SOME TOPICS IN EQUATIONAL LOGIC

Abstract. These are additional notes for the course "Universal algebra". The course and this presentation mainly follow [BS81].

1. Motivation

These notes are used in a course on universal algebra that follows [BS81] for explaining the two fundamental theorems by Birkhoff from [Bir35]: the HSPtheorem and the completeness of the equational calculus. The proofs are those from [BS81], but some auxiliary material and explanations from this book have been skipped. The material is complemented with some theorems on quasiidentities from universal algebra [Mal54, BS81, Gor98] and universal algebraic geometry [Plo19].

2. The term algebra

Let \mathcal{F} be an algebraic language and X be a set that is disjoint from \mathcal{F}. The set $T(X)$ of terms over X is a subset of $(\mathcal{F} \cup X)^{*}$, the set of words over the alphabet $\mathcal{F} \cup X$ of positive length. We define $E_{0}:=X$ and

$$
E_{n}:=E_{n-1} \cup\left\{f t_{1} \ldots t_{m} \mid m \in \mathbb{N}_{0}, f \in \mathcal{F}_{m}, t_{1}, \ldots, t_{m} \in E_{n-1}\right\}
$$

for $n \in \mathbb{N}$. Then $T(X):=\bigcup_{n \in \mathbb{N}_{0}} E_{n}$.
Lemma 2.1. Let u, v be terms. If u is a prefix of v, then $u=v$.

Proof. Let us first consider the case $u \in E_{0}$. By induction on n, we see that each $w \in E_{n}$ whose first letter is in X satisfies $w \in E_{0}$. Hence $v \in E_{0}$, and thus $u=v$.

We show by induction on $n+m$ that the statement holds for all $u \in E_{m}, v \in E_{n}$. The induction basis $m+n=0$ is covered by the case $u \in E_{0}$.

Now we assume $m+n \geq 1$. For $m=0$, we have already established $u=v$. Hence we assume $m \geq 1$. If $n=0$, then u starts with a letter in \mathcal{F} and v with a letter in X, contradicting that u is a prefix of v. If $n \geq 1$, we can write $u=f t_{1} \ldots t_{r}$ and $v=g u_{1} \ldots u_{s}$ with $f \in \mathcal{F}_{r}, g \in \mathcal{F}_{s}, t_{1}, \ldots, t_{r} \in E_{m-1}$ and $u_{1}, \ldots, u_{s} \in E_{n-1}$. Then $f=g$, and hence $r=s$. Now let i be minimal with $t_{i} \neq u_{i}$. Then t_{i} is a prefix of u_{i} or u_{i} is a prefix of t_{i}. In both cases, the induction hypothesis yields $t_{i}=u_{i}$.

Lemma 2.2. Let $t_{1}, \ldots, t_{r}, u_{1}, \ldots, u_{s} \in T(X), f \in \mathcal{F}_{r}, g \in \mathcal{F}_{s}$. If $f t_{1} \ldots t_{r}=$ $g u_{1} \ldots u_{s}$, then $r=s, f=g$ and $t_{i}=u_{i}$ for $i \in\{1, \ldots, r\}$.

Proof. We clearly have $f=g$ and thus $r=s$. Let i be minimal with $t_{i} \neq u_{i}$. Then either t_{i} is a prefix of u_{i} or u_{i} is a prefix of t_{i}, and hence by the previous lemma, $u_{i}=t_{i}$.

We have $T(X)=\varnothing$ if and only if $\mathcal{F}_{0} \cup X=\varnothing$. For the case $\mathcal{F}_{0} \cup X \neq \varnothing$, we define the term algebra $\mathbf{T}(X)$ by $f^{\mathbf{T}(X)}\left(t_{1}, \ldots, t_{r}\right):=f t_{1} \ldots t_{r}$ for all $r \in \mathbb{N}_{0}, f \in \mathcal{F}_{r}$.

Theorem 2.3. Let \mathbf{A} be an algebra of type \mathcal{F}, and let X be a set. We assume $\mathcal{F}_{0} \cup X \neq \varnothing$. Let $\boldsymbol{a} \in A^{X}$. We define a relation $e \subseteq T(X) \times A$ by $e_{0}: E_{0} \rightarrow A$, $e_{0}(x)=\boldsymbol{a}(x)$ for $x \in X$, and for $n \geq 1$,

$$
\begin{aligned}
& e_{n}=e_{n-1} \cup\left\{\left(f t_{1}, \ldots, t_{m}, f^{\mathbf{A}}\left(a_{1}, \ldots, a_{m}\right)\right) \mid\right. \\
& \left.\quad m \in \mathbb{N}_{0}, f \in \mathcal{F}_{m}, \text { for all } i \in \underline{m}:\left(t_{i}, a_{i}\right) \in e_{n-1}\right\} .
\end{aligned}
$$

Let $e:=\bigcup_{n \in \mathbb{N}} e_{n}$. Then e is a homomorphism from $\mathbf{T}(X)$ to \mathbf{A} with $\left.e\right|_{X}=\boldsymbol{a}$.
Proof. It is easy to see that $e \subseteq T(X) \times A$ and that the first projection of e to $T(X)$ is surjective.
Next, we prove by induction on the length of u that for all $u \in E_{n}$ and $a, b \in A$ with $(u, a) \in e$ and $(u, b) \in e$, we have $a=b$.

If u is of length 1 , it is either in X or \mathcal{F}_{0}. In the first case, (u, a) and (u, b) are both elements of e_{0} because no other elements of e have a first component in $E_{0}=X$. Since e_{0} is a function, $a=b$. If $u \in \mathcal{F}_{0}$ then we see that for all $n \in \mathbb{N}$ with $(u, a) \in e_{n}$, we have $a=u^{\mathbf{A}}$.

