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1. DEFINITION OF CLONES

Let A be a nonempty set. Then O(A) := [J{A?" | n € N} is the set of finitary
operations on A. For C C O(A) and m € N, we let CI"™ be the functions in
C with arity m. For n € N and j € {1,...,n}, the function Wﬁ") A" — As
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defined by W](ﬂ)(xl, oy @y) = xj for all xy,...,x, € A. For n € N, a subset R
of A" is also called a n-ary relation on A, and for any set I, a subset of A is
also called a relation on A indexed by I. Let v € A'. Then we will denote v also
by (v(i) | i € I). The expression (v(i) | i € I) can also be seen as a shorthand
for {(i,v(i)) | i € I}. For myn € N, f € O(A)M and ¢1,...,9, € O(A)M,
f(g1,---,9n) denotes the function (f(g1(x),...,gn(x)) | x € A™).

Definition 1.1 (Clone). Let A be a set, J # 0, C C O(A). C is a clone on A if

(1) for all n, j € N with j < n, we have 7Tj(-n) e C;
(2) for all n,m € N, for all f € C" and for all gy,...,9, € C™, we have
f(917 s 7gn) € C[m]

Proposition 1.2. Let A be a set, and let all C; (j € J) be clones on A. Then
(WCj | j€J} isaclone on A.

Proof: It can be seen from Definition 1.1 that the properties carry over to arbi-
trary intersections. 0

2. POLYMORPHISMS AND INVARIANT RELATIONS

Definition 2.1 (Preservation of a relation). Let A and I be nonempty sets, let
f: A" — A, and let R C Al. We say that f preserves R if for all vy, ..., v, € R,
we have (f(vi(4),...,v,(i)) | ¢ € I) € R. Then R is invariant under f, and we
write f > R. We also say that f is a polymorphism of the relational structure
(A; R) and that f is compatible with R.

Using the terminology of universal algebra, we see that an operation f preserves
R C A’ if and only if R is a subuniverse of (A, f)!. From a relation that is
invariant under f, other invariant relations can be constructed in the following

ways.

Definition 2.2. Let A, I, J be nonempty sets, let R C A7, and let ¢ be a function
from I to J. Then R * o is a subset of A’ defined by R* o :={voo | v e R}.

Definition 2.3. Let A be a nonempty set, let I,.J be sets, let S C A7, and let
o :J — I. Then (S : o) is the subset of A’ defiuned by (S : o); := {g €
Al | goo € S}.
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Lemma 2.4. Let A, I,J be nonempty sets, let R C A’ let o : I — J and
7:J — 1. Let f € O(A) be such that ft> R. Then f>Rxo and fr> (R: 7).

Proof: Let n be the arity of f, and let wq,...,w, € R* o. We have to show
(f(wi(2),...,wu(i)) |i€I) € Rxo. Let k € {1,...,n}. Since wy € R * o, there

is v, € R such that w;, = v, o 0. Now we have to show

(2.1) (f(v1(o(2)),...,va(c(2))) | i € I) € Rxo.

Let g := (f(vi(4),...,va(J))) | 7 € J). Since vy,...,v, € R, f > R implies that
g € R. Therefore, goo € R+ 0. We have

goo = {(f(vi(ca(i)),...,vn(c(i))) | i € I).
Thus, since g oo € R* o, (2.1) holds, which completes the proof of f > R x 0.

For proving f > (S : 7)r, we let g1,...,9, € (S : 7);. We have to show
(f(g1(2),...,gn(?)) | i € I) € (S : 7);. To this end, we show

(2.2) (F(g1(3), .., guli)) | i€ ) oT € S.

We have (f(g1(4), -, 9n(0)) | i € I)or = (f(9207(j), - -, gno7(4)) | J € J). Since
G107 € S,...,gnoT € S, the fact that fr>5 implies (f(g107(j),...,9n07(J)) | j €
J) € S, which implies (2.2). O

If I is a finite set, a relation R C A’ can therefore often be replaced with a
relation R on A™, where m := |I|.

