
SOME TOPICS IN EQUATIONAL LOGIC

Abstract. These are additional notes for the course “Universal algebra”.

The course and this presentation mainly follow [BS81].

1. Motivation

These notes are used in a course on universal algebra that follows [BS81] for

explaining the two fundamental theorems by Birkhoff from [Bir35]: the HSP-

theorem and the completeness of the equational calculus. The proofs are those

from [BS81], but some auxiliary material and explanations from this book have

been skipped. The material is complemented with some theorems on quasi-

identities from universal algebra [Mal54, BS81, Gor98] and universal algebraic

geometry [Plo19].

2. The term algebra

Let F be an algebraic language and X be a set that is disjoint from F . The set

T (X) of terms over X is a subset of (F ∪X)∗, the set of words over the alphabet

F ∪X of positive length. We define E0 := X and

En := En−1 ∪ {ft1 . . . tm | m ∈ N0, f ∈ Fm, t1, . . . , tm ∈ En−1}

for n ∈ N. Then T (X) :=
⋃
n∈N0

En.

Lemma 2.1. Let u, v be terms. If u is a prefix of v, then u = v.

Proof. Let us first consider the case u ∈ E0. By induction on n, we see that each

w ∈ En whose first letter is in X satisfies w ∈ E0. Hence v ∈ E0, and thus u = v.

We show by induction on n+m that the statement holds for all u ∈ Em, v ∈ En.

The induction basis m+ n = 0 is covered by the case u ∈ E0.
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Now we assume m+n ≥ 1. For m = 0, we have already established u = v. Hence

we assume m ≥ 1. If n = 0, then u starts with a letter in F and v with a letter

in X, contradicting that u is a prefix of v. If n ≥ 1, we can write u = ft1 . . . tr

and v = gu1 . . . us with f ∈ Fr, g ∈ Fs, t1, . . . , tr ∈ Em−1 and u1, . . . , us ∈ En−1.

Then f = g, and hence r = s. Now let i be minimal with ti 6= ui. Then ti is a

prefix of ui or ui is a prefix of ti. In both cases, the induction hypothesis yields

ti = ui. �

Lemma 2.2. Let t1, . . . , tr, u1, . . . , us ∈ T (X), f ∈ Fr, g ∈ Fs. If ft1 . . . tr =

gu1 . . . us, then r = s, f = g and ti = ui for i ∈ {1, . . . , r}.

Proof. We clearly have f = g and thus r = s. Let i be minimal with ti 6= ui.

Then either ti is a prefix of ui or ui is a prefix of ti, and hence by the previous

lemma, ui = ti. �

We have T (X) = ∅ if and only if F0∪X = ∅. For the case F0∪X 6= ∅, we define

the term algebra T(X) by fT(X)(t1, . . . , tr) := ft1 . . . tr for all r ∈ N0, f ∈ Fr.

Theorem 2.3. Let A be an algebra of type F , and let X be a set. We assume

F0 ∪X 6= ∅. Let a ∈ AX . We define a relation e ⊆ T (X)× A by e0 : E0 → A,

e0(x) = a(x) for x ∈ X, and for n ≥ 1,

en = en−1 ∪ {(ft1, . . . , tm, fA(a1, . . . , am)) |

m ∈ N0, f ∈ Fm, for all i ∈ m : (ti, ai) ∈ en−1}.

Let e :=
⋃
n∈N en. Then e is a homomorphism from T(X) to A with e|X = a .

Proof. It is easy to see that e ⊆ T (X) × A and that the first projection of e to

T (X) is surjective.

Next, we prove by induction on the length of u that for all u ∈ En and a, b ∈ A
with (u, a) ∈ e and (u, b) ∈ e, we have a = b.

If u is of length 1, it is either in X or F0. In the first case, (u, a) and (u, b) are

both elements of e0 because no other elements of e have a first component in

E0 = X. Since e0 is a function, a = b. If u ∈ F0 then we see that for all n ∈ N
with (u, a) ∈ en, we have a = uA.