If the length of u is at least 2 , then since $(u, a) \in e$, there are $r \in \mathbb{N}_{0}, f \in$ $\mathcal{F}_{r}, t_{1}, \ldots, t_{r} \in T(X)$ and $a_{1}, \ldots, a_{r} \in A$ such that $\left(t_{i}, a_{i}\right) \in e$ for all $i \in \underline{r}$,
$u=f t_{1} \ldots, t_{r}$ and $a=f^{\mathbf{A}}\left(a_{1}, \ldots, a_{r}\right)$. Since $(u, b) \in e$, there are $s \in \mathbb{N}_{0}$, $g \in \mathcal{F}_{s}, u_{1}, \ldots, u_{s} \in T(X)$ and $b_{1}, \ldots, b_{s} \in A$ such that $\left(u_{i}, b_{i}\right) \in e$ for all $i \in \underline{s}$, $u=g u_{1} \ldots, u_{s}$ and $a=g^{\mathbf{A}}\left(b_{1}, \ldots, b_{r}\right)$. Then by Lemma 2.2, $f=g, r=s$ and $t_{i}=u_{i}$ for $i \in \underline{r}$. Since $\left(t_{i}, a_{i}\right) \in e,\left(t_{i}, b_{i}\right) \in e$ and t_{i} is shorter than u, we have $a_{i}=b_{i}$. Thus $a=b$.

From its construction, we see that e is the subuniverse of $\mathbf{T}(X) \times \mathbf{A}$ that is generated by \boldsymbol{a}. Hence e is a function and a subuniverse, and thus a homomorphism.

For this e, we denote $e(t)$ also by $t^{\mathbf{A}}(\boldsymbol{a})$. Let $n \in \mathbb{N}, a_{1}, \ldots, a_{n} \in A$ and $x_{1}, \ldots, x_{n} \in X$. We write $t\left(x_{1}, \ldots, x_{n}\right)$ to indicate that $t \in T\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ and $t^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)$ for $t^{\mathbf{A}}\left(\left\{\left(x_{1}, a_{1}\right), \ldots,\left(x_{n}, a_{n}\right)\right\}\right)$. For $u, v \in T(X)$, we write $\mathbf{A} \models u \approx v$ if $u^{\mathbf{A}}(\boldsymbol{a})=v^{\mathbf{A}}(\boldsymbol{a})$ for all $\boldsymbol{a} \in A^{X}$. For a class K of similar algebras, we say that u and v are K-equivalent if $\mathbf{A} \models u \approx v$ for all \mathbf{A} from K. In this case, we write $u \sim_{K} v$ and $K \models u \approx v$.

3. Class operators

Let \mathcal{F} be an algebraic language, and let K be a class of algebras of type \mathcal{F}. We use the operators I, H as in [BS81]. By $P K$ we denote the class of all algebras that can be written as $\prod_{i \in I} \mathbf{A}_{i}$ for some set I and some family $\left(\mathbf{A}_{i}\right)_{i \in I}$ of algebras from K. Deviating from the notation from [BS81], we also allow the empty product $\prod_{i \in \varnothing} \mathbf{A}_{i}$ to be a member of $P K$. Hence for every class of similar algebras K, the one-element algebra with universe $\{\varnothing\}$ of type \mathcal{F} belongs to $P K$. When we restrict I to be finite, then the class is $P_{\text {fin }} K$. By $P_{\mathrm{u}} K$ we denote the class of all ultraproducts of members of K.

4. The free algebra

Let K be a class of algebras of type \mathcal{F}, and let X be a set such that $\mathcal{F}_{0} \cup X \neq \varnothing$. The free algebra $\mathbf{F}(X, K)$ constructed from X and K is defined as follows: We let

$$
\Theta_{K}:=\bigcap\{\theta \in \operatorname{Con}(\mathbf{T}(X)) \mid \mathbf{T}(X) / \theta \text { lies in } I S K\}
$$

and we define $\mathbf{F}(X, K):=\mathbf{T}(X) / \Theta_{K}$. We observe that by its definition, $\mathbf{F}(X, K)=\mathbf{T}(X) / \Theta_{K}$ is isomorphic to a subdirect product of algebras in $I S K$, and hence $\mathbf{F}(X, K)$ is an element of ISPK. This algebra is denoted
by $\mathbf{F}_{K}(\bar{X})$ in [BS81, Definition II.10.9] and is called the K-free algebra over $\bar{X}=\left\{x / \Theta_{K} \mid x \in X\right\}$.

Lemma 4.1. Let X be a set, let $s, t \in T(X)$. Then $(s, t) \in \Theta_{K}$ if and only if s and t are K-equivalent.

Proof. For the "only if"-direction, we assume that $(s, t) \in \Theta_{K}$. Let A be an algebra in K, and let $\boldsymbol{a} \in A^{X}$. Then by Theorem 2.3, the mapping e defined by

$$
e(u):=u^{\mathbf{A}}(\boldsymbol{a})
$$

is a homomorphism from $\mathbf{T}(X)$ to \mathbf{A}. The image of e is the universe of an algebra that lies in $S\{\mathbf{A}\}$, and thus for $\theta:=$ ker e, we have $\mathbf{T}(X) / \theta \in I S K$. Hence $\Theta_{K} \subseteq \theta$ and therefore $(s, t) \in$ ker e, which implies $s^{\mathbf{A}}(\boldsymbol{a})=t^{\mathbf{A}}(\boldsymbol{a})$. Thus $s \sim_{K} t$.

For the "if"-direction, we assume that $s \sim_{K} t$. Let $\theta \in \operatorname{Con}(\mathbf{T}(X))$ be such that $\mathbf{T}(X) / \theta$ lies in $I S K$. Let x_{1}, \ldots, x_{m} be the variables occurring in s and t. By the definition of \sim_{K}, we have $K \models s\left(x_{1}, \ldots, x_{m}\right) \approx t\left(x_{1}, \ldots, x_{m}\right)$. Since $\mathbf{T}(X) / \theta \in I S K$, we have $\mathbf{T}(X) / \theta \models s\left(x_{1}, \ldots, x_{m}\right) \approx t\left(x_{1}, \ldots, x_{m}\right)$, and therefore

$$
\begin{aligned}
s / \theta & =s^{\mathbf{T}(X)}\left(x_{1}, \ldots, x_{m}\right) / \theta \\
& =s^{\mathbf{T}(X) / \theta}\left(x_{1} / \theta, \ldots, x_{m} / \theta\right) \\
& =t^{\mathbf{T}(X) / \theta}\left(x_{1} / \theta, \ldots, x_{m} / \theta\right) \\
& =s^{\mathbf{T}(X)}\left(x_{1}, \ldots, x_{m}\right) / \theta \\
& =t / \theta .
\end{aligned}
$$

Thus $(s, t) \in \theta$. Hence $(s, t) \in \Theta_{K}$.