For a nonempty set A, we let R(A) := U,y P(A") be the set of all finitary
relations on A that are indexed by an initial section of the natural numbers. We
will write n for the set {1,...,n}. As is usual, the set A™ is understood to be
the same set as A% For R C R(A), we let RI" := {R€ R| R C A"}. We note
that the RI™ need not be disjoint, since each of them might contain (.

Definition 2.5. Let m € N, let A be a nonempty set, and let 7 C O(A). We de-
fine Inv™(F) := {R C A™ | Vf € F: f> R}, and Inv(F) := J{Inv"(F) | m €
N}.

Definition 2.6. Let m € N, let A, I be nonempty sets, and let R C A’. Then
Poll™({R}) := {f : A" — A| fR}. If I; (j € J with j # () are sets,
R; C Al for j € J, and R := {R;|j € J}, then we define Pol™(R) :=
N{Pol™({R}) | R € R}. Furthermore, Pol(R) := [J{Pol™(R) | m € N}.
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Theorem 2.7. Let A be a set, let R, R1,Ro be sets of finitary relations on A,
and let F,Fy,Fy be sets of finitary operations on A. Then we have:

(1) Ry C Ry = Pol(Rs) C Pol(R,).
(2) F1 C Fo = Inv(F) CInv(Fy).
(3) F C Pol(Inv(F)).

(4) R C Inv(Pol(R)).

(5) Pol(Inv(Pol(R))) = Pol(R).

(6) Inv(Pol(Inv(F))) = Inv(F).

Proof: (1) Let f € Pol(R3), and let R € Ry;. Then R € R, and since f €
Pol(R2), we have f > R.

(2) Let R € Inv(Fy), and let f € F;. Then f € F,, and since R € Inv(Fz), we
have f > R.

(3) Let f € F. To prove that f € Pol(Inv(F)), we let R € Inv(F). Then since
f € F, we have f > R. Hence we have f € Pol(Inv(F)).

(4) Let R € R. To prove that R € Inv(Pol(R)), we let f € Pol(R). Since R € R,
we have f > R. Hence we have R € Inv(Pol(R)).

(5) By item (4), we have R C Inv(Pol(R)), and therefore by item (1) the inclusion
Pol(Inv(Pol(R))) C Pol(R) holds. The other inclusion follows from (3) by setting
F :=Pol(R).

(6) By item (3), we have F C Pol(Inv(F)), and therefore by item (2) the inclusion

Inv(Pol(Inv(F))) C Inv(F) holds. The other inclusion follows from item (4) by
setting R := Inv(F). O

3. THE INVARIANT RELATIONS ENCODE THE FUNCTIONS IN A CLONE

Lemma 3.1. Let C be a clone on the set A, let m € N, let f € C™, and let R
be the subset of AY" defined by R :=CI". Then f > R.

Proof: Let g¢1,...,9m € R. Since ¢1,...,¢9m € C" and f € C'"™, we have
f(g1,...,9m) € CM. and hence f(g1,...,9m) € R. Now f(g1,...,0m) =
(f(g1(3),...,gm(2)) | i € A™). Therefore, the last expression lies in R, which
completes the proof of f > R. O
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Theorem 3.2. Let C be a clone on the set A, let n € N, and let f : A" — A, and
let R be the subset of AY" defined by R := C!™. Then the following are equivalent:

(1) fec;
(2) f>R;

If A'is finite and m := |A|", then each of these properties is furthermore equivalent

to

(3) f € Pol(Inv™(C)).

Proof: (

(2)=(1): We know that Win) € R,....n0" € R Since f > R, we have
™M@, .. 7 6@) | i € A € R, and hence f(x\™,... 7)) € R. There-
fore f € R, which means f € CI".

