Marshall Hall, Jr.

Department of Mathematics, California Institute of Technology

James K. Senior

Department of Chemistry, The University of Chicago

The Groups of Order $2n (n \le 6)$

THE MACMILLAN COMPANY, NEW YORK / COLLIER-MACMILLAN LIMITED, LONDON

© Copyright, THE MACMILLAN COMPANY, 1964

All rights reserved. No part of this book may be reproduced in any form without permission in writing from the publisher, except by a reviewer who wishes to quote brief passages in connection with a review written for inclusion in a magazine or newspaper.

First Printing

Library of Congress catalog card number: 64-16861

THE MACMILLAN COMPANY, NEW YORK
COLLIER-MACMILLAN CANADA, LTD., TORONTO, ONTARIO

Printed in the United States of America

Preface

It is the hope of the authors that the following tables, giving for the first time the complete list of the 267 groups of order 64, will be of enduring value to those interested in finite groups. Theories change, but the groups remain.

No single presentation of a group or list of groups can be expected to yield all the information which a reader might desire. Here, each group is presented in three different ways: (1) by generators and defining relations; (2) by generating permutations; and (3) by its lattice of normal subgroups, together with the identification of every such subgroup and its factor group. In this lattice the characteristic subgroups are distinguished.

For each group, additional information is given. Here are included the order of the group of automorphisms and the number of elements of each possible order 2, 4, 8, 16, 32, and 64. Thus the groups containing exactly three elements of order 2, or the groups of exponent 4, or the groups in which every normal subgroup is characteristic, may readily be found. All the groups are divided into twenty-seven families, following Philip Hall's theory of isotopy.

Chapters 3 and 4 give the theoretical background for the construction of the tables. But these chapters are not necessary for the use of those tables; for that purpose Chapter 2 is adequate. Chapter 5 draws attention to a number of the more interesting individual groups.

Marshall Hall, Jr. James K. Senior

James K[uhn] Jenior

Contents

C H A P T E R 1	4
Introduction	1
C H A P T E R 2 Use of the Tables; Notation and Terminology	2
C H A P T E R 3 The Families of 2-Groups of Rank ≤ 6	8
C H A P T E R 4 Construction of the Groups in a Family	25
C H A P T E R 5 Notes on Various Groups of Orders 8, 16, 32, and 64	28
Family Invariants	32
Groups by Family	37
Family Diagrams	95
Individual Group Diagrams	103

Introduction*

The work reported in the ensuing chapters of this monograph was begun about 1935. I was then attempting to determine all the groups of order 64 by methods which I now see to have been absurdly cumbersome and inept. All that I had to go by was a paper by G. A. Miller† which I found to be neither clear nor accurate.†

At that time, a mathematical friend called my attention to the fact that Professor Philip Hall of King's College, Cambridge, England, was also working on the groups of order 64. He advised me to get in touch with Professor Hall, and to request him to let me compare my results with his. Professor Hall kindly permitted me to do this. We found some slight discrepancies between the two lists, but these were rapidly cleared up. A month or two later, we settled the one-to-one correspondence between his groups and mine.

By this time, it was evident to me that Professor Hall's methods were much superior to the ones I had been using. We set to work to decide such questions as the following:

The linear sequence of the families.

The linear sequence of the genera within one stem or branch. The linear sequence of the groups within one genus.

These decisions involved a prolonged correspondence, but, by the summer of 1939, we were within a few months of being ready to send in our results (minus the diagrams) to *Acta Mathematica*, where we hoped to have them published.

Then World War II broke out, and since that time ill luck has dogged our footsteps. For five years Professor Hall and I were forced to lay groups aside and engage in far different occupations. In 1945, when the war was over, we attempted to start the work once more, but something always interfered. For example, I was twice incapacitated for over a year by illness.

About five years ago, Professor Philip Hall indicated that he wished to withdraw from the project. Professor Marshall Hall, Jr., was willing to take up the work at the point where Professor Philip Hall had left it, and this arrangement met with the latter's approval. Since that time, Professor Marshall Hall and I have collaborated in the preparation of the present monograph. We are, however, fully aware how much that work owes to the

† G. A. Miller. "Determination of all the groups of order 64." Am. J. of Math.,

‡ Miller states that there are 294 groups of order 64. As a matter of fact, there

1

* Introduction by James K. Senior.

vol. 52 (1930), pp. 617-634.

CHAPTER 2

omit it.

Use of the Tables; Notation and Terminology

labors of Philip Hall. The only reason why his name does not

appear on the title page as coauthor is that he requested us to

An individual group in these tables is given a designation such as $32 \Gamma_3 c_2$. Here the 32 gives the order of the group, Γ_3 the family* to which it belongs, and c_2 means that the group in question is the second group of genus c in that family. The groups are listed by families. The groups of lowest order in a family are called stem groups. If the stem groups of a family Γ are of order 2^r , then Γ is of rank r. The groups of order 2^{r+s} in a family Γ of rank r are said to form the sth branch. Thus, the family Γ_3 is of rank 4, and the group $32 \Gamma_3 c_2$ is in its first branch. This group is numbered 28 in the list. The groups of each order are numbered from family to family, going from Γ_1 , the family of Abelian groups, to Γ_{27} , the last family including groups of order 64.

The following table shows the number of groups of each order treated.

Order	Number of Groups
2	1
4	2
8	5
16	14
32	51
64	267
16 32	14 51

Before proceeding further, it is desirable to define family and

genus. For a group G, let $\mathcal{Z}(G)$ designate its center and G' its derived group, generated by all commutators $x^{-1}y^{-1}xy$, $x, y \in G$; here the notation is $[x, y] = x^{-1}y^{-1}xy$.

DEFINITION. Two groups G_1 and G_2 belong to the same family Γ if (1) $G_1/\mathcal{Z}(G_1)$ and $G_2/\mathcal{Z}(G_2)$ are isomorphic; (2) G_1' and G_2' are isomorphic; (3) It is possible to choose the isomorphisms (1) and (2) in such a way that whenever, under (1), the elements $a_1\mathcal{Z}(G_1)$ and $b_1\mathcal{Z}(G_1)$ of $G_1/\mathcal{Z}(G_1)$ correspond respectively to the elements $a_2\mathcal{Z}(G_2)$ and $b_2\mathcal{Z}(G_2)$ of $G_2/\mathcal{Z}(G_2)$, then, under (2), the element $[a_1, b_1]$ of G_1' corresponds to the element $[a_2, b_2]$ of G_2' .

With respect to property (3), note that, if z_1 and z_2 are elements of $\mathcal{Z}(G)$, then $[x, y] = [xz_1, yz_2]$; whence a commutator [x, y] may be regarded as a function with arguments in $G/\mathcal{Z}(G)$ and values in G'.

DEFINITION. Two groups G_1 and G_2 of the same order are in the same *genus* if there is an isomorphism between the lattice of normal subgroups of G_1 and G_2 such that corresponding normal subgroups belong to the same family.

This definition tells when two groups of the same order are in the same genus. Furthermore, a group and its direct product with a group of order 2 are (by definition) in the same genus. Thus every genus in a branch appears again in the next branch. For example, the three stem groups of Γ_3 are in a single genus, all three having the following lattice of normal subgroups:

Defining relations are given for every group G of a family of rank r in terms of r elements $\alpha_1, \alpha_2, \ldots, \alpha_r$, using only these elements if G is a stem group, and using further elements β_1, \ldots, β_m (which are a basis of the center $\mathcal{Z}_1(G)$) when G is not a stem group. There is in G a chain of subgroups

$$G_0 \subseteq G_1 \subseteq G_2 \subseteq \ldots \subseteq G_r = G$$

where $G_i = (G_{i-1}, \alpha_i)$ is the subgroup generated by G_{i-1} and the element α_i . For a stem group $G_0 = 1$, and, for other groups, G_0 is the center generated by the β 's. A complete set of defining relations for G is given by the values of α_i^2 , $i = 1, \ldots, r$, the commutators $[\alpha_i, \alpha_j]$, i < j, and the orders of the β 's, together with the fact that the β 's are in the center of G. The α 's are so chosen that certain relations hold for every group of the family.

^{*} This term and others will be defined below. They arise from the paper by Philip Hall, "Classification of prime power groups." J. für die reine u. ang. Math., vol. 182 (1940), pp. 130-141.

These relations are listed at the beginning of the family. Certain squares α_i^2 are given, as well as all commutators $[\alpha_i, \alpha_j]$, i < j which are not the identity. For an individual group, further relations involving α 's are given in columns headed "Defining Relations." The orders of the β 's are obtained from the column subtitled \mathcal{Z}_1 under the heading "Generic Invariants," these being the invariants of the center, which is an Abelian group. If there is more than one β , the β 's are numbered so that β_1 is of highest order, β_2 of next highest order, and so on. It may happen that some of the β 's do not occur in the defining relations involving the α 's. When such is the case, these β 's form an Abelian direct factor of G.

