
BASICS OF CLONE THEORY
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Abstract. Some well known facts on clones are collected (cf. [PK79, Sze86,
Maš10]).
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1. Definition of clones

Let A be a nonempty set. Then O(A) :=
⋃
{AAn ||| n ∈ N} is the set of finitary

operations on A. For C ⊆ O(A) and m ∈ N, we let C[m] be the functions in

C with arity m. For n ∈ N and j ∈ {1, . . . , n}, the function π
(n)
j : An → A is
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defined by π
(n)
j (x1, . . . , xn) := xj for all x1, . . . , xn ∈ A. For n ∈ N, a subset R

of An is also called a n-ary relation on A, and for any set I, a subset of AI is

also called a relation on A indexed by I. Let v ∈ AI . Then we will denote v also

by 〈v(i) ||| i ∈ I〉. The expression 〈v(i) ||| i ∈ I〉 can also be seen as a shorthand

for {(i, v(i)) ||| i ∈ I}. For m,n ∈ N, f ∈ O(A)[n], and g1, . . . , gn ∈ O(A)[m],

f(g1, . . . , gn) denotes the function 〈f(g1(x), . . . , gn(x)) ||| x ∈ Am〉.

Definition 1.1 (Clone). Let A be a set, J 6= ∅, C ⊆ O(A). C is a clone on A if

(1) for all n, j ∈ N with j ≤ n, we have π
(n)
j ∈ C;

(2) for all n,m ∈ N, for all f ∈ C[n] and for all g1, . . . , gn ∈ C[m], we have

f(g1, . . . , gn) ∈ C[m].

Proposition 1.2. Let A be a set, and let all Cj (j ∈ J) be clones on A. Then⋂
{Cj ||| j ∈ J} is a clone on A.

Proof: It can be seen from Definition 1.1 that the properties carry over to arbi-

trary intersections. �

2. Polymorphisms and invariant relations

Definition 2.1 (Preservation of a relation). Let A and I be nonempty sets, let

f : An → A, and let R ⊆ AI . We say that f preserves R if for all v1, . . . , vn ∈ R,

we have 〈f(v1(i), . . . , vn(i)) ||| i ∈ I〉 ∈ R. Then R is invariant under f , and we

write f � R. We also say that f is a polymorphism of the relational structure

(A;R) and that f is compatible with R.

Using the terminology of universal algebra, we see that an operation f preserves

R ⊆ AI if and only if R is a subuniverse of 〈A, f〉I . From a relation that is

invariant under f , other invariant relations can be constructed in the following

ways.

Definition 2.2. Let A, I, J be nonempty sets, let R ⊆ AJ , and let σ be a function

from I to J . Then R ∗ σ is a subset of AI defined by R ∗ σ := {v ◦ σ ||| v ∈ R}.

Definition 2.3. Let A be a nonempty set, let I, J be sets, let S ⊆ AJ , and let

σ : J → I. Then (S : σ)I is the subset of AI defiuned by (S : σ)I := {g ∈
AI ||| g ◦ σ ∈ S}.
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Lemma 2.4. Let A, I, J be nonempty sets, let R ⊆ AJ , let σ : I → J and

τ : J → I. Let f ∈ O(A) be such that f �R. Then f �R ∗ σ and f � (R : τ)I .

Proof: Let n be the arity of f , and let w1, . . . , wn ∈ R ∗ σ. We have to show

〈f(w1(i), . . . , wn(i)) ||| i ∈ I〉 ∈ R ∗ σ. Let k ∈ {1, . . . , n}. Since wk ∈ R ∗ σ, there

is vk ∈ R such that wk = vk ◦ σ. Now we have to show

(2.1) 〈f(v1(σ(i)), . . . , vn(σ(i))) ||| i ∈ I〉 ∈ R ∗ σ.

Let g := 〈f(v1(j), . . . , vn(j)) ||| j ∈ J〉. Since v1, . . . , vn ∈ R, f � R implies that

g ∈ R. Therefore, g ◦ σ ∈ R ∗ σ. We have

g ◦ σ = 〈f(v1(σ(i)), . . . , vn(σ(i))) ||| i ∈ I〉.

