BASICS OF CLONE THEORY DRAFT

EA ET AL.

ABSTRACT. Some well known facts on clones are collected (cf. [PK79, Sze86, Maš10]).

Contents

1.	Definition of clones	1
2.	Polymorphisms and invariant relations	2
3.	The invariant relations encode the functions in a clone	4
4.	The clones of the form $Pol(\mathcal{R})$	5
5.	How the functions in a clone encode the invariant relations	6
6.	Properties of the lattice of all clones	8
7.	The definition of relational clones	10
8.	The relational clones of the form $Inv(\mathcal{F})$	10
9.	How relational clones can be described by a primitive positve formula	13
References 1-		14

1. Definition of clones

Let A be a nonempty set. Then $\mathcal{O}(A) := \bigcup \{A^{A^n} \mid n \in \mathbb{N}\}$ is the set of finitary operations on A. For $\mathcal{C} \subseteq \mathcal{O}(A)$ and $m \in \mathbb{N}$, we let $\mathcal{C}^{[m]}$ be the functions in \mathcal{C} with arity m. For $n \in \mathbb{N}$ and $j \in \{1, \ldots, n\}$, the function $\pi_j^{(n)} : A^n \to A$ is

Date: December 7, 2018.

Course material for the course "Universal Algebra", JKU Linz, Summer term 2011. With corrections and additions by Markus Steindl from 2014.

defined by $\pi_j^{(n)}(x_1,\ldots,x_n) := x_j$ for all $x_1,\ldots,x_n \in A$. For $n \in \mathbb{N}$, a subset R of A^n is also called a n-ary relation on A, and for any set I, a subset of A^I is also called a relation on A indexed by I. Let $v \in A^I$. Then we will denote v also by $\langle v(i) \mid i \in I \rangle$. The expression $\langle v(i) \mid i \in I \rangle$ can also be seen as a shorthand for $\{(i,v(i)) \mid i \in I\}$. For $m,n \in \mathbb{N}$, $f \in \mathcal{O}(A)^{[n]}$, and $g_1,\ldots,g_n \in \mathcal{O}(A)^{[m]}$, $f(g_1,\ldots,g_n)$ denotes the function $\langle f(g_1(x),\ldots,g_n(x)) \mid x \in A^m \rangle$.

Definition 1.1 (Clone). Let A be a set, $J \neq \emptyset$, $C \subseteq \mathcal{O}(A)$. C is a clone on A if

- (1) for all $n, j \in \mathbb{N}$ with $j \leq n$, we have $\pi_j^{(n)} \in \mathcal{C}$;
- (2) for all $n, m \in \mathbb{N}$, for all $f \in \mathcal{C}^{[n]}$ and for all $g_1, \ldots, g_n \in \mathcal{C}^{[m]}$, we have $f(g_1, \ldots, g_n) \in \mathcal{C}^{[m]}$.

Proposition 1.2. Let A be a set, and let all C_j $(j \in J)$ be clones on A. Then $\bigcap \{C_j \mid j \in J\}$ is a clone on A.

Proof: It can be seen from Definition 1.1 that the properties carry over to arbitrary intersections. \Box

2. Polymorphisms and invariant relations

Definition 2.1 (Preservation of a relation). Let A and I be nonempty sets, let $f: A^n \to A$, and let $R \subseteq A^I$. We say that f preserves R if for all $v_1, \ldots, v_n \in R$, we have $\langle f(v_1(i), \ldots, v_n(i)) \mid i \in I \rangle \in R$. Then R is invariant under f, and we write $f \rhd R$. We also say that f is a polymorphism of the relational structure (A; R) and that f is compatible with R.

Using the terminology of universal algebra, we see that an operation f preserves $R \subseteq A^I$ if and only if R is a subuniverse of $\langle A, f \rangle^I$. ¿From a relation that is invariant under f, other invariant relations can be constructed in the following ways.

Definition 2.2. Let A, I, J be nonempty sets, let $R \subseteq A^J$, and let σ be a function from I to J. Then $R * \sigma$ is a subset of A^I defined by $R * \sigma := \{v \circ \sigma \mid v \in R\}$.

Definition 2.3. Let A be a nonempty set, let I, J be sets, let $S \subseteq A^J$, and let $\sigma: J \to I$. Then $(S:\sigma)_I$ is the subset of A^I defined by $(S:\sigma)_I := \{g \in A^I \mid g \circ \sigma \in S\}$.

Lemma 2.4. Let A, I, J be nonempty sets, let $R \subseteq A^J$, let $\sigma : I \to J$ and $\tau : J \to I$. Let $f \in \mathcal{O}(A)$ be such that $f \rhd R$. Then $f \rhd R * \sigma$ and $f \rhd (R : \tau)_I$.

Proof: Let n be the arity of f, and let $w_1, \ldots, w_n \in R * \sigma$. We have to show $\langle f(w_1(i), \ldots, w_n(i)) \mid i \in I \rangle \in R * \sigma$. Let $k \in \{1, \ldots, n\}$. Since $w_k \in R * \sigma$, there is $v_k \in R$ such that $w_k = v_k \circ \sigma$. Now we have to show

$$(2.1) \langle f(v_1(\sigma(i)), \dots, v_n(\sigma(i))) \mid i \in I \rangle \in R * \sigma.$$

Let $g := \langle f(v_1(j), \dots, v_n(j)) \mid j \in J \rangle$. Since $v_1, \dots, v_n \in R$, $f \rhd R$ implies that $g \in R$. Therefore, $g \circ \sigma \in R * \sigma$. We have

$$g \circ \sigma = \langle f(v_1(\sigma(i)), \dots, v_n(\sigma(i))) \mid i \in I \rangle.$$

Thus, since $g \circ \sigma \in R * \sigma$, (2.1) holds, which completes the proof of $f \triangleright R * \sigma$.

For proving $f \rhd (S : \tau)_I$, we let $g_1, \ldots, g_n \in (S : \tau)_I$. We have to show $\langle f(g_1(i), \ldots, g_n(i)) \mid i \in I \rangle \in (S : \tau)_I$. To this end, we show

$$(2.2) \langle f(g_1(i), \dots, g_n(i)) \mid i \in I \rangle \circ \tau \in S.$$

We have $\langle f(g_1(i), \ldots, g_n(i)) \mid i \in I \rangle \circ \tau = \langle f(g_1 \circ \tau(j), \ldots, g_n \circ \tau(j)) \mid j \in J \rangle$. Since $g_1 \circ \tau \in S, \ldots, g_n \circ \tau \in S$, the fact that $f \triangleright S$ implies $\langle f(g_1 \circ \tau(j), \ldots, g_n \circ \tau(j)) \mid j \in J \rangle \in S$, which implies (2.2).

