SOME TOPICS IN EQUATIONAL LOGIC

ABSTRACT. These are additional notes for the course “Universal algebra”.
The course and this presentation mainly follow [BS81].

1. MOTIVATION

These notes are used in a course on universal algebra that follows [BS81] for
explaining the two fundamental theorems by Birkhoff from [Bir35]: the HSP-
theorem and the completeness of the equational calculus. The proofs are those
from [BS81], but some auxiliary material and explanations from this book have
been skipped. The material is complemented with some theorems on quasi-
identities from universal algebra [Malb4, BS81, Gor98] and universal algebraic
geometry [Plol19].

2. THE TERM ALGEBRA

Let F be an algebraic language and X be a set that is disjoint from F. The set
T(X) of terms over X is a subset of (FUX)*, the set of words over the alphabet
F U X of positive length. We define Fy := X and

E, = n_1U{ft1...tm|mGNo,fG.Fm,tl,...,tmEEn_l}

for n € N. Then T'(X) := E

neNg —n-

Lemma 2.1. Let u,v be terms. If u is a prefiz of v, then u = v.

Proof. Let us first consider the case u € Ey. By induction on n, we see that each

w € F, whose first letter is in X satisfies w € Fy. Hence v € Ejy, and thus u = v.

We show by induction on n+m that the statement holds for all u € F,,, v € E,,.
The induction basis m 4+ n = 0 is covered by the case u € E.
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Now we assume m~+n > 1. For m = 0, we have already established u = v. Hence
we assume m > 1. If n = 0, then u starts with a letter in F and v with a letter
in X, contradicting that u is a prefix of v. If n > 1, we can write v = ft,...t,
and v = guy ... us with f € F., g € Fs, t1,...,t. € B, and uy,...,us € E,_1.
Then f = g, and hence r = s. Now let ¢ be minimal with ¢; # u;. Then ¢; is a
prefix of u; or u; is a prefix of ¢;. In both cases, the induction hypothesis yields
ti = u;. ]

Lemma 2.2. Let ty,...,t,,uy,...,us € T(X), f € F., g € Fs. If ft1... 1, =
guy ... ug, thenr=s, f=gandt;=w; fori € {1,...,r}.

Proof. We clearly have f = g and thus » = s. Let i be minimal with ¢; # u;.
Then either ¢; is a prefix of u; or u; is a prefix of ¢;, and hence by the previous
lemma, u; = t;. O

We have T'(X) = @ if and only if FoUX = @. For the case FoUX # &, we define
the term algebra T(X) by fT)(¢,...,t,) = ft1...t, forallr € Ny, f € F,.

Theorem 2.3. Let A be an algebra of type F, and let X be a set. We assume
FoUX # 3. Let a € AX. We define a relation e C T(X) x A by e : Ey — A,
eo() = a(z) for x € X, and forn > 1,

€n = €Epn—1 U {(ftl,...,tm,fA(CLl,...,CLm)) |
m € Ny, f € Fp, foralli € m: (t;,a;) € e,_1}.

Let e := U, ey en- Then e is a homomorphism from T(X) to A with e|x = a.

Proof. 1t is easy to see that e C T(X) x A and that the first projection of e to
T(X) is surjective.

Next, we prove by induction on the length of u that for all u € E,, and a,b € A
with (u,a) € e and (u,b) € e, we have a = b.

If u is of length 1, it is either in X or Fy. In the first case, (u,a) and (u,b) are
both elements of ey because no other elements of e have a first component in
Ey = X. Since eg is a function, a = b. If u € F; then we see that for all n € N

with (u,a) € e,, we have a = u®.

If the length of u is at least 2, then since (u,a) € e, there are r € Ny, f €

Fry t1,...,t, € T(X) and ay,...,a, € A such that (t;,a;) € e for all i € r,
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u = fti...,t, and a = f%(a1,...,a,). Since (u,b) € e, there are s € N,
g € Fs, uy,...,us € T(X) and by,...,bs € A such that (u;,b;) € e for all i € s,
u=guy...,u; and a = gA(by,...,b,). Then by Lemma 2.2, f = g, r = s and
t; = u; for i € r. Since (t;,a;) € e, (t;,b;) € e and t; is shorter than u, we have
a; = b;. Thus a = b.

From its construction, we see that e is the subuniverse of T(X) x A that is
generated by a. Hence e is a function and a subuniverse, and thus a homomor-
phism. 0

For this e, we denote e(t) also by t*(a). Let n € N, ay,...,a, € A and
T1,...,x, € X. We write t(xy,...,x,) to indicate that t € T({z1,...,2,})
and tA(ay,...,a,) for tA({(21,a@1),..., (2, a,)}). For u,v € T(X), we write
A Eumvifut(a) =v2(a) for all a € AX. For a class K of similar algebras,
we say that v and v are K-equivalent if A &= u &~ v for all A from K. In this

case, we write u ~x v and K = u ~ v.