Thus, since g ◦ σ ∈ R ∗ σ, (2.1) holds, which completes the proof of f �R ∗ σ.

For proving f � (S : τ)I , we let g1, . . . , gn ∈ (S : τ)I . We have to show

〈f(g1(i), . . . , gn(i)) ||| i ∈ I〉 ∈ (S : τ)I . To this end, we show

(2.2) 〈f(g1(i), . . . , gn(i)) ||| i ∈ I〉 ◦ τ ∈ S.

We have 〈f(g1(i), . . . , gn(i)) ||| i ∈ I〉◦τ = 〈f(g1◦τ(j), . . . , gn◦τ(j)) ||| j ∈ J〉. Since

g1◦τ ∈ S, . . . , gn◦τ ∈ S, the fact that f�S implies 〈f(g1◦τ(j), . . . , gn◦τ(j)) ||| j ∈
J〉 ∈ S, which implies (2.2). �

If I is a finite set, a relation R ⊆ AI can therefore often be replaced with a

relation R′ on Am, where m := |I|.

For a nonempty set A, we let R(A) :=
⋃
n∈NP(An) be the set of all finitary

relations on A that are indexed by an initial section of the natural numbers. We

will write n for the set {1, . . . , n}. As is usual, the set An is understood to be

the same set as An. For R ⊆ R(A), we let R[n] := {R ∈ R ||| R ⊆ An}. We note

that the R[n] need not be disjoint, since each of them might contain ∅.

Definition 2.5. Let m ∈ N, let A be a nonempty set, and let F ⊆ O(A). We de-

fine Inv[m](F) := {R ⊆ Am ||| ∀f ∈ F : f � R}, and Inv(F) :=
⋃
{Inv[m](F) ||| m ∈

N}.

Definition 2.6. Let m ∈ N, let A, I be nonempty sets, and let R ⊆ AI . Then

Pol[m]({R}) := {f : Am → A ||| f � R}. If Ij (j ∈ J with j 6= ∅) are sets,

Rj ⊆ AIj for j ∈ J , and R := {Rj ||| j ∈ J}, then we define Pol[m](R) :=⋂
{Pol[m]({R}) ||| R ∈ R}. Furthermore, Pol(R) :=

⋃
{Pol[m](R) ||| m ∈ N}.
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Theorem 2.7. Let A be a set, let R,R1,R2 be sets of finitary relations on A,

and let F ,F1,F2 be sets of finitary operations on A. Then we have:

(1) R1 ⊆ R2 ⇒ Pol(R2) ⊆ Pol(R1).

(2) F1 ⊆ F2 ⇒ Inv(F2) ⊆ Inv(F1).

(3) F ⊆ Pol(Inv(F)).

(4) R ⊆ Inv(Pol(R)).

(5) Pol(Inv(Pol(R))) = Pol(R).

(6) Inv(Pol(Inv(F))) = Inv(F).

Proof: (1) Let f ∈ Pol(R2), and let R ∈ R1. Then R ∈ R2, and since f ∈
Pol(R2), we have f �R.

(2) Let R ∈ Inv(F2), and let f ∈ F1. Then f ∈ F2, and since R ∈ Inv(F2), we

have f �R.

(3) Let f ∈ F . To prove that f ∈ Pol(Inv(F)), we let R ∈ Inv(F). Then since

f ∈ F , we have f �R. Hence we have f ∈ Pol(Inv(F)).

(4) Let R ∈ R. To prove that R ∈ Inv(Pol(R)), we let f ∈ Pol(R). Since R ∈ R,

we have f �R. Hence we have R ∈ Inv(Pol(R)).

(5) By item (4), we have R ⊆ Inv(Pol(R)), and therefore by item (1) the inclusion

Pol(Inv(Pol(R))) ⊆ Pol(R) holds. The other inclusion follows from (3) by setting

F := Pol(R).

(6) By item (3), we have F ⊆ Pol(Inv(F)), and therefore by item (2) the inclusion

Inv(Pol(Inv(F))) ⊆ Inv(F) holds. The other inclusion follows from item (4) by

setting R := Inv(F). �

3. The invariant relations encode the functions in a clone

Lemma 3.1. Let C be a clone on the set A, let m ∈ N, let f ∈ C[m], and let R

be the subset of AA
n

defined by R := C[n]. Then f �R.