If I is a finite set, a relation $R \subseteq A^I$ can therefore often be replaced with a relation R' on A^m , where m := |I|.

For a nonempty set A, we let $\mathcal{R}(A) := \bigcup_{n \in \mathbb{N}} \mathcal{P}(A^n)$ be the set of all finitary relations on A that are indexed by an initial section of the natural numbers. We will write \underline{n} for the set $\{1,\ldots,n\}$. As is usual, the set A^n is understood to be the same set as A^n . For $\mathcal{R} \subseteq \mathcal{R}(A)$, we let $\mathcal{R}^{[n]} := \{R \in \mathcal{R} \mid R \subseteq A^n\}$. We note that the $\mathcal{R}^{[n]}$ need not be disjoint, since each of them might contain \emptyset .

Definition 2.5. Let $m \in \mathbb{N}$, let A be a nonempty set, and let $\mathcal{F} \subseteq \mathcal{O}(A)$. We define $\mathsf{Inv}^{[m]}(\mathcal{F}) := \{R \subseteq A^m \mid \forall f \in \mathcal{F} : f \rhd R\}$, and $\mathsf{Inv}(\mathcal{F}) := \bigcup \{\mathsf{Inv}^{[m]}(\mathcal{F}) \mid m \in \mathbb{N}\}$.

Definition 2.6. Let $m \in \mathbb{N}$, let A, I be nonempty sets, and let $R \subseteq A^I$. Then $\mathsf{Pol}^{[m]}(\{R\}) := \{f : A^m \to A \mid f \rhd R\}$. If I_j $(j \in J \text{ with } j \neq \emptyset)$ are sets, $R_j \subseteq A^{I_j}$ for $j \in J$, and $\mathcal{R} := \{R_j \mid j \in J\}$, then we define $\mathsf{Pol}^{[m]}(\mathcal{R}) := \bigcap \{\mathsf{Pol}^{[m]}(\{R\}) \mid R \in \mathcal{R}\}$. Furthermore, $\mathsf{Pol}(\mathcal{R}) := \bigcup \{\mathsf{Pol}^{[m]}(\mathcal{R}) \mid m \in \mathbb{N}\}$.

Theorem 2.7. Let A be a set, let $\mathcal{R}, \mathcal{R}_1, \mathcal{R}_2$ be sets of finitary relations on A, and let $\mathcal{F}, \mathcal{F}_1, \mathcal{F}_2$ be sets of finitary operations on A. Then we have:

- (1) $\mathcal{R}_1 \subseteq \mathcal{R}_2 \Rightarrow \mathsf{Pol}(\mathcal{R}_2) \subseteq \mathsf{Pol}(\mathcal{R}_1)$.
- (2) $\mathcal{F}_1 \subseteq \mathcal{F}_2 \Rightarrow \mathsf{Inv}(\mathcal{F}_2) \subseteq \mathsf{Inv}(\mathcal{F}_1)$.
- (3) $\mathcal{F} \subseteq \mathsf{Pol}(\mathsf{Inv}(\mathcal{F}))$.
- $(4) \ \mathcal{R} \subseteq \mathsf{Inv}(\mathsf{Pol}(\mathcal{R})).$
- (5) $Pol(Inv(Pol(\mathcal{R}))) = Pol(\mathcal{R}).$
- (6) $Inv(Pol(Inv(\mathcal{F}))) = Inv(\mathcal{F}).$

Proof: (1) Let $f \in Pol(\mathcal{R}_2)$, and let $R \in \mathcal{R}_1$. Then $R \in \mathcal{R}_2$, and since $f \in Pol(\mathcal{R}_2)$, we have $f \triangleright R$.

- (2) Let $R \in Inv(\mathcal{F}_2)$, and let $f \in \mathcal{F}_1$. Then $f \in \mathcal{F}_2$, and since $R \in Inv(\mathcal{F}_2)$, we have $f \triangleright R$.
- (3) Let $f \in \mathcal{F}$. To prove that $f \in \mathsf{Pol}(\mathsf{Inv}(\mathcal{F}))$, we let $R \in \mathsf{Inv}(\mathcal{F})$. Then since $f \in \mathcal{F}$, we have $f \rhd R$. Hence we have $f \in \mathsf{Pol}(\mathsf{Inv}(\mathcal{F}))$.
- (4) Let $R \in \mathcal{R}$. To prove that $R \in \mathsf{Inv}(\mathsf{Pol}(\mathcal{R}))$, we let $f \in \mathsf{Pol}(\mathcal{R})$. Since $R \in \mathcal{R}$, we have $f \rhd R$. Hence we have $R \in \mathsf{Inv}(\mathsf{Pol}(\mathcal{R}))$.
- (5) By item (4), we have $\mathcal{R} \subseteq Inv(Pol(\mathcal{R}))$, and therefore by item (1) the inclusion $Pol(Inv(Pol(\mathcal{R}))) \subseteq Pol(\mathcal{R})$ holds. The other inclusion follows from (3) by setting $\mathcal{F} := Pol(\mathcal{R})$.
- (6) By item (3), we have $\mathcal{F} \subseteq \mathsf{Pol}(\mathsf{Inv}(\mathcal{F}))$, and therefore by item (2) the inclusion $\mathsf{Inv}(\mathsf{Pol}(\mathsf{Inv}(\mathcal{F}))) \subseteq \mathsf{Inv}(\mathcal{F})$ holds. The other inclusion follows from item (4) by setting $\mathcal{R} := \mathsf{Inv}(\mathcal{F})$.

3. The invariant relations encode the functions in a clone

Lemma 3.1. Let C be a clone on the set A, let $m \in \mathbb{N}$, let $f \in C^{[m]}$, and let R be the subset of A^{A^n} defined by $R := C^{[n]}$. Then $f \triangleright R$.

Proof: Let $g_1, \ldots, g_m \in R$. Since $g_1, \ldots, g_m \in \mathcal{C}^{[n]}$ and $f \in \mathcal{C}^{[m]}$, we have $f(g_1, \ldots, g_m) \in \mathcal{C}^{[n]}$, and hence $f(g_1, \ldots, g_m) \in R$. Now $f(g_1, \ldots, g_m) = \langle f(g_1(i), \ldots, g_m(i)) \mid i \in A^n \rangle$. Therefore, the last expression lies in R, which completes the proof of $f \triangleright R$.

