Mathematik und Logik

7. Übungsaufgaben

2006-01-24

1. Zeigen Sie die logische Äquivalenz

$$(A \Longrightarrow B) \iff (\neg A \Longrightarrow \neg B).$$

Für welche Richtung ist die Regel Reduction ad Absurdum notwendig?

- 2. Welche folgenden logischen Formeln der Boolschen Aussagenlogik sind allgemeingültig, unerfüllbar oder nur für bestimmte (welche?) Wahrheitsbelegungen erfüllt?
 - $P \land \neg (Q \lor P)$;
 - $\bullet \ P \vee \neg (Q \vee P);$
 - $\bullet \ P \implies \neg (Q \vee P).$
 - $\bullet \ \neg P \implies \neg (Q \land P).$
- 3. Vereinfachen Sie die folgenden Formeln der Boolschen Algebra:
 - $\bullet \ (A \implies B) \land (A \implies \neg B);$
 - $(a \lor b) \land \neg a;$
 - $\bullet \ (a \implies b) \land \neg b.$
- 4. Zeigen Sie

$$\bigvee_{x \colon X} P[x] \iff \neg \bigwedge_{x \colon X} \neg P[x].$$

Für welche der beiden Richtungen ist die Regel Reductio ad Absurdum notwendig?

5. Bringen Sie $a \wedge (b \vee \neg (a \implies c))$ auf disjunktive Normalform.

6. Die Funktion $f: \mathbb{B}^3 \to \mathbb{B}$ sei durch die folgende Tabelle gegeben:

x	y	z	f(x,y,z)
\perp	T	\perp	T
\perp	\perp	Τ	
\perp	Т	\perp	Т
\perp	Т	Т	
Т	\perp	\perp	T
Т	\perp	Т	
Т	Т	\perp	
Т	\top	Т	Т

Stellen Sie f(x,y,z) mittels logischer Junktoren als symbolischen Ausdruck dar.

7. Auf $\mathbb{B}^2 = \mathbb{B} \times \mathbb{B}$ definieren wir die boolschen Operationen komponentenweise, also z.B.

$$(x_1, x_2) \wedge (y_1, y_2) = (x_1 \wedge y_1, x_2 \wedge y_2)$$

Zeigen Sie, daß damit auf \mathbb{B}^2 ebenfalls eine Boolsche Algebra definiert wird (d.h., es gelten die Assoziativ-, Kommutativ-, Distributiv- und De-Morgan-Gesetze).

8. Für die Menge $X \to \mathbb{B}$ definieren wir die boolschen Operationen punktweise, z.B.

$$(f \land g)(x) = f(x) \land g(x)$$

Entsteht auch hier eine Boolsche Algebra?

9. Bildet die Potenzmenge einer Menge eine Boolsche Algebra?