BASICS OF CLONE THEORY DRAFT

EA ET AL.

Abstract

Some well known facts on clones are collected (cf. [PK79, Sze86, Maš10]).

Contents

1. Definition of clones 1
2. Polymorphisms and invariant relations 2
3. The invariant relations encode the functions in a clone 4
4. The clones of the form $\operatorname{Pol}(\mathcal{R})$ 5
5. How the functions in a clone encode the invariant relations 6
6. Properties of the lattice of all clones 8
7. The definition of relational clones 10
8. The relational clones of the form $\operatorname{Inv}(\mathcal{F})$ 10
9. How relational clones can be described by a primitive positve formula 13
References 14

1. Definition of clones

Let A be a nonempty set. Then $\mathcal{O}(A):=\bigcup\left\{A^{A^{n}} \mid n \in \mathbb{N}\right\}$ is the set of finitary operations on A. For $\mathcal{C} \subseteq \mathcal{O}(A)$ and $m \in \mathbb{N}$, we let $\mathcal{C}^{[m]}$ be the functions in \mathcal{C} with arity m. For $n \in \mathbb{N}$ and $j \in\{1, \ldots, n\}$, the function $\pi_{j}^{(n)}: A^{n} \rightarrow A$ is

Date: December 7, 2018.
Course material for the course "Universal Algebra", JKU Linz, Summer term 2011. With corrections and additions by Markus Steindl from 2014.
defined by $\pi_{j}^{(n)}\left(x_{1}, \ldots, x_{n}\right):=x_{j}$ for all $x_{1}, \ldots, x_{n} \in A$. For $n \in \mathbb{N}$, a subset R of A^{n} is also called a n-ary relation on A, and for any set I, a subset of A^{I} is also called a relation on A indexed by I. Let $v \in A^{I}$. Then we will denote v also by $\langle v(i) \mid i \in I\rangle$. The expression $\langle v(i) \mid i \in I\rangle$ can also be seen as a shorthand for $\{(i, v(i)) \mid i \in I\}$. For $m, n \in \mathbb{N}, f \in \mathcal{O}(A)^{[n]}$, and $g_{1}, \ldots, g_{n} \in \mathcal{O}(A)^{[m]}$, $f\left(g_{1}, \ldots, g_{n}\right)$ denotes the function $\left\langle f\left(g_{1}(x), \ldots, g_{n}(x)\right) \mid x \in A^{m}\right\rangle$.

Definition 1.1 (Clone). Let A be a set, $J \neq \emptyset, \mathcal{C} \subseteq \mathcal{O}(A) . \mathcal{C}$ is a clone on A if
(1) for all $n, j \in \mathbb{N}$ with $j \leq n$, we have $\pi_{j}^{(n)} \in \mathcal{C}$;
(2) for all $n, m \in \mathbb{N}$, for all $f \in \mathcal{C}^{[n]}$ and for all $g_{1}, \ldots, g_{n} \in \mathcal{C}^{[m]}$, we have $f\left(g_{1}, \ldots, g_{n}\right) \in \mathcal{C}^{[m]}$.

Proposition 1.2. Let A be a set, and let all $\mathcal{C}_{j}(j \in J)$ be clones on A. Then $\bigcap\left\{\mathcal{C}_{j} \mid j \in J\right\}$ is a clone on A.

Proof: It can be seen from Definition 1.1 that the properties carry over to arbitrary intersections.

2. Polymorphisms and invariant Relations

Definition 2.1 (Preservation of a relation). Let A and I be nonempty sets, let $f: A^{n} \rightarrow A$, and let $R \subseteq A^{I}$. We say that f preserves R if for all $v_{1}, \ldots, v_{n} \in R$, we have $\left\langle f\left(v_{1}(i), \ldots, v_{n}(i)\right) \mid i \in I\right\rangle \in R$. Then R is invariant under f, and we write $f \triangleright R$. We also say that f is a polymorphism of the relational structure $(A ; R)$ and that f is compatible with R.

Using the terminology of universal algebra, we see that an operation f preserves $R \subseteq A^{I}$ if and only if R is a subuniverse of $\langle A, f\rangle^{I}$. ¿From a relation that is invariant under f, other invariant relations can be constructed in the following ways.

Definition 2.2. Let A, I, J be nonempty sets, let $R \subseteq A^{J}$, and let σ be a function from I to J. Then $R * \sigma$ is a subset of A^{I} defined by $R * \sigma:=\{v \circ \sigma \mid v \in R\}$.

Definition 2.3. Let A be a nonempty set, let I, J be sets, let $S \subseteq A^{J}$, and let $\sigma: J \rightarrow I$. Then $(S: \sigma)_{I}$ is the subset of A^{I} defiuned by $(S: \sigma)_{I}:=\{g \in$ $\left.A^{I} \mid g \circ \sigma \in S\right\}$.

Lemma 2.4. Let A, I, J be nonempty sets, let $R \subseteq A^{J}$, let $\sigma: I \rightarrow J$ and $\tau: J \rightarrow I$. Let $f \in \mathcal{O}(A)$ be such that $f \triangleright R$. Then $f \triangleright R * \sigma$ and $f \triangleright(R: \tau)_{I}$.

Proof: Let n be the arity of f, and let $w_{1}, \ldots, w_{n} \in R * \sigma$. We have to show $\left\langle f\left(w_{1}(i), \ldots, w_{n}(i)\right) \mid i \in I\right\rangle \in R * \sigma$. Let $k \in\{1, \ldots, n\}$. Since $w_{k} \in R * \sigma$, there is $v_{k} \in R$ such that $w_{k}=v_{k} \circ \sigma$. Now we have to show

$$
\begin{equation*}
\left\langle f\left(v_{1}(\sigma(i)), \ldots, v_{n}(\sigma(i))\right) \mid i \in I\right\rangle \in R * \sigma \tag{2.1}
\end{equation*}
$$

Let $g:=\left\langle f\left(v_{1}(j), \ldots, v_{n}(j)\right) \mid j \in J\right\rangle$. Since $v_{1}, \ldots, v_{n} \in R, f \triangleright R$ implies that $g \in R$. Therefore, $g \circ \sigma \in R * \sigma$. We have

$$
g \circ \sigma=\left\langle f\left(v_{1}(\sigma(i)), \ldots, v_{n}(\sigma(i))\right) \mid i \in I\right\rangle .
$$

Thus, since $g \circ \sigma \in R * \sigma$, (2.1) holds, which completes the proof of $f \triangleright R * \sigma$.
For proving $f \triangleright(S: \tau)_{I}$, we let $g_{1}, \ldots, g_{n} \in(S: \tau)_{I}$. We have to show $\left\langle f\left(g_{1}(i), \ldots, g_{n}(i)\right) \mid i \in I\right\rangle \in(S: \tau)_{I}$. To this end, we show

$$
\begin{equation*}
\left\langle f\left(g_{1}(i), \ldots, g_{n}(i)\right) \mid i \in I\right\rangle \circ \tau \in S \tag{2.2}
\end{equation*}
$$

We have $\left\langle f\left(g_{1}(i), \ldots, g_{n}(i)\right) \mid i \in I\right\rangle \circ \tau=\left\langle f\left(g_{1} \circ \tau(j), \ldots, g_{n} \circ \tau(j)\right) \mid j \in J\right\rangle$. Since $g_{1} \circ \tau \in S, \ldots, g_{n} \circ \tau \in S$, the fact that $f \triangleright S$ implies $\left\langle f\left(g_{1} \circ \tau(j), \ldots, g_{n} \circ \tau(j)\right)\right| j \in$ $J\rangle \in S$, which implies (2.2).
If I is a finite set, a relation $R \subseteq A^{I}$ can therefore often be replaced with a relation R^{\prime} on A^{m}, where $m:=|I|$.
For a nonempty set A, we let $\mathcal{R}(A):=\bigcup_{n \in \mathbb{N}} \mathcal{P}\left(A^{n}\right)$ be the set of all finitary relations on A that are indexed by an initial section of the natural numbers. We will write \underline{n} for the set $\{1, \ldots, n\}$. As is usual, the set A^{n} is understood to be the same set as A^{n}. For $\mathcal{R} \subseteq \mathcal{R}(A)$, we let $\mathcal{R}^{[n]}:=\left\{R \in \mathcal{R} \mid R \subseteq A^{n}\right\}$. We note that the $\mathcal{R}^{[n]}$ need not be disjoint, since each of them might contain \emptyset.