From this property, it is easy to see that $\mathbf{F}(X, K)$ is free for K over $\left\{x / \Theta_{K} \mid x \in\right.$ $X\}$ in the sense of [MMT87, Definition 4.107].

5. Birkhoff's HSP-Theorem

Theorem 5.1. Let K be a class of similar algebras, and let Y be a countably infinite set. Then $\operatorname{Mod}\left(\operatorname{Th}_{\operatorname{Id}(Y)}(K)\right) \subseteq H S P K$.

Proof. Let \mathbf{B} in $\operatorname{Mod}\left(\operatorname{Th}_{\operatorname{Id}(Y)}(K)\right)$, and let G be a nonempty subset of B that generates \mathbf{B}. Let X be a set of the same cardinality as G, and let $\boldsymbol{b}=\left(b_{x}\right)_{x \in X}$ be
such that $\left\{b_{x} \mid x \in X\right\}=G$. Let $\mathbf{F}:=\mathbf{F}(X, K)=\mathbf{T}(X) / \Theta_{K}$ be the free algebra constructed from X and K, and let

$$
\varphi:=\left\{\left(t / \Theta_{K}, t^{\mathbf{B}}(\boldsymbol{b})\right) \mid t \in T(X)\right\} .
$$

We first show that φ is a function from F to B. To this end, we suppose that $(s, t) \in \Theta_{K}$. By the "only if"-direction of Lemma 4.1, we have $s \sim_{K} t$. Let x_{1}, \ldots, x_{m} be the variables occurring in s and t. By the definition of \sim_{K}, we have $K \models s\left(x_{1}, \ldots, x_{m}\right) \approx t\left(x_{1}, \ldots, x_{m}\right)$. Since $\mathbf{B} \in \operatorname{Mod}\left(\operatorname{Th}_{\operatorname{Id}(Y)}(K)\right)$, we then also have $\mathbf{B} \models s\left(x_{1}, \ldots, x_{m}\right) \approx t\left(x_{1}, \ldots, x_{m}\right)$, and therefore $s^{\mathbf{B}}(\boldsymbol{b})=t^{\mathbf{B}}(\boldsymbol{b})$. Hence φ is a function.

Since φ is the image of the homomorphism $\psi: \mathbf{T}(X) \rightarrow \mathbf{T}(X) / \Theta_{K} \times \mathbf{B}, \psi(t)=$ $\left(t / \Theta_{K}, t^{\mathbf{B}}(\boldsymbol{b})\right), \varphi$ is a subuniverse of $\mathbf{T}(X) / \Theta_{K} \times \mathbf{B}$. As a function that is a subuniverse, φ is a homomorphism, and therefore $\mathbf{B} \in H\{\mathbf{F}\}$. Thus \mathbf{B} lies in $H S P K$.

We call a class K of similar algebras a variety if there is a set Y and a set Φ of identities in the variables Y such that $K=\operatorname{Mod}(\Phi)$.

Corollary 5.2. Let K be a class of similar algebras. Then the variety generated by K is HSP K.

Proof. Let $V(K)$ be the smallest variety containing K. Then there are a set Y and a set Φ of identities in the variables Y such that $V(K)=\operatorname{Mod}(\Phi)$. Let X be a countably infinite set. By renaming the variables in each of the identities in Φ, we obtain identities Φ^{\prime} in X such that $\operatorname{Mod}(\Phi)=\operatorname{Mod}\left(\Phi^{\prime}\right)$. Then we have $\Phi^{\prime} \subseteq \operatorname{Th}_{\operatorname{Id}(X)}\left(\operatorname{Mod}\left(\Phi^{\prime}\right)\right)=\operatorname{Th}_{\operatorname{Id}(X)}(V(K)) \subseteq \operatorname{Th}_{\operatorname{Id}(X)}(K)$, and therefore every algebra in $\operatorname{Mod}\left(\operatorname{Th}_{\mathrm{Id}(X)}(K)\right)$ lies in $\operatorname{Mod}\left(\Phi^{\prime}\right)=V(K)$. Since $\operatorname{Mod}\left(\operatorname{Th}_{\mathrm{Id}(X)}(K)\right)$ is a variety containing K, and $V(K)$ is the smallest variety containing $K, V(K)$ and $\operatorname{Mod}\left(\operatorname{Th}_{\operatorname{Id}(X)}(K)\right)$ contain the same algebras. Thus by Theorem 5.1, every algebra in $V(K)$ lies in $H S P K$.

Since validity of an identity is preserved by forming products, subalgebras and homomorphic images, every algebra in $H S P K$ satisfies Φ, and therefore every algebra in $H S P K$ lies in $\operatorname{Mod}(\Phi)=V(K)$.

6. Quasi-IDEntities

A quasi-identity over X is a formula $\left(\bigwedge_{i \in \underline{r}} s_{i} \approx t_{i}\right) \rightarrow u \approx v$ with $r \in \mathbb{N}_{0}$ and $s_{1}, \ldots, s_{r}, t_{1}, \ldots, t_{r}, u, v \in T(X) . \operatorname{QId}(X)$ is the set of all quasi-identities over X. A quasivariety is a class of similar algebras that is axiomatized by a set of quasi-identities.
In [BS81], the following result is proved.
Theorem 6.1 (cf. [BS81, Theorem V.2.25]). Let K be a class of similar algebras, let X be a countably infinite set, and let \mathbf{A} be an algebra in $\operatorname{Mod}\left(\operatorname{Th}_{\operatorname{QId}(X)}(K)\right)$. Then A lies in $I S P_{\mathrm{u}} P_{\mathrm{fin}} K$.