Proof: Let g1, . . . , gm ∈ R. Since g1, . . . , gm ∈ C[n] and f ∈ C[m], we have

f(g1, . . . , gm) ∈ C[n], and hence f(g1, . . . , gm) ∈ R. Now f(g1, . . . , gm) =

〈f(g1(i), . . . , gm(i)) ||| i ∈ An〉. Therefore, the last expression lies in R, which

completes the proof of f �R. �
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Theorem 3.2. Let C be a clone on the set A, let n ∈ N, and let f : An → A, and

let R be the subset of AA
n

defined by R := C[n]. Then the following are equivalent:

(1) f ∈ C;

(2) f �R;

If A is finite and m := |A|n, then each of these properties is furthermore equivalent

to

(3) f ∈ Pol(Inv[m](C)).

Proof: (1)⇒(2): This follows from Lemma 3.1.

(2)⇒(1): We know that π
(n)
1 ∈ R, . . . , π

(n)
n ∈ R. Since f � R, we have

〈f(π
(n)
1 (i), . . . , π

(n)
n (i)) ||| i ∈ An〉 ∈ R, and hence f(π

(n)
1 , . . . , π

(n)
n ) ∈ R. There-

fore f ∈ R, which means f ∈ C[n].

(1)⇒(3): By Theorem 2.7 (3), we have C ⊆ Pol(Inv(C)). Since Inv[m](C) ⊆ Inv (C),
item (1) of Theorem 2.7 yields Pol(Inv(C)) ⊆ Pol(Inv[m](C)).

(3)⇒(2): From Lemma 3.1, we know that for all functions c ∈ C, we have c�R.

Now let π be a bijective map from {1, . . . ,m} to An, and let R′ := R ∗ π =

{r ◦π ||| r ∈ R}. The relation R′ is a subset of Am. By Lemma 2.4, we have c�R′

for all c ∈ C. Therefore, R′ ∈ Inv[m](C). Since f ∈ Pol(Inv[m](C), we have f � R′.

Now R = {f ◦ π−1 ||| f ∈ R′}, and thus Lemma 2.4 yields that f �R. �

4. The clones of the form Pol(R)

Proposition 4.1. Let A, I be sets, and let R ⊆ AI . Then Pol({R}) is a clone

on A.

Proof: Let n, j ∈ N be such that i ≤ n. We first show that π
(n)
j lies in Pol({R}).

To this end, let v1, . . . , vn ∈ R. We have to show

(4.1) 〈π(n)
j (v1(i), . . . , vn(i)) ||| i ∈ I〉 ∈ R.

We have 〈π(n)
j (v1(i), . . . , vn(i)) ||| i ∈ I〉 = 〈vj (i) ||| i ∈ I〉 = vj. Since vj ∈ R, (4.1)

is proved.

Now let n,m ∈ N, and let g1, . . . , gn ∈ AA
m
, f ∈ AA

n
such that all functions

g1, . . . , gm, f preserve R. Now let v1, . . . , vm ∈ R. For each j ∈ {1, . . . , n}, we
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have gj �R, and therefore

wj := 〈gj
(
v1(i), . . . , vm(i)

)
||| i ∈ I〉 ∈ R.

Since f � R, we have 〈f(w1(i), . . . , wn(i)) ||| i ∈ I〉 ∈ R, and hence

〈f
(
g1(v1(i), . . . , vm(i)), . . . , gn(v1(i), . . . , vm(i))

)
||| i ∈ I〉 ∈ R. Hence

〈f(g1, . . . , gn)
(
v1(i), . . . , vm(i)

)
||| i ∈ I〉 ∈ R,

and thus Pol({R}) is closed under composition. �

Theorem 4.2. Let A be a finite set, and let C be a clone on A. Then C =

Pol(Inv(C)).

Proof: The inclusion ⊆ is a consequence of Theorem 2.7. For the other inclusion,

let f ∈ Pol(Inv(C)). Let n be the arity of f , and let m := |A|n. Then Inv[m](C) ⊆
Inv(C), and thus by Theorem 2.7 (1), we have f ∈ Pol(Inv[m](C). Now from

Theorem 3.2, we obtain f ∈ C. �

Corollary 4.3. Let A be a finite set, and let F be a subset of O(A). Then

Pol(Inv(F)) is a clone, and for every clone D with F ⊆ D, we have Pol(Inv(F)) ⊆
D.