Definition 2.5. Let $m \in \mathbb{N}$, let A be a nonempty set, and let $\mathcal{F} \subseteq \mathcal{O}(A)$. We define $\operatorname{Inv}^{[m]}(\mathcal{F}):=\left\{R \subseteq A^{m} \mid \forall f \in \mathcal{F}: f \triangleright R\right\}$, and $\operatorname{Inv}(\mathcal{F}):=\bigcup\left\{\operatorname{lnv}^{[m]}(\mathcal{F}) \mid m \in\right.$ $\mathbb{N}\}$.

Definition 2.6. Let $m \in \mathbb{N}$, let A, I be nonempty sets, and let $R \subseteq A^{I}$. Then $\operatorname{Pol}^{[m]}(\{R\}):=\left\{f: A^{m} \rightarrow A \mid f \triangleright R\right\}$. If $I_{j}(j \in J$ with $j \neq \emptyset)$ are sets, $R_{j} \subseteq A^{I_{j}}$ for $j \in J$, and $\mathcal{R}:=\left\{R_{j} \mid j \in J\right\}$, then we define $\operatorname{Pol}^{[m]}(\mathcal{R}):=$ $\bigcap\left\{\operatorname{Pol}^{[m]}(\{R\}) \mid R \in \mathcal{R}\right\}$. Furthermore, $\operatorname{Pol}(\mathcal{R}):=\bigcup\left\{\operatorname{Pol}^{[m]}(\mathcal{R}) \mid m \in \mathbb{N}\right\}$.

Theorem 2.7. Let A be a set, let $\mathcal{R}, \mathcal{R}_{1}, \mathcal{R}_{2}$ be sets of finitary relations on A, and let $\mathcal{F}, \mathcal{F}_{1}, \mathcal{F}_{2}$ be sets of finitary operations on A. Then we have:
(1) $\mathcal{R}_{1} \subseteq \mathcal{R}_{2} \Rightarrow \operatorname{Pol}\left(\mathcal{R}_{2}\right) \subseteq \operatorname{Pol}\left(\mathcal{R}_{1}\right)$.
(2) $\mathcal{F}_{1} \subseteq \mathcal{F}_{2} \Rightarrow \operatorname{Inv}\left(\mathcal{F}_{2}\right) \subseteq \operatorname{Inv}\left(\mathcal{F}_{1}\right)$.
(3) $\mathcal{F} \subseteq \operatorname{Pol}(\operatorname{lnv}(\mathcal{F}))$.
(4) $\mathcal{R} \subseteq \operatorname{Inv}(\operatorname{Pol}(\mathcal{R}))$.
(5) $\operatorname{Pol}(\operatorname{Inv}(\operatorname{Pol}(\mathcal{R})))=\operatorname{Pol}(\mathcal{R})$.
(6) $\operatorname{Inv}(\operatorname{Pol}(\operatorname{Inv}(\mathcal{F})))=\operatorname{Inv}(\mathcal{F})$.

Proof: (1) Let $f \in \operatorname{Pol}\left(\mathcal{R}_{2}\right)$, and let $R \in \mathcal{R}_{1}$. Then $R \in \mathcal{R}_{2}$, and since $f \in$ $\operatorname{Pol}\left(\mathcal{R}_{2}\right)$, we have $f \triangleright R$.
(2) Let $R \in \operatorname{Inv}\left(\mathcal{F}_{2}\right)$, and let $f \in \mathcal{F}_{1}$. Then $f \in \mathcal{F}_{2}$, and since $R \in \operatorname{Inv}\left(\mathcal{F}_{2}\right)$, we have $f \triangleright R$.
(3) Let $f \in \mathcal{F}$. To prove that $f \in \operatorname{Pol}(\operatorname{lnv}(\mathcal{F}))$, we let $R \in \operatorname{Inv}(\mathcal{F})$. Then since $f \in \mathcal{F}$, we have $f \triangleright R$. Hence we have $f \in \operatorname{Pol}(\operatorname{lnv}(\mathcal{F}))$.
(4) Let $R \in \mathcal{R}$. To prove that $R \in \operatorname{Inv}(\operatorname{Pol}(\mathcal{R}))$, we let $f \in \operatorname{Pol}(\mathcal{R})$. Since $R \in \mathcal{R}$, we have $f \triangleright R$. Hence we have $R \in \operatorname{Inv}(\operatorname{Pol}(\mathcal{R}))$.
(5) By item (4), we have $\mathcal{R} \subseteq \operatorname{Inv}(\operatorname{Pol}(\mathcal{R}))$, and therefore by item (1) the inclusion $\operatorname{Pol}(\operatorname{Inv}(\operatorname{Pol}(\mathcal{R}))) \subseteq \operatorname{Pol}(\mathcal{R})$ holds. The other inclusion follows from (3) by setting $\mathcal{F}:=\operatorname{Pol}(\mathcal{R})$.
(6) By item (3), we have $\mathcal{F} \subseteq \operatorname{Pol}(\operatorname{lnv}(\mathcal{F}))$, and therefore by item (2) the inclusion $\operatorname{Inv}(\operatorname{Pol}(\operatorname{Inv}(\mathcal{F}))) \subseteq \operatorname{Inv}(\mathcal{F})$ holds. The other inclusion follows from item (4) by setting $\mathcal{R}:=\operatorname{Inv}(\mathcal{F})$.

3. The invariant relations encode the functions in a clone

Lemma 3.1. Let \mathcal{C} be a clone on the set A, let $m \in \mathbb{N}$, let $f \in \mathcal{C}^{[m]}$, and let R be the subset of $A^{A^{n}}$ defined by $R:=\mathcal{C}^{[n]}$. Then $f \triangleright R$.

Proof: Let $g_{1}, \ldots, g_{m} \in R$. Since $g_{1}, \ldots, g_{m} \in \mathcal{C}^{[n]}$ and $f \in \mathcal{C}^{[m]}$, we have $f\left(g_{1}, \ldots, g_{m}\right) \in \mathcal{C}^{[n]}$, and hence $f\left(g_{1}, \ldots, g_{m}\right) \in R$. Now $f\left(g_{1}, \ldots, g_{m}\right)=$ $\left\langle f\left(g_{1}(i), \ldots, g_{m}(i)\right) \mid i \in A^{n}\right\rangle$. Therefore, the last expression lies in R, which completes the proof of $f \triangleright R$.