Proof. We specialize the proof in [BS81]. Let \mathbf{A}^{*} be an expansion of \mathbf{A} where for each $a \in A$, we add a nullary operation symbol \hat{a} interpreted by $\hat{a}^{\mathbf{A}}:=a$. We let \mathcal{F} be the language of \mathbf{A}, and \mathcal{F}^{*} be the language of \mathbf{A}^{*}. Let $T^{*}(X)$ be the terms over X in the language \mathcal{F}^{*}, and $T^{*}(\varnothing)$ be the set of terms using no variables. Each term t^{\prime} in $T^{*}(\varnothing)$ can be written as $t\left(a_{1}, \ldots, a_{n}\right)$, where $t \in T\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ is a term of language $\mathcal{F}, a_{1}, \ldots, a_{n} \in A$ and $t\left(a_{1}, \ldots, a_{n}\right)$ is understood as an abbreviation of $t^{\mathbf{T}^{*}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)}\left(\hat{a_{1}}, \ldots, \hat{a_{n}}\right)$.

We define the set D of formulae in the language \mathcal{F}^{*} by

$$
D:=\left\{s \approx t \mid s, t \in T^{*}(\varnothing), s^{\mathbf{A}^{*}}=t^{\mathbf{A}^{*}}\right\} \cup\left\{s \not \approx t \mid s, t \in T^{*}(\varnothing), s^{\mathbf{A}^{*}} \neq t^{\mathbf{A}^{*}}\right\}
$$

and we let

$$
F:=\{\varphi \mid \varphi \text { is a finite subset of } D\} .
$$

For $\varphi \in F$, we define $\varphi \uparrow:=\{\psi \in F \mid \varphi \subseteq \psi\}$. Let

$$
\mathcal{A}:=\{\varphi \uparrow \mid \varphi \in F\} .
$$

This \mathcal{A} is a filter on the set F because $\left(\varphi_{1} \uparrow\right) \cap\left(\varphi_{2} \uparrow\right)=\left(\varphi_{1} \cup \varphi_{2}\right) \uparrow$. Hence there exists an ultrafilter \mathcal{U} on the set F with $\mathcal{A} \subseteq \mathcal{U}$. Altogether, \mathcal{U} is an ultrafilter on the set F such that for every $\varphi \in F$, we have

$$
\varphi \uparrow=\{\psi \in F \mid \varphi \subseteq \psi\} \in \mathcal{U}
$$

Now for every $\varphi \in F$, we construct an \mathcal{F}^{*}-algebra \mathbf{B}_{φ}^{*} such that $\mathbf{B}_{\varphi}^{*} \models \varphi$ and the \mathcal{F}-reduct of \mathbf{B}_{φ}^{*} lies in $P_{\text {fin }} K$. Since $\varphi \in F$, there are $k, m, n \in \mathbb{N}_{0}$, a finite subset $\left\{x_{1}, \ldots, x_{n}\right\}$ of $X, \boldsymbol{a}=\left(a_{1}, \ldots, a_{n}\right) \in A^{n}$, and for each $i \in \underline{k}$ and $j \in \underline{m}$ there are
\mathcal{F}-terms $s_{i}, t_{i}, u_{j}, v_{j} \in T\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)$ such that

$$
\begin{aligned}
\varphi=\left\{s_{1}(\boldsymbol{a}) \approx t_{1}(\boldsymbol{a}), \ldots, s_{k}(\boldsymbol{a}) \approx t_{k}(\boldsymbol{a})\right\} & \cup \\
& \left\{u_{1}(\boldsymbol{a}) \not \approx v_{1}(\boldsymbol{a}), \ldots, u_{m}(\boldsymbol{a}) \not \approx v_{m}(\boldsymbol{a})\right\}
\end{aligned}
$$

and for $i, j \in \underline{n}$ with $i \neq j$, we have $a_{i} \neq a_{j}$. Here, $s_{1}(\boldsymbol{a})$ is a shorthand for $s_{1}^{\mathbf{T}^{*}\left(\left\{x_{1}, \ldots, x_{n}\right\}\right)}\left(\hat{a_{1}}, \ldots, \hat{a_{n}}\right)$.

For each $i \in \underline{m}$, we will now construct an algebra \mathbf{B}_{i} in K with certain properties. We fix $i \in \underline{m}$. Then we have

$$
\mathbf{A} \models \exists \boldsymbol{x}: s_{1}(\boldsymbol{x}) \approx t_{1}(\boldsymbol{x}) \wedge \ldots \wedge s_{k}(\boldsymbol{x}) \approx t_{k}(\boldsymbol{x}) \wedge u_{i}(\boldsymbol{x}) \not \approx v_{i}(\boldsymbol{x}) .
$$

We show that there is \mathbf{B}_{i} in K such that

$$
\begin{equation*}
\mathbf{B}_{i} \models \exists \boldsymbol{x}: s_{1}(\boldsymbol{x}) \approx t_{1}(\boldsymbol{x}) \wedge \ldots \wedge s_{k}(\boldsymbol{x}) \approx t_{k}(\boldsymbol{x}) \wedge u_{i}(\boldsymbol{x}) \not \approx v_{i}(\boldsymbol{x}) \tag{6.1}
\end{equation*}
$$

Suppose that there is no such \mathbf{B}_{i}. Then

$$
\begin{equation*}
K \models \forall \boldsymbol{x}:\left(s_{1}(\boldsymbol{x}) \approx t_{1}(\boldsymbol{x}) \wedge \ldots \wedge s_{k}(\boldsymbol{x}) \approx t_{k}(\boldsymbol{x})\right) \rightarrow u_{i}(\boldsymbol{x}) \approx v_{i}(\boldsymbol{x}) \tag{6.2}
\end{equation*}
$$