Proof: From Propositions 4.1 and 1.2, we obtain that Pol(Inv(F)) is a clone. Now

let D be a clone containing all functions from F . Then from items (1) and (2)

of Theorem 2.7, we obtain Pol(Inv(F)) ⊆ Pol(Inv(D)). By Theorem 4.2, we have

Pol(Inv(D)) = D, hence Pol(Inv(F)) ⊆ D. �

5. How the functions in a clone encode the invariant relations

Theorem 5.1. Let A be a nonempty set, let C be a clone on A, let n, t ∈ N, and

let S be a subset of At with S ∈ Inv[t](C[n]). We assume that S is n-generated

as a subuniverse of 〈A, C[n]〉t. Then there exists σ : {1, . . . , t} → An such that

S = C[n] ∗ σ. Furthermore, we then have S ∈ Inv(C).

Proof: Let s1, . . . , sn ∈ S such that the subuniverse of 〈A, C[n]〉t that is generated

by {s1, . . . , sn} is equal to S. We define σ : {1, . . . , t} → An by

σ(r) (i) := si(r)
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for r ∈ {1, . . . , t}, i ∈ {1, . . . , n}. We will now prove

(5.1) S = C[n] ∗ σ.

For ⊆, we first show that all si are elements of C[n] ∗ σ. To this end, let i ∈
{1, . . . , n}. Let us now compute π

(n)
i ◦ σ. This is a function from {1, . . . , t}

to A, and for r ∈ {1, . . . , t}, we have π
(n)
i (σ(r)) = π

(n)
i (σ(r)(1), . . . , σ(r)(n)) =

σ(r) (i) = si(r). Hence π
(n)
i ◦ σ = si. Thus si lies in C[n] ∗ σ. By Lemma 2.4,

C[n] ∗σ is a subuniverse of 〈A, C〉. Therefore, it is also a subuniverse of the reduct

〈A, C[n]〉 of 〈A, C〉. Thus we have S ⊆ C[n] ∗ σ.

To prove ⊇ of (5.1), we let f ∈ C[n] and consider

g := f ◦ σ = 〈f ◦ σ(r) ||| r ∈ {1, . . . , t}〉

= 〈f(σ(r)) ||| r ∈ {1, . . . , t}〉

= 〈f(σ(r) (1), . . . , σ(r) (n)) ||| r ∈ {1, . . . , t}〉

= 〈f(s1(r), . . . , sn(r)) ||| r ∈ {1, . . . , t}〉.

(5.2)

We know that s1, . . . , sn ∈ S. Since f ∈ C[n] and S ∈ Inv(C[n]), we have that

f � S. Hence the last expression of (5.2) is an element S. Therefore f ◦ σ ∈ S,

which completes the proof of (5.1).

By Lemma 3.1, we know that C[n] is invariant under all operations in C. Hence

by Lemma 2.4, S = C[n] ∗ σ is invariant under all operations in C. Thus S ∈
Inv(C). �

Corollary 5.2. Let A be a nonempty set, let C be a clone on A, let t ∈ N, let S

be a finite subset of At, and let n := |S|. Then the following are equivalent:

(1) S ∈ Inv(C[n]).

(2) There exists σ : {1, . . . , t} → An such that S = C[n] ∗ σ.

(3) S ∈ Inv(C).

Proof: (1)⇒(2): Since |S| = n, S is n-generated as a subuniverse of 〈A, C[n]〉t.
Hence by Theorem 5.1, there is a σ : {1, . . . , t} → An such that S = C[n] ∗ σ.

(2)⇒(3): By Lemma 3.1, we know that C[n] is invariant under all operations in

C. Hence by Lemma 2.4, S = C[n] ∗σ is invariant under all operations in C. Thus

S ∈ Inv(C). (3)⇒(1): This follows from Theorem 2.7 (2). �
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Corollary 5.3. Let A be a nonempty set, let C be a clone, and let m,n, t ∈ N.