Theorem 3.2. Let \mathcal{C} be a clone on the set A, let $n \in \mathbb{N}$, and let $f: A^{n} \rightarrow A$, and let R be the subset of $A^{A^{n}}$ defined by $R:=\mathcal{C}^{[n]}$. Then the following are equivalent:
(1) $f \in \mathcal{C}$;
(2) $f \triangleright R$;

If A is finite and $m:=|A|^{n}$, then each of these properties is furthermore equivalent to
(3) $f \in \operatorname{Pol}\left(\operatorname{Inv}^{[m]}(\mathcal{C})\right)$.

Proof: $(1) \Rightarrow(2)$: This follows from Lemma 3.1.
$(2) \Rightarrow(1)$: We know that $\pi_{1}^{(n)} \in R, \ldots, \pi_{n}^{(n)} \in R$. Since $f \triangleright R$, we have $\left\langle f\left(\pi_{1}^{(n)}(i), \ldots, \pi_{n}^{(n)}(i)\right) \mid i \in A^{n}\right\rangle \in R$, and hence $f\left(\pi_{1}^{(n)}, \ldots, \pi_{n}^{(n)}\right) \in R$. Therefore $f \in R$, which means $f \in \mathcal{C}^{[n]}$.
$(1) \Rightarrow(3)$: By Theorem $2.7(3)$, we have $\mathcal{C} \subseteq \operatorname{Pol}(\operatorname{Inv}(\mathcal{C}))$. Since $\operatorname{Inv}{ }^{[m]}(\mathcal{C}) \subseteq \operatorname{Inv}(\mathcal{C})$, item (1) of Theorem 2.7 yields $\operatorname{Pol}(\operatorname{lnv}(\mathcal{C})) \subseteq \operatorname{Pol}\left(\operatorname{Inv}^{[m]}(\mathcal{C})\right)$.
$(3) \Rightarrow(2)$: From Lemma 3.1, we know that for all functions $c \in \mathcal{C}$, we have $c \triangleright R$. Now let π be a bijective map from $\{1, \ldots, m\}$ to A^{n}, and let $R^{\prime}:=R * \pi=$ $\{r \circ \pi \mid r \in R\}$. The relation R^{\prime} is a subset of A^{m}. By Lemma 2.4, we have $c \triangleright R^{\prime}$ for all $c \in \mathcal{C}$. Therefore, $R^{\prime} \in \operatorname{Inv}^{[m]}(\mathcal{C})$. Since $f \in \operatorname{Pol}\left(\operatorname{Inv}{ }^{[m]}(\mathcal{C})\right.$, we have $f \triangleright R^{\prime}$. Now $R=\left\{f \circ \pi^{-1} \mid f \in R^{\prime}\right\}$, and thus Lemma 2.4 yields that $f \triangleright R$.

4. The clones of the form $\operatorname{Pol}(\mathcal{R})$

Proposition 4.1. Let A, I be sets, and let $R \subseteq A^{I}$. Then $\operatorname{Pol}(\{R\})$ is a clone on A.

Proof: Let $n, j \in \mathbb{N}$ be such that $i \leq n$. We first show that $\pi_{j}^{(n)}$ lies in $\operatorname{Pol}(\{R\})$. To this end, let $v_{1}, \ldots, v_{n} \in R$. We have to show

$$
\begin{equation*}
\left\langle\pi_{j}^{(n)}\left(v_{1}(i), \ldots, v_{n}(i)\right) \mid i \in I\right\rangle \in R . \tag{4.1}
\end{equation*}
$$

We have $\left\langle\pi_{j}^{(n)}\left(v_{1}(i), \ldots, v_{n}(i)\right) \mid i \in I\right\rangle=\left\langle v_{j}(i) \mid i \in I\right\rangle=v_{j}$. Since $v_{j} \in R$, (4.1) is proved.

Now let $n, m \in \mathbb{N}$, and let $g_{1}, \ldots, g_{n} \in A^{A^{m}}, f \in A^{A^{n}}$ such that all functions g_{1}, \ldots, g_{m}, f preserve R. Now let $v_{1}, \ldots, v_{m} \in R$. For each $j \in\{1, \ldots, n\}$, we
have $g_{j} \triangleright R$, and therefore

$$
w_{j}:=\left\langle g_{j}\left(v_{1}(i), \ldots, v_{m}(i)\right) \mid i \in I\right\rangle \in R .
$$

Since $f \triangleright R$, we have $\left\langle f\left(w_{1}(i), \ldots, w_{n}(i)\right) \mid i \in I\right\rangle \in R$, and hence $\left\langle f\left(g_{1}\left(v_{1}(i), \ldots, v_{m}(i)\right), \ldots, g_{n}\left(v_{1}(i), \ldots, v_{m}(i)\right)\right) \mid i \in I\right\rangle \in R$. Hence

$$
\left\langle f\left(g_{1}, \ldots, g_{n}\right)\left(v_{1}(i), \ldots, v_{m}(i)\right) \mid i \in I\right\rangle \in R,
$$

and thus $\operatorname{Pol}(\{R\})$ is closed under composition.
Theorem 4.2. Let A be a finite set, and let \mathcal{C} be a clone on A. Then $\mathcal{C}=$ $\operatorname{Pol}(\operatorname{Inv}(\mathcal{C}))$.

Proof: The inclusion \subseteq is a consequence of Theorem 2.7. For the other inclusion, let $f \in \operatorname{Pol}(\operatorname{lnv}(\mathcal{C}))$. Let n be the arity of f, and let $m:=|A|^{n}$. Then $\operatorname{Inv}{ }^{[m]}(\mathcal{C}) \subseteq$ $\operatorname{Inv}(\mathcal{C})$, and thus by Theorem $2.7(1)$, we have $f \in \operatorname{Pol}\left(\operatorname{Inv}^{[m]}(\mathcal{C})\right.$. Now from Theorem 3.2, we obtain $f \in \mathcal{C}$.

Corollary 4.3. Let A be a finite set, and let \mathcal{F} be a subset of $\mathcal{O}(A)$. Then $\operatorname{Pol}(\operatorname{Inv}(\mathcal{F}))$ is a clone, and for every clone \mathcal{D} with $\mathcal{F} \subseteq \mathcal{D}$, we have $\operatorname{Pol}(\operatorname{Inv}(\mathcal{F})) \subseteq$ \mathcal{D}.

Proof: From Propositions 4.1 and 1.2, we obtain that $\operatorname{Pol}(\operatorname{lnv}(\mathcal{F}))$ is a clone. Now let \mathcal{D} be a clone containing all functions from \mathcal{F}. Then from items (1) and (2) of Theorem 2.7, we obtain $\operatorname{Pol}(\operatorname{lnv}(\mathcal{F})) \subseteq \operatorname{Pol}(\operatorname{Inv}(\mathcal{D}))$. By Theorem 4.2, we have $\operatorname{Pol}(\operatorname{Inv}(\mathcal{D}))=\mathcal{D}$, hence $\operatorname{Pol}(\operatorname{Inv}(\mathcal{F})) \subseteq \mathcal{D}$.
5. How the functions in a clone encode the invariant relations

Theorem 5.1. Let A be a nonempty set, let \mathcal{C} be a clone on A, let $n, t \in \mathbb{N}$, and let S be a subset of A^{t} with $S \in \operatorname{lnv}^{[t]}\left(\mathcal{C}^{[n]}\right)$. We assume that S is n-generated as a subuniverse of $\left\langle A, \mathcal{C}^{[n]}\right\rangle^{t}$. Then there exists $\sigma:\{1, \ldots, t\} \rightarrow A^{n}$ such that $S=\mathcal{C}^{[n]} * \sigma$. Furthermore, we then have $S \in \operatorname{lnv}(\mathcal{C})$.