If the length of u is at least 2, then since (u, a) ∈ e, there are r ∈ N0, f ∈
Fr, t1, . . . , tr ∈ T (X) and a1, . . . , ar ∈ A such that (ti, ai) ∈ e for all i ∈ r,
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u = ft1 . . . , tr and a = fA(a1, . . . , ar). Since (u, b) ∈ e, there are s ∈ N0,

g ∈ Fs, u1, . . . , us ∈ T (X) and b1, . . . , bs ∈ A such that (ui, bi) ∈ e for all i ∈ s,
u = gu1 . . . , us and a = gA(b1, . . . , br). Then by Lemma 2.2, f = g, r = s and

ti = ui for i ∈ r. Since (ti, ai) ∈ e, (ti, bi) ∈ e and ti is shorter than u, we have

ai = bi. Thus a = b.

From its construction, we see that e is the subuniverse of T(X) × A that is

generated by a . Hence e is a function and a subuniverse, and thus a homomor-

phism. �

For this e, we denote e(t) also by tA(a). Let n ∈ N, a1, . . . , an ∈ A and

x1, . . . , xn ∈ X. We write t(x1, . . . , xn) to indicate that t ∈ T ({x1, . . . , xn})
and tA(a1, . . . , an) for tA({(x1, a1), . . . , (xn, an)}). For u, v ∈ T (X), we write

A |= u ≈ v if uA(a) = vA(a) for all a ∈ AX . For a class K of similar algebras,

we say that u and v are K-equivalent if A |= u ≈ v for all A from K. In this

case, we write u ∼K v and K |= u ≈ v.

3. Class operators

Let F be an algebraic language, and let K be a class of algebras of type F . We use

the operators I,H as in [BS81]. By P K we denote the class of all algebras that

can be written as
∏

i∈I Ai for some set I and some family (Ai)i∈I of algebras from

K. Deviating from the notation from [BS81], we also allow the empty product∏
i∈∅Ai to be a member of PK. Hence for every class of similar algebras K,

the one-element algebra with universe {∅} of type F belongs to P K. When we

restrict I to be finite, then the class is PfinK. By Pu K we denote the class of all

ultraproducts of members of K.

4. The free algebra

Let K be a class of algebras of type F , and let X be a set such that F0∪X 6= ∅.

The free algebra F(X,K) constructed from X and K is defined as follows: We let

ΘK :=
⋂
{θ ∈ Con(T(X)) | T(X)/θ lies in IS K},

and we define F(X,K) := T(X)/ΘK . We observe that by its definition,

F(X,K) = T(X)/ΘK is isomorphic to a subdirect product of algebras in

IS K, and hence F(X,K) is an element of ISP K. This algebra is denoted
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by FK(X) in [BS81, Definition II.10.9] and is called the K-free algebra over

X = {x/ΘK | x ∈ X}.

Lemma 4.1. Let X be a set, let s, t ∈ T (X). Then (s, t) ∈ ΘK if and only if s

and t are K-equivalent.

Proof. For the “only if”-direction, we assume that (s, t) ∈ ΘK . Let A be an

algebra in K, and let a ∈ AX . Then by Theorem 2.3, the mapping e defined by

e(u) := uA(a)

is a homomorphism from T(X) to A. The image of e is the universe of an

algebra that lies in S {A}, and thus for θ := ker e, we have T(X)/θ ∈ IS K.

Hence ΘK ⊆ θ and therefore (s, t) ∈ ker e, which implies sA(a) = tA(a). Thus

s ∼K t.

For the “if”-direction, we assume that s ∼K t. Let θ ∈ Con(T(X)) be such

that T(X)/θ lies in IS K. Let x1, . . . , xm be the variables occurring in s and

t. By the definition of ∼K , we have K |= s(x1, . . . , xm) ≈ t(x1, . . . , xm). Since

T(X)/θ ∈ IS K, we have T(X)/θ |= s(x1, . . . , xm) ≈ t(x1, . . . , xm), and therefore

s/θ = sT(X)(x1, . . . , xm)/θ

= sT(X)/θ(x1/θ, . . . , xm/θ)

= tT(X)/θ(x1/θ, . . . , xm/θ)

= sT(X)(x1, . . . , xm)/θ

= t/θ.