We assume that m ≤ n, S ∈ Inv(C[n]), and that S is n-generated as a subuniverse

of 〈A, C[m]〉t. Then S ∈ Inv(C).

Proof: Since S is n-generated as a subuniverse of 〈A, C[m]〉t and m ≤ n, S is

also n-generated as a subuniverse of 〈A, C[n]〉t. Thus by Theorem 5.1, there is a

σ : {1, . . . , t} → An such that S = C[n] ∗ σ. Now by Lemma 3.1 and Lemma 2.4,

every f ∈ C preserves S. �

6. Properties of the lattice of all clones

Definition 6.1. Let A be a nonempty set, and let F be a subset of O(A). Then

Clone(F) denotes the smallest clone C on A with F ⊆ C.

By Corollary 4.3, for a finite set A, we have Clone(F) = Pol(Inv(F)).

Definition 6.2. Let A be a nonempty set, and let C be a clone on A. The clone

C is finitely generated if there is a finite subset F of C with Clone(F) = C. the

clone C is finitely related if there is a finite set R ⊆ R(A) such that C = Pol(R).

For a nonempty set A, let C(A) be the set of clones on A. For C,D ∈ C(A), we

write C ≤ D if C ⊆ D, C < D if C ≤ D and C 6= D, and C ≺ D if C < D and

there is no clone E with C < E < D.

Theorem 6.3. Let A be a finite nonempty set, and let C be a finitely generated

clone on A. Let N ∈ N be such that C = Clone(C[N ]). Then we have:

(1) S(C) := {D ∈ C(A) ||| D ≺ C} is finite (and has at most 2|A|
|A|N

elements).

(2) For all E ∈ C(A) with E < C there is a D ∈ S(C) such that E ≤ D.

Proof: Let S0(C) := {C ∩ Pol({ρ}) ||| ρ ⊆ A(|A|N ), ρ 6∈ Inv(C)}.

Let E ∈ C(A) with E < C. Suppose first that Inv[|A|N ](E) ⊆ Inv[|A|N ](C). We show

that then we have C[N ] ⊆ E . To this end, let f ∈ C[N ]. Then f ∈ Pol(Inv(C)) ⊆
Pol(Inv[|A|N ](C)) = Pol(Inv[|A|N ](E)). Hence by Theorem 3.2, we have f ∈ E . This

completes the proof of C[N ] ⊆ E . Hence C ⊆ E , contradicting E < C. This

contradiction shows that there exists ρ ∈ Inv[|A|N ](E) with ρ 6∈ Inv(C). Now we

have E ⊆ Pol({ρ}), and therefore E ≤ Pol({ρ}) ∩ C. Hence we have that every
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E ∈ C(A) with E < C is contained in an element of S0(C). Thus, the set S(C) is

a subset of S0(C), and therefore finite.

We now show that every E ∈ C(A) with E < C is contained in some D with

E ≤ D ≺ C. To this end, let D be maximal in S0(C) with E ≤ D. To show

D ≺ C, let D1 be such that D < D1 < C. Then there is D2 ∈ S0(C) such that

D1 ≤ D2. This D2 contradicts the maximality of D. �

Lemma 6.4. Let A be a finite nonempty set, and let C ∈ C(A). Then the

following are equivalent:

(1) C is not finitely generated.

(2) There is a strictly increasing sequence (Ci)i∈N of clones with
⋃
i∈N Ci = C.

Proof: (1)⇒(2): Let f1, f2, . . . be an enumeration of all functions in O(A). Let

C1 be the clone on A consisting only of projections, and let σ(1) be such that

fσ(1) is the unary identity operation. For i ≥ 2, let σ(i) be minimal such that

fσ(i) ∈ C \ Clone({fσ(j) ||| j < i}). Set Ci := Clone({fσ(j) ||| j ≤ i}). 2⇒1: If C
is finitely generated by f1, . . . , fm, then each of these generators is contained in

some Ci. Hence there is a j ∈ N such that Cj contains f1, . . . , fm, and therefore

Cj = C. This contradicts the fact that (Ci)i ∈ N is strictly increasing. �

Theorem 6.5. Let A be a finite nonempty set, and let C be a finitely related clone

on A. Let R be a finite subset of R(A) such that C = Pol(R), and let N ∈ N be

such that for all ρ ∈ R we have |ρ| ≤ N . Then we have:

(1) T (C) := {D ∈ C(A) ||| C ≺ D} is finite (and has at most |A||A|N elements).