Proof: Let $s_{1}, \ldots, s_{n} \in S$ such that the subuniverse of $\left\langle A, \mathcal{C}^{[n]}\right\rangle^{t}$ that is generated by $\left\{s_{1}, \ldots, s_{n}\right\}$ is equal to S. We define $\sigma:\{1, \ldots, t\} \rightarrow A^{n}$ by

$$
\sigma(r)(i):=s_{i}(r)
$$

for $r \in\{1, \ldots, t\}, i \in\{1, \ldots, n\}$. We will now prove

$$
\begin{equation*}
S=\mathcal{C}^{[n]} * \sigma \tag{5.1}
\end{equation*}
$$

For \subseteq, we first show that all s_{i} are elements of $\mathcal{C}^{[n]} * \sigma$. To this end, let $i \in$ $\{1, \ldots, n\}$. Let us now compute $\pi_{i}^{(n)} \circ \sigma$. This is a function from $\{1, \ldots, t\}$ to A, and for $r \in\{1, \ldots, t\}$, we have $\pi_{i}^{(n)}(\sigma(r))=\pi_{i}^{(n)}(\sigma(r)(1), \ldots, \sigma(r)(n))=$ $\sigma(r)(i)=s_{i}(r)$. Hence $\pi_{i}^{(n)} \circ \sigma=s_{i}$. Thus s_{i} lies in $\mathcal{C}^{[n]} * \sigma$. By Lemma 2.4, $\mathcal{C}^{[n]} * \sigma$ is a subuniverse of $\langle A, \mathcal{C}\rangle^{t}$. Therefore, it is also a subuniverse of the reduct $\left\langle A, \mathcal{C}^{[n]}\right\rangle^{t}$ of $\langle A, \mathcal{C}\rangle^{t}$. Thus we have $S \subseteq \mathcal{C}^{[n]} * \sigma$.

To prove \supseteq of (5.1), we let $f \in \mathcal{C}^{[n]}$ and consider

$$
\begin{align*}
g:=f \circ \sigma & =\langle f \circ \sigma(r) \mid r \in\{1, \ldots, t\}\rangle \\
& =\langle f(\sigma(r)) \mid r \in\{1, \ldots, t\}\rangle \\
& =\langle f(\sigma(r)(1), \ldots, \sigma(r)(n)) \mid r \in\{1, \ldots, t\}\rangle \tag{5.2}\\
& =\left\langle f\left(s_{1}(r), \ldots, s_{n}(r)\right) \mid r \in\{1, \ldots, t\}\right\rangle .
\end{align*}
$$

We know that $s_{1}, \ldots, s_{n} \in S$. Since $f \in \mathcal{C}^{[n]}$ and $S \in \operatorname{lnv}\left(\mathcal{C}^{[n]}\right)$, we have that $f \triangleright S$. Hence the last expression of (5.2) is an element S. Therefore $f \circ \sigma \in S$, which completes the proof of (5.1).
By Lemma 3.1, we know that $\mathcal{C}^{[n]}$ is invariant under all operations in \mathcal{C}. Hence by Lemma 2.4, $S=\mathcal{C}^{[n]} * \sigma$ is invariant under all operations in \mathcal{C}. Thus $S \in$ $\operatorname{Inv}(\mathcal{C})$.

Corollary 5.2. Let A be a nonempty set, let \mathcal{C} be a clone on A, let $t \in \mathbb{N}$, let S be a finite subset of A^{t}, and let $n:=|S|$. Then the following are equivalent:
(1) $S \in \operatorname{Inv}\left(\mathcal{C}^{[n]}\right)$.
(2) There exists $\sigma:\{1, \ldots, t\} \rightarrow A^{n}$ such that $S=\mathcal{C}^{[n]} * \sigma$.
(3) $S \in \operatorname{Inv}(\mathcal{C})$.

Proof: $(1) \Rightarrow(2)$: Since $|S|=n, S$ is n-generated as a subuniverse of $\left\langle A, \mathcal{C}^{[n]}\right\rangle^{t}$. Hence by Theorem 5.1, there is a $\sigma:\{1, \ldots, t\} \rightarrow A^{n}$ such that $S=\mathcal{C}^{[n]} * \sigma$. $(2) \Rightarrow(3)$: By Lemma 3.1, we know that $\mathcal{C}^{[n]}$ is invariant under all operations in \mathcal{C}. Hence by Lemma 2.4, $S=\mathcal{C}^{[n]} * \sigma$ is invariant under all operations in \mathcal{C}. Thus $S \in \operatorname{Inv}(\mathcal{C}) .(3) \Rightarrow(1):$ This follows from Theorem 2.7 (2).

Corollary 5.3. Let A be a nonempty set, let \mathcal{C} be a clone, and let $m, n, t \in \mathbb{N}$. We assume that $m \leq n, S \in \operatorname{Inv}\left(\mathcal{C}^{[n]}\right)$, and that S is n-generated as a subuniverse of $\left\langle A, \mathcal{C}^{[m]}\right\rangle^{t}$. Then $S \in \operatorname{Inv}(\mathcal{C})$.

Proof: Since S is n-generated as a subuniverse of $\left\langle A, \mathcal{C}^{[m]}\right\rangle^{t}$ and $m \leq n, S$ is also n-generated as a subuniverse of $\left\langle A, \mathcal{C}^{[n]}\right\rangle^{t}$. Thus by Theorem 5.1, there is a $\sigma:\{1, \ldots, t\} \rightarrow A^{n}$ such that $S=\mathcal{C}^{[n]} * \sigma$. Now by Lemma 3.1 and Lemma 2.4, every $f \in \mathcal{C}$ preserves S.

6. Properties of the lattice of all clones

Definition 6.1. Let A be a nonempty set, and let \mathcal{F} be a subset of $\mathcal{O}(A)$. Then Clone (\mathcal{F}) denotes the smallest clone \mathcal{C} on A with $\mathcal{F} \subseteq \mathcal{C}$.

By Corollary 4.3, for a finite set A, we have $\operatorname{Clone}(\mathcal{F})=\operatorname{Pol}(\operatorname{lnv}(\mathcal{F}))$.
Definition 6.2. Let A be a nonempty set, and let \mathcal{C} be a clone on A. The clone \mathcal{C} is finitely generated if there is a finite subset \mathcal{F} of \mathcal{C} with $\operatorname{Clone}(\mathcal{F})=\mathcal{C}$. the clone \mathcal{C} is finitely related if there is a finite set $\mathcal{R} \subseteq \mathcal{R}(A)$ such that $\mathcal{C}=\operatorname{Pol}(\mathcal{R})$.

For a nonempty set A, let $\mathbf{C}(A)$ be the set of clones on A. For $\mathcal{C}, \mathcal{D} \in \mathbf{C}(A)$, we write $\mathcal{C} \leq \mathcal{D}$ if $\mathcal{C} \subseteq \mathcal{D}, \mathcal{C}<\mathcal{D}$ if $\mathcal{C} \leq \mathcal{D}$ and $\mathcal{C} \neq \mathcal{D}$, and $\mathcal{C} \prec \mathcal{D}$ if $\mathcal{C}<\mathcal{D}$ and there is no clone \mathcal{E} with $\mathcal{C}<\mathcal{E}<\mathcal{D}$.