Theorem 3.2. Let C be a clone on the set A, let $n \in \mathbb{N}$, and let $f: A^n \to A$, and let R be the subset of A^{A^n} defined by $R := C^{[n]}$. Then the following are equivalent:

- (1) $f \in \mathcal{C}$;
- (2) $f \triangleright R$;

If A is finite and $m := |A|^n$, then each of these properties is furthermore equivalent to

(3) $f \in \operatorname{Pol}(\operatorname{Inv}^{[m]}(\mathcal{C}))$.

Proof: $(1)\Rightarrow(2)$: This follows from Lemma 3.1.

(2) \Rightarrow (1): We know that $\pi_1^{(n)} \in R, \ldots, \pi_n^{(n)} \in R$. Since $f \triangleright R$, we have $\langle f(\pi_1^{(n)}(i), \ldots, \pi_n^{(n)}(i)) \mid i \in A^n \rangle \in R$, and hence $f(\pi_1^{(n)}, \ldots, \pi_n^{(n)}) \in R$. Therefore $f \in R$, which means $f \in \mathcal{C}^{[n]}$.

(1) \Rightarrow (3): By Theorem 2.7 (3), we have $\mathcal{C} \subseteq \mathsf{Pol}(\mathsf{Inv}(\mathcal{C}))$. Since $\mathsf{Inv}^{[m]}(\mathcal{C}) \subseteq \mathsf{Inv}(\mathcal{C})$, item (1) of Theorem 2.7 yields $\mathsf{Pol}(\mathsf{Inv}(\mathcal{C})) \subseteq \mathsf{Pol}(\mathsf{Inv}^{[m]}(\mathcal{C}))$.

(3) \Rightarrow (2): From Lemma 3.1, we know that for all functions $c \in \mathcal{C}$, we have $c \triangleright R$. Now let π be a bijective map from $\{1,\ldots,m\}$ to A^n , and let $R':=R*\pi=\{r\circ\pi\mid r\in R\}$. The relation R' is a subset of A^m . By Lemma 2.4, we have $c\triangleright R'$ for all $c\in\mathcal{C}$. Therefore, $R'\in \mathsf{Inv}^{[m]}(\mathcal{C})$. Since $f\in \mathsf{Pol}(\mathsf{Inv}^{[m]}(\mathcal{C}))$, we have $f\triangleright R'$. Now $R=\{f\circ\pi^{-1}\mid f\in R'\}$, and thus Lemma 2.4 yields that $f\triangleright R$.

4. The clones of the form $Pol(\mathcal{R})$

Proposition 4.1. Let A, I be sets, and let $R \subseteq A^I$. Then $Pol(\{R\})$ is a clone on A.

Proof: Let $n, j \in \mathbb{N}$ be such that $i \leq n$. We first show that $\pi_j^{(n)}$ lies in $Pol(\{R\})$. To this end, let $v_1, \ldots, v_n \in R$. We have to show

(4.1)
$$\langle \pi_i^{(n)}(v_1(i), \dots, v_n(i)) \mid i \in I \rangle \in R.$$

We have $\langle \pi_j^{(n)}(v_1(i), \dots, v_n(i)) \mid i \in I \rangle = \langle v_j(i) \mid i \in I \rangle = v_j$. Since $v_j \in R$, (4.1) is proved.

Now let $n, m \in \mathbb{N}$, and let $g_1, \ldots, g_n \in A^{A^m}$, $f \in A^{A^n}$ such that all functions g_1, \ldots, g_m, f preserve R. Now let $v_1, \ldots, v_m \in R$. For each $j \in \{1, \ldots, n\}$, we

have $g_i \triangleright R$, and therefore

$$w_j := \langle g_j(v_1(i), \dots, v_m(i)) \mid i \in I \rangle \in R.$$

Since f > R, we have $\langle f(w_1(i), \dots, w_n(i)) | i \in I \rangle \in R$, and hence $\langle f(g_1(v_1(i), \dots, v_m(i)), \dots, g_n(v_1(i), \dots, v_m(i))) | i \in I \rangle \in R$. Hence

$$\langle f(g_1,\ldots,g_n) \left(v_1(i),\ldots,v_m(i)\right) \mid i \in I \rangle \in R,$$

and thus $Pol(\{R\})$ is closed under composition.

Theorem 4.2. Let A be a finite set, and let C be a clone on A. Then C = Pol(Inv(C)).

Proof: The inclusion \subseteq is a consequence of Theorem 2.7. For the other inclusion, let $f \in \mathsf{Pol}(\mathsf{Inv}(\mathcal{C}))$. Let n be the arity of f, and let $m := |A|^n$. Then $\mathsf{Inv}^{[m]}(\mathcal{C}) \subseteq \mathsf{Inv}(\mathcal{C})$, and thus by Theorem 2.7 (1), we have $f \in \mathsf{Pol}(\mathsf{Inv}^{[m]}(\mathcal{C}))$. Now from Theorem 3.2, we obtain $f \in \mathcal{C}$.

Corollary 4.3. Let A be a finite set, and let \mathcal{F} be a subset of $\mathcal{O}(A)$. Then $\mathsf{Pol}(\mathsf{Inv}(\mathcal{F}))$ is a clone, and for every clone \mathcal{D} with $\mathcal{F} \subseteq \mathcal{D}$, we have $\mathsf{Pol}(\mathsf{Inv}(\mathcal{F})) \subseteq \mathcal{D}$.

Proof: From Propositions 4.1 and 1.2, we obtain that $\mathsf{Pol}(\mathsf{Inv}(\mathcal{F}))$ is a clone. Now let \mathcal{D} be a clone containing all functions from \mathcal{F} . Then from items (1) and (2) of Theorem 2.7, we obtain $\mathsf{Pol}(\mathsf{Inv}(\mathcal{F})) \subseteq \mathsf{Pol}(\mathsf{Inv}(\mathcal{D}))$. By Theorem 4.2, we have $\mathsf{Pol}(\mathsf{Inv}(\mathcal{D})) = \mathcal{D}$, hence $\mathsf{Pol}(\mathsf{Inv}(\mathcal{F})) \subseteq \mathcal{D}$.

5. How the functions in a clone encode the invariant relations

Theorem 5.1. Let A be a nonempty set, let C be a clone on A, let $n, t \in \mathbb{N}$, and let S be a subset of A^t with $S \in \mathsf{Inv}^{[t]}(C^{[n]})$. We assume that S is n-generated as a subuniverse of $\langle A, C^{[n]} \rangle^t$. Then there exists $\sigma : \{1, \ldots, t\} \to A^n$ such that $S = C^{[n]} * \sigma$. Furthermore, we then have $S \in \mathsf{Inv}(C)$.