(1)=(3): By Theorem 2.7 (3), we have C C Pol(Inv(C)). Since InvI™(C) C Inv (C),
item (1) of Theorem 2.7 yields Pol(Inv(C)) C Pol(InvI™(C)).

1)=-(2): This follows from Lemma 3.1.

(3)=-(2): From Lemma 3.1, we know that for all functions ¢ € C, we have ¢ > R.
Now let 7 be a bijective map from {1,...,m} to A", and let R' := Rx 7 =
{rom | r € R}. The relation R’ is a subset of A™. By Lemma 2.4, we have c¢> R’
for all ¢ € C. Therefore, R’ € Invl™(C). Since f € Pol(Invi™(C), we have f > R’
Now R={fon ' | f € R'}, and thus Lemma 2.4 yields that f > R. O

4. THE CLONES OF THE FORM Pol(R)

Proposition 4.1. Let A, I be sets, and let R C AL. Then Pol({R}) is a clone
on A.

Proof: Let n,j € N be such that i« < n. We first show that 7T](~n) lies in Pol({R}).
To this end, let vq,...,v, € R. We have to show

(4.1) (7" (01(3), ..., va(i)) | i € I) € R.
We have (7{” (v1(i), ..., v,(i)) | i € I) = (vj (i) | i € I) = v;. Since v; € R, (4.1)
is proved.

Now let n,m € N, and let g1,...,g, € A", f € A4" such that all functions
g1, --->9m, | preserve R. Now let vy,...,v,, € R. For each j € {1,...,n}, we
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have g; > R, and therefore
w;j = (g;(v1(3),...,vm(i)) | i € I) € R.

Since f > R, we have (f(wi(i),...,w,(i))|i € I) € R, and hence
(f(gr(vi(@), - vm(d), ..oy gu(vi(@), ..., vn(4))) | i € I) € R. Hence

(flg1,---,9n) (Ul(i),...,vm(i)) |iel)eR,

and thus Pol({R}) is closed under composition. O

Theorem 4.2. Let A be a finite set, and let C be a clone on A. Then C =
Pol(Inv(C)).

Proof: The inclusion C is a consequence of Theorem 2.7. For the other inclusion,
let f € Pol(Inv(C)). Let n be the arity of f, and let m := [A[*. Then Invl™(C) C
Inv(C), and thus by Theorem 2.7 (1), we have f € Pol(Invl™(C). Now from
Theorem 3.2, we obtain f € C. O

Corollary 4.3. Let A be a finite set, and let F be a subset of O(A). Then
Pol(Inv(F)) is a clone, and for every clone D with F C D, we have Pol(Inv(F)) C
D.

Proof: From Propositions 4.1 and 1.2, we obtain that Pol(Inv(F)) is a clone. Now
let D be a clone containing all functions from F. Then from items (1) and (2)
of Theorem 2.7, we obtain Pol(Inv(F)) C Pol(Inv(D)). By Theorem 4.2, we have
Pol(Inv(D)) = D, hence Pol(Inv(F)) C D. O

5. HOW THE FUNCTIONS IN A CLONE ENCODE THE INVARIANT RELATIONS

Theorem 5.1. Let A be a nonempty set, let C be a clone on A, let n,t € N, and
let S be a subset of At with S € Inv!! (C"). We assume that S is n-generated
as a subuniverse of (A,CI"I\t. Then there exists o : {1,...,t} — A" such that
S = CI" x . Furthermore, we then have S € Inv(C).

Proof: Let s1,...,s, € S such that the subuniverse of (A, C")? that is generated
by {s1,...,s,} is equal to S. We define o : {1,...,t} — A" by

o(r) (i) := s;(r)
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forr e {1,...,t},i€{1,...,n}. We will now prove
(5.1) S =CM"xo.