Theorem 6.3. Let A be a finite nonempty set, and let \mathcal{C} be a finitely generated clone on A. Let $N \in \mathbb{N}$ be such that $\mathcal{C}=\operatorname{Clone}\left(\mathcal{C}^{[N]}\right)$. Then we have:
(1) $S(\mathcal{C}):=\{\mathcal{D} \in \mathbf{C}(A) \mid \mathcal{D} \prec \mathcal{C}\}$ is finite (and has at most $2^{|A|^{|A|^{N}}}$ elements).
(2) For all $\mathcal{E} \in \mathbf{C}(A)$ with $\mathcal{E}<\mathcal{C}$ there is a $\mathcal{D} \in S(\mathcal{C})$ such that $\mathcal{E} \leq \mathcal{D}$.

Proof: Let $S_{0}(\mathcal{C}):=\left\{\mathcal{C} \cap \operatorname{Pol}(\{\rho\}) \mid \rho \subseteq A^{\left(|A|^{N}\right)}, \rho \notin \operatorname{Inv}(\mathcal{C})\right\}$.
Let $\mathcal{E} \in \mathbf{C}(A)$ with $\mathcal{E}<\mathcal{C}$. Suppose first that $\operatorname{Inv}{ }^{\left[|A|^{N}\right]}(\mathcal{E}) \subseteq \operatorname{Inv} v^{\left[|A|^{N}\right]}(\mathcal{C})$. We show that then we have $\mathcal{C}^{[N]} \subseteq \mathcal{E}$. To this end, let $f \in \mathcal{C}^{[N]}$. Then $f \in \operatorname{Pol}(\operatorname{lnv}(\mathcal{C})) \subseteq$ $\operatorname{Pol}\left(\operatorname{Inv}{ }^{\left[|A|^{N}\right]}(\mathcal{C})\right)=\operatorname{Pol}\left(\operatorname{Inv}{ }^{\left[|A|^{N}\right]}(\mathcal{E})\right)$. Hence by Theorem 3.2, we have $f \in \mathcal{E}$. This completes the proof of $\mathcal{C}^{[N]} \subseteq \mathcal{E}$. Hence $\mathcal{C} \subseteq \mathcal{E}$, contradicting $\mathcal{E}<\mathcal{C}$. This contradiction shows that there exists $\rho \in \operatorname{Inv}{ }^{\left[|A|^{N}\right]}(\mathcal{E})$ with $\rho \notin \operatorname{Inv}(\mathcal{C})$. Now we have $\mathcal{E} \subseteq \operatorname{Pol}(\{\rho\})$, and therefore $\mathcal{E} \leq \operatorname{Pol}(\{\rho\}) \cap \mathcal{C}$. Hence we have that every
$\mathcal{E} \in \mathbf{C}(A)$ with $\mathcal{E}<\mathcal{C}$ is contained in an element of $S_{0}(\mathcal{C})$. Thus, the set $S(\mathcal{C})$ is a subset of $S_{0}(\mathcal{C})$, and therefore finite.

We now show that every $\mathcal{E} \in \mathbf{C}(A)$ with $\mathcal{E}<\mathcal{C}$ is contained in some \mathcal{D} with $\mathcal{E} \leq \mathcal{D} \prec \mathcal{C}$. To this end, let \mathcal{D} be maximal in $S_{0}(\mathcal{C})$ with $\mathcal{E} \leq \mathcal{D}$. To show $\mathcal{D} \prec \mathcal{C}$, let \mathcal{D}_{1} be such that $\mathcal{D}<\mathcal{D}_{1}<\mathcal{C}$. Then there is $\mathcal{D}_{2} \in S_{0}(\mathcal{C})$ such that $\mathcal{D}_{1} \leq \mathcal{D}_{2}$. This \mathcal{D}_{2} contradicts the maximality of \mathcal{D}.

Lemma 6.4. Let A be a finite nonempty set, and let $\mathcal{C} \in \mathbf{C}(A)$. Then the following are equivalent:
(1) \mathcal{C} is not finitely generated.
(2) There is a strictly increasing sequence $\left(\mathcal{C}_{i}\right)_{i \in \mathbb{N}}$ of clones with $\bigcup_{i \in \mathbb{N}} \mathcal{C}_{i}=\mathcal{C}$.

Proof: $(1) \Rightarrow(2)$: Let f_{1}, f_{2}, \ldots be an enumeration of all functions in $\mathcal{O}(A)$. Let \mathcal{C}_{1} be the clone on A consisting only of projections. For $i \geq 2$, let $\sigma(i)$ be minimal such that $f_{\sigma(i)} \in \mathcal{C} \backslash \mathcal{C}_{i-1}$ and $\mathcal{C}_{i}:=\operatorname{Clone}\left(\left\{f_{\sigma(j)} \mid j \leq i\right\}\right)$.
$(2) \Rightarrow(1)$: If \mathcal{C} is finitely generated by f_{1}, \ldots, f_{m}, then each of these generators is contained in some \mathcal{C}_{i}. Hence there is a $j \in \mathbb{N}$ such that \mathcal{C}_{j} contains f_{1}, \ldots, f_{m}, and therefore $\mathcal{C}_{j}=\mathcal{C}$. This contradicts the fact that $\left(\mathcal{C}_{i}\right)_{i \in \mathbb{N}}$ is strictly increasing.

Theorem 6.5. Let A be a finite nonempty set, and let \mathcal{C} be a finitely related clone on A. Let \mathcal{R} be a finite subset of $\mathcal{R}(A)$ such that $\mathcal{C}=\operatorname{Pol}(\mathcal{R})$, and let $N \in \mathbb{N}$ be such that for all $\rho \in \mathcal{R}$ we have $|\rho| \leq N$. Then we have:
(1) $T(\mathcal{C}):=\{\mathcal{D} \in \mathbf{C}(A) \mid \mathcal{C} \prec \mathcal{D}\}$ is finite (and has at most $|A|^{\left.\left.\right|^{A}\right|^{N}}$ elements).
(2) For all $\mathcal{E} \in \mathbf{C}(A)$ with $\mathcal{C}<\mathcal{E}$ there is a $\mathcal{D} \in T(\mathcal{C})$ such that $\mathcal{D} \leq \mathcal{E}$.

Proof: Let $T_{0}(\mathcal{C}):=\left\{\operatorname{Clone}(\mathcal{C} \cup\{f\}) \mid f: A^{N} \rightarrow A, f \notin \mathcal{C}\right\}$.
Now let $\mathcal{E} \in \mathbf{C}(A)$ be such that $\mathcal{C}<\mathcal{E}$. Suppose first that $\mathcal{E}^{[N]} \subseteq \mathcal{C}^{[N]}$. We show that then we have $\mathcal{E} \subseteq \mathcal{C}$. To this end, let $\rho \in \mathcal{R}$. Then $\rho \in \operatorname{Inv}\left(\mathcal{C}^{[N]}\right) \subseteq \operatorname{Inv}\left(\mathcal{E}^{[N]}\right)$ Then since $|\rho| \leq N$, Corollary 5.2 yields $\rho \in \operatorname{Inv}(\mathcal{E})$. Hence \mathcal{E} preserves every relation $\rho \in \mathcal{R}$. Thus $\mathcal{E} \subseteq \operatorname{Pol}(\mathcal{R})=\mathcal{C}$. This contradicts the assumption $\mathcal{C}<\mathcal{E}$, and establishes the existence of an N-ary function $f \in \mathcal{E}$ with $f \notin \mathcal{C}$. Thus Clone $(\mathcal{C} \cup\{f\}) \subseteq \mathcal{E}$. Altogether, every clone \mathcal{D} with $\mathcal{C}<\mathcal{D}$ contains an element of $T_{0}(\mathcal{C})$ as a subclone. Hence $T(\mathcal{C}) \subseteq T_{0}(\mathcal{C})$.