Proof: Let $s_1, \ldots, s_n \in S$ such that the subuniverse of $\langle A, \mathcal{C}^{[n]} \rangle^t$ that is generated by $\{s_1, \ldots, s_n\}$ is equal to S. We define $\sigma : \{1, \ldots, t\} \to A^n$ by

$$\sigma(r)(i) := s_i(r)$$

for $r \in \{1, \dots, t\}$, $i \in \{1, \dots, n\}$. We will now prove

$$(5.1) S = \mathcal{C}^{[n]} * \sigma.$$

For \subseteq , we first show that all s_i are elements of $\mathcal{C}^{[n]} * \sigma$. To this end, let $i \in \{1,\ldots,n\}$. Let us now compute $\pi_i^{(n)} \circ \sigma$. This is a function from $\{1,\ldots,t\}$ to A, and for $r \in \{1,\ldots,t\}$, we have $\pi_i^{(n)}(\sigma(r)) = \pi_i^{(n)}(\sigma(r)(1),\ldots,\sigma(r)(n)) = \sigma(r)(i) = s_i(r)$. Hence $\pi_i^{(n)} \circ \sigma = s_i$. Thus s_i lies in $\mathcal{C}^{[n]} * \sigma$. By Lemma 2.4, $\mathcal{C}^{[n]} * \sigma$ is a subuniverse of $\langle A, \mathcal{C} \rangle^t$. Therefore, it is also a subuniverse of the reduct $\langle A, \mathcal{C}^{[n]} \rangle^t$ of $\langle A, \mathcal{C} \rangle^t$. Thus we have $S \subseteq \mathcal{C}^{[n]} * \sigma$.

To prove \supseteq of (5.1), we let $f \in \mathcal{C}^{[n]}$ and consider

(5.2)
$$g := f \circ \sigma = \langle f \circ \sigma(r) \mid r \in \{1, \dots, t\} \rangle$$
$$= \langle f(\sigma(r)) \mid r \in \{1, \dots, t\} \rangle$$
$$= \langle f(\sigma(r)(1), \dots, \sigma(r)(n)) \mid r \in \{1, \dots, t\} \rangle$$
$$= \langle f(s_1(r), \dots, s_n(r)) \mid r \in \{1, \dots, t\} \rangle.$$

We know that $s_1, \ldots, s_n \in S$. Since $f \in \mathcal{C}^{[n]}$ and $S \in \mathsf{Inv}(\mathcal{C}^{[n]})$, we have that $f \triangleright S$. Hence the last expression of (5.2) is an element S. Therefore $f \circ \sigma \in S$, which completes the proof of (5.1).

By Lemma 3.1, we know that $\mathcal{C}^{[n]}$ is invariant under all operations in \mathcal{C} . Hence by Lemma 2.4, $S = \mathcal{C}^{[n]} * \sigma$ is invariant under all operations in \mathcal{C} . Thus $S \in \mathsf{Inv}(\mathcal{C})$.

Corollary 5.2. Let A be a nonempty set, let C be a clone on A, let $t \in \mathbb{N}$, let S be a finite subset of A^t , and let n := |S|. Then the following are equivalent:

- $(1) S \in \mathsf{Inv}(\mathcal{C}^{[n]}).$
- (2) There exists $\sigma: \{1, \ldots, t\} \to A^n$ such that $S = \mathcal{C}^{[n]} * \sigma$.
- $(3) S \in \mathsf{Inv}(\mathcal{C}).$

Proof: (1) \Rightarrow (2): Since |S| = n, S is n-generated as a subuniverse of $\langle A, \mathcal{C}^{[n]} \rangle^t$. Hence by Theorem 5.1, there is a σ : $\{1, \ldots, t\} \to A^n$ such that $S = \mathcal{C}^{[n]} * \sigma$. (2) \Rightarrow (3): By Lemma 3.1, we know that $\mathcal{C}^{[n]}$ is invariant under all operations in \mathcal{C} . Hence by Lemma 2.4, $S = \mathcal{C}^{[n]} * \sigma$ is invariant under all operations in \mathcal{C} . Thus $S \in \mathsf{Inv}(\mathcal{C})$. (3) \Rightarrow (1): This follows from Theorem 2.7 (2).

Corollary 5.3. Let A be a nonempty set, let C be a clone, and let $m, n, t \in \mathbb{N}$. We assume that $m \leq n$, $S \in Inv(C^{[n]})$, and that S is n-generated as a subuniverse of $\langle A, C^{[m]} \rangle^t$. Then $S \in Inv(C)$.

Proof: Since S is n-generated as a subuniverse of $\langle A, \mathcal{C}^{[m]} \rangle^t$ and $m \leq n$, S is also n-generated as a subuniverse of $\langle A, \mathcal{C}^{[n]} \rangle^t$. Thus by Theorem 5.1, there is a $\sigma: \{1, \ldots, t\} \to A^n$ such that $S = \mathcal{C}^{[n]} * \sigma$. Now by Lemma 3.1 and Lemma 2.4, every $f \in \mathcal{C}$ preserves S.

6. Properties of the lattice of all clones

Definition 6.1. Let A be a nonempty set, and let \mathcal{F} be a subset of $\mathcal{O}(A)$. Then $\mathsf{Clone}(\mathcal{F})$ denotes the smallest clone \mathcal{C} on A with $\mathcal{F} \subseteq \mathcal{C}$.

By Corollary 4.3, for a finite set A, we have $\mathsf{Clone}(\mathcal{F}) = \mathsf{Pol}(\mathsf{Inv}(\mathcal{F}))$.

Definition 6.2. Let A be a nonempty set, and let \mathcal{C} be a clone on A. The clone \mathcal{C} is *finitely generated* if there is a finite subset \mathcal{F} of \mathcal{C} with $\mathsf{Clone}(\mathcal{F}) = \mathcal{C}$. the clone \mathcal{C} is *finitely related* if there is a finite set $\mathcal{R} \subseteq \mathcal{R}(A)$ such that $\mathcal{C} = \mathsf{Pol}(\mathcal{R})$.

For a nonempty set A, let $\mathbf{C}(A)$ be the set of clones on A. For $\mathcal{C}, \mathcal{D} \in \mathbf{C}(A)$, we write $\mathcal{C} \leq \mathcal{D}$ if $\mathcal{C} \subseteq \mathcal{D}$, $\mathcal{C} < \mathcal{D}$ if $\mathcal{C} \leq \mathcal{D}$ and $\mathcal{C} \neq \mathcal{D}$, and $\mathcal{C} \prec \mathcal{D}$ if $\mathcal{C} < \mathcal{D}$ and there is no clone \mathcal{E} with $\mathcal{C} < \mathcal{E} < \mathcal{D}$.

