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Abstract. The proof of Tarski’s Theorem from [BS81, p.33-34] is presented

in a special setting.

1. Notation

Let A be an algebra of type F . For a subset X of A, we define

E(X) := X ∪ {fA(x1, . . . , xn) | n ∈ N0, f ∈ Fn, (x1, . . . , xn) ∈ Xn},
E0(X) := X,

Es(X) := E(Es−1(X)) for s ∈ N,
Sg(X) :=

⋃
{Es(X) ||| s ∈ N0}.

Definition 1.1. Let A be an algebra. B is a basis of A if Sg(B) = A

and for all C ⊂ B, we have Sg(C) ⊂ A.

2. The result

Theorem 2.1. Let n, i, j ∈ N0, and let A be an algebra such that

all operation symbols of A have arity at most n. We assume that

i < j and that A has a basis with i and a basis with j elements.

Then there is k ∈ N0 with i < k < i + n such that A has a basis

with k elements.
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Proof. Let B be a basis with j elements, and let

K := {C | C is a basis with at most i elements}.

We abbreviate Es(B) by Es. We first show that exists s ∈ N0 such

that

(2.1) ∃C ∈ K : C ⊆ Es.

By the assumptions, K is nonempty and contains an element C ′.

Now C ′ ⊆ A =
⋃
{Et | t ∈ N0}. Since C ′ is finite, there must be

t ∈ N0 with C ′ ⊆ Et, and therefore (2.1) holds for s := t. Now we

choose s ∈ N0 minimal such that (2.1) holds. If s = 0, then we have

C ∈ K with C ⊆ E0 = B. Since |C| ≤ i < |B|, this contradicts the

fact that B is a basis. Hence s ≥ 1.

Next, we choose C0 ∈ {C ∈ K | C ⊆ Es} such that

C0 ∩ (Es \ Es−1)

has a minimal number of elements. If C0 ∩ (Es \ Es−1) = ∅, we

have C0 = C0 ∩Es = (C0 ∩ (Es \Es−1))∪ (C0 ∩Es−1) = C0 ∩Es−1.

This implies C0 ⊆ Es−1. Then the existence of C0 contradicts the

minimality of s. Therefore, we can pick an element c0 ∈ C0 ∩ (Es \
Es−1). Since c0 ∈ Es, we have c0 ∈ E(Es−1). Therefore, there exists

a function symbol f of arity m ∈ N0 with m ≤ n and there exist

y1, . . . , ym ∈ Es−1 such that

c0 = fA(y1, . . . , ym).

Let Y := {y1, . . . , ym}, and let

C1 := (C0 \ {c0}) ∪ Y.

Since c0 ∈ Sg(C1) and C0\{c0} ⊆ Sg(C1), we have C0 ⊆ Sg(C1), and

thus Sg(C0) ⊆ Sg(C1). Since C0 is a basis, this implies Sg(C1) = A.

Therefore C1 generates A, and therefore there is a subset C2 of C1
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that is a basis of A. We have |C2| ≤ |C1| ≤ i− 1 + n. We will now

show that C2 is the required basis. In the case that |C2| > i, we are

done. Hence let us assume that |C2| ≤ i. Next, we show

(2.2) C2 ∩ (Es \ Es−1) ⊆ C0 ∩ (Es \ Es−1).

To this end, let x ∈ C2∩(Es\Es−1). Then x ∈ C1 = (C0\{c0})∪Y .

Since x 6∈ Es−1, we have x 6∈ Y , and therefore x ∈ C0 \ {c0}. This

proves (2.2). Furthermore, c0 6∈ C2: if c0 ∈ C2, then c0 ∈ C1, and

thus c0 ∈ Y , and hence c0 ∈ Es−1, contradicting the choice of c0.

Hence c0 is not an element of the left hand side of (2.2). However,

by its choice, it is an element of the right hand side. This proves

that

|C2 ∩ (Es \ Es−1)| < |C0 ∩ (Es \ Es−1)|.
Since C2 is a basis of A and thus C2 ∈ K, this contradicts the choice

of C0. Therefore, the case |C2| ≤ i cannot occur. �
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