Now let \mathcal{E} be a clone with $\mathcal{C}<\mathcal{E}$. Let \mathcal{D} minimal in $T_{0}(\mathcal{C})$ with $\mathcal{D} \leq \mathcal{E}$. Suppose $\mathcal{C} \prec \mathcal{D}$ fails. Then there is $\mathcal{D}_{1} \in \mathbf{C}(A)$ with $\mathcal{C}<\mathcal{D}_{1}<\mathcal{D}$. Now there is a clone
$\mathcal{D}_{2} \in T_{0}(\mathcal{C})$ with $\mathcal{D}_{2} \leq \mathcal{D}_{1}$, contradicting the minimality of \mathcal{D}. Hence we have $\mathcal{C} \prec \mathcal{D}$.

Lemma 6.6. Let A be a finite nonempty set, and let $\mathcal{C} \in \mathbf{C}(A)$. Then the following are equivalent:
(1) \mathcal{C} is not finitely related.
(2) There is a strictly decreasing sequence $\left(\mathcal{C}_{i}\right)_{i \in \mathbb{N}}$ of clones with $\bigcap_{i \in \mathbb{N}_{0}} \mathcal{C}_{i}=\mathcal{C}$.

Proof: $(1) \Rightarrow(2)$: Let $\rho_{1}, \rho_{2}, \ldots$ be an enumeration of $\operatorname{Inv}(\mathcal{C})$ and $\mathcal{C}_{1}:=\mathcal{O}(A)$. For $i \geq 2$, let $s(i)$ be minimal such that $\rho_{s(i)} \notin \operatorname{Inv}\left(\mathcal{C}_{i-1}\right)$, and let $\mathcal{C}_{i}:=\operatorname{Pol}\left(\left\{\rho_{s(j)} \mid j \leq\right.\right.$ $i\}=\mathcal{C}_{i-1} \cap \operatorname{Pol}\left(\left\{\rho_{s(i)}\right\}\right)=\operatorname{Pol}\left(\operatorname{lnv}\left(\mathcal{C}_{i-1}\right) \cup\left\{\rho_{s(i)}\right\}\right) \subset \mathcal{C}_{i-1}$.
$(2) \Rightarrow(1):$ Suppose $\mathcal{C}=\operatorname{Pol}\left(\left\{\rho_{1}, \ldots, \rho_{m}\right\}\right)$, and let $N:=\max \left\{\left|\rho_{j}\right|: j \in\{1, \ldots, m\}\right\}$. Let r be such that $\mathcal{C}_{r}^{[N]}=\mathcal{C}^{[N]}$. Then $\mathcal{D}:=\mathcal{C}_{r}$ preserves all relations in $\left\{\rho_{1}, \ldots, \rho_{m}\right\}$. Therefore $\mathcal{C}_{r} \leq \operatorname{Pol}\left(\left\{\rho_{1}, \ldots, \rho_{m}\right\}\right)=\mathcal{C}$, contradicting the fact that $\left(\mathcal{C}_{i}\right)_{i \in \mathbb{N}}$ is strictly decreasing.

7. The definition of Relational clones

Definition 7.1. Let A be a nonempty set, and let $\mathcal{R} \subseteq \mathcal{R}(A)$. Then \mathcal{R} is a relational clone if and only if
(1) For all $m, n \in \mathbb{N}$, for all $R \in \mathcal{R}^{[m]}$, and for all $\sigma: \underline{n} \rightarrow \underline{m}$, we have $R * \sigma \in \mathcal{R}^{[n]}$.
(2) For all $m, n \in \mathbb{N}$, for all $R \in \mathcal{R}^{[n]}$, and for all $\sigma: \underline{n} \rightarrow \underline{m}$, we have $(R: \sigma)_{\underline{m}} \in \mathcal{R}^{[m]}$.
(3) For all $n \in \mathbb{N}$ and $R, S \in \mathcal{R}^{[n]}$, we have $R \cap S \in \mathcal{R}^{[n]}$.
(4) There is at least one nonempty relation in \mathcal{R}.

We note that $(R: \sigma)_{\underline{m}}=\left\{\left(a_{1}, \ldots, a_{m}\right) \in A^{m} \mid\left(a_{\sigma 1}, \ldots, a_{\sigma n}\right) \in R\right\}$.

8. The relational clones of the form $\operatorname{Inv}(\mathcal{F})$

Proposition 8.1. Let A be a nonempty set, and let $\mathcal{F} \subset \mathcal{O}(A)$. Then $\operatorname{Inv}(\mathcal{F})$ is a relational clone.

Proof: The first two properties in the definition of relational clones follow from Lemma 2.4. For the third property, let $n \in \mathbb{N}$, and let $R, S \in \operatorname{lnv}{ }^{[n]}(\mathcal{F})$. We have
to show that $R \cap S \in \operatorname{Inv}^{[n]}(\mathcal{F})$. To this end, let $m \in \mathbb{N}$ and $f \in \mathcal{F}^{[m]}$, and let $v_{1}, \ldots, v_{m} \in R \cap S$. Then $\left\langle f\left(v_{1}(i), \ldots, v_{m}(i)|i \in \underline{n}\rangle\right.\right.$ lies in R because of $f \triangleright R$ and in S because of $f \triangleright S$. For the last property, it is easy to see that $\operatorname{lnv}(\mathcal{F})$ contains the nonempty unary relation A.

The next lemma will be needed in proving that every relational clone on a finite set is of the form $\operatorname{lnv}(\mathcal{F})$.

Lemma 8.2. Let A be a nonempty finite set and $\mathcal{R} \subseteq \mathcal{R}(A)$ such that $\mathcal{R} \backslash\{\emptyset\}$ is nonempty. Let $\mathcal{R} \backslash\{\emptyset\}=:\left\{R_{k} \mid k \in K\right\}$ and for each $k \in K$, assume $R_{k} \subseteq A^{I_{k}}$ with finite and nonempty I_{k}. Let $n \in \mathbb{N}$. Then for each $k \in K$, there are: $m_{k} \in \mathbb{N}$ and $\sigma_{k, 1}: I_{k} \rightarrow A^{n}, \ldots, \sigma_{k, m_{k}}: I_{k} \rightarrow A^{n}$ such that

$$
\operatorname{Pol}^{[n]}(\mathcal{R})=\bigcap_{k \in K} \bigcap_{m \in\left\{1, \ldots, m_{k}\right\}}\left(R_{k}: \sigma_{k, m}\right)_{A^{n}}
$$

Proof: Let $k \in K$, let $m_{k}:=\left|R_{k}\right|^{n}$, and let $r_{1}, \ldots, r_{m_{k}} \in\left(A^{I_{k}}\right)^{n}$ be the elements of $\left(R_{k}\right)^{n}$. Then for $m \in\left\{1, \ldots, m_{k}\right\}$, we define $\sigma_{k, m}: I_{k} \rightarrow A^{n}, \sigma_{k, m}(i)=$ $\left(r_{m}(1)(i), \ldots, r_{m}(n)(i)\right)$.
Now we prove \subseteq. Let $f \in \operatorname{Pol}^{[n]}(\mathcal{R})$, let $k \in K$, and let $m \in\left\{1, \ldots, m_{k}\right\}$. We have to prove $f \circ \sigma_{k, m} \in R$. We have $f \circ \sigma_{k, m}=\left\langle f\left(\sigma_{k, m}(i)\right) \mid i \in I_{k}\right\rangle=$ $\left\langle f\left(r_{m}(1)(i) \ldots, r_{m}(n)(i)\right) \mid i \in I_{k}\right\rangle$. Since $\left(r_{m}(1), \ldots, r_{m}(n)\right)$ is an element of $\left(R_{k}\right)^{n}$, we have $r_{m}(j) \in R_{k}$ for all $j \in\{1, \ldots, n\}$. Now since $f \triangleright R_{k}$, we have $\left\langle f\left(r_{m}(1)(i) \ldots, r_{m}(n)(i)\right) \mid i \in I_{k}\right\rangle \in R_{k}$.