Since $\mathbf{A} \in \operatorname{Mod}\left(\operatorname{Th}_{\operatorname{QId}(X)}(K)\right)$, also \mathbf{A} satisfies this quasi-identity. We know that we have $s_{1}^{\mathbf{A}}(\boldsymbol{a}) \approx t_{1}^{\mathbf{A}}(\boldsymbol{a}), \ldots, s_{k}^{\mathbf{A}}(\boldsymbol{a})=t_{k}^{\mathbf{A}}(\boldsymbol{a})$ and $u_{i}^{\mathbf{A}}(\boldsymbol{a}) \neq v_{i}^{\mathbf{A}}(\boldsymbol{a})$. This contradicts the fact that \mathbf{A} satisfies the quasi-identity in (6.2). Hence there is \mathbf{B}_{i} in K with (6.1). Let $\boldsymbol{b}:=\left(b_{1}, \ldots, b_{n}\right) \in B_{i}^{n}$ be such that

$$
s_{1}^{\mathbf{B}_{i}}(\boldsymbol{b})=t_{1}^{\mathbf{B}_{i}}(\boldsymbol{b}), \ldots, s_{k}^{\mathbf{B}_{i}}(\boldsymbol{b})=t_{k}^{\mathbf{B}_{i}}(\boldsymbol{b}) \text { and } u_{i}^{\mathbf{B}_{i}}(\boldsymbol{b}) \neq v_{i}^{\mathbf{B}_{i}}(\boldsymbol{b})
$$

We will now form an \mathcal{F}^{*}-expansion \mathbf{B}_{i}^{*} of \mathbf{B}_{i}. For each $j \in \underline{n}$, set $\widehat{a_{j}} \mathbf{B}_{i}^{*}:=b_{j}$, and for $a \in A \backslash\left\{a_{1}, \ldots, a_{n}\right\}$, set $\hat{a}^{\mathbf{B}_{i}^{*}}$ to some element of B_{i}.

We set $\mathbf{B}_{\varphi}^{*}:=\prod_{i \in \underline{m}} \mathbf{B}_{i}^{*}$ and note that in the case $m=0, \mathbf{B}_{\varphi}^{*}$ is a one element algebra. Then $\mathbf{B}_{\varphi}^{*} \models \varphi$, and the \mathcal{F}-reduct of \mathbf{B}_{φ}^{*} lies in $P_{\text {fin }} K$.
Next, we show that $\mathbf{C}:=\prod_{\varphi \in F} \mathbf{B}_{\varphi}^{*} / \mathcal{U}$ satisfies D. To this end, let $\delta \in D$. Now for all φ with $\delta \in \varphi$, we have $\mathbf{B}_{\varphi}^{*} \models \delta$ because $\mathbf{B}_{\varphi}^{*} \models \varphi$. Hence $\{\varphi \in F \mid$ $\left.\mathbf{B}_{\varphi}^{*} \models \delta\right\} \supseteq\{\delta\} \uparrow$, and thus $\left\{\varphi \in F \mid \mathbf{B}_{\varphi}^{*} \models \delta\right\} \in U$. By Loś's Theorem [BS81, Theorem V.2.9], we therefore have $\mathbf{C} \models \delta$. Thus $\mathbf{C} \models D$.

Now we define a mapping $h: A \rightarrow C$ by $h(a):=\hat{a}^{\mathbf{C}}$. We claim that this mapping is an embedding of \mathbf{A} into the \mathcal{F}-reduct of \mathbf{C}. First, if f is an n-ary operation symbol of $\mathbf{A}, a_{1}, \ldots, a_{n} \in A$ and $b=f^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)$, the identity

$$
\hat{b} \approx f\left(\hat{a_{1}}, \ldots, \hat{a_{n}}\right)
$$

is an element of D. Therefore, since $\mathbf{C} \models D, h(b)=\hat{b}^{\mathbf{C}}=f^{\mathbf{C}}\left(\hat{a_{1}}{ }^{\mathbf{C}}, \ldots, \hat{a_{n}}{ }^{\mathbf{C}}\right)=$ $f^{\mathbf{C}}\left(h\left(a_{1}\right), \ldots, h\left(a_{n}\right)\right)$ and thus h is a homomorphism.

Second, if a_{1}, a_{2} are elements of A such that $a_{1} \neq a_{2}$, then $\hat{a_{1}} \not \approx \hat{a_{2}}$ is an element of D. Thus, since $\mathbf{C} \models D$, we have $h\left(a_{1}\right)=\hat{a_{1}}{ }^{\mathbf{C}} \neq \hat{a_{2}}{ }^{\mathbf{C}}=h\left(a_{2}\right)$, and therefore h is injective.

Therefore, since $\mathbf{C} \in P_{\mathrm{u}} P_{\text {fin }} K$, we have $\mathbf{A} \in I S P_{\mathrm{u}} P_{\text {fin }} K$.
Similarly to Corollary 5.2, we obtain:
Corollary 6.2. Let K be a class of similar algebras. Then the quasi-variety generated by K is $I S P_{\mathrm{u}} P_{\text {fin }} K$.

For a class K and $m \in \mathbb{N}$, we write P_{m} for the class of direct products of exactly m algebras from K.

Theorem 6.3. Let K be a class of similar algebras of finite type, let X be a countably infinite set, and let \mathbf{A} be a finite algebra in $\operatorname{Mod}\left(\operatorname{Th}_{\operatorname{QId}(X)}(K)\right)$ with n elements. Then $\mathbf{A} \in I S P_{\binom{n}{2}} K$.