Theorem 6.3. Let A be a finite nonempty set, and let C be a finitely generated clone on A. Let $N \in \mathbb{N}$ be such that $C = \mathsf{Clone}(C^{[N]})$. Then we have:

- (1) $S(\mathcal{C}) := \{ \mathcal{D} \in \mathbf{C}(A) \mid \mathcal{D} \prec \mathcal{C} \}$ is finite (and has at most $2^{|A|^{|A|^N}}$ elements).
- (2) For all $\mathcal{E} \in \mathbf{C}(A)$ with $\mathcal{E} < \mathcal{C}$ there is a $\mathcal{D} \in S(\mathcal{C})$ such that $\mathcal{E} \leq \mathcal{D}$.

Proof: Let $S_0(\mathcal{C}) := \{\mathcal{C} \cap \mathsf{Pol}(\{\rho\}) \mid \rho \subseteq A^{(|A|^N)}, \rho \notin \mathsf{Inv}(\mathcal{C})\}.$

Let $\mathcal{E} \in \mathbf{C}(A)$ with $\mathcal{E} < \mathcal{C}$. Suppose first that $\mathsf{Inv}^{[|A|^N]}(\mathcal{E}) \subseteq \mathsf{Inv}^{[|A|^N]}(\mathcal{C})$. We show that then we have $\mathcal{C}^{[N]} \subseteq \mathcal{E}$. To this end, let $f \in \mathcal{C}^{[N]}$. Then $f \in \mathsf{Pol}(\mathsf{Inv}(\mathcal{C})) \subseteq \mathsf{Pol}(\mathsf{Inv}^{[|A|^N]}(\mathcal{C})) = \mathsf{Pol}(\mathsf{Inv}^{[|A|^N]}(\mathcal{E}))$. Hence by Theorem 3.2, we have $f \in \mathcal{E}$. This completes the proof of $\mathcal{C}^{[N]} \subseteq \mathcal{E}$. Hence $\mathcal{C} \subseteq \mathcal{E}$, contradicting $\mathcal{E} < \mathcal{C}$. This contradiction shows that there exists $\rho \in \mathsf{Inv}^{[|A|^N]}(\mathcal{E})$ with $\rho \not\in \mathsf{Inv}(\mathcal{C})$. Now we have $\mathcal{E} \subseteq \mathsf{Pol}(\{\rho\})$, and therefore $\mathcal{E} \subseteq \mathsf{Pol}(\{\rho\}) \cap \mathcal{C}$. Hence we have that every

 $\mathcal{E} \in \mathbf{C}(A)$ with $\mathcal{E} < \mathcal{C}$ is contained in an element of $S_0(\mathcal{C})$. Thus, the set $S(\mathcal{C})$ is a subset of $S_0(\mathcal{C})$, and therefore finite.

We now show that every $\mathcal{E} \in \mathbf{C}(A)$ with $\mathcal{E} < \mathcal{C}$ is contained in some \mathcal{D} with $\mathcal{E} \leq \mathcal{D} \prec \mathcal{C}$. To this end, let \mathcal{D} be maximal in $S_0(\mathcal{C})$ with $\mathcal{E} \leq \mathcal{D}$. To show $\mathcal{D} \prec \mathcal{C}$, let \mathcal{D}_1 be such that $\mathcal{D} < \mathcal{D}_1 < \mathcal{C}$. Then there is $\mathcal{D}_2 \in S_0(\mathcal{C})$ such that $\mathcal{D}_1 \leq \mathcal{D}_2$. This \mathcal{D}_2 contradicts the maximality of \mathcal{D} .

Lemma 6.4. Let A be a finite nonempty set, and let $C \in \mathbf{C}(A)$. Then the following are equivalent:

- (1) C is not finitely generated.
- (2) There is a strictly increasing sequence $(C_i)_{i\in\mathbb{N}}$ of clones with $\bigcup_{i\in\mathbb{N}} C_i = C$.

Proof: (1) \Rightarrow (2): Let $f_1, f_2, ...$ be an enumeration of all functions in $\mathcal{O}(A)$. Let \mathcal{C}_1 be the clone on A consisting only of projections. For $i \geq 2$, let $\sigma(i)$ be minimal such that $f_{\sigma(i)} \in \mathcal{C} \setminus \mathcal{C}_{i-1}$ and $\mathcal{C}_i := \mathsf{Clone}(\{f_{\sigma(j)} \mid j \leq i\})$.

 $(2)\Rightarrow(1)$: If \mathcal{C} is finitely generated by f_1,\ldots,f_m , then each of these generators is contained in some \mathcal{C}_i . Hence there is a $j\in\mathbb{N}$ such that \mathcal{C}_j contains f_1,\ldots,f_m , and therefore $\mathcal{C}_j=\mathcal{C}$. This contradicts the fact that $(\mathcal{C}_i)_{i\in\mathbb{N}}$ is strictly increasing. \square

Theorem 6.5. Let A be a finite nonempty set, and let C be a finitely related clone on A. Let R be a finite subset of R(A) such that C = Pol(R), and let $N \in \mathbb{N}$ be such that for all $\rho \in R$ we have $|\rho| \leq N$. Then we have:

- (1) $T(\mathcal{C}) := \{ \mathcal{D} \in \mathbf{C}(A) \mid \mathcal{C} \prec \mathcal{D} \}$ is finite (and has at most $|A|^{|A|^N}$ elements).
- (2) For all $\mathcal{E} \in \mathbf{C}(A)$ with $\mathcal{C} < \mathcal{E}$ there is a $\mathcal{D} \in T(\mathcal{C})$ such that $\mathcal{D} \leq \mathcal{E}$.

Proof: Let $T_0(\mathcal{C}) := \{\mathsf{Clone}(\mathcal{C} \cup \{f\}) \mid f : A^N \to A, f \notin \mathcal{C}\}.$

Now let $\mathcal{E} \in \mathbf{C}(A)$ be such that $\mathcal{C} < \mathcal{E}$. Suppose first that $\mathcal{E}^{[N]} \subseteq \mathcal{C}^{[N]}$. We show that then we have $\mathcal{E} \subseteq \mathcal{C}$. To this end, let $\rho \in \mathcal{R}$. Then $\rho \in \mathsf{Inv}(\mathcal{C}^{[N]}) \subseteq \mathsf{Inv}(\mathcal{E}^{[N]})$ Then since $|\rho| \leq N$, Corollary 5.2 yields $\rho \in \mathsf{Inv}(\mathcal{E})$. Hence \mathcal{E} preserves every relation $\rho \in \mathcal{R}$. Thus $\mathcal{E} \subseteq \mathsf{Pol}(\mathcal{R}) = \mathcal{C}$. This contradicts the assumption $\mathcal{C} < \mathcal{E}$, and establishes the existence of an N-ary function $f \in \mathcal{E}$ with $f \notin \mathcal{C}$. Thus $\mathsf{Clone}(\mathcal{C} \cup \{f\}) \subseteq \mathcal{E}$. Altogether, every clone \mathcal{D} with $\mathcal{C} < \mathcal{D}$ contains an element of $T_0(\mathcal{C})$ as a subclone. Hence $T(\mathcal{C}) \subseteq T_0(\mathcal{C})$.