Thus (s, t) ∈ θ. Hence (s, t) ∈ ΘK . �

From this property, it is easy to see that F(X,K) is free for K over {x/ΘK | x ∈
X} in the sense of [MMT87, Definition 4.107].

5. Birkhoff’s HSP-Theorem

Theorem 5.1. Let K be a class of similar algebras, and let Y be a countably

infinite set. Then Mod(ThId(Y )(K)) ⊆ HSP K.

Proof. Let B in Mod(ThId(Y )(K)), and let G be a nonempty subset of B that

generates B. Let X be a set of the same cardinality as G, and let b = (bx)x∈X be
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such that {bx | x ∈ X} = G. Let F := F(X,K) = T(X)/ΘK be the free algebra

constructed from X and K, and let

ϕ := {(t/ΘK , t
B(b)) | t ∈ T (X)}.

We first show that ϕ is a function from F to B. To this end, we suppose that

(s, t) ∈ ΘK . By the “only if”-direction of Lemma 4.1, we have s ∼K t. Let

x1, . . . , xm be the variables occurring in s and t. By the definition of ∼K , we have

K |= s(x1, . . . , xm) ≈ t(x1, . . . , xm). Since B ∈ Mod(ThId(Y )(K)), we then also

have B |= s(x1, . . . , xm) ≈ t(x1, . . . , xm), and therefore sB(b) = tB(b). Hence ϕ

is a function.

Since ϕ is the image of the homomorphism ψ : T(X) → T(X)/ΘK ×B, ψ(t) =

(t/ΘK , t
B(b)), ϕ is a subuniverse of T(X)/ΘK × B. As a function that is a

subuniverse, ϕ is a homomorphism, and therefore B ∈ H {F}. Thus B lies in

HSP K. �

We call a class K of similar algebras a variety if there is a set Y and a set Φ of

identities in the variables Y such that K = Mod(Φ).

Corollary 5.2. Let K be a class of similar algebras. Then the variety generated

by K is HSP K.

Proof. Let V (K) be the smallest variety containing K. Then there are a set Y

and a set Φ of identities in the variables Y such that V (K) = Mod(Φ). Let X

be a countably infinite set. By renaming the variables in each of the identities

in Φ, we obtain identities Φ′ in X such that Mod(Φ) = Mod(Φ′). Then we have

Φ′ ⊆ ThId(X)(Mod(Φ′)) = ThId(X)(V (K)) ⊆ ThId(X)(K), and therefore every

algebra in Mod(ThId(X)(K)) lies in Mod(Φ′) = V (K). Since Mod(ThId(X)(K))

is a variety containing K, and V (K) is the smallest variety containing K, V (K)

and Mod(ThId(X)(K)) contain the same algebras. Thus by Theorem 5.1, every

algebra in V (K) lies in HSP K.

Since validity of an identity is preserved by forming products, subalgebras and

homomorphic images, every algebra in HSP K satisfies Φ, and therefore every

algebra in HSP K lies in Mod(Φ) = V (K). �
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6. Quasi-identities

A quasi-identity over X is a formula (
∧
i∈r si ≈ ti) → u ≈ v with r ∈ N0 and

s1, . . . , sr, t1, . . . , tr, u, v ∈ T (X). QId(X) is the set of all quasi-identities over

X. A quasivariety is a class of similar algebras that is axiomatized by a set of

quasi-identities.

In [BS81], the following result is proved.

Theorem 6.1 (cf. [BS81, Theorem V.2.25]). Let K be a class of similar algebras,

let X be a countably infinite set, and let A be an algebra in Mod(ThQId(X)(K)).