As an illustration, consider the group 64 $\Gamma_2 r_2$. Here Γ_2 is of rank 3, and every G of Γ_3 is generated by three elements α_1 , α_2 , α_3 , and the β 's. Hence, for 64 $\Gamma_2 r_2$,

$$\alpha_1^2 = 1,$$
 $[\alpha_1, \alpha_2] = 1,$
 $[\alpha_2, \alpha_3] = \alpha_1,$
 $i < j, \text{ otherwise}$
 $\beta_1^2 = 1, \beta_2^2 = 1,$
 $\alpha_1 = \beta_2, \alpha_2^2 = \beta_2, \alpha_3^2 = \beta_2.$

The first relations are given at the beginning of Γ_2 . Here the orders 8 and 2 for β_1 and β_2 respectively are determined by the generic invariants (3, 1) for \mathcal{Z}_1 in genus r. The last relations come from the columns headed "Defining Relations." Since β_1 does not occur in these columns, β_1 generates an Abelian direct factor of G. Hence G is the direct product of the quaternion group and a cyclic group of order 8.

There are a number of invariants common to all groups of a family. These are listed in a series of tables on plates I, II, III, and IV.

The rank of a family Γ is r if the stem groups of Γ are of order 2^r . The class is the length of the lower central series. The families $\Gamma_1, \Gamma_2, \ldots, \Gamma_{27}$ are arranged in increasing order of the following invariants taken in turn:

The rank r.

The middle length b, where $|G': \mathcal{Z}_1(G)| = 2^b$ for a stem group G.

The class c in decreasing order.

The symbol for the family in the second column of the table of family invariants has the form ${}^{u}_{v}X_{i}$, where, since G is a stem group, $2^{u} = |G:G'|$, $2^{v} = |\mathcal{Z}_{1}(G)|$, and so r = u + b + v. Thus there is a correspondence between the letter X = B, C, D, E, F and the values of b and c as follows

$$B \rightleftharpoons b = 0, c = 2,$$
 $D \rightleftharpoons b = 2, c = 4,$ $C \rightleftharpoons b = 1, c = 3,$ $E \rightleftharpoons b = 2, c = 3,$ $F \rightleftharpoons b = 3, c = 5.$

The group of inner automorphisms of a group of G is of course $G/\mathcal{Z}_1(G)$; by definition it is a family invariant. The terms of the lower central series (except for G itself) are family invariants. H_k is the kth term in this series. H_k/H_{k+1} is an Abelian group.

In the column headed H_k (if $H_k \neq 1$) are given the invariants of H_k/H_{k+1} .

Under class numbers, the value j_k is the number of classes of conjugates in G (a stem group) having 2^k elements each, and j_k * is the number of inequivalent absolutely irreducible representations of degree 2^k . For a group \overline{G} of the same family and j_k * branch (i.e., $|\overline{G}| = 2^s |G|$), $j_k(\overline{G}) = 2^s j_k(G)$, and j_k * $(\overline{G}) = 2^s j_k$ * (G).

A self-centralizer is a maximal Abelian subgroup. The table lists the number of these, there being s_k maximal Abelian subgroups of index 2^k .

On plate II the invariants of the Abelian groups $H_2 \cap \mathcal{Z}_1$ and $G/H_2\mathcal{Z}_1$, which are of course family invariants, are given.

Here, d is the minimum number of generators of a stem group G, and (by the Burnside basis theorem) $2^d = |G:\Phi(G)|$, where $\Phi(G)$ is the Frattini subgroup of G, the intersection of all the maximal subgroups.

The tensor product $T_0 = (G/G') \times \mathcal{Z}_1(G)$, where G is a stem group, is isomorphic with the group of all automorphisms of G which induce the identity on $G/\mathcal{Z}_p(G)$. The column headed T_0 gives the invariants of this group.

The group of autologisms of the family is represented by U. This is the group of those automorphisms of $G/\mathcal{Z}_1(G)$ which induce automorphisms on $G' = H_2$. The column headed u gives the order of U. The group U itself is given in most instances. Here Σ_3 , Σ_4 , Σ_6 are the respective symmetric groups. In a number of cases U is one of the groups of the table. Aut (1^3) is the simple group of order 168, which is the group of automorphisms of the elementary group of order 8. $\Sigma_3 \wr \Sigma_2$ is the "wreath product" of Σ_3 by Σ_2 , i.e., the direct product of a Σ_3 on 1, 2, 3 and another on 4, 5, 6 together with an element (1, 4)(2, 5)(3, 6). $(\Sigma_3 \times \Sigma_5)^+$ is the subgroup of even elements of the direct product of a Σ_3 and a Σ_5 . Hol (4) is the holomorph of the cyclic group of order 16.

The group U_2 is induced on $G' = H_2$ by U.

Most of the rest of the table of family invariants is related to the diagrams for the families. These diagrams give the lattice of normal subgroups of $G/\mathcal{Z}_1(G)$ and that of $G'=H_2(G)$, together with dotted horizontal lines which show the identification of groups in $G/\mathcal{Z}_1(G)$ with those in $H_2(G)$, when G is a stem group. To simplify the diagrams, a box $|X_i|$ represents j subgroups equivalent under automorphism. The general procedure may be illustrated by reference to the diagram for Γ_{δ} . Here G contains 15 subgroups of index 2 labeled X_1 ; the 15 below the G box indicates this. Each of the subgroups X_1 contains 3 subgroups of type X_2 and 4 of type X_3 . There are 15 groups of type X_2 each contained in 3 of type X_1 . There are 2 groups of type X_3 each contained in 3 of type X_1 . A group of type X_2 contains 3 subgroups of type X_4 , and a group of type X_3 contains 3 subgroups of type X_4 . There are 15 groups X_4 each contained in 3 groups X_2 and in 4 groups X_3 . The group $Z = Z_1$ is the center of G and is contained in all 15 of the X_4 subgroups. H_2 , the derived group, is of order 2. In a stem group $\mathcal{Z} = H_2$.

A heavily outlined box means that the corresponding group is characteristic.

Plate II, by reference to the diagrams, lists the self-centralizers (i.e., maximal Abelian subgroups) and the pairs of groups which centralize each other. Thus in Γ_5 , an X_1 and an appropriate X_4 centralize one another; this happens 15 times. Similarly, in ten instances, two groups of type X_3 centralize one another.

The lower central series of G is

$$G \supset H_2 \supset H_3 \supset \ldots \supset H_c \supset 1$$
,

and the upper central series is

$$1 \subset \mathcal{Z}_1 \subset \mathcal{Z}_2 \subset \ldots \subset \mathcal{Z}_{c-1} \subset G$$
.

As is well known, any central series for G is of the form

$$G \supseteq B_2 \supseteq \ldots \supseteq B_t \supseteq 1$$
,

where $B_i \supseteq H_i$ and $B_{t-j} \subseteq \mathcal{Z}_{j+1}$. Under maximal central factors are listed those maximal central factors which may occur in some central series which are not trivially consequences of the upper and lower series.

Plate III gives the defining relations on the α 's which are common to all groups of the family. Also, there are listed the congruences modulo \mathcal{Z}_1 which hold for the α 's. Plate IV gives, in relation to the family diagrams, the choice of the groups G_1, \ldots, G_5 , where $G_i = (G_{i-1}, \alpha_i)$ is used in determining the relations on the α 's.

The first signals of a 2-group G are the subgroups of index 2, and the factor groups modulo a normal subgroup of order 2. For every stem group G, the families of the first signals are determined. The second signals are similarly the normal subgroups of index 4 and the factor groups modulo normal subgroups of order 4.

 H_2^* is the centralizer of H_2 and its type is indicated; so also are the invariants of G/H^* and H_2^*/\mathcal{Z}_1 , these last being Abelian groups.

Further information is given for individual groups. Here $\Upsilon_2 = G/H_2$. The first subgroup signals and quotient signals are given. Under order structure is given the number of elements in G of order 2, 4, 8, 16, 32.

The order of the group of automorphisms A(G) of G is the product t_1t_2 . Here t_1 is the order of the subgroup of A(G) inducing the identity on $G/\Phi(G)$, where $\Phi(G)$ is the Frattini subgroup of G. Hence t_1 is always a power of 2 and is a multiple of the order of $G/\mathcal{Z}_1(G)$, the group of inner automorphisms. Hence also t_2 is the order of the group of automorphisms of $G/\Phi(G)$ induced by automorphisms of G. The symbol t_3 , when listed, gives supplementary information. It is the order of the group of automorphisms of $G/\mathcal{Z}_1(G)$ induced by automorphisms of G. Hence t_3 always divides u, the order of U, which is the group of autologisms of Γ . When $H_2 = \mathcal{Z}_1$, then $t_2 = t_3$.

Index of Terms and Symbols

- A, B, C, D, E, F. These letters correspond to a division of the 27 families of groups according to a systematic ordering. (See p. 4)
- Autologisms. The group U of those automorphisms of $G/\mathcal{Z}_1(G)$ which induce automorphisms on $G' = H_2$ (see p. 5).
- Branch. The sth branch of a family of rank r consists of the groups of order 2^{r+s} in the family.
- Family. A collection of closely related groups (See the definition on p. 3).
- First quotient signal. The list of factor groups modulo normal subgroups of order 2.

First subgroup signal. The list of subgroups of index 2. Γ_i . The *i*th family, $i = 1, \ldots, 27$.

Genus. For definition of genus see p. 3.