For \supseteq, let f be in the right hand side, and let $k \in K$. We show $f \triangleright R_{k}$. To this end, let $v_{1}, \ldots, v_{n} \in R_{k}$. There is $m \in\left\{1, \ldots, m_{k}\right\}$ such that $r_{m}=$ $\left(v_{1}, \ldots, v_{n}\right)$. We know that $f \circ \sigma_{k, m} \in R_{k}$. We have $f \circ \sigma_{k, m}=\left\langle f\left(\sigma_{k, m}(i)\right)\right| i \in$ $I\rangle=\left\langle f\left(r_{m}(1)(i), \ldots, r_{m}(n)(i)\right) \mid i \in I\right\rangle=\left\langle f\left(v_{1}(i), \ldots, v_{n}(i)\right) \mid i \in I\right\rangle$. The fact that the last expression lies in R_{k} completes the proof that f preserves R_{k}.

Lemma 8.3. Let I, J, K, L be nonempty sets, let $R \subseteq A^{I}$, let $\sigma: I \rightarrow J$, for each $l \in L$ let $S_{l} \subseteq A^{J}$, and let $\tau: K \rightarrow J$. Then we have:
(1) If τ is bijective, we have $(R: \sigma)_{J} * \tau=\left(R: \tau^{-1} \circ \sigma\right)_{K}$.
(2) If τ is surjective onto J, we have $\left(\bigcap_{l \in L} S_{l}\right) * \tau=\bigcap_{l \in L}\left(S_{l} * \tau\right)$.

Proof: (1) For proving \supseteq, we assume that $f \in A^{K}$ lies in $\left(R: \tau^{-1} \circ \sigma\right)_{K}$. Then $f \circ \tau^{-1} \circ \sigma \in R$. This implies $f \circ \tau^{-1} \in(R: \sigma)_{J}$, and therefore $\left(f \circ \tau^{-1}\right) \circ \tau \in$ $(R: \sigma)_{J} * \tau$.

For the inclusion \subseteq, let $g \in(R: \sigma)_{J}$. We show $g \circ \tau \in\left(R: \tau^{-1} \circ \sigma\right)_{K}$. To this end, we have to show $g \circ \tau \circ \tau^{-1} \circ \sigma \in R$. Since $g \circ \tau \circ \tau^{-1} \circ \sigma=g \circ \sigma$ and $g \in(R: \sigma)_{J}$, we have $g \circ \sigma \in R$, which implies the result.
(2) \subseteq : Let $r \in \bigcap_{l \in L} S_{l}$. Then for each $l \in L$, we have $r * \tau \in S_{l} * \tau$. \supseteq : Let $r \in \bigcap_{l \in L}\left(S_{l} * \tau\right)$. We choose $l_{0} \in L$. Since $r \in S_{l_{0}} * \tau$, we have $s_{0} \in S_{l_{0}}$ such that $r=s_{0} \circ \tau$. Now let $l \in L$. Then we have $s \in S_{l}$ such that $r=s \circ \tau$. Therefore the functions s_{0} and s agree on the image of τ. By the surjectivity of τ, we have $s_{0}=s$. Hence $s_{0} \in S_{l}$. Thus $s_{0} \in \bigcap_{l \in L} S_{l}$, which implies $r \in\left(\bigcap_{l \in L} S_{l}\right) * \tau$.

Theorem 8.4. Let \mathcal{R} be a relational clone on the finite set A. Then $\mathcal{R}=$ $\operatorname{lnv}(\operatorname{Pol}(\mathcal{R}))$.

Proof: Let $S \in \operatorname{Inv}(\operatorname{Pol}(\mathcal{R}))$, and let $t \in \mathbb{N}$ be such that $S \subseteq A^{t}$. Let n be such that S is n-generated as a subuniverse of $\left\langle A, \operatorname{Pol}^{[n]}(\mathcal{R})\right\rangle^{\text {; }}$; this will for example always be accomplished by setting $n:=|S|$. Then by Theorem 5.1, there is $\sigma:\{1, \ldots, t\} \rightarrow A^{n}$ such that $S=\operatorname{Pol}^{[n]}(\mathcal{R}) * \sigma$.

From Lemma 8.2, we have a set K, and for each $k \in K$ an $r_{k} \in \mathbb{N}_{0}$ and $\sigma_{k, 1}$: $A^{n} \rightarrow \underline{i_{k}}, \ldots, \sigma_{k, r_{k}}: A^{n} \rightarrow \underline{i_{k}}$ such that

$$
\operatorname{Pol}^{[n]}(\mathcal{R})=\bigcap_{k \in K} \bigcap_{r \in\left\{1, \ldots, r_{k}\right\}}\left(R_{k}: \sigma_{k, r}\right)_{A^{n}}
$$

Since $A^{\left(A^{n}\right)}$ is a finite set, $\operatorname{Pol}^{[n]}(\mathcal{R})$ is an intersection of at most $|A|^{|A|^{n}}$ of the sets appearing on the right hand side; thus there is a finite $K_{0} \subseteq K$ (with at most $|A|^{|A|^{n}}$ elements) such that $\operatorname{Pol}^{[n]}(\mathcal{R})=\bigcap_{k \in K_{0}} \bigcap_{r \in\left\{1, \ldots, r_{k}\right\}}\left(R_{k}: \sigma_{k, r}\right)_{A^{n}}$.
Now let $m:=|A|^{n}$, and let $\tau: \underline{m} \rightarrow A^{n}$ be a bijection. Then by Lemma 8.3, we have

$$
\begin{aligned}
\operatorname{Pol}^{[n]}(\mathcal{R}) & =\bigcap_{k \in K_{0}} \bigcap_{r \in\left\{1, \ldots, r_{k}\right\}}\left(\left(R_{k}: \sigma_{k, r}\right)_{A^{n}} * \tau * \tau^{-1}\right) \\
& =\left(\bigcap_{k \in K_{0}} \bigcap_{r \in\left\{1, \ldots, r_{k}\right\}}\left(\left(R_{k}: \sigma_{k, r}\right)_{A^{n}} * \tau\right)\right) * \tau^{-1} \\
& =\left(\bigcap_{k \in K_{0}} \bigcap_{r \in\left\{1, \ldots, r_{k}\right\}}\left(R_{k}: \tau^{-1} \circ \sigma_{k, r}\right)_{\underline{m}}\right) * \tau^{-1} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
S & =\left(\bigcap_{k \in K_{0}} \bigcap_{r \in\left\{1, \ldots, r_{k}\right\}}\left(R_{k}: \tau^{-1} \circ \sigma_{k, r}\right)_{\underline{m}}\right) * \tau^{-1} * \sigma \\
& =\left(\bigcap_{k \in K_{0}} \bigcap_{r \in\left\{1, \ldots, r_{k}\right\}}\left(R_{k}: \tau^{-1} \circ \sigma_{k, r}\right)_{\underline{m}}\right) *\left(\tau^{-1} \circ \sigma\right) .
\end{aligned}
$$

9. How relational clones can be described by a primitive positve FORMULA

In this section we show that any relation $S \in \operatorname{lnv} \operatorname{Pol} \mathcal{R}$ for finite A can be expressed as a set defined by a primitive positive formula:

Definition 9.1. A primitive positive formula is a first-order formula defined from atomic formulas and equality of variables using conjunction and existential quantification.