For C, we first show that all s; are elements of Cl"l % o. To this end, let i €
{1,...,n}. Let us now compute 7T§n) o ¢. This is a function from {1,... ¢t}
to A, and for r € {1,...,t}, we have 7 (a(r)) = 7 (c(r)(1),...,0(r)(n)) =
o(r) (i) = s;(r). Hence 7™ o ¢ = s;. Thus s; lies in CM x o. By Lemma 2.4,
C" x o is a subuniverse of (A, C). Therefore, it is also a subuniverse of the reduct
(A, Cl"y of (A,C). Thus we have S C C" % 0.

To prove D of (5.1), we let f € CI" and consider

g:=/foo={(foolr)|re{l,....t})

(

= (flo(r) | r e {1,. D
(5.2)
=
=

f(()()-wdﬂOﬂHTE{L~wﬂ>
f(s1(r), - sn(r)) | me{1,...t}).

We know that sy,...,s, € S. Since f € CI" and S € Inv(CM), we have that
f > S. Hence the last expression of (5.2) is an element S. Therefore foo € S,
which completes the proof of (5.1).

By Lemma 3.1, we know that CI™ is invariant under all operations in C. Hence

by Lemma 2.4, S = CI" % ¢ is invariant under all operations in C. Thus S €
Inv(C). O

Corollary 5.2. Let A be a nonempty set, let C be a clone on A, lett € N, let S
be a finite subset of A, and let n :=|S|. Then the following are equivalent:

(1) S € Inv(C).
(2) There exists o : {1,...,t} — A" such that S =C" x o
(3) S elnv(C).

Proof: (1)=(2): Since |S| = n, S is n-generated as a subuniverse of (A, CI")?,
Hence by Theorem 5.1, there is a o : {1,...,t} — A" such that S = CI" x o.
(2)=(3): By Lemma 3.1, we know that Cl" is invariant under all operations in
C. Hence by Lemma 2.4, S = C[" ¢ is invariant under all operations in C. Thus
S € Inv(C). (3)=(1): This follows from Theorem 2.7 (2). O
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Corollary 5.3. Let A be a nonempty set, let C be a clone, and let m,n,t € N.
We assume that m < n, S € Inv(CI"), and that S is n-generated as a subuniverse

of (A,CI"™\t. Then S € Inv(C).

Proof: Since S is n-generated as a subuniverse of (A,CI™)t and m < n, S is
also n-generated as a subuniverse of (A4, C")*. Thus by Theorem 5.1, there is a
o:{l,...,t} — A" such that S = C" x ¢. Now by Lemma 3.1 and Lemma 2.4,
every f € C preserves S. U

6. PROPERTIES OF THE LATTICE OF ALL CLONES

Definition 6.1. Let A be a nonempty set, and let F be a subset of O(A). Then
Clone(F) denotes the smallest clone C on A with F C C.

By Corollary 4.3, for a finite set A, we have Clone(F) = Pol(Inv(F)).

Definition 6.2. Let A be a nonempty set, and let C be a clone on A. The clone
C is finitely generated if there is a finite subset F of C with Clone(F) = C. the
clone C is finitely related if there is a finite set R C R(A) such that C = Pol(R).

For a nonempty set A, let C(A) be the set of clones on A. For C,D € C(A), we
write C < DifCCD,C<DifC<DandC # D, and C <D if C <D and
there is no clone £ with C < & < D.

Theorem 6.3. Let A be a finite nonempty set, and let C be a finitely generated
clone on A. Let N € N be such that C = Clone(CI™). Then we have:

(1) S(C) :={D € C(A) | D < C} is finite (and has at most glajia® elements).
(2) For all £ € C(A) with & < C there is a D € S(C) such that € < D.

Proof: Let So(C) := {CNPol({p}) | p € AU p & Inv(C)}.