Now let \mathcal{E} be a clone with $\mathcal{C} < \mathcal{E}$. Let \mathcal{D} minimal in $T_0(\mathcal{C})$ with $\mathcal{D} \leq \mathcal{E}$. Suppose $\mathcal{C} \prec \mathcal{D}$ fails. Then there is $\mathcal{D}_1 \in \mathbf{C}(A)$ with $\mathcal{C} < \mathcal{D}_1 < \mathcal{D}$. Now there is a clone

 $\mathcal{D}_2 \in T_0(\mathcal{C})$ with $\mathcal{D}_2 \leq \mathcal{D}_1$, contradicting the minimality of \mathcal{D} . Hence we have $\mathcal{C} \prec \mathcal{D}$.

Lemma 6.6. Let A be a finite nonempty set, and let $C \in \mathbf{C}(A)$. Then the following are equivalent:

- (1) C is not finitely related.
- (2) There is a strictly decreasing sequence $(C_i)_{i\in\mathbb{N}}$ of clones with $\bigcap_{i\in\mathbb{N}_0} C_i = C$.

Proof: (1) \Rightarrow (2): Let ρ_1, ρ_2, \ldots be an enumeration of $\mathsf{Inv}(\mathcal{C})$ and $\mathcal{C}_1 := \mathcal{O}(A)$. For $i \geq 2$, let s(i) be minimal such that $\rho_{s(i)} \not\in \mathsf{Inv}(\mathcal{C}_{i-1})$, and let $\mathcal{C}_i := \mathsf{Pol}(\{\rho_{s(j)} \mid j \leq i\} = \mathcal{C}_{i-1} \cap \mathsf{Pol}(\{\rho_{s(i)}\}) = \mathsf{Pol}(\mathsf{Inv}(\mathcal{C}_{i-1}) \cup \{\rho_{s(i)}\}) \subset \mathcal{C}_{i-1}$.

 $(2)\Rightarrow(1)$: Suppose $\mathcal{C}=\mathsf{Pol}(\{\rho_1,\ldots,\rho_m\})$, and let $N:=\max\{|\rho_j|:j\in\{1,\ldots,m\}\}$. Let r be such that $\mathcal{C}_r^{[N]}=\mathcal{C}^{[N]}$. Then $\mathcal{D}:=\mathcal{C}_r$ preserves all relations in $\{\rho_1,\ldots,\rho_m\}$. Therefore $\mathcal{C}_r\leq\mathsf{Pol}(\{\rho_1,\ldots,\rho_m\})=\mathcal{C}$, contradicting the fact that $(\mathcal{C}_i)_{i\in\mathbb{N}}$ is strictly decreasing.

7. The definition of relational clones

Definition 7.1. Let A be a nonempty set, and let $\mathcal{R} \subseteq \mathcal{R}(A)$. Then \mathcal{R} is a relational clone if and only if

- (1) For all $m, n \in \mathbb{N}$, for all $R \in \mathcal{R}^{[m]}$, and for all $\sigma : \underline{n} \to \underline{m}$, we have $R * \sigma \in \mathcal{R}^{[n]}$.
- (2) For all $m, n \in \mathbb{N}$, for all $R \in \mathcal{R}^{[n]}$, and for all $\sigma : \underline{n} \to \underline{m}$, we have $(R : \sigma)_m \in \mathcal{R}^{[m]}$.
- (3) For all $n \in \mathbb{N}$ and $R, S \in \mathcal{R}^{[n]}$, we have $R \cap S \in \mathcal{R}^{[n]}$.
- (4) There is at least one nonempty relation in \mathcal{R} .

We note that $(R:\sigma)_m = \{(a_1,\ldots,a_m) \in A^m \mid (a_{\sigma 1},\ldots,a_{\sigma n}) \in R\}.$

8. The relational clones of the form $Inv(\mathcal{F})$

Proposition 8.1. Let A be a nonempty set, and let $\mathcal{F} \subset \mathcal{O}(A)$. Then $Inv(\mathcal{F})$ is a relational clone.

Proof: The first two properties in the definition of relational clones follow from Lemma 2.4. For the third property, let $n \in \mathbb{N}$, and let $R, S \in Inv^{[n]}(\mathcal{F})$. We have

to show that $R \cap S \in \mathsf{Inv}^{[n]}(\mathcal{F})$. To this end, let $m \in \mathbb{N}$ and $f \in \mathcal{F}^{[m]}$, and let $v_1, \ldots, v_m \in R \cap S$. Then $\langle f(v_1(i), \ldots, v_m(i) \mid i \in \underline{n} \rangle$ lies in R because of $f \rhd R$ and in S because of $f \rhd S$. For the last property, it is easy to see that $\mathsf{Inv}(\mathcal{F})$ contains the nonempty unary relation A.

The next lemma will be needed in proving that every relational clone on a finite set is of the form $Inv(\mathcal{F})$.

Lemma 8.2. Let A be a nonempty finite set and $\mathcal{R} \subseteq \mathcal{R}(A)$ such that $\mathcal{R} \setminus \{\emptyset\}$ is nonempty. Let $\mathcal{R} \setminus \{\emptyset\} =: \{R_k \mid k \in K\}$ and for each $k \in K$, assume $R_k \subseteq A^{I_k}$ with finite and nonempty I_k . Let $n \in \mathbb{N}$. Then for each $k \in K$, there are: $m_k \in \mathbb{N}$ and $\sigma_{k,1} : I_k \to A^n, \ldots, \sigma_{k,m_k} : I_k \to A^n$ such that

$$\operatorname{Pol}^{[n]}(\mathcal{R}) = \bigcap_{k \in K} \bigcap_{m \in \{1, \dots, m_k\}} (R_k : \sigma_{k,m})_{A^n}.$$

Proof: Let $k \in K$, let $m_k := |R_k|^n$, and let $r_1, \ldots, r_{m_k} \in (A^{I_k})^n$ be the elements of $(R_k)^n$. Then for $m \in \{1, \ldots, m_k\}$, we define $\sigma_{k,m} : I_k \to A^n$, $\sigma_{k,m}(i) = (r_m(1)(i), \ldots, r_m(n)(i))$.