- H_i . The *i*th term of the descending (lower) central series. Here $H_1 = G$.
- H_i^* . The centralizer of H_i .
- I_j . The factor group G/\mathcal{Z}_j .
- $\Lambda(a)$. A family invariant when it exists. There is an Abelian subgroup of index 2 which is of type (a) modulo \mathcal{Z}_1 . For example, Γ_{14} is of type $\Lambda(2, 1)$.
- Order structure. These columns list the number of elements of orders 2, 4, 8, 16, 32, 64 respectively in the group.
- Rank. A family is of rank r if the stem groups are of order 2^r .
- Self-centralizer. A maximal Abelian subgroup.
- Stem. The groups of lowest order in a family.
- t_1 . Order of group of automorphisms of G which are the identity on $G/\Phi(G)$ (see p. 6).
- t_2 . Order of group of automorphisms of $G/\Phi(G)$ induced by automorphisms of G (see p. 6).
- t_3 . Order of group of automorphisms of $G/\mathcal{Z}_1(G)$ induced by automorphisms of G (see p. 6).
- Type. An Abelian 2-group is of type (a, b, \ldots, e) if it has a basis of elements of orders $2^a, 2^b, \ldots, 2^e$.
- U. The group of autologisms of a family (see p. 5).
- U_2 . The group induced on $G' = H_2$ by U.
- Verbally characteristic. Same as fully invariant. A subgroup is verbally characteristic if it is mapped into itself by every endomorphism of the group.
- Υ_i . The factor group G/H_i .

 \mathcal{Z}_i . The ith term of the ascending (upper) central series. Here \mathcal{Z}_0 is the identity.

CHAPTER 3

The Families of 2-Groups of Rank ≤ 6

Let G be a stem group (i.e., $\mathcal{Z}_1 = \mathcal{Z}_1(G)$, the center of $G, \leq G'$) of order 2^{r_*}

3.1 Let G have an Abelian subgroup A of index 2

Let $G = \{A, x\}$ and let $y \in A$. Then (since A is Abelian and normal in G) $yx^{-1}yx = x^{-1}yxy = x^{-1}(yx^{-1}yx)x$. $x^2 \in A$, and is therefore commutative with y. Hence $yx^{-1}yx$ is commutative with x, and therefore lies in \mathcal{Z}_1 . Or

$$x^{-1} yx \equiv y^{-1} \mod Z_1$$
.

Since $x^2 \in \mathcal{Z}_1$, it follows that G/\mathcal{Z}_1 is the split extension of the Abelian group A/\mathcal{Z}_1 by an element of order 2 which transforms each element of A/\mathcal{Z}_1 into its inverse.

Let A/\mathcal{Z}_1 be of type λ with parts $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_s > 0$. Let $G^* = \{x^*, y_1^*, \ldots, y_s^*\}$, with the defining relations $(x^*)^2 = 1, (y_i^*)^{2\lambda_i+1} = 1, x^*y_i^*x^* = (y_i^*)^{-1}, [y_i^*, y_j^*] = 1$ $(i, j = 1, 2, \ldots, s)$. Put $z_i^* = (y_i^*)^{2\lambda_i}$. The center \mathcal{Z}_1^* of G^* is then the elementary group $\{z_1^*, \ldots, z_s^*\}$ of order 2^s , and if $A^* = \{y_1^*, \ldots, y_s^*\}$, then A^*/\mathcal{Z}_1^* is of type λ , A^* is Abelian of index 2 in G^* , and $G^*/\mathcal{Z}_1^* \equiv G/\mathcal{Z}_1$. More precisely, if y_1, \ldots, y_s are elements of A such that $y_1\mathcal{Z}_1, \ldots, y_s\mathcal{Z}_1$ form a basis of A/\mathcal{Z}_1 with $y_i\mathcal{Z}_1$ of order 2^{λ_i} , then there is an isomorphism of G^*/\mathcal{Z}_1 formed by making the cosets of \mathcal{Z}_1^* which contain x^*, y_i^* correspond to the cosets of \mathcal{Z}_1 which contain x, y_i ($i = 1, \ldots, s$).

Since A is Abelian, the mapping $y \to [y, x]$ is homomorphic (for $y \in A$), and maps A onto G', with \mathcal{Z}_1 as kernel. Hence G' is also of type λ , with a basis consisting of the elements $[y_i, x] = t_i$

 $(i = 1, \ldots, s)$, the order of t_i being 2^{λ_i} . Write $t_i^* = [y_i^*, x^*] = (y_i^*)^{-2}$. Then the above isomorphism of G/Z_1 with G^*/Z_1 induces an isomorphism of G' with $(G^*)'$, where t_i corresponds to t_i^* $(i = 1, \ldots, s)$. Thus G and G^* belong to the same family. Hence the following theorem:

THEOREM 1.1. There is a 1-to-1 correspondence between the set of all partitions λ and the set of all families of 2-groups with an Abelian subgroup of index 2.

Denote by \mathfrak{A}_{λ} the family corresponding to λ . If λ has s parts, the rank of \mathfrak{A}_{λ} is $1 + s + \sum_{i} \lambda_{i}$. This expression is ≤ 6 in the following cases:

 $\mathfrak{A}_0 = \Gamma_1$, the family of Abelian 2-groups. Here zero stands for the empty partition.

 $\mathfrak{A}_{(1)} = \Gamma_2$, the family of all non-Abelian 2-groups with more than one Abelian subgroup of index 2 (hence with a center of index 4), $\mathfrak{A}_{(2)} = \Gamma_3$; $\mathfrak{A}_{(1, 2)} = \Gamma_4$; $\mathfrak{A}_{(3)} = \Gamma_8$; $\mathfrak{A}_{(2, 1)} = \Gamma_{14}$; $\mathfrak{A}_{(4)} = \Gamma_{27}$.

Note that the class of $G \in \mathfrak{A}_{\lambda}$ is $\lambda_1 + 1$.

THEOREM 1.2. A group G of order 2^n $(n \ge 3)$ and maximal class (i.e., n-1) is a stem group of $\mathfrak{A}_{(n-2)}$, and has a cyclic subgroup of index 2.

Proof by induction on n. When n=3, there occur the octic and quaternion groups of order 8, which contain elements of order 4. These are the stem groups of $\Gamma_2=\mathfrak{A}_{(1)}$. Suppose n>3. Since G is of class n-1, \mathcal{Z}_1 must be of order 2 and G/\mathcal{Z}_1 is a group of maximal class and order 2^{n-1} . By the induction hypothesis, G/\mathcal{Z}_1 has a cyclic subgroup of index 2. Hence G has a subgroup $A=\{y,z\}$ of index 2, where z generates \mathcal{Z}_1 . If A were noncyclic, it would be the direct product of y of order 2^{n-2} and \mathcal{Z}_1 . But then $\{y^{2^{n-3}}\}$ (since it is characteristic in A) would be normal in G; since it is of order 2, it would belong to \mathcal{Z}_1 —a contradiction. Hence $A=\{y\}$ is cyclic, A/\mathcal{Z}_1 is of type (n-2), and $G\in\mathfrak{A}_{(n-2)}$. G is necessarily a stem group since \mathcal{Z}_1 is of order 2.

For n > 2, there are three stem groups in $\mathfrak{A}_{(n-2)}$ with generators x, y, and the defining relations:

$$y^{2^{n-1}} = 1, x^{-1}yx = y^{-1}, x^2 = 1$$
 say a_1
 $y^{2^{n-1}} = 1, x^{-1}yx = y^{-1}, x^2 = y^{2^{n-2}}$ a_3
 $y^{2^{n-1}} = 1, x^{-1}yx = y^{-1+2^{n-2}}, x^2 = 1 \text{ (or } y^{2^{n-2}})$

with subgroups of index 2 other than A these are given by $\mathfrak{A}_{(n-3)} a_1^2$, a_3^2 and a_1a_3 (for $\mathfrak{A}_{(n-2)} a_1$, a_3 , and a_2 respectively).

3.2 Maximal Families

Notation. H is a given abstract group, and F/K is any factor group of a free group F which happens to be isomorphic with H:

$$F/K \cong H.$$
 (1)

Hence the lattice diagram

Note that

$$K/\mathcal{N}_0$$
 is a central factor of F , hence Abelian; (3)
 $K/\mathcal{N}_1 \cong F'K/F'$, a subgroup of the free Abelian group
 F/F' ; hence it is itself a free Abelian group; (4)

whence

$$K/N_0$$
 is the direct product of N_1/N_0 with a free Abelian group. (5)

DEFINITION. Call *H* capable if there exists a group *G* such that $G/\mathcal{Z}_1(G) \cong H$.

Suppose H is capable.

Problem. Given H, to classify all such G groups into families.