Proof. Let $\mathbf{A}^{*}, \mathcal{F}$ and \mathcal{F}^{*} be as in the proof of Theorem 6.1. Let a_{1}, \ldots, a_{n} be the elements of A. Let T (the operation tables) be defined by

$$
T:=\left\{\left(f,\left(i_{0}, \ldots, i_{m}\right)\right) \mid m \in \mathbb{N}_{0}, i_{0}, \ldots, i_{m} \in \underline{n}\right.
$$

$$
\left.f \text { is an } m \text {-ary function symbol in } \mathcal{F}, a_{i_{0}}=f^{\mathbf{A}}\left(a_{i_{1}}, \ldots, a_{i_{m}}\right)\right\}
$$

and let

$$
D^{+}:=\left\{\hat{a_{i_{0}}} \approx f\left(\hat{a_{1}}, \ldots, \hat{a_{i}}\right) \mid\left(f,\left(i_{0}, \ldots, i_{m}\right)\right) \in T\right\}
$$

and

$$
D:=D^{+} \cup\left\{\hat{a_{i}} \not \approx \hat{a_{j}} \mid i, j \in \underline{n}, i<j, a_{i} \neq a_{j}\right\} .
$$

We fix $i, j \in \underline{n}$ with $i<j$. Let

$$
\varphi\left(x_{1}, \ldots, x_{n}\right):=\bigwedge\left\{x_{i_{0}}=f^{\mathbf{A}}\left(x_{i_{1}}, \ldots, x_{i_{m}}\right) \mid(f, \boldsymbol{i}) \in T\right\} .
$$

Then

$$
\mathbf{A} \models \exists \boldsymbol{x}: \varphi\left(x_{1}, \ldots, x_{n}\right) \wedge x_{i} \not \not \approx x_{j} .
$$

We want to show that there is $\mathbf{B}_{i, j}$ in K such that

$$
\mathbf{B}_{i, j} \models \exists \boldsymbol{x}: \varphi\left(x_{1}, \ldots, x_{n}\right) \wedge x_{i} \not \approx x_{j}
$$

Suppose that there is no such $\mathbf{B}_{i, j}$. Then

$$
K \models \forall \boldsymbol{x}: \varphi\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{i} \approx x_{j} .
$$

Since $\mathbf{A} \in \operatorname{Mod}\left(\operatorname{Th}_{\operatorname{QId}(X)}(K)\right)$, we have

$$
\begin{equation*}
\mathbf{A} \models \forall \boldsymbol{x}: \varphi\left(x_{1}, \ldots, x_{n}\right) \rightarrow x_{i} \approx x_{j} . \tag{6.3}
\end{equation*}
$$

Setting $\left(x_{1}, \ldots, x_{n}\right):=\left(a_{1}, \ldots, a_{n}\right)$, we see that (6.3) does not hold. This contradiction shows that there is $\mathbf{B}_{i, j}$ in K with

$$
\mathbf{B}_{i, j} \models \exists \boldsymbol{x}: \varphi\left(x_{1}, \ldots, x_{n}\right) \wedge x_{i} \not \approx x_{j} .
$$

Let \boldsymbol{b} be an n-tuple witnessing the existence of these x_{k} 's, and for $k \in \underline{n}$, set $a_{k}^{\mathbf{B}_{i, j}^{*}}=b_{k}$. Now the mapping defined by $h\left(a_{k}\right):=b_{k}=\hat{a_{k}} \hat{\mathbf{B}}_{i, j}^{*}$ is a homomorphism from \mathbf{A}^{*} to $\mathbf{B}_{i, j}^{*}$. To prove this, let f be an m-ary operation symbol in \mathcal{F}, and let $i_{1}, \ldots, i_{m} \in \underline{n}$. We assume that $a_{i_{0}}=f^{\mathbf{A}}\left(a_{i_{1}}, \ldots, a_{i_{m}}\right)$. Then

$$
\mathbf{B}_{i, j}^{*} \models \hat{a_{i_{0}}} \approx f\left(\hat{a_{i_{1}}}, \ldots, \hat{a_{i_{m}}}\right),
$$

and therefore

$$
h\left(a_{i_{0}}\right)=\hat{a_{i_{0}}} \mathbf{B}_{i, j}^{*}=f^{\mathbf{B}_{i, j}^{*}}\left(\hat{a_{i_{1}}} \hat{\mathbf{B}_{i, j}^{*}}, \ldots, \hat{a_{i_{m}}} \mathbf{B}_{i, j}^{*}\right)=f^{\mathbf{B}_{i, j}^{*}}\left(h\left(a_{i_{1}}\right), \ldots, h\left(a_{i_{m}}\right)\right),
$$

which concludes the proof that h is a homomorphism. In addition, for $i<j$, we have $h\left(a_{i}\right) \neq h\left(a_{j}\right)$.
Let $\mathbf{B}^{*}:=\prod\left(\mathbf{B}_{i, j}^{*}\right)_{i, j \in n, i<j}$. Then $\mathbf{B}^{*} \models D$, and \mathbf{A} embeds into the \mathcal{F}-reduct \mathbf{B} of \mathbf{B}^{*}. Hence \mathbf{A} embeds into a direct product of exactly $\binom{n}{2}$ algebras in K.

Corollary 6.4. Let K be a finite set of similar finite algebras of finite type, let X be a countably infinite set, and let \mathbf{A} be a subdirectly irreducible algebra in $\operatorname{Mod}\left(\operatorname{Th}_{\operatorname{QId}(X)}(K)\right)$. Then $\mathbf{A} \in I S K$.

Proof. We know that there is a set I and a family $\left(\mathbf{B}_{i}\right)_{i \in I}$ from K such that \mathbf{A} embeds into $\prod_{i \in I} \mathbf{B}_{i}$. Since \mathbf{A} is subdirectly irreducible, \mathbf{A} embeds into some \mathbf{B}_{j}, which impies $\mathbf{A} \in I S K$.

7. Generalized Quasi-IDentities

A generalized quasi-identity over Y is a formula $\left(\bigwedge_{i \in I} s_{i} \approx t_{i}\right) \rightarrow u \approx v$, where I is a (possibly infinite) set and there exists a finite subset X of Y such that $u, v \in T(X)$, and for all $i \in I, s_{i} \in T(X)$ and $t_{i} \in T(X) . \operatorname{GQId}(Y)$ is the class of all generalized quasi-identities over Y. For a class K of similar algebras, let $L K$
be the class of those algebras of the same signature that have the property that every finitely generated subalgebra embeds into some member of K.