Now we prove \subseteq . Let $f \in \mathsf{Pol}^{[n]}(\mathcal{R})$, let $k \in K$, and let $m \in \{1, \ldots, m_k\}$. We have to prove $f \circ \sigma_{k,m} \in R$. We have $f \circ \sigma_{k,m} = \langle f(\sigma_{k,m}(i)) \mid i \in I_k \rangle = \langle f(r_m(1)(i), \ldots, r_m(n)(i)) \mid i \in I_k \rangle$. Since $(r_m(1), \ldots, r_m(n))$ is an element of $(R_k)^n$, we have $r_m(j) \in R_k$ for all $j \in \{1, \ldots, n\}$. Now since $f \rhd R_k$, we have $\langle f(r_m(1)(i), \ldots, r_m(n)(i)) \mid i \in I_k \rangle \in R_k$.

For \supseteq , let f be in the right hand side, and let $k \in K$. We show $f \rhd R_k$. To this end, let $v_1, \ldots, v_n \in R_k$. There is $m \in \{1, \ldots, m_k\}$ such that $r_m = (v_1, \ldots, v_n)$. We know that $f \circ \sigma_{k,m} \in R_k$. We have $f \circ \sigma_{k,m} = \langle f(\sigma_{k,m}(i)) \mid i \in I \rangle = \langle f(r_m(1)(i), \ldots, r_m(n)(i)) \mid i \in I \rangle = \langle f(v_1(i), \ldots, v_n(i)) \mid i \in I \rangle$. The fact that the last expression lies in R_k completes the proof that f preserves R_k . \square

Lemma 8.3. Let I, J, K, L be nonempty sets, let $R \subseteq A^I$, let $\sigma : I \to J$, for each $l \in L$ let $S_l \subseteq A^J$, and let $\tau : K \to J$. Then we have:

- (1) If τ is bijective, we have $(R : \sigma)_J * \tau = (R : \tau^{-1} \circ \sigma)_K$.
- (2) If τ is surjective onto J, we have $(\bigcap_{l\in L} S_l) * \tau = \bigcap_{l\in L} (S_l * \tau)$.

Proof: (1) For proving \supseteq , we assume that $f \in A^K$ lies in $(R : \tau^{-1} \circ \sigma)_K$. Then $f \circ \tau^{-1} \circ \sigma \in R$. This implies $f \circ \tau^{-1} \in (R : \sigma)_J$, and therefore $(f \circ \tau^{-1}) \circ \tau \in (R : \sigma)_J * \tau$.

For the inclusion \subseteq , let $g \in (R : \sigma)_J$. We show $g \circ \tau \in (R : \tau^{-1} \circ \sigma)_K$. To this end, we have to show $g \circ \tau \circ \tau^{-1} \circ \sigma \in R$. Since $g \circ \tau \circ \tau^{-1} \circ \sigma = g \circ \sigma$ and $g \in (R : \sigma)_J$, we have $g \circ \sigma \in R$, which implies the result.

(2) \subseteq : Let $r \in \bigcap_{l \in L} S_l$. Then for each $l \in L$, we have $r * \tau \in S_l * \tau$. \supseteq : Let $r \in \bigcap_{l \in L} (S_l * \tau)$. We choose $l_0 \in L$. Since $r \in S_{l_0} * \tau$, we have $s_0 \in S_{l_0}$ such that $r = s_0 \circ \tau$. Now let $l \in L$. Then we have $s \in S_l$ such that $r = s \circ \tau$. Therefore the functions s_0 and s agree on the image of τ . By the surjectivity of τ , we have $s_0 = s$. Hence $s_0 \in S_l$. Thus $s_0 \in \bigcap_{l \in L} S_l$, which implies $r \in (\bigcap_{l \in L} S_l) * \tau$. \square

Theorem 8.4. Let \mathcal{R} be a relational clone on the finite set A. Then $\mathcal{R} = Inv(Pol(\mathcal{R}))$.

Proof: Let $S \in \operatorname{Inv}(\operatorname{Pol}(\mathcal{R}))$, and let $t \in \mathbb{N}$ be such that $S \subseteq A^t$. Let n be such that S is n-generated as a subuniverse of $\langle A, \operatorname{Pol}^{[n]}(\mathcal{R}) \rangle^t$; this will for example always be accomplished by setting n := |S|. Then by Theorem 5.1, there is $\sigma : \{1, \ldots, t\} \to A^n$ such that $S = \operatorname{Pol}^{[n]}(\mathcal{R}) * \sigma$.

From Lemma 8.2, we have a set K, and for each $k \in K$ an $r_k \in \mathbb{N}_0$ and $\sigma_{k,1} : A^n \to \underline{i_k}, \ldots, \sigma_{k,r_k} : A^n \to \underline{i_k}$ such that

$$\mathsf{Pol}^{[n]}(\mathcal{R}) = \bigcap_{k \in K} \bigcap_{r \in \{1, \dots, r_k\}} (R_k : \sigma_{k,r})_{A^n}.$$

Since $A^{(A^n)}$ is a finite set, $\mathsf{Pol}^{[n]}(\mathcal{R})$ is an intersection of at most $|A|^{|A|^n}$ of the sets appearing on the right hand side; thus there is a finite $K_0 \subseteq K$ (with at most $|A|^{|A|^n}$ elements) such that $\mathsf{Pol}^{[n]}(\mathcal{R}) = \bigcap_{k \in K_0} \bigcap_{r \in \{1, \dots, r_k\}} (R_k : \sigma_{k,r})_{A^n}$.

Now let $m:=|A|^n$, and let $\tau:\underline{m}\to A^n$ be a bijection. Then by Lemma 8.3, we have

$$\begin{split} \operatorname{Pol}^{[n]}(\mathcal{R}) &= \bigcap_{k \in K_0} \bigcap_{r \in \{1, \dots, r_k\}} ((R_k : \sigma_{k,r})_{A^n} * \tau * \tau^{-1}) \\ &= \Big(\bigcap_{k \in K_0} \bigcap_{r \in \{1, \dots, r_k\}} ((R_k : \sigma_{k,r})_{A^n} * \tau)\Big) * \tau^{-1} \\ &= \Big(\bigcap_{k \in K_0} \bigcap_{r \in \{1, \dots, r_k\}} (R_k : \tau^{-1} \circ \sigma_{k,r})_{\underline{m}}\Big) * \tau^{-1}. \end{split}$$

Hence

$$S = \left(\bigcap_{k \in K_0} \bigcap_{r \in \{1, \dots, r_k\}} (R_k : \tau^{-1} \circ \sigma_{k,r})_{\underline{m}}\right) * \tau^{-1} * \sigma$$
$$= \left(\bigcap_{k \in K_0} \bigcap_{r \in \{1, \dots, r_k\}} (R_k : \tau^{-1} \circ \sigma_{k,r})_{\underline{m}}\right) * (\tau^{-1} \circ \sigma).$$

9. How relational clones can be described by a primitive positive formula

In this section we show that any relation $S \in \operatorname{Inv}\operatorname{Pol}\mathcal{R}$ for finite A can be expressed as a set defined by a primitive positive formula:

Definition 9.1. A primitive positive formula is a first-order formula defined from atomic formulas and equality of variables using conjunction and existential quantification.