Write $G \sim G_1$ to signify that G and G_1 belong to the same family. Recall that

if
$$G_1$$
 is a subgroup of G such that $G = G_1 Z_1(G)$, then $G \sim G_1$;
(6) and if $M \triangleleft G$ and $M \cap G' = 1$, then $G \sim G/M$. (7)

Assuming that $G/\mathcal{Z}_1(G) \cong H$, (8) let x_1, x_2, \ldots , be a set of free generators of F; let α and β be fixed isomorphisms mapping F/K onto H and H onto $G/\mathcal{Z}_1(G)$. Let T = T(H) be the group of automorphisms of H. Then, for any $\theta \in T$, $\alpha\theta\beta = \gamma$ (say) will be an isomorphism of F/K onto $G/\mathcal{Z}_1(G)$. Suppose γ maps Kx_i onto $\mathcal{Z}_1(G)y_i$ ($i = 1, 2, \ldots$), the y's being chosen arbitrarily in their cosets. Then the map $x_i \to y_i$ extends uniquely to a homomorphism $\overline{\gamma}$ of F onto $G_1 = \{y_1, y_2, \ldots\}$ with kernel M (say), so that

$$F/M \cong G_1,$$
 (9)

since $G = G_1 \mathcal{Z}_1(G)$ by construction, then by (6),

$$G \sim G_1,$$
 (10)

and therefore

$$\zeta_1(G_1) = G_1 \cap \zeta_1(G), G_1/\zeta_1(G_1) \cong G/\zeta_1(G) \cong H.$$
(11)

By definition of γ ,

$$M \leq K$$
 and $K = \mathcal{Z}_1(G_1)^{\overline{\gamma}^{-1}}$ is the inverse image of the center of G_1 under $\overline{\gamma}$. (12)

Thus K/M is the center of F/M and therefore

$$M \ge \mathcal{N}_0 = [K, F]$$
, and K/\mathcal{N}_0 is the center of F/\mathcal{N}_0 . (13)

Let $M \cap \mathcal{N}_1 = \mathcal{N}$ so that $\mathcal{N}_0 \leq \mathcal{N} \leq \mathcal{N}_1$. By (4), $M/\mathcal{N} \cong \mathcal{N}_1 M/\mathcal{N}_1$, a subgroup of the free Abelian group K/\mathcal{N}_1 . So M/\mathcal{N} is free Abelian, and hence

$$M/\mathcal{N}_0 = M/\mathcal{N}_0 \times L/\mathcal{N}_0, \tag{14}$$

for a suitable choice of L. All these subgroups L, M, \mathcal{N} are normal in F since they lie between K and $\mathcal{N}_0 = [K, F]$.

Since $M \leq K$, $M \cap F' = M \cap \mathcal{N}_1 = \mathcal{N}$, and so the subgroup M/\mathcal{N} of F/\mathcal{N} intersects the derived group F'/\mathcal{N} of F/\mathcal{N} in the unit subgroup. Hence $F/M \sim F/\mathcal{N}$ and, in view of (6) and (9),

$$G \sim F/\mathcal{N}.$$
 (15)

Also K/N is the center of F/N. The conclusion is that every family of groups G with $G/\mathcal{Z}_1(G) \cong H$ has at least one representative among the factor groups F/N of F/N_0 for which $N_0 \leq N \leq N_1$, (16a) and K/N is the center of F/N. (16b)

The choice $\mathcal{N} = \mathcal{N}_0$ is always possible by (13). The family M(H) to which F/\mathcal{N}_0 belongs is called the maximal family associated with the given H. The remaining problem is to decide when $F/\mathcal{N} \sim F/\mathcal{N}^*$, where \mathcal{N} and \mathcal{N}^* are subgroups satisfying (16a and b).

Now by (16a), the central quotient groups of F/N and F/N^* effectively coincide; in $F/K \cong H$. Therefore $F/N \sim F/N^*$, if and only if there exists an automorphism φ of F/K which induces an isomorphism mapping the derived group F'/N of the former onto the derived group F'/N^* of the latter. Induces is to be understood in the obvious sense: if φ maps Ku and Kv onto Ku^* and Kv^* respectively, then $\overline{\varphi}$ maps $\mathcal{N}_0[u,v]$ onto $\mathcal{N}_0[u^*,v^*]$. Since $\mathcal{N}_0=[K,F]$ these cosets of \mathcal{N}_0 are uniquely determined by the cosets Ku, Kv, Ku^* , and Kv^* of K.

Thus $\varphi \to \overline{\varphi}$ may be regarded as a homomorphism of $T(F/K) \cong T = T(H)$ into $T(F'/N_0)$. Obviously the automorphism induced by φ on the subgroup KF'/K of F/K and that induced by $\overline{\varphi}$ on the factor group F'/N_1 of F'/N_0 are related by the natural isomorphism of KF'/K with F'/N_1 . However, $\overline{\varphi}$ leaves N_1/N_0 invariant; and the only really interesting items are the automorphisms of N_1/N_0 induced by $\overline{\varphi}$ for the various $\varphi \in T$. For it has been shown

(LEMMA 2.1) that $F/N \sim F/N^*$ if and only if there exists $\varphi \in T$ such that $\overline{\varphi}$ maps N onto N^* (or more strictly N/N_0 onto N^*/N_0).

Note that inner automorphisms of F/K can be realized by transforming with elements of F. Since $\mathcal{N}_1/\mathcal{N}_0$ is a central factor of F, $\overline{\varphi}$ acts trivially on $\mathcal{N}_1/\mathcal{N}_0$ whenever φ is an inner automorphism.

Schur proved that the group $\mathcal{N}_1/\mathcal{N}_0$ is independent of the choice of presentation (1) of H as a factor group of a free group, and depends only on the abstract group H itself. More precisely, he proved that F'/\mathcal{N}_0 depends only on H. Both these results are embodied in the still more precise fact that the maximal family

 $\mathfrak{M}(H)$ depends only on H. For if a different presentation of H

$$(\text{say}) \ F^*/K^* \cong H \tag{17}$$

is taken and the above argument is applied, then, by (15), with the obvious notation,

$$F^*/\mathcal{N}_0^* \sim F/\mathcal{N},\tag{18}$$

for some \mathcal{N} between \mathcal{N}_0 and \mathcal{N}_1 . Similarly, by interchanging the roles of the two presentations,

$$F/\mathcal{N}_0 \sim F^*/\mathcal{N}^*,\tag{19}$$

for some \mathcal{N}^* between \mathcal{N}_0^* and \mathcal{N}_1^* . In order to obtain (18) and (19), it is necessary to use an isomorphism γ of F/K onto F^*/K^* and an isomorphism γ^* of F^*/K^* onto F/K. But it is always possible to choose $\gamma^* = \gamma^{-1}$. If this is done, the induced homomorphisms $\overline{\gamma}$ of F'/\mathcal{N}_0 onto $(F^*)'/\mathcal{N}_0^*$ (with kernel $\mathcal{N}/\mathcal{N}_0$) and $\overline{\gamma}^*$ of $(F^*)'/\mathcal{N}_0^*$ onto F'/\mathcal{N}_0 (with kernel $\mathcal{N}^*/\mathcal{N}_0^*$) immediately make $\overline{\gamma}\gamma^*$ and $\overline{\gamma}^*\overline{\gamma}$ the identity maps of F'/\mathcal{N}_0 and $(F^*)'/\mathcal{N}_0$, respectively, so that $\overline{\gamma}^* = (\overline{\gamma})^{-1}$ and $\mathcal{N} = \mathcal{N}_0$, $\mathcal{N}^* = \mathcal{N}_0^*$. Summarizing:

THEOREM 2.2. The outer automorphisms of H (strictly F/K) are represented in a natural way by automorphisms of the Schur multiplier $\mathcal{N}_1/\mathcal{N}_0$ of H. The subgroups $\mathcal{N}/\mathcal{N}_0$ such that $\mathcal{N}_0 \leq \mathcal{N} \leq \mathcal{N}_1$ and such that $K/\mathcal{N} = \mathcal{Z}_1(F/\mathcal{N})$ are permuted among themselves in this representation; and $F/\mathcal{N} \sim F/\mathcal{N}^*$ if and only if \mathcal{N} and \mathcal{N}^* belong to the same transitive set.

The distinct families of groups G with $G/\mathcal{Z}_1(G) \cong H$ are in one-to-one correspondence with these transitive sets. In particular, the maximal family corresponds to the set consisting of \mathcal{N}_0 alone.

The group of autologisms of the maximal family is T = T(H), the group of automorphisms of H. For the family to which F/N belongs, the group of autologisms is the stabilizer of N/N_0 in T; i.e., it consists of all the automorphisms of $F/K \cong H$ which induce in N_1/N_0 an automorphism leaving N/N_0 invariant. An easy corollary of the foregoing general theory is the following theorem:

THEOREM 2.3. Every family contains stem groups.

For by (5), K/\mathcal{N}_0 is the direct product of $\mathcal{N}_1/\mathcal{N}_0$ with a free Abelian group (say) L/\mathcal{N}_0 . Here $L \lhd F$; and $F/L \sim F/\mathcal{N}_0$ so that $F/L \in \mathfrak{M}(H)$, the maximal family. Further F/L is a stem group. If $\mathcal{N}_0 \leq \mathcal{N} \leq \mathcal{N}_1$, and if K/\mathcal{N} is the center of F/\mathcal{N} , then $F/L\mathcal{N} \sim F/\mathcal{N}$ and $F/L\mathcal{N}$ is again a stem group. But every family of groups G with $B/\mathcal{Z}_1(G) \cong H$ contains members of the form F/\mathcal{N} , with \mathcal{N} as described.

Remark. In principle, the above theory gives a method which can be used systematically to classify the 2-groups of order \leq 64 into families. It is most useful in those cases where $\mathfrak{M}(H)$ is small. When $\mathfrak{M}(H)$ is too large, other methods are easier.

3.3 Applications of the Multiplier Method

Not every group H can function as the group of inner automorphisms of some other group G. The following criterion is the simplest:

LEMMA 3.1. Let $H = \{x_1, \ldots, x_r\}$, and suppose H contains an element $u \neq 1$ such that $u \in \{x_i\}$ for each $i = 1, \ldots, r$. Then $G/Z_1(G) \cong H$ is impossible.

For if $\mathcal{Z}_1(G)v$ is the coset corresponding to u, and y_1, \ldots, y_r are arbitrary elements from the cosets of $\mathcal{Z}_1(G)$ corresponding to x_1, \ldots, x_r , then $v \equiv y_i^{m_i} \mod \mathcal{Z}_1(G)$ for some integer m_i . Hence v commutes with each y_i . But $G = \{\mathcal{Z}_1(G), y_1, \ldots, y_r\}$. Hence $v \in \mathcal{Z}_1(G)$, which contradicts $u \neq 1$.