Then A lies in ISPuPfinK.

Proof. We specialize the proof in [BS81]. Let A∗ be an expansion of A where for

each a ∈ A, we add a nullary operation symbol â interpreted by âA := a. We let

F be the language of A, and F∗ be the language of A∗. Let T ∗(X) be the terms

over X in the language F∗, and T ∗(∅) be the set of terms using no variables.

Each term t′ in T ∗(∅) can be written as t(a1, . . . , an), where t ∈ T ({x1, . . . , xn})
is a term of language F , a1, . . . , an ∈ A and t(a1, . . . , an) is understood as an

abbreviation of tT
∗({x1,...,xn})(â1, . . . , ân).

We define the set D of formulae in the language F∗ by

D := {s ≈ t | s, t ∈ T ∗(∅), sA
∗

= tA
∗} ∪ {s 6≈ t | s, t ∈ T ∗(∅), sA

∗ 6= tA
∗},

and we let

F := {ϕ | ϕ is a finite subset of D}.

For ϕ ∈ F , we define ϕ↑ := {ψ ∈ F | ϕ ⊆ ψ}. Let

A := {ϕ↑ | ϕ ∈ F}.

This A is a filter on the set F because (ϕ1↑) ∩ (ϕ2↑) = (ϕ1 ∪ ϕ2)↑. Hence there

exists an ultrafilter U on the set F with A ⊆ U . Altogether, U is an ultrafilter

on the set F such that for every ϕ ∈ F , we have

ϕ↑ = {ψ ∈ F | ϕ ⊆ ψ} ∈ U .

Now for every ϕ ∈ F , we construct an F∗-algebra B∗ϕ such that B∗ϕ |= ϕ and the

F -reduct of B∗ϕ lies in PfinK. Since ϕ ∈ F , there are k,m, n ∈ N0, a finite subset

{x1, . . . , xn} of X, a = (a1, . . . , an) ∈ An, and for each i ∈ k and j ∈ m there are
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F -terms si, ti, uj, vj ∈ T ({x1, . . . , xn}) such that

ϕ = {s1(a) ≈ t1(a), . . . , sk(a) ≈ tk(a)} ∪

{u1(a) 6≈ v1(a), . . . , um(a) 6≈ vm(a)}

and for i, j ∈ n with i 6= j, we have ai 6= aj. Here, s1(a) is a shorthand for

s
T∗({x1,...,xn})
1 (â1, . . . , ân).

For each i ∈ m, we will now construct an algebra Bi in K with certain properties.

We fix i ∈ m. Then we have

A |= ∃x : s1(x ) ≈ t1(x ) ∧ . . . ∧ sk(x ) ≈ tk(x ) ∧ ui(x ) 6≈ vi(x ).

We show that there is Bi in K such that

(6.1) Bi |= ∃x : s1(x ) ≈ t1(x ) ∧ . . . ∧ sk(x ) ≈ tk(x ) ∧ ui(x ) 6≈ vi(x ).

Suppose that there is no such Bi. Then

(6.2) K |= ∀x : (s1(x ) ≈ t1(x ) ∧ . . . ∧ sk(x ) ≈ tk(x ))→ ui(x ) ≈ vi(x ).

Since A ∈ Mod(ThQId(X)(K)), also A satisfies this quasi-identity. We know

that we have sA1 (a) ≈ tA1 (a), . . . , sAk (a) = tAk (a) and uAi (a) 6= vAi (a). This

contradicts the fact that A satisfies the quasi-identity in (6.2). Hence there is Bi

in K with (6.1). Let b := (b1, . . . , bn) ∈ Bn
i be such that

sBi
1 (b) = tBi

1 (b), . . . , sBi
k (b) = tBi

k (b) and uBi
i (b) 6= vBi

i (b).

We will now form an F∗-expansion B∗i of Bi. For each j ∈ n, set âj
B∗

i := bj, and

for a ∈ A \ {a1, . . . , an}, set âB
∗
i to some element of Bi.

