TARSKI'S IRREDUNDANT BASIS THEOREM DRAFT

ERHARD AICHINGER

ABSTRACT. The proof of Tarski's Theorem from [BS81, p.33-34] is presented in a special setting.

1. NOTATION

Let **A** be an algebra of type \mathcal{F} . For a subset X of A, we define

$$E(X) := X \cup \{ f^{\mathbf{A}}(x_1, \dots, x_n) \mid n \in \mathbb{N}_0, f \in \mathcal{F}_n, (x_1, \dots, x_n) \in X^n \}, \\ E^0(X) := X, \\ E^s(X) := E(E^{s-1}(X)) \text{ for } s \in \mathbb{N}, \\ Sg(X) := \bigcup \{ E^s(X) \mid s \in \mathbb{N}_0 \}.$$

Definition 1.1. Let **A** be an algebra. *B* is a *basis* of **A** if Sg(B) = A and for all $C \subset B$, we have $Sg(C) \subset A$.

2. The result

Theorem 2.1. Let $n, i, j \in \mathbb{N}_0$, and let **A** be an algebra such that all operation symbols of **A** have arity at most n. We assume that i < j and that **A** has a basis with i and a basis with j elements. Then there is $k \in \mathbb{N}_0$ with i < k < i + n such that **A** has a basis with k elements.

Date: October 16, 2017.

Course material for the course "Universal Algebra", JKU Linz, Winter term 2017.

Proof. Let B be a basis with j elements, and let

 $\mathcal{K} := \{ C \mid C \text{ is a basis with at most } i \text{ elements} \}.$

We abbreviate $E^{s}(B)$ by E^{s} . We first show that exists $s \in \mathbb{N}_{0}$ such that

$$(2.1) \qquad \exists C \in \mathcal{K} : C \subseteq E^s.$$

By the assumptions, \mathcal{K} is nonempty and contains an element C'. Now $C' \subseteq A = \bigcup \{ E^t \mid t \in \mathbb{N}_0 \}$. Since C' is finite, there must be $t \in \mathbb{N}_0$ with $C' \subseteq E^t$, and therefore (2.1) holds for s := t. Now we choose $s \in \mathbb{N}_0$ minimal such that (2.1) holds. If s = 0, then we have $C \in \mathcal{K}$ with $C \subseteq E^0 = B$. Since $|C| \leq i < |B|$, this contradicts the fact that B is a basis. Hence $s \geq 1$.

Next, we choose $C_0 \in \{C \in \mathcal{K} \mid C \subseteq E^s\}$ such that

$$C_0 \cap (E^s \setminus E^{s-1})$$

has a minimal number of elements. If $C_0 \cap (E^s \setminus E^{s-1}) = \emptyset$, we have $C_0 = C_0 \cap E^s = (C_0 \cap (E^s \setminus E^{s-1})) \cup (C_0 \cap E^{s-1}) = C_0 \cap E^{s-1}$. This implies $C_0 \subseteq E^{s-1}$. Then the existence of C_0 contradicts the minimality of s. Therefore, we can pick an element $c_0 \in C_0 \cap (E^s \setminus E^{s-1})$. Since $c_0 \in E^s$, we have $c_0 \in E(E^{s-1})$. Therefore, there exists a function symbol f of arity $m \in \mathbb{N}_0$ with $m \leq n$ and there exist $y_1, \ldots, y_m \in E^{s-1}$ such that

$$c_0 = f^{\mathbf{A}}(y_1, \ldots, y_m).$$

Let $Y := \{y_1, ..., y_m\}$, and let

$$C_1 := (C_0 \setminus \{c_0\}) \cup Y.$$

Since $c_0 \in \text{Sg}(C_1)$ and $C_0 \setminus \{c_0\} \subseteq \text{Sg}(C_1)$, we have $C_0 \subseteq \text{Sg}(C_1)$, and thus $\text{Sg}(C_0) \subseteq \text{Sg}(C_1)$. Since C_0 is a basis, this implies $\text{Sg}(C_1) = A$. Therefore C_1 generates A, and therefore there is a subset C_2 of C_1 that is a basis of **A**. We have $|C_2| \leq |C_1| \leq i - 1 + n$. We will now show that C_2 is the required basis. In the case that $|C_2| > i$, we are done. Hence let us assume that $|C_2| \leq i$. Next, we show

(2.2)
$$C_2 \cap (E^s \setminus E^{s-1}) \subseteq C_0 \cap (E^s \setminus E^{s-1}).$$

To this end, let $x \in C_2 \cap (E^s \setminus E^{s-1})$. Then $x \in C_1 = (C_0 \setminus \{c_0\}) \cup Y$. Since $x \notin E^{s-1}$, we have $x \notin Y$, and therefore $x \in C_0 \setminus \{c_0\}$. This proves (2.2). Furthermore, $c_0 \notin C_2$: if $c_0 \in C_2$, then $c_0 \in C_1$, and thus $c_0 \in Y$, and hence $c_0 \in E^{s-1}$, contradicting the choice of c_0 . Hence c_0 is not an element of the left hand side of (2.2). However, by its choice, it is an element of the right hand side. This proves that

$$|C_2 \cap (E^s \setminus E^{s-1})| < |C_0 \cap (E^s \setminus E^{s-1})|.$$

Since C_2 is a basis of **A** and thus $C_2 \in \mathcal{K}$, this contradicts the choice of C_0 . Therefore, the case $|C_2| \leq i$ cannot occur.

References

[BS81] S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer New York Heidelberg Berlin, 1981.