COROLLARY 3.2. A finite Abelian group is capable if and only if its two largest invariants coincide.

Suppose for example that $H = \{x_1'\} \times \ldots \times \{x_r'\}$ with $\{x_i'\}$ of order h_i , where h_{i+1} divides $h_i(i=1,\ldots r-1)$. If $h_1/h_2 > 1$, write $x_1 = x_1'$ and $x_i = x_1'x_i'$ for i > 1, and let $u = x_1^{h_2}$. Then $H = \{x_1, \ldots, x_r\}$, $u \neq 1$ and $u = x_i^{h_2}$ for each i. Thus H is incapable.

But it is easy to see that the multiplier of H has as invariants 1 equal to h_2 , 2 equal to h_3 , ..., r-1 equal to h_r , and that, if $h_1 = h_2$, there is a group of the maximal family $\mathfrak{M}(H)$ in the form $G = \{y_1, \ldots, y_r\}$ with the defining relations $[y_i, y_j]^{hj} = 1$ (i < j), together with those which express the fact that the $[y_i, y_j]$ lie in the center. This group has $\mathcal{Z}_1(G)$ generated by the $[y_i, y_j]$ and y_k h_{k-1} ; hence, effectively, $G/\mathcal{Z}_1(G) \cong H$.

Where H is an Abelian 2-group of Type λ , and the partition λ has parts

$$\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_r > 0, \tag{1}$$

then necessarily $\lambda_1 = \lambda_2$, if H is to be capable. Assuming this condition, the rank of the maximal family is

$$\sum_{i=1}^{r} \lambda_i + \sum_{i \leq j} \min (\lambda_i, \lambda_j) = \lambda_1 + 2\lambda_2 + \ldots + r\lambda_{r_i}$$

When r=2, H is of type (λ_1, λ_1) and the multiplier is cyclic of order 2^{λ_1} . Here (in the notation of sec. 2) $\mathcal{N} > \mathcal{N}_0$ implies that the center of F/\mathcal{N} is larger than K/\mathcal{N} . Thus only the maximal family exists. This family is Γ_2 when $\lambda_1=1$, Γ_{12} when $\lambda_1=2$.

Equally simple is the case $\lambda = (1^3)$. Here the multiplier $\mathcal{N}_1/\mathcal{N}_0$ is an elementary group of order 8 and therefore isomorphic with H itself. Hence it is easy to see that the group of automorphisms T = T(H) of order 168 is faithfully represented on $\mathcal{N}_1/\mathcal{N}_0$. Besides the maximal family Γ_9 , there occurs only one other family, Γ_4 , formed by taking $\mathcal{N}/\mathcal{N}_0$ of order 2 (all such \mathcal{N} 's being equivalent under T). It is impossible for $\mathcal{N}/\mathcal{N}_0$ to be of order 4, since that condition would make the center of F/\mathcal{N} of index 4, not 8.

It is easy to see that 7 is the smallest rank of a family of 2-groups with $G/\mathbb{Z}_1(G)$ of type (1⁵) or (2² 1). Hence the groups G of class 2 and order dividing 64 which are not included in the families Γ_2 , Γ_4 , Γ_9 , and Γ_{12} obtained above all have central quotient groups of type (1⁴). For if H is of type (1⁴), the multiplier is of type (1⁶), and since this type is rather large, these remaining class-2 groups are best divided into families by another method (see sec. 3.5.).

Of the two non-Abelian groups of order 8, the quaternion group is incapable by Lemma 3.1. More generally, of the three groups of order 2^n ($n \ge 4$) and maximal class n - 1, only the dihedral group is capable, again by Lemma 3.1.

LEMMA 3.3. Let $H = \{a, b\}$ with $a^{2^n} = b^2 = 1$, $bab = a^{-1}$ $(n \ge 1)$, be the dihedral group of order 2^{n+1} . Then the multiplier of H is of order 2. Only the maximal family $\mathfrak{M}(H)$ exists, and its stem consists of the groups of order 2^{n+2} and of maximal class.

For let G be a stem group with $G/\mathcal{Z}_1 \cong H$ where $\mathcal{Z}_1 = \mathcal{Z}_1(G)$. Let \mathcal{Z}_1x correspond to a. Then $A = \{\mathcal{Z}_1, x\}$ is of index 2 in G and Abelian. By Theorem 1, if G' is of type λ , G/\mathcal{Z}_1 will be the split extension of an Abelian group of type λ by an element of order 2 which transforms each element of the Abelian group into its inverse. Hence $\lambda = (n)$, and G' is cyclic of order 2^n . But $G'/\mathcal{Z}_1 \cong H'$, which is cyclic of order 2^{n-1} . Hence \mathcal{Z}_1 is of order 2, and G (by Theorem 1) is of maximal class.

In particular, for H=8 Γ_2 a_1 , the only family is $\Gamma_3=\mathfrak{M}(H)$; for H=16 Γ_3 a_1 , the only family is $\Gamma_8=\mathfrak{M}(H)$.

It follows that the groups with G/\mathcal{Z}_1 of order 8 fall into the three families Γ_3 , Γ_4 , and Γ_9 . Consider next those with G/\mathcal{Z}_1 of order 16. Of these, those of class 2 but not in Γ_{12} are (as already remarked) to be treated later. By Lemma 3.3, those of class 4 constitute the family Γ_8 . It remains to deal with those of class 3. For these, $H \cong G/\mathcal{Z}_1$ is a group of the first branch of Γ_2 . Now, in the notation of the tables, the groups a_2 , b, c_2 , and d of this branch are incapable by Lemma 3.1.

For
$$16 \Gamma_2 a_2 = \{\alpha_2, \alpha_3, \alpha_2 \beta_2\}$$
, take $u = \beta_1$.
For $16 \Gamma_2 b = \{\alpha_2 \beta, \alpha_3 \beta, \beta\}$, take $u = \beta^2$.
For $16 \Gamma_2 c_2 = \{\alpha_2 \alpha_3, \alpha_3\}$, take $u = \beta_2$.
For $16 \Gamma_2 d = \{\alpha_2 \alpha_3, \alpha_3\}$, take $u = \beta^2$.

Thus there remain only the groups a_1 and c_1 to be discussed.

Now $16\Gamma_2 a_1$ is the direct product of an octic group with a group of order 2. Rather more generally, consider the case where H is the direct product of a group of order 2 with a dihedral group of order 2^{n+1} (n > 1). Say $H = \{a, b, c\}$, where

$$a^{2^n} = b^2 = c^2 = 1$$
, $bab = a^{-1}$, $bc = cb$, $ac = ca$. (3)

Let G be any group with $G/\mathcal{Z}_1 \cong H$, and suppose that to a, b, and c there correspond the cosets of \mathcal{Z}_1 containing α , β , and γ . Then γ^2 and $[\alpha, \gamma]$ lie in \mathcal{Z}_1 . Hence $1 = [\alpha, \gamma^2] = [\alpha, \gamma]^2 = [\alpha^2, \gamma]$. Hence, γ commutes with α^2 ; and $\xi = [\alpha, \gamma]$ is of order 2. Similarly $\eta = [\beta, \gamma]$ is of order 2. Also $G_1 = \{\alpha, \beta\}$ has $G_1/\mathcal{Z}_1 \cap G_1$, which is dihedral and of order 2^{n+1} . Hence, by Lemma (3.3),

 G_1' is cyclic, of order at most 2^n , and generated by $[\alpha, \beta]$. But $[\alpha, \beta]$ is of order $2^{n-1} \mod \mathcal{Z}_1$. So, if $\zeta = [\alpha, \beta]^{2^{n-1}}$, $\gamma^2 = 1$. Thus $\mathcal{N} = \{\xi, \eta, \zeta\}$ is elementary and of order ≤ 8 ; it lies in \mathcal{Z}_1 . Now $[\alpha, \beta] = \alpha^{-2} \mod \mathcal{Z}_1$; therefore $[\alpha, \beta]$ commutes with γ ; and G_1' is normal in G. But $G = \{\mathcal{Z}, \alpha, \beta, \gamma\}$; and so G' is generated by $[\alpha, \beta]$, ξ , and η , together with their conjugates in G. Since it has been shown that $\{[\alpha, \beta]\} = G_1'$ is normal in G, it follows that $G' = \{[\alpha, \beta], \xi, \eta\}$ and that $G' \cap \mathcal{Z}_1 = \{\xi, \eta, \zeta\}$. Hence the multiplier of H is elementary and of order ≤ 8 .