(2) For all E ∈ C(A) with C < E there is a D ∈ T (C) such that D ≤ E.

Proof: Let T0(C) := {Clone(C ∪ {f}) ||| f : AN → A, f 6∈ C}.

Now let E ∈ C(A) be such that C < E . Suppose first that E [N ] ⊆ C[N ]. We show

that then we have E ⊆ C. To this end, let ρ ∈ R. Then ρ ∈ Inv(C[N ]) ⊆ Inv(E [N ])

Then since |ρ| ≤ N , Corollary 5.2 yields ρ ∈ Inv(E). Hence E preserves every

relation ρ ∈ R. Thus E ⊆ Pol(R) = C. This contradicts the assumption C < E ,

and establishes the existence of an N -ary function f ∈ E with f 6∈ C. Thus

Clone(C ∪ {f}) ⊆ E . Altogether, every clone D with C < D contains an element

of T0(C) as a subclone. Hence T (C) ⊆ T0(C).

Now let E be a clone with C < E . Let D minimal in T0(C) with D ≤ E . Suppose

C ≺ D fails. Then there is D1 ∈ C(A) with C < D1 < D. Now there is a clone
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D2 ∈ T0(C) with D2 ≤ D1, contradicting the minimality of D. Hence we have

C ≺ D. �

Lemma 6.6. Let A be a finite nonempty set, and let C ∈ C(A). Then the

following are equivalent:

(1) C is not finitely related.

(2) There is a strictly decreasing sequence (Ci)i∈N of clones with
⋂
i∈N0
Ci = C.

Proof: (1)⇒(2): Let ρ1, ρ2, . . . be an enumeration of all relations in R(A). Let

s(1) be such that ρs(1) is the unary relation A1, and C1 := Pol(ρ1) = O(A). For

i ≥ 2, let s(i) be minimal such that ρs(i) ∈ Inv(C) and ρs(i) 6∈ Inv(Ci−1), and

let Ci := Pol({ρs(j) ||| j ≤ i}. (2)⇒(1): Suppose C = Pol({ρ1, . . . , ρm}), and let

N := max{|ρj| : j ∈ {1, . . . ,m}}. Let r be such that C[N ]
r = C[N ]. Then D := Cr

preserves all relations in {ρ1, . . . , ρm}. Therefore Cr ≤ Pol({ρ1, . . . , ρm}) = C,
contradicting the fact that (Ci)i∈N is strictly decreasing. �

7. The definition of relational clones

Definition 7.1. Let A be a nonempty set, and let R ⊆ R(A). Then R is a

relational clone if and only if

(1) For all m,n ∈ N, for all R ∈ R[m], and for all σ : n → m, we have

R ∗ σ ∈ R[n].

(2) For all m,n ∈ N, for all R ∈ R[n], and for all σ : n → m, we have

(R : σ)m ∈ R[m].

(3) For all n ∈ N and R, S ∈ R[n], we have R ∩ S ∈ R[n].

We note that (R : σ)m = {(a1, . . . , am) ∈ Am ||| (aσ1, . . . , aσn) ∈ R}.

8. The relational clones of the form Inv(F)

Proposition 8.1. Let A be a nonempty set, and let F ⊂ O(A). Then Inv(F) is

a relational clone.

Proof: The first two properties in the definition of relational clones followw from

Lemma 2.4. For the third property, let n ∈ N, and let R, S ∈ Inv[n](F). We have

to show that R ∩ S ∈ Inv[n](F). To this end, let m ∈ N and f ∈ F [m], and let
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v1, . . . , vm ∈ R ∩ S. Then 〈f(v1(i), . . . , vm(i) ||| i ∈ n〉 lies in R because of f � R

and in S because of f � S. �

The next lemma will be needed in proving that every relational clone on a finite

set is of the form Inv(F).

Lemma 8.2. Let A be a nonempty finite set, let K be a set, and for each k ∈ K,

let Rk ⊆ AIk be a finitary relation on A. Let R := {Rk ||| k ∈ K}. Let n ∈ N.