Theorem 7.1. Let K be a class of similar algebras, and let Y be a countably infinite set. If A lies in $\operatorname{Mod}\left(\operatorname{Th}_{\operatorname{GQId}(Y)}(K)\right)$, then \mathbf{A} lies in LSPK. Hence $\operatorname{Mod}\left(\operatorname{Th}_{\operatorname{GQId}(Y)}(K)\right)=L S P K$.

Proof. Let \mathbf{A}^{\prime} be a finitely generated subalgebra of \mathbf{A}, and let $n \in \mathbb{N}$ and $a_{1}, \ldots, a_{n} \in A$ be such that $\left\{a_{1}, \ldots, a_{n}\right\}$ generates \mathbf{A}^{\prime}.

$$
D^{+}=\left\{(s, t) \mid s, t \in T\left(\left\{x_{1}, \ldots, x_{n}\right\}\right), s^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)=t^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right\}
$$

and

$$
D^{-}=\left\{(u, v) \mid u, v \in T\left(\left\{x_{1}, \ldots, x_{n}\right\}\right), s^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right) \neq v^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right\} .
$$

For every $(u, v) \in D^{-}$, we find an algebra $\mathbf{B}_{u, v}$ in K such that $\mathbf{B}_{u, v}$ satisfies

$$
\begin{aligned}
& \exists x_{1}, \ldots, x_{n}: \\
& \quad\left(\bigwedge_{(s, t) \in D^{+}} s\left(x_{1}, \ldots, x_{n}\right) \approx t\left(x_{1}, \ldots, x_{n}\right)\right) \wedge u\left(x_{1}, \ldots, x_{n}\right) \not \approx v\left(x_{1}, \ldots, x_{n}\right) .
\end{aligned}
$$

Then $\mathbf{C}:=\prod_{(u, v) \in D^{-}} \mathbf{B}_{u, v}$ satisfies

$$
\begin{aligned}
& \exists x_{1}, \ldots, x_{n}: \\
& \qquad \begin{array}{l}
\left(\bigwedge_{(s, t) \in D^{+}} s\left(x_{1}, \ldots, x_{n}\right) \approx t\left(x_{1}, \ldots, x_{n}\right)\right) \\
\end{array} \quad \wedge\left(\bigwedge_{(u, v) \in D^{-}} u\left(x_{1}, \ldots, x_{n}\right) \not \approx v\left(x_{1}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

If we choose $\left(c_{1}, \ldots, c_{n}\right)$ as witnesses for these x_{1}, \ldots, x_{n}, then $h: A^{\prime} \rightarrow C$, $h\left(t^{\mathbf{A}}\left(a_{1}, \ldots, a_{n}\right)\right)=t^{\mathbf{C}}\left(c_{1}, \ldots, c_{n}\right)$ is well-defined because for $\boldsymbol{c}=\left(c_{1}, \ldots, c_{n}\right)$, we have

$$
\left.\bigwedge_{(s, t) \in D^{+}} s^{\mathbf{C}}\left(c_{1}, \ldots, c_{n}\right)=t^{\mathbf{C}}\left(c_{1}, \ldots, c_{n}\right)\right)
$$

and injective because of

$$
\left(\bigwedge_{(u, v) \in D^{-}} u^{\mathbf{C}}\left(c_{1}, \ldots, c_{n}\right) \neq v^{\mathbf{C}}\left(c_{1}, \ldots, c_{n}\right)\right)
$$

Therefore $\mathbf{A}^{\prime} \in I S P K$. Thus $\mathbf{A} \in L S P K$.

Now similar to Corollary 5.2, we can argue that $\operatorname{Mod}\left(\operatorname{Th}_{\operatorname{GQId}(Y)}(K)\right)$ is equal to $L S P K$.

A fully generalized quasi-identity over X is a formula $\left(\bigwedge_{i \in I} s_{i} \approx t_{i}\right) \rightarrow u \approx v$, where I is a (possibly infinite) set, $u, v \in T(X)$, and for all $i \in I, s_{i} \in T(X)$ and $t_{i} \in T(X) . \operatorname{FGQId}(X)$ is the class of all quasi-identities over X. Then we have

Theorem 7.2. Let K be a class of similar algebras, and let X be a set such that \mathbf{A} can be generated by $|X|$ elements. If \mathbf{A} lies in $\operatorname{Mod}\left(\operatorname{Th}_{\operatorname{FGQId}(X)}(K)\right)$, then \mathbf{A} lies in ISP K. Thus, $\operatorname{Mod}\left(\operatorname{Th}_{\mathrm{FGQId}(X)}(K)\right)=I S P K$.

Proof. Let $\boldsymbol{a}=\left(a_{x}\right)_{x \in X}$ be such that $\left\{a_{x} \mid x \in X\right\}$ generates \mathbf{A}.

$$
D^{+}=\left\{(s, t) \in T(X) \times T(X) \mid s^{\mathbf{A}}(\boldsymbol{a})=t^{\mathbf{A}}(\boldsymbol{a})\right\}
$$

and

$$
D^{-}=\left\{(u, v) \in T(X) \times T(X) \mid u^{\mathbf{A}}(\boldsymbol{a}) \neq v^{\mathbf{A}}(\boldsymbol{a})\right\} .
$$

For every $(u, v) \in D^{-},\left(\bigwedge_{(s, t) \in T^{+}} s \approx t\right) \rightarrow u \approx v$ is a fully generalized quasiidentity that does not hold in \mathbf{A}. Thus we find an algebra $\mathbf{B}_{u, v}$ in K and $\boldsymbol{b}_{u, v} \in$ $B_{u, v}^{X}$ with

$$
\left(\bigwedge_{(s, t) \in D^{+}} s\left(\boldsymbol{b}_{u, v}\right) \approx t\left(\boldsymbol{b}_{u, v}\right)\right) \wedge u\left(\boldsymbol{b}_{u, v}\right) \not \approx v\left(\boldsymbol{b}_{u, v}\right) .
$$