3. CLASS OPERATORS

Let F be an algebraic language, and let K be a class of algebras of type F. We use
the operators I, H as in [BS81]. By P K we denote the class of all algebras that
can be written as [[,.; A; for some set I and some family (A;)cs of algebras from
K. Deviating from the notation from [BS81], we also allow the empty product
[l;cs Ai to be a member of PK. Hence for every class of similar algebras K,
the one-element algebra with universe {@} of type F belongs to P K. When we
restrict I to be finite, then the class is Ps, K. By P, K we denote the class of all
ultraproducts of members of K.

4. THE FREE ALGEBRA

Let K be a class of algebras of type F, and let X be a set such that FoU X # &.
The free algebra F (X, K) constructed from X and K is defined as follows: We let

Ok = [ {0 € Con(T(X)) | T(X)/0 lies in IS K},

and we define F(X,K) = T(X)/Ok. We observe that by its definition,
F(X,K) = T(X)/Ok is isomorphic to a subdirect product of algebras in

IS K, and hence F(X,K) is an element of ISP K. This algebra is denoted
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by Fr(X) in [BS81, Definition I1.10.9] and is called the K-free algebra over
X = {ZL’/@K | IL‘EX}.

Lemma 4.1. Let X be a set, let s,t € T(X). Then (s,t) € Ok if and only if s
and t are K -equivalent.

Proof. For the “only if”-direction, we assume that (s,t) € ©k. Let A be an
algebra in K, and let @ € AX. Then by Theorem 2.3, the mapping e defined by

e(u) == u™(a)

is a homomorphism from T(X) to A. The image of e is the universe of an
algebra that lies in S {A}, and thus for 6 := kere, we have T(X)/0 € IS K.
Hence Ok C 6 and therefore (s,t) € kere, which implies s4(a) = t*(a). Thus
S VK t.

For the “if”-direction, we assume that s ~g t. Let § € Con(T(X)) be such
that T(X)/0 lies in IS K. Let xy,...,z, be the variables occurring in s and
t. By the definition of ~g, we have K = s(z1,...,2m) = t(z1,...,2,). Since
T(X)/0 € IS K, we have T(X)/0 |= s(x1,...,xm) = t(x1,...,2y), and therefore

s/0 =T 2y, ... xm)/0
= sTX (21 /0,. .. 20 /0)
=T (21 /6, .. 2 /0)
=Ty, x) /0
=1/0.
Thus (s,t) € . Hence (s,t) € Ok. O

From this property, it is easy to see that F(X, K) is free for K over {z/Ok | x €
X} in the sense of [MMT87, Definition 4.107].

5. BIRKHOFF’S HSP-THEOREM

Theorem 5.1. Let K be a class of similar algebras, and let Y be a countably
infinite set. Then Mod(Thiay)(K)) € HSP K.

Proof. Let B in Mod(Thigyy(kK)), and let G be a nonempty subset of B that

generates B. Let X be a set of the same cardinality as G, and let b = (b,).ex be
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such that {b, | x € X} = G. Let F := F(X,K) = T(X)/Ox be the free algebra
constructed from X and K, and let

p = {(t/OK % (b)) | t € T(X)}.

We first show that ¢ is a function from F' to B. To this end, we suppose that
(s,t) € O©k. By the “only if”-direction of Lemma 4.1, we have s ~ t. Let
x1,..., T, be the variables occurring in s and ¢. By the definition of ~, we have
K = s(@y,...,2m) = t(r1,...,2y). Since B € Mod(Thiy)(K)), we then also
have B = s(x1,...,2m) ~ t(z1,...,T,), and therefore sB(b) = tB(b). Hence ¢

is a function.

Since ¢ is the image of the homomorphism ¢ : T(X) — T(X)/Ox x B, ¥(t) =
(t/Ok,tB(b)), ¢ is a subuniverse of T(X)/Ox x B. As a function that is a
subuniverse, ¢ is a homomorphism, and therefore B € H {F}. Thus B lies in

HSPK. 0

We call a class K of similar algebras a variety if there is a set Y and a set ® of
identities in the variables Y such that K = Mod(®).

Corollary 5.2. Let K be a class of similar algebras. Then the variety generated
by K is HSP K.