To prove that this multiplier is actually of order 8, define a group $G = \{\alpha, \beta, \gamma, \xi, \eta\}$ by the relations:

$$\alpha^{2^{n+1}} = \beta^2 = \gamma^2 = \xi^2 = \eta^2 = 1, \ \beta \ \alpha \ \beta = \alpha^{-1}, \ [\alpha, \gamma] = \xi,$$

$$[\beta, \gamma] = \eta, \ \xi \in \mathcal{Z}_1, \ \eta \in \mathcal{Z}_1.$$

Thus G is the split extension of the direct product $\{\alpha, \beta\} \times \{\xi\} \times \{\eta\}$ of a dihedral group of order 2^{n+2} and two cyclic groups of order 2 by an element γ of order 2 which induces the automorphism $\alpha, \beta, \xi, \eta \to \alpha \xi, \beta \eta, \xi, \eta$. Note that $[\alpha^2, \gamma] = 1$, and that $\mathcal{Z}_1 = \mathcal{Z}_1(G)$ is $\{\xi, \eta, \zeta\}$ where $\zeta = \alpha^{2^n}$. So in fact $G/\mathcal{Z}_1 \cong H$. Since $G' = \{\alpha^2, \xi, \eta\}, \mathcal{Z}_1$ is contained in G'. The multiplier of H is of order ≥ 8 , since \mathcal{Z}_1 is of order 8. Combining this result with those previously obtained proves that the group in question is a stem group of the maximal family $\mathfrak{M}(H)$. This family therefore has rank n + 5. It is next necessary to obtain representatives of all families with central quotient groups isomorphic with H in the form G/\mathcal{N} , where $\mathcal{N} \leq \mathcal{Z}_1$. To avoid extra notation, \mathcal{Z}_1 may be regarded as itself the multiplier of H. There remains to be considered how its subgroups \mathcal{N} are affected by automorphisms of H.

Let θ map a, b, c into a, ab, c. The induced automorphism $\overline{\theta}$ maps ξ , η , ζ into ξ , $\xi\eta$, ζ . Again, let φ map a, b, c into a, b, $a^{2^{n-1}}c$. Then $\overline{\varphi}$ maps ξ , η , ζ into ξ , $\eta\zeta$, ζ ; and if ψ maps a, b, c into ac, b, c, then $\overline{\psi}$ is the identity on \mathcal{Z}_1 . These three automorphisms suffice, since they generate T = T(H) modulo inner automorphisms of H.

In order that G/N shall have the center \mathcal{Z}_1/N , it is obviously necessary that N shall not contain ζ , since, if it did, $\alpha^{2^{n-1}}N$ would belong to the center of G/N. Excluding $N = \{\zeta\}$, the remaining six subgroups of order 2 in \mathcal{Z}_1 fall into three transitive sets under the influence of T. The first consists of $\{\xi\}$ alone, the second of $\{\xi\zeta\}$ alone; the remaining four are all equivalent. Thus there are three distinct families of rank n + 4, when $N = \{\xi\}$, $\{\xi\zeta\}$ or $\{\eta\}$. When n = 2, these families are Γ_{14} , Γ_{16} and Γ_{15} respectively.

If \mathcal{N} is to be of order 4, it must contain neither ζ nor ξ . For if $\xi \in \mathcal{N}$, G/\mathcal{N} has an Abelian subgroup of index 2 (as, for example, in family Γ_{14}). But when \mathcal{N} is of order 4, the derived group of G/\mathcal{N} is cyclic, since \mathcal{N} must not contain $\zeta = [\alpha, \beta]^{2^{n-1}}$, and G' is of type (n, 1, 1). Thus if \mathcal{N} is of order 4 and contains ξ , G/\mathcal{N} has as a central factor group a dihedral group which is not isomorphic with H. But of the seven subgroups of order 4 in \mathcal{Z}_1 , there are just two which contain neither ξ nor ζ , namely,

 $\{\xi\zeta,\eta\}$ and $\{\xi\zeta,\eta\zeta\}$, and these two are equivalent under the influence of T. Thus there is only a single family of rank n+3. When n=2 this family is Γ_6 , and when n=3 it is Γ_{19} —as may easily be verified. The following Theorem summarizes this situation:

THEOREM 3.4. Let H be the direct product of a dihedral group of order 2^{n+1} with a cyclic group of order 2, where n > 1. Then the Schur multiplier of H is elementary and of order 8. The groups G with $G/\mathbb{Z}_1(G) \cong H$ fall into five distinct families; the maximal family of rank n + 5, three families of rank n + 4, and one family of rank n + 3. Those among these families which have rank ≤ 6 are Γ_6 , Γ_{14} , Γ_{15} , Γ_{16} (for n = 2), and Γ_{19} (for n = 3).

Turning next to the case $H = 16\Gamma_2 c_1$, it is again just as easy to deal with a rather more general case, $H = \{a, b\}$, with the defining relations:

$$a^{2^n} = b^2 = 1$$
, $bab = a^{-1}c$, $c^2 = 1$, $ca = ac$, $cb = bc$, (4)

where n > 1. When n = 2, $H = 16 \Gamma_2 c_1$. When n = 3, $H = 32 \Gamma_3 c_1$. When n = 4, $H = 64 \Gamma_8 c_1$. In general, the H in question has the same order and belongs to the same family as the H of Theorem 3.4.

Let G be a group with $G/\mathcal{Z}_1 \cong H$, and let the cosets of \mathcal{Z}_1 in G which contain α , β , γ correspond as before to the elements a, b, c of H. Hence $G = \{Z_1, \alpha, \beta\}$ and G' is generated by $[\alpha, \beta]$ together with its conjugates in G. Now H' is cyclic and of order 2^{n-1} , since it is generated by $[a, b] = a^{-2} c$. Hence $[\alpha, \beta]$ is of order $2^{n-1} \mod \mathcal{Z}_1$. If ζ is taken as $[\alpha, \beta]^{2^{n-1}}$, then $\zeta \in \mathcal{Z}_1$. As before, since γ^2 and $[\alpha, \gamma] = \eta$ lie in \mathcal{Z}_1 , $\eta^2 = 1$ and α^2 commutes with γ . Write $\alpha_0 = \alpha$ and $\alpha_{i+1} = [\alpha_i, \beta]$. Since $\beta^2 \in \mathcal{Z}_1$, it follows that $1 = [\alpha_{i-1}, \beta^2] = [\alpha_{i-1}, \beta]^2 [\alpha_{i-1}, \beta, \beta]$, so that $\alpha_{i+1} = \alpha_i^{-2}$ for i > 0 or $\alpha_{i+1} = \alpha_1^{(-2)^{\frac{i}{i}}}$. But $\alpha_1 = [\alpha, \beta] \equiv \alpha_1^{(-2)^{\frac{i}{j}}} \mod \mathcal{Z}_1$, so that $\alpha_1^{2^{n-1}} \in \mathcal{Z}_1$. Therefore $\alpha_n \in \mathcal{Z}_1$, and so $\alpha_{n+1} = \alpha_n^{-2} = 1$. Hence $\alpha_n = \zeta$ and $\zeta^2 = 1$. Thus $\{\alpha_1\}$ is of order $\leq 2^n$, and is transformed into itself by β . But $[\alpha_1, \alpha] = [\alpha^{-2} \gamma, \alpha] = [\gamma, \alpha] = \eta$, since $\eta^2 = 1$. And since $\eta \in \mathcal{Z}_1$, $\{\alpha_1, \eta\}$ is transformed into itself by both α and β and is therefore normal in G. But G' is generated by α_1 and its conjugates in G. Hence $G' = \{\alpha_1, \eta\}$ and $G' \cap \mathcal{Z}_1 =$ $\{\eta,\zeta\}$ is elementary and of order ≤ 4 . To prove that the multiplier of H is of order 4, use the group $G = \{\alpha, \beta, \gamma\}$ with the defining relations $\alpha^{2^{n+1}} = \beta^2 = \gamma^2 = 1$, $[\alpha, \gamma] = [\beta, \gamma] = \eta$, $\eta^2 = 1, \ \eta \in \mathcal{Z}_1, \ \beta \ \alpha \ \beta = \alpha^{-1} \ \gamma.$ Note that $G = \{\alpha, \beta\}$ and is the split extension (by β of order 2) of the group $\{\alpha, \gamma\}$ of class 2, with the automorphism $\alpha, \gamma \to \alpha^{-1} \gamma, \gamma \eta$ which is effectively of period 2. Since n > 1, the centralizer of β in $\{\alpha, \gamma\}$ is the group $\{\alpha^{2^n}, \eta\}$ of order 4, which is also in the center of $\{\alpha, \gamma\}$. Since β transforms $\{\alpha, \gamma\}$ by an outer automorphism, it follows that $\mathcal{Z}_1 = \mathcal{Z}_1(G)$ is precisely $\{\alpha^{2^n}, \eta\}$. Hence $G/\mathcal{Z}_1 \cong H$. Finally, G'contains η and $[\alpha, \beta] = \alpha^{-2} \gamma$, and hence also $\alpha^{2^n} = (\alpha^{-2} \gamma)^{2^{n-1}}$. Thus $\mathcal{Z}_1 \leq G'$ and G is a stem group. It follows that $G \in \mathfrak{M}(H)$, and the multiplier of H is the elementary group of order 4.