Assume $\mathcal{R} \backslash\{\emptyset\}=\left\{R_{k} \mid k \in K\right\}$ is nonempty and $S \in \operatorname{Inv} \operatorname{Pol} \mathcal{R}$. Starting from the proof of 8.4,

$$
S=\left(\bigcap_{k \in K_{0}} \bigcap_{r \in \underline{r_{k}}}\left(R_{k}: \tau^{-1} \circ \sigma_{k, r}\right)_{\underline{m}}\right) *\left(\tau^{-1} \circ \sigma\right) .
$$

Verify that

$$
\begin{aligned}
\left(R_{k}: \tau^{-1} \circ \sigma_{k, r}\right)_{\underline{m}} & =\left\{v \in A^{m} \mid v \circ \tau^{-1} \circ \sigma_{k, r} \in R_{k}\right\}, \\
\bigcap_{k \in K_{0}} \bigcap_{r \in \underline{r_{k}}}\left(R_{k}: \tau^{-1} \circ \sigma_{k, r}\right)_{\underline{m}} & =\left\{v \in A^{m} \mid \bigwedge_{k \in K_{0}} \bigwedge_{r \in \underline{r_{k}}} v \circ \tau^{-1} \circ \sigma_{k, r} \in R_{k}\right\}
\end{aligned}
$$

and thus

$$
\begin{aligned}
S & =\left\{u \in A^{t} \mid \exists v \in A^{m}: v \circ \tau^{-1} \circ \sigma=u \wedge \bigwedge_{k \in K_{0}} \bigwedge_{r \in \underline{r}_{k}} v \circ \tau^{-1} \circ \sigma_{k, r} \in R_{k}\right\} \\
& =\left\{u \in A^{t} \mid \exists v \in A^{m}: \bigwedge_{i \in \underline{t}} v_{\tau^{-1}}(\sigma(i))=u_{i} \wedge \bigwedge_{k \in K_{0}} \bigwedge_{r \in \underline{r_{k}}}\left(v_{\tau^{-1}}\left(\sigma_{k, r}(1)\right), \ldots, v_{\left.\left.\tau^{-1}\left(\sigma_{k, r}\left(i_{k}\right)\right)\right) \in R_{k}\right\},},\right.\right.
\end{aligned}
$$

where $i_{k} \in \mathbb{N}$ such that $R_{k} \subseteq A^{i_{k}}$. Note that the formula describing this set is primitive positive and solely comprises t equations and finitely many expression of the form $\left(a_{\mu(1)}, \ldots, a_{\mu\left(i_{k}\right)}\right) \in R_{k}$, where $\left\{a_{\mu(1)}, \ldots, a_{\mu\left(i_{k}\right)}\right\} \subseteq\left\{u_{1}, \ldots, u_{t}, v_{1}, \ldots, v_{m}\right\}$.

Conversely, assume a relation S is described by a primitive positve formula whose atomic formulas are of the form $\Phi_{i}(u, v): \Leftrightarrow\left(a_{\mu(1)}, \ldots, a_{\mu\left(i_{k}\right)}\right) \in R_{k}$ for $\left\{a_{\mu(1)}, \ldots, a_{\mu\left(i_{k}\right)}\right\} \subseteq\left\{u_{1}, \ldots, u_{t}, v_{1}, \ldots, v_{m}\right\}$. Then we have

$$
S=\left\{u \in A^{t} \mid \exists v \in A^{m}: \bigwedge_{i \in \underline{r}} e_{i}(u, v) \wedge \bigwedge_{j \in \underline{s}} \Phi_{j}(u, v)\right\}
$$

where $e_{i}(u, v)$ is some equality $a_{i}=b_{i}$ with $a_{i}, b_{i} \in\left\{u_{1}, \ldots, u_{t}, v_{1}, \ldots, v_{m}\right\}$. If we replace the expression $\exists v \in A^{m}$ by $\exists v \in A^{m+t}$ and add equations $v_{m+i}=u_{i}$ for $i \in \underline{t}$ one verifies that the same set is described. Then we may replace any u_{i} that occurs in some e_{j} or Φ_{j} by v_{m+i} and obtain

$$
S=\left\{u \in A^{t} \mid \exists v \in A^{m+t}: \bigwedge_{i \in \underline{t}} v_{m+i}=u_{i} \wedge \bigwedge_{i \in \underline{r}} e_{i}(v) \wedge \bigwedge_{j \in \underline{s}} \Phi_{j}(v)\right\}
$$

For $\sigma: \underline{t} \rightarrow \underline{m+t}, i \mapsto i+m$ and $T:=\left\{v \in A^{m+t} \mid \bigwedge_{i \in \underline{r}} e_{i}(v) \wedge \bigwedge_{j \in \underline{s}} \Phi_{j}(v)\right\}$, $S=T * \sigma$. Now assume $e_{i}(v) \Leftrightarrow v_{\sigma_{i}(1)}=v_{\sigma_{i}(2)}$ and $\Phi_{i}(v) \Leftrightarrow\left(v_{\tau_{i}(1)}, \ldots, v_{\tau_{i}\left(i_{k_{i}}\right)}\right) \in$ $R_{k_{i}}$. Then

$$
\begin{aligned}
T & =\bigcap_{i \in \underline{r}}\left\{v \in A^{m+t} \mid e_{i}(v)\right\} \cap \bigcap_{j \in \underline{s}}\left\{v \in A^{m+t} \mid \Phi_{j}(v)\right\} \\
& =\bigcap_{i \in \underline{r}}\left(\Delta: \sigma_{i}\right)_{\underline{m+t}} \cap \bigcap_{j \in \underline{s}}\left(R_{k_{j}}: \tau_{j}\right)_{\underline{m+t}}
\end{aligned}
$$

where $\Delta:=\{(a, a) \mid a \in A\}$ is the equality relation, which is obviously in $\operatorname{Inv} \mathcal{F}$ for any $\mathcal{F} \subseteq \mathcal{O}(A)$. So we obtain that T and thus S are in $\operatorname{Inv} \operatorname{Pol}\left\{R_{k} \mid k \in K\right\}$.
Alltogether, we showed the following theorem:
Theorem 9.2. Let A be a finite set and $\mathcal{R} \subseteq \mathcal{R}(A)$. Then $\operatorname{Inv} \operatorname{Pol} \mathcal{R}$ are precisely the relations that can be desribed as a set by a primitive positive formula which is built up from equalities and predicates of the form $v \mapsto\left(v_{\mu(1)}, \ldots, v_{\mu\left(i_{k_{j}}\right)}\right) \in R_{k_{j}}$.

References

[Maš10] D. Mašulović, Introduction to discrete mathematics, Lecture notes for a course at JKU Linz, Austria, 2010; available at http://www.algebra.uni-linz.ac.at/Students/DiskreteMathematik/ws10/, 2010.
[PK79] R. Pöschel and L. A. Kalužnin, Funktionen- und Relationenalgebren, Mathematische Monographien, vol. 15, VEB Deutscher Verlag der Wissenschaften, Berlin, 1979.
[Sze86] Á. Szendrei, Clones in universal algebra, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], vol. 99, Presses de l'Université de Montréal, Montreal, QC, 1986.