Proof. Let V(K) be the smallest variety containing K. Then there are a set Y
and a set ® of identities in the variables Y such that V(K) = Mod(®). Let X
be a countably infinite set. By renaming the variables in each of the identities
in ®, we obtain identities ®’ in X such that Mod(®) = Mod(®’). Then we have
" C Thygx)(Mod(®')) = Thigx)(V(K)) € Thigx)(K), and therefore every
algebra in Mod(Thiqx)(K)) lies in Mod(®') = V(K). Since Mod(Thyq(x)(K))
is a variety containing K, and V' (K) is the smallest variety containing K, V (K)
and Mod(Thyq(x)(K)) contain the same algebras. Thus by Theorem 5.1, every
algebra in V(K) lies in HSP K.

Since validity of an identity is preserved by forming products, subalgebras and
homomorphic images, every algebra in HSP K satisfies ®, and therefore every

algebra in HSP K lies in Mod(®) = V(K). O
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6. QUASI-IDENTITIES

A quasi-identity over X is a formula (A, s; = t;) = v ~ v with r € Ny and
S1y-vey Sty oot u,v € T(X). QId(X) is the set of all quasi-identities over
X. A quasivariety is a class of similar algebras that is axiomatized by a set of
quasi-identities.

In [BS81], the following result is proved.

Theorem 6.1 (cf. [BS81, Theorem V.2.25]). Let K be a class of similar algebras,
let X be a countably infinite set, and let A be an algebra in Mod(Thqua(x)(K)).
Then A lies in ISP, Py, K.

Proof. We specialize the proof in [BS81]. Let A* be an expansion of A where for
each a € A, we add a nullary operation symbol a interpreted by a® := a. We let
F be the language of A, and F* be the language of A*. Let T*(X) be the terms
over X in the language F*, and T*(&) be the set of terms using no variables.
Each term ¢’ in T*(@) can be written as t(ay,...,a,), where t € T({z1,...,2,})

is a term of language F, ai,...,a, € A and t(ay,...,a,) is understood as an

We define the set D of formulae in the language F* by
D:={s~t|steT (2),s* =t""}YU{ss#t|steT(@),s* #*}
and we let
F :={p | ¢ is a finite subset of D}.
For ¢ € F, we define o1 :={¢p € F | p C9}. Let

A:={pt|peF}

This A is a filter on the set F' because (¢11) N (v21) = (v1 U 2)T. Hence there
exists an ultrafilter & on the set F' with A C U. Altogether, U is an ultrafilter
on the set F' such that for every ¢ € F', we have

pt={YeF|pCy}el.

Now for every ¢ € F', we construct an F*-algebra B, such that B, = ¢ and the
F-reduct of BY, lies in Py, K. Since ¢ € F, there are k,m,n € Ny, a finite subset

{z1,...,2,} of X, @ = (ay,...,a,) € A", and for each i € k and j € m there are
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F-terms s;,t;,uj,v; € T({x1,...,2,}) such that

v ={s1(a) = ti(a),...,s(a) =tx(a)} U
{ui(a) Z vi(a),...,un(a) % vn(a)}
and for ¢,7 € n with ¢ # j, we have a; # a;. Here, si(a) is a shorthand for
sy Ceoml Gy dy).

1

For each i € m, we will now construct an algebra B; in K with certain properties.
We fix i € m. Then we have

ATz si(z)=ti(x) N .. Asp(x) = tp(x) Aui(x) % vi(x).
We show that there is B; in K such that
(6.1) B, Edz:si(z) mti(x) A A sp(x) = te(x) A () % vi(x).
Suppose that there is no such B;. Then
(6.2) KEVe: (si(x) ti(x) N... Asp(x) = tp(x)) = ui(x) = v(x).

Since A € Mod(Thqux)(kK)), also A satisfies this quasi-identity. We know
that we have sf*(a) ~ tf(a), ..., si(a) = t&(a) and u®(a) # vA(a). This

contradicts the fact that A satisfies the quasi-identity in (6.2). Hence there is B;
in K with (6.1). Let b := (by,...,b,) € B! be such that

sp*(b) = 17(b),..., sp"(b) = t7*(b) and u (b) # v (b).

We will now form an F*-expansion B} of B;. For each j € n, set oijBka = b;, and
fora € A\ {ay,...,a,}, set aB to some element of B;.

We set B, := [[;,, B and note that in the case m = 0, B, is a one element
algebra. Then B, |= ¢, and the F-reduct of B lies in Py, K.

Next, we show that C := [[ ., B, /U satisfies D. To this end, let 6 € D. Now
for all ¢ with 0 € ¢, we have B}, |= ¢ because B}, = . Hence {¢ € F |
B} = 0} 2 {6}1, and thus {¢ € F' | B} = 0} € U. By Lo§’s Theorem [BS81,
Theorem V.2.9], we therefore have C = 6. Thus C = D.