Then for each k ∈ K, there are: mk ∈ N0 and σk,1 : Ik → An,. . . , σk,mk
: Ik → An

such that

Pol[n](R) =
⋂
k∈K

⋂
m∈{1,...,mk}

(Rk : σk,m)An .

Proof: Let k ∈ K, let mk := |Rk|n, and let r1, . . . , rmk
∈ (AIk)n be the elements

of (Rk)
n. Then for m ∈ {1, . . . ,mk}, we define σk,m : Ik → An, σk,m(i) =

(rm(1) (i), . . . , rm(n) (i)).

Now we prove ⊆. Let f ∈ Pol[n](R), let k ∈ K, and let m ∈ {1, . . . ,mk}.
We have to prove f ◦ σk,m ∈ R. We have f ◦ σk,m = 〈f(σk,m(i)) ||| i ∈ Ik〉 =

〈f(rm(1)(i) . . . , rm(n)(i)) ||| i ∈ Ik〉. Since (rm(1), . . . , rm(n)) is an element of

(Rk)
n, we have rm(j) ∈ Rk for all j ∈ {1, . . . , n}. Now since f � Rk, we have

〈f(rm(1)(i) . . . , rm(n)(i)) ||| i ∈ Ik〉 ∈ Rk.

For ⊇, let f be in the right hand side, and let k ∈ K. We show f � Rk.

To this end, let v1, . . . , vn ∈ Rk. There is m ∈ {1, . . . ,mk} such that rm =

(v1, . . . , vn). We know that f ◦ σk,m ∈ Rk. We have f ◦ σk,m = 〈f(σk,m(i)) ||| i ∈
I〉 = 〈f(rm(1)(i), . . . , rm(n)(i)) ||| i ∈ I〉 = 〈f(v1(i), . . . , vn(i)) ||| i ∈ I〉. The fact

that the last expression lies in Rk completes the proof that f preserves Rk. �

Lemma 8.3. Let I, J,K, L be nonempty sets, let R ∈ AI , let σ : I → J , for each

l ∈ L let Sl ∈ AJ , and let τ : K → J . Then we have:

(1) If τ is bijective, we have (R : σ)J ∗ τ = (R : τ−1 ◦ σ)K.

(2) If τ is surjective onto J , we have (
⋂
l∈L Sl) ∗ τ =

⋂
l∈L(Sl ∗ τ).

Proof: (1) For proving ⊇, we assume that f ∈ AK lies in (R : τ−1 ◦ σ)K . Then

f ◦ τ−1 ◦ σ ∈ R. This implies f ◦ τ−1 ∈ (R : σ)J , and therefore (f ◦ τ−1) ◦ τ ∈
(R : σ)J ∗ τ .
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For the inclusion ⊆, let g ∈ (R : σ)J . We show g◦τ ∈ (R : τ−1◦σ)K . To this end,

we have to show g ◦ τ ◦ τ−1 ◦σ ∈ R. Since g ◦ τ ◦ τ−1 ◦σ = g ◦σ and g ∈ (R : σ)J ,

we have g ◦ σ ∈ R, which implies the result.

(2) ⊆: Let r ∈
⋂
l∈L Sl. Then for each l ∈ L, we have r ∗ τ ∈ Sl ∗ τ . ⊇: Let

r ∈
⋂
l∈L(Sl ∗ τ). We choose l0 ∈ L. Since r ∈ Sl0 ∗ τ , we have s0 ∈ Sl0 such that

r = s0 ◦ τ . Now let l ∈ L. Then we have s ∈ Sl such that r = s ◦ τ . Therefore

the functions s0 and s agree on the image of τ . By the surjectivity of τ , we have

s0 = s. Hence s0 ∈ Sl. Thus s0 ∈
⋂
l∈L Sl, which implies r ∈ (

⋂
l∈L Sl) ∗ τ . �

Theorem 8.4. Let R be a relational clone on the finite set A. Then R =

Inv(Pol(R)).

Proof: Let S ∈ Inv(Pol(R)), and let t ∈ N be such that S ⊆ At. Let n be such

that S is n-generated as a subuniverse of 〈A,Pol[n](R)〉t; this will for example

always be accomplished by setting n := |S|. Then by Theorem 5.1, there is

σ : {1, . . . , t} → An such that S = Pol[n](R) ∗ σ.

