 * p11 * c1 - 2*p20 * p11 -

2*p20 * c1 + p20 - 2*p11 * c1 + p11 + c1,
-2*c2 - s2 + p20 + p11 + c1;

In the slices G1 and G3 half-adders occur for which we also
want to use linear adder specifications. Variable elimination
as for full-adders is not necessary, because a half-adder does
not include internal gates. For instance in G3 we simply can
exchange the polynomial f1 := −c3+p21c2 with the half adder
specification f2 := −2∗c3+s3+p21+c2. The polynomial f2
can be derived by a linear combination of polynomials of G3,
hence we are allowed to add it to G3. We can now remove
the basis polynomial f1 and G3 remains a Gröbner basis by
the product criterion.

Example 5 (Reduced slice G3). Polynomial replacing leads to
the following polynomial representation of the slice G3, again
given in Singular code.

ideal G3 =
-p21 + a2 * b1,
-s3 + p21 + c2 - 2*p21 * c2,
-2*c3 + s3 + p21 + c2;

V. CONCLUSION

In this paper we gave a summary on the theory of arithmetic
circuit verification using computer algebra. We summarized
two recent papers on this work and illustrated the results by
examples. We demonstrated the general approach of circuit
verification using computer algebra and extended the examples
by the optimization of Adder Rewriting [14]. This optimization
adds linear adder specifications to the Gröbner basis, speeding
up computation time [14]. A novel contribution of this paper
is a technical theorem which is crucial for Adder Rewriting.
It allows that the Gröbner basis is only locally simplified in
such a way that the result is again a Gröbner basis.

VI. ACKNOWLEDGEMENTS

This paper extends and provides supplementary material
for an invited talk at SYNASC’17 of the first author based
on [13], [14] and was supported by Austrian Science Fund
(FWF), NFN S11408-N23 (RiSE), Y464-N18, SFB F5004.

REFERENCES

[1] A. Biere. Collection of combinational arithmetic miters submitted to the
SAT Competition 2016. In SAT Competition 2016, volume B-2016-1 of
Department of Computer Science Series of Publications B, pages 65–66.
Univ. Helsinki, 2016.

[2] R. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Trans. Computers, 35(8):677–691, 1986.

[3] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des
Restklassenringes nach einem nulldimensionalen Polynomideal. PhD
thesis, University of Innsbruck, 1965.

[4] B. Buchberger and M. Kauers. Gröbner basis. Scholarpedia, 5(10):7763,
2010. http://www.scholarpedia.org/article/Groebner basis.

[5] Y. Chen and R. Bryant. Verification of arithmetic circuits with binary
moment diagrams. In DAC, pages 535–541, 1995.

[6] M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi. Verification
of gate-level arithmetic circuits by function extraction. In DAC, pages
52:1–52:6. ACM, 2015.

[7] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms.
Springer-Verlag New York, 1997.

[8] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann. SINGULAR
4-1-0. http://www.singular.uni-kl.de, 2016.

[9] A. Kandri-Rody and D. Kapur. Computing a Gröbner basis of a
polynomial ideal over a Euclidean domain. Journal of Symbolic
Computation, 6(1):37–57, 1988.

[10] A. Kandri-Rody, D. Kapur, and P. Narendran. An ideal-theoretic ap-
proach to work problems and unification problems over finitely presented
commutative algebras. In RTA, volume 202 of LNCS, pages 345–364.
Springer, 1985.

[11] J. Lv, P. Kalla, and F. Enescu. Efficient Gröbner basis reductions for
formal verification of Galois field arithmetic circuits. IEEE TCAD,
32(9):1409–1420, 2013.

[12] T. Pruss, P. Kalla, and F. Enescu. Equivalence verification of large Galois
field arithmetic circuits using word-level abstraction via Gröbner bases.
In DAC, pages 152:1–152:6. ACM, 2014.

[13] D. Ritirc, A. Biere, and M. Kauers. Column-wise verification of
multipliers using computer algebra. In D. Stewart and G. Weissenbacher,
editors, FMCAD, pages 23–30. IEEE, 2017.

[14] D. Ritirc, A. Biere, and M. Kauers. Improving and extending the
algebraic approach for verifying bit-level multipliers. In DATE, 2018,
in press.

[15] A. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler.
Formal verification of integer multipliers by combining Gröbner basis
with logic reduction. In DATE, pages 1048–1053. IEEE, 2016.

[16] A. Sayed-Ahmed, D. Große, M. Soeken, and R. Drechsler. Equivalence
checking using Gröbner bases. In FMCAD, pages 169–176. IEEE, 2016.

[17] Wolfram Research, Inc. Mathematica, 2016. Version 10.4.
[18] C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski. Formal

verification of arithmetic circuits by function extraction. IEEE TCAD,
35(12):2131–2142, 2016.