Now we define a mapping h : A — C by h(a) := a€. We claim that this mapping
is an embedding of A into the F-reduct of C. First, if f is an n-ary operation
symbol of A, ay,...,a, € Aand b= fA(ay,...,a,), the identity

b~ f(dy,..., d,)
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is an element of D. Therefore, since C = D, h(b) = b€ = fC(d:€, ..., ad,°) =
f€(h(ay),...,h(a,)) and thus h is a homomorphism.

Second, if a1, as are elements of A such that a; # ao, then @ % d» is an element
of D. Thus, since C |= D, we have h(a;) = d,€ # d>° = h(ay), and therefore h
is injective.

Therefore, since C € P, Py, K, we have A € ISP, Ps, K. O

Similarly to Corollary 5.2, we obtain:

Corollary 6.2. Let K be a class of similar algebras. Then the quasi-variety
generated by K is ISP, Py, K.

For a class K and m € N, we write P,, for the class of direct products of exactly
m algebras from K.

Theorem 6.3. Let K be a class of similar algebras of finite type, let X be a
countably infinite set, and let A be a finite algebra in Mod(Thqax)(K)) with n
elements. Then A € ISP(n)K.

2

Proof. Let A*, F and F* be as in the proof of Theorem 6.1. Let ay,...,a, be
the elements of A. Let T' (the operation tables) be defined by

T :={(f, (io,.-,im)) | m € No,ig,...,im € n,

f is an m-ary function symbol in F, a;, = f*(as,,. .., i, )},

and let
DY = {d;, ~ f(dai,...,a:,) | (f,(ig;. - im)) € T},

and

D= D* Uld # ;| i, € m,i < jyai # aj}
We fix 7,7 € n with ¢ < j. Let

o(xy, ..., 1y) = /\{ac,0 = M@y, 2,) | (f,4) €T
Then
AE3dx : p(rg,...,2) Ax 3 2y

We want to show that there is B; ; in K such that

Bivj ):Elw : 90(1'1771.71)/\371%56]
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Suppose that there is no such B; ;. Then

KEVe : o(xy,...,x,) = 2 = ;.
Since A € Mod(Thqq(x)(K)), we have
(6.3) AEVYe : p(ry,...,0,) =z R xy.

Setting (z1,...,%,) := (a1,...,a,), we see that (6.3) does not hold. This contra-
diction shows that there is B; ; in K with

B,, =3z : o(xy,...,2,) Ny x5

Let b be an n-tuple witnessing the existence of these x;’s, and for k € n, set
B*. .

a, "’ = by. Now the mapping defined by h(ay) := by = a,Bii is a homomorphism

from A* to B ;. To prove this, let f be an m-ary operation symbol in F, and let

i1, .., im € n. We assume that a;, = f2(a;,,...,a;,). Then
B}, Ea, ~ f(a,...,aq;),
and therefore
hai,) = ;B = fBii(a;,Bis, ... a; Bio) = fBii(h(ay,), ..., ha;,)),

which concludes the proof that h is a homomorphism. In addition, for i < j, we
have h(a;) # h(a;).

Let B* := [[(B},)ijen i<j- Then B* |= D, and A embeds into the F-reduct B

”) algebras in K. [

of B*. Hence A embeds into a direct product of exactly (2

Corollary 6.4. Let K be a finite set of similar finite algebras of finite type, let
X be a countably infinite set, and let A be a subdirectly irreducible algebra in
MOd(ThQId(X) (K)) Then A € ISK.

Proof. We know that there is a set I and a family (B;);c; from K such that A
embeds into [[,., B;. Since A is subdirectly irreducible, A embeds into some B,
which impies A € IS K. O

7. GENERALIZED (QUASI-IDENTITIES

A generalized quasi-identity over Y is a formula (A, ;s; = t;) — u ~ v, where

iel
I is a (possibly infinite) set and there exists a finite subset X of Y such that
u,v € T(X),and for alli € I, s; € T(X) and t; € T(X). GQIA(Y') is the class of

all generalized quasi-identities over Y. For a class K of similar algebras, let L K
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be the class of those algebras of the same signature that have the property that
every finitely generated subalgebra embeds into some member of K.

Theorem 7.1. Let K be a class of similar algebras, and let Y be a countably
infinite set. If A lies in Mod(Thgquay)(K)), then A lies in LSP K. Hence
MOd(TthId(y)(K)) =LSPK.