Any families other than $\mathfrak{M}(H)$ with H as central factor group

16

may be represented by groups G/\mathcal{N} , where \mathcal{N} is one of the three subgroups of order 2 in \mathcal{Z}_1 . But \mathcal{N} must not contain η , for if it did $\mathcal{N}\gamma$ would lie in the center of G/\mathcal{N} . If n>2, \mathcal{N} must also not contain $\alpha^{2^n}=\alpha_n$, for if it did it would make $\alpha_{n-1}=[\alpha,\beta]^{2^{n-2}}=\alpha^{-2^{n-1}}$ commute with both α and β mod \mathcal{N} , so that $\mathcal{N}\alpha_{n-1}$ would lie in the center of G/\mathcal{N} . Finally if n=2, \mathcal{N} must not contain α^4 η , since if it did, $[\alpha,\gamma,\alpha]=1$ and $[\alpha_1\gamma,\beta]=\alpha^4\eta$; hence again G/\mathcal{N} would have too large a center. The only admissible choice of \mathcal{N} is therefore $\mathcal{N}=\{\alpha^4\eta\}$ if n>2 and $\mathcal{N}=\{\alpha^4\}$ if n=2. Thus the maximal family has rank n+4; hence there is just one other family, of rank n+3. For n=2, $\mathfrak{M}(H)=\Gamma_{17}$ and the second family, where this $H=16\Gamma_2c_1$ is Γ_7 . For n=3, the unique family of rank 6 is Γ_{21} . To summarize:

THEOREM 3.5. Let H be the group of order 2^{n+2} (n > 1) defined by equation (4). Then the Schur multiplier of H is elementary and of order 4. The groups G with $G' \supset \mathcal{Z}_1(G)$ fall into two distinct families; the maximal family has rank n + 4, and there is one other family of rank n + 3. Those among these families which have rank ≤ 6 are Γ_7 and Γ_{19} (for n = 2) and Γ_{21} (for n = 3).

3.4 Groups G of Class 2 or 3 with Center of Order 2

These groups are stem groups. Suppose first that G is of class 2. Then $G' = \mathcal{Z}_1 = \mathcal{Z}_1(G)$ is of order 2. Hence G/\mathcal{Z}_1 is elementary and every element of $G - \mathcal{Z}_1$ has exactly two conjugates in G. The following theorem may be proved:

THEOREM 4.1. If G is a 2-group of class 2 with center \mathcal{Z}_1 of order 2, then G is the central product of a certain number r of octic groups O with a certain number s of quaternion groups Q: symbolically $G \cong O^r Q^s$, so that G/\mathcal{Z}_1 is elementary and of order 2^{2n} where n = r + s. Also $O^r Q^s \cong O^p Q^s$ if and only if $r \equiv \rho \mod 2$ (and hence $s \equiv \sigma \mod 2$). For given n, there are just two distinct such groups, forming the stem of a single family \mathfrak{G}_n .

When $|G:\mathcal{Z}_1|$ has its smallest possible value 4, G is a non-Abelian group of order 8, hence, as is well known, G is either octic or quaternion. These two groups form the stem of the family $\mathfrak{G}_1 = \Gamma_2$. Suppose then that $|G:\mathcal{Z}_1| > 4$. Choose any two elements x_1, y_1 in G which do not commute and let their centralizers in G be X_1 and Y_1 . Since X_1 and Y_1 are distinct and are both of index 2 in G, it follows that $G_1 = X_1 \cap Y_1$ is of index 4 in G. Also x_1 and y_1 are independent mod G_1 . Hence $G = P_1G_1$ where $P_1 = \{x_1, y_1\}$, and $P_1 \cap G_1 = \mathcal{Z}_1$. Since $[P_1, G_1] = 1$, the center of G_1 is again \mathcal{Z}_1 , and consequently G is the central product of P_1 and G_1 (i.e., the direct product with amalgamated centers). P_1 , being non-Abelian and of order 8, is either octic or quaternion. The first result now follows by induction.

It is easy to verify that the central product O^2 of two octic groups is isomorphic with the central product Q^2 of two quaternion groups, while O^2 and OQ are distinct. More generally, (for example, by counting the numbers of elements of order 4)

 O^n and $O^{n-1}Q$ may be shown to be distinct. Thus the order of G has the form 2^{2n+1} and either $G \cong O^n$ or $G \cong O^{n-1}Q$. In either case, if x_i and y_i are chosen to generate the ith of these central factors $(i=1,\ldots,n)$ and z generates \mathcal{Z}_1 , then $x_i^2 \equiv y_i^2 \equiv 1 \mod \mathcal{Z}_1$, $z^2 = 1$, $[x_i, y_i] = z$ $(i=1,\ldots,n)$, and the x's and y's with distinct suffixes commute. Thus the two groups belong to the same family \mathfrak{G}_n : $O^n \sim O^{n-1}Q$. Note that \mathfrak{G}_n is of rank 2n+1, $\mathfrak{G}_2 = \Gamma_5$. Note, as a corollary, that there is no family of rank 6 of groups G where G/\mathcal{Z}_1 is elementary, Abelian, and of order 32.

Now let G be of class 3 with center \mathcal{Z}_1 of order 2. Then $\mathcal{Z}_2/\mathcal{Z}_1$ is elementary. Let W be the centralizer of \mathcal{Z}_2 in G. For $x \in G$ and $y \in \mathcal{Z}_2$, the function [x, y], with values 1 or z, where $\mathcal{Z}_1 = \{z\}$ is distributive with respect to both arguments, and establishes a dual correspondence δ between $\mathcal{Z}_2/\mathcal{Z}_1$ (regarded as a linear space over the field of two elements) on the one hand and G/W on the other. Thus G/W is also elementary and $|G:W| = |\mathcal{Z}_2:\mathcal{Z}_1|$. By δ , any subgroup L of G lying between \mathcal{Z}_1 and \mathcal{Z}_2 is associated with its centralizer L^* in G, which lies between W and G. Moreover $|L:\mathcal{Z}_1| = |G:L^*|$.

Now let L be complementary in $\mathcal{Z}_2/\mathcal{Z}_1$ to the center $W \cap \mathcal{Z}_2$ of \mathcal{Z}_2 , so that $L(W \cap \mathcal{Z}_2) = \mathcal{Z}_2$ and $L \cap W = \mathcal{Z}_1$. The centralizer $L^* \cap \mathcal{Z}_2$ of L in \mathcal{Z}_2 must then coincide with the center $W \cap \mathcal{Z}_2$ of \mathcal{Z}_2 . Hence $L^* \cap \mathcal{Z}_2 = W \cap \mathcal{Z}_2$. But $|G:L^*| = |L:\mathcal{Z}_1| = |\mathcal{Z}_2:W \cap \mathcal{Z}_2| = |\mathcal{Z}_2:L^* \cap \mathcal{Z}_2|$. Thus $G = L^*\mathcal{Z}_2 = L^*L$ is the central product of L with L^* . Since the center of L is \mathcal{Z}_1 and L is of class 2, it follows from Theorem 4.1 that either $L = \mathcal{Z}_1$ (in which case $L^* = G$) or else $L \cong O^n$ or $O^{n-1}Q$ for some n > 0. On the other hand, L^* must be of class 3, for otherwise G would not be of that class. And since $[L, L^*] = 1$, $G = LL^*$, it follows that $\mathcal{Z}_2(L^*) = L^* \cap \mathcal{Z}_2(G)$, which is the center of $\mathcal{Z}_2 = \mathcal{Z}_2(G)$. Thus the second center of L^* is Abelian. For the same reason, the center of L^* is \mathcal{Z}_1 .

THEOREM 4.2. A group G of class 3 with center of order 2 is the central product of a subgroup L^* of class 3 with a center of order 2 and an Abelian second center containing a certain number n (possibly zero) of octic or quaternion groups.

The only family of class-3 groups of rank as small as 4 is Γ_3 . Applying Theorem 4.2, where L^* is in Γ_3 and n=1, there is obtained a single family Γ_{18} of rank 6. All other families obtained by applying Theorem 4.2, with $n \geq 1$, are of rank > 6 and hence are no further considered here. Hence it will be assumed that $Z_2 = Z_2(G)$ is Abelian.

In this case $\mathcal{Z}_2 \leq W$, and if $|\mathcal{Z}_2:\mathcal{Z}_1| = |G:W| = 2^s$, the order of G is $2^{2s+1}|W:\mathcal{Z}_2|$. It may therefore also be supposed that s = 1 or 2.

Since G is of class 3, $\mathcal{Z}_1 < G' \leq \mathcal{Z}_2$. Suppose first that G' is of order 4 and let U be its centralizer in G. Since $|G':\mathcal{Z}_1|$ is then 2, U is of index 2 in G. Also $U' \leq \mathcal{Z}_1$ (a general truth about the centralizer of the derived group). Thus G/\mathcal{Z}_1 is a group of class 2 with a derived group G'/\mathcal{Z}_1 of order 2, and with an Abelian sub-

group U/\mathcal{Z}_1 of index 2. These facts imply that $G/\mathcal{Z}_1 \in \Gamma_2$ and hence that $|G:\mathcal{Z}_2|=4$. Consequently $|G|=2^{s+3}=16$ or 32. It follows that G/\mathcal{Z}_1 is either the octic group or else $16 \Gamma_2 a_1$ or else $16 \Gamma_2 a_1$, cases already dealt with in sec. 3. In these cases, G is a stem group of one of the families Γ_3 , Γ_6 , Γ_7 , already found.

Thus it remains only to deal with the case s=2, $G'=\mathcal{Z}_2$ of order 8. Assuming $|G|\leq 64$, G/\mathcal{Z}_1 is then a group of class 2; its order is ≤ 32 and its derived group is G'/\mathcal{Z}_1 of order 4. G/\mathcal{Z}_1 must therefore be a stem group of family Γ_4 . Hence there is a uniquely determined subgroup A of index 2 in G such that $A'\leq \mathcal{Z}_1$. A itself cannot be Abelian (see sec. 1) for, since \mathcal{Z}_1 is of order 2, that would mean that G' was cyclic, whereas in fact G'/\mathcal{Z}_1 is an elementary group of order 4. Thus either (1) A is a stem group of Γ_5 or (2) $A\in\Gamma_2$.