Assume $\mathcal{R} \setminus \{\emptyset\} = \{R_k \mid k \in K\}$ is nonempty and $S \in \mathsf{Inv}\,\mathsf{Pol}\,\mathcal{R}$. Starting from the proof of 8.4,

$$S = \left(\bigcap_{k \in K_0} \bigcap_{r \in r_k} (R_k : \tau^{-1} \circ \sigma_{k,r})_{\underline{m}}\right) * (\tau^{-1} \circ \sigma).$$

Verify that

$$(R_k:\tau^{-1}\circ\sigma_{k,r})_{\underline{m}}=\{v\in A^m\mid v\circ\tau^{-1}\circ\sigma_{k,r}\in R_k\},$$

$$\bigcap_{k\in K_0}\bigcap_{r\in \underline{r_k}}(R_k:\tau^{-1}\circ\sigma_{k,r})_{\underline{m}}=\{v\in A^m\mid \bigwedge_{k\in K_0}\bigwedge_{r\in \underline{r_k}}v\circ\tau^{-1}\circ\sigma_{k,r}\in R_k\}$$

and thus

$$S = \{ u \in A^t \mid \exists v \in A^m : v \circ \tau^{-1} \circ \sigma = u \land \bigwedge_{k \in K_0} \bigwedge_{r \in \underline{r_k}} v \circ \tau^{-1} \circ \sigma_{k,r} \in R_k \}$$

$$= \{ u \in A^t \mid \exists v \in A^m : \bigwedge_{i \in \underline{t}} v_{\tau^{-1}(\sigma(i))} = u_i \land \bigwedge_{k \in K_0} \bigwedge_{r \in \underline{r_k}} (v_{\tau^{-1}(\sigma_{k,r}(1))}, \dots, v_{\tau^{-1}(\sigma_{k,r}(i_k))}) \in R_k \},$$

where $i_k \in \mathbb{N}$ such that $R_k \subseteq A^{i_k}$. Note that the formula describing this set is primitive positive and solely comprises t equations and finitely many expression of the form $(a_{\mu(1)}, \ldots, a_{\mu(i_k)}) \in R_k$, where $\{a_{\mu(1)}, \ldots, a_{\mu(i_k)}\} \subseteq \{u_1, \ldots, u_t, v_1, \ldots, v_m\}$.

Conversely, assume a relation S is described by a primitive positive formula whose atomic formulas are of the form $\Phi_i(u,v) :\Leftrightarrow (a_{\mu(1)},\ldots,a_{\mu(i_k)}) \in R_k$ for $\{a_{\mu(1)},\ldots,a_{\mu(i_k)}\}\subseteq \{u_1,\ldots,u_t,v_1,\ldots,v_m\}$. Then we have

$$S = \{ u \in A^t \mid \exists v \in A^m : \bigwedge_{i \in \underline{r}} e_i(u, v) \land \bigwedge_{j \in \underline{s}} \Phi_j(u, v) \},$$

where $e_i(u, v)$ is some equality $a_i = b_i$ with $a_i, b_i \in \{u_1, \dots, u_t, v_1, \dots, v_m\}$. If we replace the expression $\exists v \in A^m$ by $\exists v \in A^{m+t}$ and add equations $v_{m+i} = u_i$ for $i \in \underline{t}$ one verifies that the same set is described. Then we may replace any u_i that occurs in some e_j or Φ_j by v_{m+i} and obtain

$$S = \{ u \in A^t \mid \exists v \in A^{m+t} : \bigwedge_{i \in \underline{t}} v_{m+i} = u_i \land \bigwedge_{i \in \underline{r}} e_i(v) \land \bigwedge_{j \in \underline{s}} \Phi_j(v) \}.$$

For $\sigma: \underline{t} \to \underline{m+t}, i \mapsto i+m$ and $T:=\{v \in A^{m+t} \mid \bigwedge_{i \in \underline{r}} e_i(v) \land \bigwedge_{j \in \underline{s}} \Phi_j(v)\},$ $S=T*\sigma$. Now assume $e_i(v) \Leftrightarrow v_{\sigma_i(1)}=v_{\sigma_i(2)}$ and $\Phi_i(v) \Leftrightarrow (v_{\tau_i(1)},\ldots,v_{\tau_i(i_{k_i})}) \in R_{k_i}$. Then

$$T = \bigcap_{i \in \underline{r}} \{ v \in A^{m+t} \mid e_i(v) \} \cap \bigcap_{j \in \underline{s}} \{ v \in A^{m+t} \mid \Phi_j(v) \}$$
$$= \bigcap_{i \in \underline{r}} (\Delta : \sigma_i)_{\underline{m+t}} \cap \bigcap_{j \in \underline{s}} (R_{k_j} : \tau_j)_{\underline{m+t}},$$

where $\Delta := \{(a, a) \mid a \in A\}$ is the equality relation, which is obviously in $\operatorname{Inv} \mathcal{F}$ for any $\mathcal{F} \subseteq \mathcal{O}(A)$. So we obtain that T and thus S are in $\operatorname{Inv} \operatorname{Pol}\{R_k \mid k \in K\}$. Alltogether, we showed the following theorem:

Theorem 9.2. Let A be a finite set and $\mathcal{R} \subseteq \mathcal{R}(A)$. Then Inv Pol \mathcal{R} are precisely the relations that can be described as a set by a primitive positive formula which is built up from equalities and predicates of the form $v \mapsto (v_{\mu(1)}, \dots, v_{\mu(i_{k_j})}) \in R_{k_j}$.

REFERENCES

- [Maš10] D. Mašulović, Introductiondiscretemathematics, Lecture toatJKU Linz, 2010; available for course Austria. http://www.algebra.uni-linz.ac.at/Students/DiskreteMathematik/ws10/, 2010.
- [PK79] R. Pöschel and L. A. Kalužnin, Funktionen- und Relationenalgebren, Mathematische Monographien, vol. 15, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979.
- [Sze86] Á. Szendrei, Clones in universal algebra, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 99, Presses de l'Université de Montréal, Montreal, QC, 1986.