Let £ € C(A) with £ < C. Suppose first that IanA‘N](S) C Inv“A‘N](C). We show
that then we have CIV! C €. To this end, let f € CIV. Then f € Pol(Inv(C)) C
Pol(lanA‘N} €)) = PoI(IanA‘N](S)). Hence by Theorem 3.2, we have f € £. This
completes the proof of CIN! € €. Hence C C &, contradicting £ < C. This
contradiction shows that there exists p € IanA‘N](S) with p & Inv(C). Now we
have £ C Pol({p}), and therefore £ < Pol({p}) N C. Hence we have that every
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€ € C(A) with € < C is contained in an element of Sy(C). Thus, the set S(C) is
a subset of Sy(C), and therefore finite.

We now show that every £ € C(A) with £ < C is contained in some D with
€ <D < C. To this end, let D be maximal in Sy(C) with € < D. To show
D < C, let Dy be such that D < Dy < C. Then there is Dy € Sy(C) such that
D1 < D,. This Dy contradicts the maximality of D. [

Lemma 6.4. Let A be a finite nonempty set, and let C € C(A). Then the

following are equivalent:

(1) C is not finitely generated.
(2) There is a strictly increasing sequence (C;)ien of clones with | J,.yCi = C.

Proof: (1)=-(2): Let fi, fa,... be an enumeration of all functions in O(A). Let
C; be the clone on A consisting only of projections, and let (1) be such that
fo@1) is the unary identity operation. For i > 2, let o(i) be minimal such that
foty € C \ Clone({fg(j) | 7 < i}). Set C; := Clone({fg(j) |j <i}). 2=1:. If C
is finitely generated by fi,..., fiu, then each of these generators is contained in
some C;. Hence there is a j € N such that C; contains fi,..., f,, and therefore
C; = C. This contradicts the fact that (C;); € N is strictly increasing. O

Theorem 6.5. Let A be a finite nonempty set, and let C be a finitely related clone
on A. Let R be a finite subset of R(A) such that C = Pol(R), and let N € N be
such that for all p € R we have |p| < N. Then we have:

(1) T(C) := {D € C(A) | C < D} is finite (and has at most | A|I" elements).
(2) For all £ € C(A) with C < & there is a D € T(C) such that D < E.

Proof: Let Ty(C) :== {Clone(CU{f}) | f: AN — A, f &C}.

Now let £ € C(A) be such that C < £. Suppose first that £ C CIV. We show
that then we have & C C. To this end, let p € R. Then p € Inv(C™) C Inv(EM)
Then since |p| < N, Corollary 5.2 yields p € Inv(€). Hence £ preserves every
relation p € R. Thus € C Pol(R) = C. This contradicts the assumption C < &,
and establishes the existence of an N-ary function f € & with f & C. Thus
Clone(CU{f}) C &. Altogether, every clone D with C < D contains an element
of To(C) as a subclone. Hence T'(C) C Ty(C).

Now let € be a clone with C < €. Let D minimal in 7;(C) with D < £. Suppose
C < D fails. Then there is D; € C(A) with C < D; < D. Now there is a clone
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Dy € Ty(C) with Dy < Dy, contradicting the minimality of D. Hence we have
C=<D. O

Lemma 6.6. Let A be a finite nonempty set, and let C € C(A). Then the
following are equivalent:

(1) C is not finitely related.
(2) There is a strictly decreasing sequence (C;)ien of clones with (o, Ci = C.

Proof: (1)=-(2): Let p1,pa2,... be an enumeration of all relations in R(A). Let
s(1) be such that py) is the unary relation A', and C; := Pol(p;) = O(A). For
i > 2, let s(7) be minimal such that py; € Inv(C) and pyu) & Inv(Ci—1), and
let C; := Pol({ps¢;y | 7 < i}. (2)=(1): Suppose C = Pol({p1,...,pn}), and let
N :=max{|p;| : j € {1l,...,m}}. Let r be such that cM = ¢l Then D :=¢,
preserves all relations in {p1,...,pn}. Therefore C, < Pol({p1,...,pm}) = C,
contradicting the fact that (C;);en is strictly decreasing. O

7. THE DEFINITION OF RELATIONAL CLONES

Definition 7.1. Let A be a nonempty set, and let R C R(A). Then R is a
relational clone if and only if

(1) For all m,n € N, for all R € R™ and for all ¢ : n — m, we have
Rxo e RM.