We set B∗ϕ :=
∏

i∈mB∗i and note that in the case m = 0, B∗ϕ is a one element

algebra. Then B∗ϕ |= ϕ, and the F -reduct of B∗ϕ lies in PfinK.

Next, we show that C :=
∏

ϕ∈F B∗ϕ/U satisfies D. To this end, let δ ∈ D. Now

for all ϕ with δ ∈ ϕ, we have B∗ϕ |= δ because B∗ϕ |= ϕ. Hence {ϕ ∈ F |
B∗ϕ |= δ} ⊇ {δ}↑, and thus {ϕ ∈ F | B∗ϕ |= δ} ∈ U . By  Loś’s Theorem [BS81,

Theorem V.2.9], we therefore have C |= δ. Thus C |= D.

Now we define a mapping h : A→ C by h(a) := âC. We claim that this mapping

is an embedding of A into the F -reduct of C. First, if f is an n-ary operation

symbol of A, a1, . . . , an ∈ A and b = fA(a1, . . . , an), the identity

b̂ ≈ f(â1, . . . , ân)
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is an element of D. Therefore, since C |= D, h(b) = b̂C = fC(â1
C, . . . , ân

C) =

fC(h(a1), . . . , h(an)) and thus h is a homomorphism.

Second, if a1, a2 are elements of A such that a1 6= a2, then â1 6≈ â2 is an element

of D. Thus, since C |= D, we have h(a1) = â1
C 6= â2

C = h(a2), and therefore h

is injective.

Therefore, since C ∈ PuPfinK, we have A ∈ ISPuPfinK. �

Similarly to Corollary 5.2, we obtain:

Corollary 6.2. Let K be a class of similar algebras. Then the quasi-variety

generated by K is ISPuPfinK.

For a class K and m ∈ N, we write Pm for the class of direct products of exactly

m algebras from K.

Theorem 6.3. Let K be a class of similar algebras of finite type, let X be a

countably infinite set, and let A be a finite algebra in Mod(ThQId(X)(K)) with n

elements. Then A ∈ ISP(n
2)
K.

Proof. Let A∗, F and F∗ be as in the proof of Theorem 6.1. Let a1, . . . , an be

the elements of A. Let T (the operation tables) be defined by

T := {(f, (i0, . . . , im)) | m ∈ N0, i0, . . . , im ∈ n,

f is an m-ary function symbol in F , ai0 = fA(ai1 , . . . , aim)},

and let

D+ := {âi0 ≈ f(âi1 , . . . , âim) | (f, (i0, . . . , im)) ∈ T},

and

D := D+ ∪ {âi 6≈ âj | i, j ∈ n, i < j, ai 6= aj}.

We fix i, j ∈ n with i < j. Let

ϕ(x1, . . . , xn) :=
∧
{xi0 = fA(xi1 , . . . , xim) | (f, i) ∈ T}.

Then

A |= ∃x : ϕ(x1, . . . , xn) ∧ xi 6≈ xj.

We want to show that there is Bi,j in K such that

Bi,j |= ∃x : ϕ(x1, . . . , xn) ∧ xi 6≈ xj.
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Suppose that there is no such Bi,j. Then

K |= ∀x : ϕ(x1, . . . , xn)→ xi ≈ xj.

Since A ∈ Mod(ThQId(X)(K)), we have

(6.3) A |= ∀x : ϕ(x1, . . . , xn)→ xi ≈ xj.

Setting (x1, . . . , xn) := (a1, . . . , an), we see that (6.3) does not hold. This contra-

diction shows that there is Bi,j in K with

Bi,j |= ∃x : ϕ(x1, . . . , xn) ∧ xi 6≈ xj.