From Lemma 8.2, we have a set K, and for each k ∈ K an rk ∈ N0 and σk,1 :

An → ik,. . . , σk,rk : An → ik such that

Pol[n](R) =
⋂
k∈K

⋂
r∈{1,...,rk}

(Rk : σk,r)An .

Since A(An) is a finite set, Pol[n](R) is an intersection of at most |A||A|n of the sets

appearing on the right hand side; thus there is a finite K0 ⊆ K (with at most

|A||A|n elements) such that Pol[n](R) =
⋂
k∈K0

⋂
r∈{1,...,rk}(Rk : σk,r)An .

Now let m := |A|n, and let τ : m → An be a bijection. Then by Lemma 8.3, we

have

Pol[n](R) =
⋂
k∈K0

⋂
r∈{1,...,rk}

((Rk : σk,r)An ∗ τ ∗ τ−1)

=
( ⋂
k∈K0

⋂
r∈{1,...,rk}

((Rk : σk,r)An ∗ τ)
)
∗ τ−1

=
( ⋂
k∈K0

⋂
r∈{1,...,rk}

(Rk : τ−1 ◦ σk,r)m
)
∗ τ−1.
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Hence

S =
( ⋂
k∈K0

⋂
r∈{1,...,rk}

(Rk : τ−1 ◦ σk,r)m
)
∗ τ−1 ∗ σ

=
( ⋂
k∈K0

⋂
r∈{1,...,rk}

(Rk : τ−1 ◦ σk,r)m
)
∗ (τ−1 ◦ σ).

�

9. A Theorem on Groups

Theorem 9.1. Let G be a finite group. Then there exist k ∈ N and a subgroup

H of Gk with the following property:

For each n ∈ N there are l ∈ N and m ∈ N0 with l ≤ |G|max(2, bn·log2(|G|)c)

and m ≤ l · log2(|G|), and there is a mapping σ : m× k → l such

that for every subgroup S of Gn there is a mapping τ : n→ l with

S = {(g1, . . . , gn) ∈ Gn ||| ∃a1, . . . , al ∈ G :
(∧

i∈m(aσ(i,1), . . . , aσ(i,k)) ∈
H
)
∧ g1 = aτ(1) ∧ . . . ∧ gn = aτ(n)}.

Proof: By [AMM11], we know that there is a a finite subgroup of H of Gk such

that the clone C of term operations on G consists exactly of those functions that

preserve H. Now let n ∈ N, let e := max(2, bn log2(|G|)c), l := |G|e, and let

m := bl · log2(|G|)c.

Then from Lemma 8.2, we know that there is anm1 ∈ N and α1, . . . , αm1 : k → Ge

such that C[e] =
⋂

(H : αi)Ge . Let ρ be a bijection from {1, . . . , l} to Ge. Then

by Lema 8.3, C[e] ∗ ρ =
⋂
i∈m1

(H : ρ−1 ◦αi)l. Since C[e] ∗ ρ is a subgroup of Gl, we

can choose m subgroups such that the intersection of these m subgroups is equal

to the intersection of the m1 given subgroups of Gl, where m ≤ blog2(|G|l)c =

bl · log2(|G|)c.

As a subgroup of Gn, S has a set of generators with at most log2(|G|n) elements.

Since e ≥ 2, S is e-generated as a subuniverse of 〈S, C[e]〉n. Hence from Theo-

rem 5.1, we have a mapping τ1 : n→ l such that S = C[e] ∗ τ1 = C[e] ∗ ρ ∗ ρ−1 ∗ τ1.
Now let τ := ρ−1◦τ1. Then S = C[e]∗ρ∗τ . We have (a1, . . . , al) ∈ C[e]∗ρ if and only

if for all i ∈ m : (aρ−1(αi(1)), . . . , aρ−1(αi(k))) ∈ H. We define σ(i, j) := ρ−1(αi(j)).

Now we know that (b1, . . . , bn) ∈ C[e]∗ρ∗τ if and only if there is (a1, . . . , al) ∈ C[e]∗ρ
such that bj = aτ(j) for all j ∈ n. �
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