(2) For all m,n € N, for all R € R, and for all ¢ : n — m, we have
(R:0), € RM.

(3) For all n € N and R, S € RI", we have RN S € RI".

We note that (R : 0), = {(a1,...,am) € A™ | (a1, .,0m) € R}.

8. THE RELATIONAL CLONES OF THE FORM Inv(F)

Proposition 8.1. Let A be a nonempty set, and let F C O(A). Then Inv(F) is

a relational clone.

Proof: The first two properties in the definition of relational clones followw from
Lemma 2.4. For the third property, let n € N, and let R, S € Inv"(F). We have
to show that RN S € Inv™(F). To this end, let m € N and f € FI™ and let
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V1, U € RNS. Then (f(vi(2),...,v,(7) | ¢ € n) lies in R because of f > R
and in S because of f > S. U

The next lemma will be needed in proving that every relational clone on a finite
set is of the form Inv(F).

Lemma 8.2. Let A be a nonempty finite set, let K be a set, and for each k € K,
let R, C Alx be a finitary relation on A. Let R := {Ry | k € K}. Letn € N.
Then for each k € K, there are: my, € Ny and o1 : I, — A",..., Okm, : [y — A"
such that

Pol"(R)= () [\ (Ri:0km)ar

Proof: Let k € K, let my := |Ry|", and let rq,..., 7y, € (A%)" be the elements
of (Rg)". Then for m € {1,...,my}, we define op,, : Iy — A", opm(i) =
(rm(1) (2), ..., rm(n) (2)).

Now we prove C. Let f € Pol™(R), let k € K, and let m € {1,...,my}.
We have to prove f o op, € R. We have f oo, = (florm(i)) | i € 1) =
(f(rm(D)@) ...;rm(n)(9)) | ¢ € Ix). Since (ry(1),...,7,(n)) is an element of
(Ry)"™, we have r,(j) € Ry for all j € {1,...,n}. Now since f > Ry, we have
(frm(1)(@) ...,rm(n)(@)) | i € I}) € Ry.

For DO, let f be in the right hand side, and let £ € K. We show f > Ry.
To this end, let vy,...,v, € Rg. There is m € {1,...,my} such that r,, =
(v1,...,v,). We know that f ooy, € Ri. We have foopm = (f(orm(i) | i €
Iy = (f(rm(1)(@),...,rm(n)@)) | i € I) = (f(v1(2),...,v,(i)) | @ € I). The fact

that the last expression lies in R, completes the proof that f preserves R;. [

Lemma 8.3. Let I, J, K, L be nonempty sets, let R € Al let o : I — J, for each
leLletS €A’ andlet T: K — J. Then we have:

(1) If T is bijective, we have (R:o);*x7=(R: 7 o0)xk.
(2) If 7 is surjective onto J, we have (Ve Si) * T = (,ep (St * 7).

Proof: (1) For proving O, we assume that f € AX liesin (R: 77 'o0)g. Then
forl'oo € R. This implies fo7r™! € (R : 0);, and therefore (for7 ') o7 €
(R:0)y*T.
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For the inclusion C, let g € (R : 0);. We show goT € (R: 77 'o0)k. To this end,

1 1

we have to show goTor oo € R. Since goTror 'oo =gooand g € (R:0)y,

we have g o 0 € R, which implies the result.