Let b be an n-tuple witnessing the existence of these xk’s, and for k ∈ n, set

a
B∗

i,j

k = bk. Now the mapping defined by h(ak) := bk = âk
B∗

i,j is a homomorphism

from A∗ to B∗i,j. To prove this, let f be an m-ary operation symbol in F , and let

i1, . . . , im ∈ n. We assume that ai0 = fA(ai1 , . . . , aim). Then

B∗i,j |= âi0 ≈ f(âi1 , . . . , ˆaim),

and therefore

h(ai0) = âi0
B∗

i,j = fB∗
i,j(âi1

B∗
i,j , . . . , ˆaim

B∗
i,j) = fB∗

i,j(h(ai1), . . . , h(aim)),

which concludes the proof that h is a homomorphism. In addition, for i < j, we

have h(ai) 6= h(aj).

Let B∗ :=
∏

(B∗i,j)i,j∈n, i<j. Then B∗ |= D, and A embeds into the F -reduct B

of B∗. Hence A embeds into a direct product of exactly
(
n
2

)
algebras in K. �

Corollary 6.4. Let K be a finite set of similar finite algebras of finite type, let

X be a countably infinite set, and let A be a subdirectly irreducible algebra in

Mod(ThQId(X)(K)). Then A ∈ IS K.

Proof. We know that there is a set I and a family (Bi)i∈I from K such that A

embeds into
∏

i∈I Bi. Since A is subdirectly irreducible, A embeds into some Bj,

which impies A ∈ IS K. �

7. Generalized Quasi-identities

A generalized quasi-identity over Y is a formula (
∧
i∈I si ≈ ti) → u ≈ v, where

I is a (possibly infinite) set and there exists a finite subset X of Y such that

u, v ∈ T (X), and for all i ∈ I, si ∈ T (X) and ti ∈ T (X). GQId(Y ) is the class of

all generalized quasi-identities over Y . For a class K of similar algebras, let LK
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be the class of those algebras of the same signature that have the property that

every finitely generated subalgebra embeds into some member of K.

Theorem 7.1. Let K be a class of similar algebras, and let Y be a countably

infinite set. If A lies in Mod(ThGQId(Y )(K)), then A lies in LSP K. Hence

Mod(ThGQId(Y )(K)) = LSP K.

Proof. Let A′ be a finitely generated subalgebra of A, and let n ∈ N and

a1, . . . , an ∈ A be such that {a1, . . . , an} generates A′.

D+ = {(s, t) | s, t ∈ T ({x1, . . . , xn}), sA(a1, . . . , an) = tA(a1, . . . , an)}

and

D− = {(u, v) | u, v ∈ T ({x1, . . . , xn}), sA(a1, . . . , an) 6= vA(a1, . . . , an)}.

For every (u, v) ∈ D−, we find an algebra Bu,v in K such that Bu,v satisfies

∃x1, . . . , xn :

(
∧

(s,t)∈D+

s(x1, . . . , xn) ≈ t(x1, . . . , xn)) ∧ u(x1, . . . , xn) 6≈ v(x1, . . . , xn).

Then C :=
∏

(u,v)∈D− Bu,v satisfies

∃x1, . . . , xn :

(
∧

(s,t)∈D+

s(x1, . . . , xn) ≈ t(x1, . . . , xn))

∧ (
∧

(u,v)∈D−

u(x1, . . . , xn) 6≈ v(x1, . . . , xn)).

If we choose (c1, . . . , cn) as witnesses for these x1, . . . , xn, then h : A′ → C,

h(tA(a1, . . . , an)) = tC(c1, . . . , cn) is well-defined because for c = (c1, . . . , cn), we

have ∧
(s,t)∈D+

sC(c1, . . . , cn) = tC(c1, . . . , cn)),

and injective because of

(
∧

(u,v)∈D−

uC(c1, . . . , cn) 6= vC(c1, . . . , cn)).