Then B $:=\prod_{(u, v) \in D^{-}} \mathbf{B}_{u, v}$ and \boldsymbol{b} with $\boldsymbol{b}_{x}:=\left(\left(\boldsymbol{b}_{u, v}\right)_{x}\right)_{(u, v) \in D^{-}}$satisfies

$$
\left(\bigwedge_{(s, t) \in D^{+}} s(\boldsymbol{b}) \approx t(\boldsymbol{b})\right) \wedge\left(\bigwedge_{(u, v) \in D^{-}} u(\boldsymbol{b}) \not \approx v(\boldsymbol{b})\right)
$$

Now the mapping $h\left(t^{\mathbf{A}}(\boldsymbol{a})\right)=t^{\mathbf{B}}(\boldsymbol{b})$ is well-defined because of

$$
\bigwedge_{(s, t) \in D^{+}} s^{\mathbf{B}}(\boldsymbol{b})=t^{\mathbf{B}}(\boldsymbol{b})
$$

and injective because of

$$
\bigwedge_{(u, v) \in D^{-}} u^{\mathbf{B}}(\boldsymbol{b}) \neq v^{\mathbf{B}}(\boldsymbol{b})
$$

Therefore $\mathbf{A} \in I S P K$.
Now similar to Corollary 5.2, we can argue that $\operatorname{Mod}\left(\operatorname{Th}_{\operatorname{FGQId}(Y)}(K)\right)$ is equal to IS P K.

8. Completeness of the equational calculus

In this section, we see an identity $s \approx t$ as a pair (s, t).
Theorem 8.1. Let X be a set, and let $\Sigma \subseteq T(X) \times T(X)$. Then $\operatorname{Th}_{\operatorname{Id}(X)}(\operatorname{Mod}(\Sigma))$ is the fully invariant congruence $\Theta_{\mathrm{FI}}(\Sigma)$ generated by Σ.

Proof. For $\Theta_{\mathrm{FI}}(\Sigma) \subseteq \operatorname{Th}_{\mathrm{Id}(X)}(\operatorname{Mod}(\Sigma))$, we observe that $\operatorname{Th}_{\mathrm{Id}(X)}(\operatorname{Mod}(\Sigma))$ is a fully invariant congruence of $\mathbf{T}(X)$ that contains Σ as a subset.

For $\Theta_{\mathrm{FI}}(\Sigma) \supseteq \operatorname{Th}_{\mathrm{Id}(X)}(\operatorname{Mod}(\Sigma))$, let $\theta:=\Theta_{\mathrm{FI}}(\Sigma)$. We first establish

$$
\begin{equation*}
\mathbf{T}(X) / \theta \models \Sigma \tag{8.1}
\end{equation*}
$$

To this end, let $\left(s\left(x_{1}, \ldots, x_{n}\right), t\left(x_{1}, \ldots, x_{n}\right)\right) \in \Sigma$, and let $t_{1} / \theta, \ldots, t_{n} / \theta \in$ $T(X) / \theta$. Since $(s, t) \in \Sigma$, invariance under the endomorphism obtained from extending $\left\{\left(x_{i}, t_{i}\right) \mid i \in \underline{n}\right\}$ yields $\left(s^{\mathbf{T}(X)}\left(t_{1}, \ldots, t_{n}\right), t^{\mathbf{T}(X)}\left(t_{1}, \ldots, t_{n}\right)\right) \in$ θ. Thus $s^{\mathbf{T}(X) / \theta}\left(t_{1} / \theta, \ldots, t_{n} / \theta\right)=s^{\mathbf{T}(X)}\left(t_{1}, \ldots, t_{n}\right) / \theta=t^{\mathbf{T}(X)}\left(t_{1}, \ldots, t_{n}\right) / \theta=$ $s^{\mathbf{T}(X) / \theta}\left(t_{1} / \theta, \ldots, t_{n} / \theta\right)$, completing the proof of (8.1).

Now let $(s, t) \in \operatorname{Th}_{\operatorname{Id}(X)}(\operatorname{Mod}(\Sigma))$. Then by (8.1), $\mathbf{T}(X) / \theta \models s\left(x_{1}, \ldots, x_{n}\right) \approx$ $t\left(x_{1}, \ldots, x_{n}\right)$, and thus $s / \theta=s^{\mathbf{T}(X)}\left(x_{1}, \ldots, x_{n}\right) / \theta=s^{\mathbf{T}(X) / \theta}\left(x_{1} / \theta, \ldots, x_{n} / \theta\right)=$ $t^{\mathbf{T}(X) / \theta}\left(x_{1} / \theta, \ldots, x_{n} / \theta\right)=t^{\mathbf{T}(X)}\left(x_{1}, \ldots, x_{n}\right) / \theta=t / \theta$, which completes the proof of $\operatorname{Th}_{\operatorname{Id}(X)}(\operatorname{Mod}(\Sigma)) \subseteq \theta$.

Now the calculus can be obtained by seeing fully invariant congruences as subalgebras of the expansion of $\mathbf{A} \times \mathbf{A}$ constructed in [BS81, Lemma II.14.4], and applying the subalgebra generation process of [BS81, Theorem II.3.2].

References

[Bir35] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Phil. Soc. 31 (1935), 433-454.
[BS81] S. Burris and H. P. Sankappanavar, A course in universal algebra, Springer New York Heidelberg Berlin, 1981.
[Gor98] V. A. Gorbunov, Algebraic theory of quasivarieties, Siberian School of Algebra and Logic, Consultants Bureau, New York, 1998, Translated from the Russian. MR 1654844
[Mal54] A. I. Mal'cev, On the general theory of algebraic systems, Mat. Sb. N.S. 35(77) (1954), 3-20.
[MMT87] R. N. McKenzie, G. F. McNulty, and W. F. Taylor, Algebras, lattices, varieties, volume I, Wadsworth \& Brooks/Cole Advanced Books \& Software, Monterey, California, 1987.
[Plo19] B. Plotkin, Seven lectures on universal algebraic geometry, Groups, algebras and identities, Contemp. Math., vol. 726, Amer. Math. Soc., [Providence], RI, [2019] (C)2019, pp. 143-215. MR 3937272

Institute for Algebra, Johannes Kepler University Linz, Linz, Austria