(2) C: Let r € (e, Si- Then for each | € L, we have 7 x 7 € S;x 7. D: Let
7 € (Ve (S 7). We choose Iy € L. Since r € Sy, * 7, we have sy € Sy, such that
r=3s907. Now let [ € L. Then we have s € S; such that » = s o 7. Therefore
the functions sy and s agree on the image of 7. By the surjectivity of 7, we have
so = s. Hence sy € S;. Thus s € [, S, which implies r € ((,c, S1) * 7 O

Theorem 8.4. Let R be a relational clone on the finite set A. Then R =
Inv(Pol(R)).

Proof: Let S € Inv(Pol(R)), and let ¢t € N be such that S C A", Let n be such
that S is n-generated as a subuniverse of (A4, Pol™(R))!; this will for example
always be accomplished by setting n := |S|. Then by Theorem 5.1, there is
o:{1,...,t} — A" such that S = Pol"™(R) xo.

From Lemma 8.2, we have a set K, and for each k¥ € K an r;, € Ny and oy, :
A" — g, .., Ok, - A" — i, such that

Pol n] ﬂ m Rk Uk;r

keK re{l,...,ri}

Since A" is a finite set, Pol™(R) is an intersection of at most [A[A" of the sets
appearing on the right hand side; thus there is a finite Ky C K (with at most
|A[IA" elements) such that Pol™(R) = Mkero reqr, . ry (Bi Ok ) an.

Now let m := |A|", and let 7 : m — A™ be a bijection. Then by Lemma 8.3, we
have

Pol(R) = () [ ((Bi:ows)ansrsr)

keKo re{l,...,r1}

= ﬂ ﬂ Ryt Opyp)an *7)) 7"
:(ﬂ ﬂ (Rk:Tfloakﬂn)m)*Tfl.

keKore{l,...rg}
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Hence

= ﬂ ﬂ : OO’kT)m)*Til*O'

keKo re{l,...,rx}

ﬂ ﬂ 77 lo J;M)m) * (171 oo).

keKo re{l,...,rg}

9. A THEOREM ON GROUPS

Theorem 9.1. Let G be a finite group. Then there exist k € N and a subgroup
H of G* with the following property:

For eachn € N there arel € N andm € Ny with [ < |G|max(2 [n-logx(IG1)])
and m <1 -logy(|G|), and there is a mapping o : m X k — [ such
that for every subgroup S of G™ there is a mapping T : n — | with
S={(g1,--.,9,) €G"| Ja1,...,a0, € G: (/\iem<a0(i71)’ s Gig)) €
H) ANgr=aryN...\Ngn = aT(n)}.

Proof: By [AMMI11], we know that there is a a finite subgroup of H of G* such
that the clone C of term operations on G consists exactly of those functions that
preserve H. Now let n € N, let e := max(2, [nlog,(|G]|)]), | := |G|¢, and let

m = [ -logy(|GI)].

Then from Lemma 8.2, we know that thereisanm; € Nand oy, ..., qp, 1 E — G°
such that Cll = N(H : a;)¢ge. Let p be a bijection from {1,...,l} to G°. Then
by Lema 8.3, Cl¢ x p = Micm, (
can choose m subgroups such that the intersection of these m subgroups is equal

H:p~'oa;). Since Cl¥xpisa subgroup of G!, we

to the intersection of the m; given subgroups of G, where m < [log,(|G|")] =
|1+ logy(IG1)]-

As a subgroup of G™, S has a set of generators with at most log,(|G|") elements.
Since e > 2, S is e-generated as a subuniverse of (S,Cl?)". Hence from Theo-
rem 5.1, we have a mapping 71 : n — [ such that S =Cl s« =Cldxpxp~t x 7.
Now let 7 := p~tor;. Then S = Cl¥xpx7. We have (a1, ..., ;) € C!*pif and only
if for all i € m 1 (ap-1(as(1))s - - - » Gp1(asky)) € H. We define o (i, j) := p~(as(j)).

Now we know that (b, ..., b,) € Cl¥lxpx7 if and only if there is (ay, ..., a;) € Cldxp
such that b; = a,;) for all j € n. O
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