Therefore A′ ∈ ISP K. Thus A ∈ LSP K.
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Now similar to Corollary 5.2, we can argue that Mod(ThGQId(Y )(K)) is equal to

LSP K. �

A fully generalized quasi-identity over X is a formula (
∧
i∈I si ≈ ti) → u ≈ v,

where I is a (possibly infinite) set, u, v ∈ T (X), and for all i ∈ I, si ∈ T (X) and

ti ∈ T (X). FGQId(X) is the class of all quasi-identities over X. Then we have

Theorem 7.2. Let K be a class of similar algebras, and let X be a set such that

A can be generated by |X| elements. If A lies in Mod(ThFGQId(X)(K)), then A

lies in ISP K. Thus, Mod(ThFGQId(X)(K)) = ISP K.

Proof. Let a = (ax)x∈X be such that {ax | x ∈ X} generates A.

D+ = {(s, t) ∈ T (X)× T (X) | sA(a) = tA(a)}

and

D− = {(u, v) ∈ T (X)× T (X) | uA(a) 6= vA(a)}.

For every (u, v) ∈ D−, (
∧

(s,t)∈T+ s ≈ t) → u ≈ v is a fully generalized quasi-

identity that does not hold in A. Thus we find an algebra Bu,v in K and bu,v ∈
BX
u,v with

(
∧

(s,t)∈D+

s(bu,v) ≈ t(bu,v)) ∧ u(bu,v) 6≈ v(bu,v).

Then B :=
∏

(u,v)∈D− Bu,v and b with bx := ((bu,v)x)(u,v)∈D− satisfies

(
∧

(s,t)∈D+

s(b) ≈ t(b)) ∧ (
∧

(u,v)∈D−

u(b) 6≈ v(b)).

Now the mapping h(tA(a)) = tB(b) is well-defined because of∧
(s,t)∈D+

sB(b) = tB(b),

and injective because of ∧
(u,v)∈D−

uB(b) 6= vB(b).

Therefore A ∈ ISP K.

Now similar to Corollary 5.2, we can argue that Mod(ThFGQId(Y )(K)) is equal to

ISP K. �
11



8. Completeness of the equational calculus

In this section, we see an identity s ≈ t as a pair (s, t).

Theorem 8.1. Let X be a set, and let Σ ⊆ T (X)×T (X). Then ThId(X)(Mod(Σ))

is the fully invariant congruence ΘFI(Σ) generated by Σ.

Proof. For ΘFI(Σ) ⊆ ThId(X)(Mod(Σ)), we observe that ThId(X)(Mod(Σ)) is a

fully invariant congruence of T(X) that contains Σ as a subset.

For ΘFI(Σ) ⊇ ThId(X)(Mod(Σ)), let θ := ΘFI(Σ). We first establish

(8.1) T(X)/θ |= Σ.

To this end, let (s(x1, . . . , xn), t(x1, . . . , xn)) ∈ Σ, and let t1/θ, . . . , tn/θ ∈
T (X)/θ. Since (s, t) ∈ Σ, invariance under the endomorphism obtained

from extending {(xi, ti) | i ∈ n} yields (sT(X)(t1, . . . , tn), tT(X)(t1, . . . , tn)) ∈
θ. Thus sT(X)/θ(t1/θ, . . . , tn/θ) = sT(X)(t1, . . . , tn)/θ = tT(X)(t1, . . . , tn)/θ =

sT(X)/θ(t1/θ, . . . , tn/θ), completing the proof of (8.1).

Now let (s, t) ∈ ThId(X)(Mod(Σ)). Then by (8.1), T(X)/θ |= s(x1, . . . , xn) ≈
t(x1, . . . , xn), and thus s/θ = sT(X)(x1, . . . , xn)/θ = sT(X)/θ(x1/θ, . . . , xn/θ) =

tT(X)/θ(x1/θ, . . . , xn/θ) = tT(X)(x1, . . . , xn)/θ = t/θ, which completes the proof

of ThId(X)(Mod(Σ)) ⊆ θ. �

Now the calculus can be obtained by seeing fully invariant congruences as sub-

algebras of the expansion of A ×A constructed in [BS81, Lemma II.14.4], and

applying the subalgebra generation process of [BS81, Theorem II.3.2].
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