Proof. Let A’ be a finitely generated subalgebra of A, and let n € N and
ai,...,a, € A be such that {ay,...,a,} generates A’.
DT ={(s,t) | s,t € T({zy,...,2,}),5™(ay,...,an) = t*(ay,...,an)}
and
D™ ={(u,v) | u,v € T({z1, ..., 2n}), 5% (a1, ..., ay) #v™(ay, ... an)}.

For every (u,v) € D™, we find an algebra B,,,, in K such that B, , satisfies

drq, ..., 2,

( /\ (1, ) R, x,) A u(x, . 1) Zo(e, .., x,).
(s,t)yeD*+

Then C := H(w)eD, B, , satisfies

dry, ... @,
O AN R B T C )
(s,t)yeDt
A ( /\ w(Ty, ..o xy) F0(T1, .., T)).
(u,w)eD—

If we choose (ci,...,¢,) as witnesses for these zi,...,z,, then h : A — C,
h(tA(ay,...,a,)) = tC(cy,. .., c,) is well-defined because for ¢ = (cy,...,c,), we
have

/\ sC(cr, .. cn) =t%(cr, ... c)),

(s,t)eD+

and injective because of
(N uCler,. ) #0%(er, ).
(u,w)eD—

Therefore A’ € ISPK. Thus A € LSP K.
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Now similar to Corollary 5.2, we can argue that Mod(Thgquav)(K)) is equal to
LSPK. U

A fully generalized quasi-identity over X is a formula (A,.; s =~ ;) = u = v,
where [ is a (possibly infinite) set, u,v € T'(X), and for all i € I, s; € T(X) and
t; € T(X). FGQId(X) is the class of all quasi-identities over X. Then we have

Theorem 7.2. Let K be a class of similar algebras, and let X be a set such that
A can be generated by |X| elements. If A lies in Mod(Thrgquacx)(K)), then A
lies in ISP K. ThUS, MOd(ThFGQId(X) (K)) =ISPK.

Proof. Let a = (a;)zex be such that {a, | * € X} generates A.
D* = {(s,t) € T(X) x T(X) | s*(a) = t*(a)}
and
D™ = {(u,v) € T(X) x T(X) | u*(a) £ v*(a)}.

For every (u,v) € D7, (Aper+ s ® 1) = u ~ v is a fully generalized quasi-
identity that does not hold in A. Thus we find an algebra B, , in K and b, , €
Bifv with

(N $(buw) = t(buy)) A u(byy) 7 v(byo).

(s,t)eD+

Then B := H(u,v)eD_ B, and b with b, := ((buv)s)(wv)ep- satisfies

(A s ~t®) A N ud)#ob).

(s,t)eD™+ (u,v)eD~

Now the mapping h(t*(a)) = tB(b) is well-defined because of

and injective because of

Therefore A € ISP K.

Now similar to Corollary 5.2, we can argue that Mod(Thpaqa(v)(£)) is equal to

ISP K. O
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8. COMPLETENESS OF THE EQUATIONAL CALCULUS

In this section, we see an identity s ~ t as a pair (s, t).

Theorem 8.1. Let X be a set, and let ¥ C T'(X)xT(X). Then Thigx)(Mod(X))
is the fully invariant congruence Op1(X) generated by 3.

Proof. For Op1(X) € Thigx)(Mod(X)), we observe that Thigx)y(Mod(X)) is a

fully invariant congruence of T(X) that contains ¥ as a subset.

For Op(X) 2 Thigxy(Mod (X)), let 6 := Op(X). We first establish

(8.1) T(X)/0 | .

To this end, let (s(ml,..., n)s (1, ... x,)) € 3, and let ¢,/6,...,t,/0 €
T(X)/0. Since (s,t) € invariance under the endomorphism obtained

from extending {(z;,t;) | ¢ € n} yields (sTX)(ty, ... t), tT(X)(t1 ) €

0. Thus sTVOt/0,... ,t,/0) = sTX)(ty,...  t,)/0 = 1T (tl,... 2)/0 =

X0(t,/0, ... t,/0), completmg the proof of (8.1).

Now let (s,t) € Thigxy(Mod(X)). Then by (8.1), T(X)/0 = s(z1,...,zx)
t(z1,...,2,), and thus s/0 = sT) (a0, ..., 2,)/0 = sTE/0(21/0,... 2,/0) =
tT&0 (21 /0,. . 2,/0) = tTX) (2, .., 2,)/0 = t/0, which completes the proof
of Thyg(x)(Mod(X)) C 6. O

Q

Now the calculus can be obtained by seeing fully invariant congruences as sub-
algebras of the expansion of A x A constructed in [BS81, Lemma I1.14.4], and
applying the subalgebra generation process of [BS81, Theorem 11.3.2].
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