Case (1). Since $|G':\mathcal{Z}_1| = |\mathcal{Z}_2:\mathcal{Z}_1| = 4$, it follows that |G:W| = 4, where (as previously) W is the centralizer of G' in G. Now by hypothesis $\mathcal{Z}_2 = G'$ is Abelian. Therefore, in case (1), \mathcal{Z}_2 must be its own centralizer in A. Hence $A \cap W = \mathcal{Z}_2$, AW = G. Also, since $A \in \Gamma_5$ and has \mathcal{Z}_1 as a center, A/\mathcal{Z}_1 is Abelian and elementary. Therefore G/\mathcal{Z}_1 is $32 \Gamma_4 a_1$, since this is the only stem group of Γ_4 whose Abelian subgroup of index 2 is elementary.

Case (2). Inasmuch as \mathcal{Z}_2 is either of type (1³) or (21), $\mathcal{Z}_2 = \{\alpha_1, \alpha_2, \alpha_3\}$, where $\{\alpha_1\} = \mathcal{Z}_1$ and $\alpha_1^2 = \alpha_2^2 = 1$; either $\alpha_3^2 = 1$ (\mathcal{Z}_2 elementary) or $\alpha_3^2 = \alpha_1$ (\mathcal{Z}_2 of type (21)). Then α_2 and α_3 form a base of \mathcal{Z}_2 mod \mathcal{Z}_1 . Since G = AW and $\mathcal{Z}_2 = A \cap W$, the dual relation δ between $\mathcal{Z}_2/\mathcal{Z}_1$ and G/W induces an isomorphism between $\mathcal{Z}_2/\mathcal{Z}_1$ and A/\mathcal{Z}_2 . The "linear spaces" are only of dimension 2. Hence α_5, α_6 in $A - \mathcal{Z}_2$ may be chosen so that

$$[\alpha_2, \alpha_5] = [\alpha_3, \alpha_6] = 1, [\alpha_2, \alpha_6] = [\alpha_3, \alpha_5] = \alpha_1.$$
 (1)

Let $\alpha_4 \in W - \mathcal{Z}_2$, so that α_4 , α_5 , α_6 form a base of $G \mod \mathcal{Z}_2$. Since A/\mathcal{Z}_1 is elementary,

$$\alpha_5^2 \equiv \alpha_6^2 \equiv 1 \mod \mathcal{Z}_1. \tag{2}$$

For $\xi \in A$, write $\xi^* = [\alpha_4, \xi]$. Then, since $G/\mathcal{Z}_1 \in \Gamma_4$, the mapping $\mathcal{Z}_2 \xi \to \mathcal{Z}_1 \xi^*$ is an isomorphism of A/\mathcal{Z}_2 onto $\mathcal{Z}_2/\mathcal{Z}_1$; and $[\xi^*, \xi] = 1$ or α_1 . From (2) it follows that $1 = [\alpha_4, \alpha_5^2] = (\xi^*)^2 [\xi^*, \xi]$ so that

$$(\xi^*)^2 = [\xi^*, \xi].$$
 (3)

Also $[\xi, \alpha_4^2] = [\xi, \alpha_4]^2$, since $\alpha_4 \in W$, the centralizer of G'. Hence

$$(\xi^*)^2 = [\alpha_4^2, \xi]. \tag{4}$$

When \mathcal{Z}_2 is elementary, $(\xi^*)^2 = 1$ for all $\xi \in A$. Hence by (4), α_4^2 belongs to the center \mathcal{Z}_1 of A; and by (3), $[\xi^*, \xi] = 1$ for every ξ . Since the relations (1) remain unaffected when α_2 , α_3 are replaced (either or both) by $\alpha_1\alpha_2$, $\alpha_1\alpha_3$ respectively, the present case may be written

$$\alpha_4^2 \equiv 1 \mod \mathcal{Z}_1$$
 and $[\alpha_4, \alpha_5] = \alpha_2, [\alpha_4, \alpha_6] = \alpha_3.$ (5)

Relations (1), (2), and (5) define family Γ_{25} .

When \mathcal{Z}_2 is of type (21), $\alpha_4^2 \notin \mathcal{Z}_1$ since ξ may be chosen so as to make ξ^* of order 4. On the other hand, (4) gives $[\alpha_4^4, \xi] = 1$ for every ξ in A, since $(\xi^*)^2 \in \mathcal{Z}_1$. Hence $\alpha_4^2 \equiv \alpha_2 \mod \mathcal{Z}_1$. Relations (1), (3), and (4) now give $(\alpha_5^*)^2 = 1 = [\alpha_5^*, \alpha_5]$, so that α_5^* is either α_2 or $\alpha_1\alpha_2$, and it may be assumed that $\alpha_5^* = \alpha_2$. α_2 may be replaced by $\alpha_1\alpha_2$ if necessary. On the other hand $(\alpha_6^*)^2 = [\alpha_2, \alpha_6] = \alpha_1 = [\alpha_6^*, \alpha_6]$. Hence $\alpha_6^* \not\equiv \alpha_3 \mod \mathcal{Z}_1$. Nevertheless, $\alpha_6^* \not\equiv \alpha_2 \mod \mathcal{Z}_1$ also, since $\alpha_2 = \alpha_5^*$, as has already been shown. Thus it may be assumed that $\alpha_6^* = \alpha_2\alpha_3$ (α_3 may be replaced by $\alpha_1\alpha_3$ if necessary). Thus in this case \mathcal{Z}_2 is of type (21) and the relations obtained are

$$\alpha_4^2 \equiv \alpha_2 \mod \mathcal{Z}_1$$
 and $[\alpha_4, \alpha_5] = \alpha_2$, $[\alpha_4, \alpha_6] = \alpha_2 \alpha_3$, (6) which together with (1) and (2) define the family Γ_{26} .

It remains only to discuss the case where $A \in \Gamma_2$. Naturally A' is again \mathcal{Z}_1 , since this is the only normal subgroup of order 8. But $C \neq \mathcal{Z}_2$ since the centralizer W of \mathcal{Z}_2 is of index 4 in G. Since \mathcal{Z}_2 is Abelian and A is not, $C\mathcal{Z}_2$ must be of order 16. But $C\mathcal{Z}_2 = W$. Hence the following diagram where $D = C \cap \mathcal{Z}_2$ and all subgroups given are characteristic in G. Choosing $\alpha_1 \neq 1$ in \mathcal{Z}_1 , α_2 in $D - \mathcal{Z}_1$, α_3 in $\mathcal{Z}_2 - D$, α_4 in C - D, α_5 in A - W, and α_6 in G - A, gives the following relations:

$$C$$
 Z_2
 Z_1
 Z_1

$$[\alpha_2, \alpha_6] = \alpha_1, [\alpha_4, \alpha_6] = \alpha_2, \tag{7}$$

since $[\alpha_2,A]=1$ and α_2 is not in \mathcal{Z}_1 ; whereas $[\alpha_4,A]=1$ and α_4 is not in \mathcal{Z}_2 . (It might be that $[\alpha_4,\alpha_6]=\alpha_1\alpha_2$, but then α_4 could be replaced by $\alpha_2\alpha_4$.) Note also that (as just remarked)

$$[\alpha_2, \alpha_i] = [\alpha_4, \alpha_i] = 1 \text{ for } i < 6.$$
 (8)

In view of the dual correlation of $\mathbb{Z}_2/\mathbb{Z}_1$ with G/W, in which D/\mathbb{Z}_1 corresponds to A/W, α_6 may be chosen so that $[\alpha_3,\alpha_6]=1$. Then

$$[\alpha_3, \alpha_5] = \alpha_1; \qquad [\alpha_3, \alpha_i] = 1 \text{ for } i \neq 5. \tag{9}$$

Finally, $[\alpha_5, \alpha_6] \in \mathcal{Z}_2 - D$ since $[\alpha_4, \alpha_6]$ is in D. By adjusting the choice of α_5 (which does not affect (8) or (9)) it may be assumed (in view of (7)) that

$$[\alpha_5, \alpha_6] = \alpha_3. \tag{10}$$

Now by (9) $\alpha_6^2 \in \mathcal{Z}_2$ and commutes with α_3 . But by (7) it does not commute with α_2 or $\alpha_2\alpha_3$. Hence

$$\alpha_6^2 = \alpha_3 \bmod \mathcal{Z}_1. \tag{11}$$

Next (by (9)) $\alpha_1 = [\alpha_3, \alpha_5] = [\alpha_6^2, \alpha_5] = \alpha_3^{-2}$ (by (11)) since $[\alpha_5, \alpha_6] = \alpha_3$ commutes with α_6 . Hence

$$a_3^2 = \alpha_1. \tag{12}$$

Next $[\alpha_5^2, \alpha_6] = \alpha_3^{\alpha_5} \alpha_3 = \alpha_3^2 \alpha_1 = 1$ by (12). $\alpha_5^2 \in \mathcal{Z}_2$, and the centralizer of α_6 in \mathcal{Z}_2 is $\{\alpha_3\}$. But α_5 does not commute with α_3 , and therefore $\alpha_5^2 \not\equiv \alpha_3 \mod \mathcal{Z}_1$. Hence

$$\alpha_5^2 \equiv 1 \mod \mathcal{Z}_1. \tag{13}$$

Again, (by (11)) $1 = [\alpha_4, \alpha_3] = [\alpha_4, \alpha_6^2] = [\alpha_4, \alpha_6]^2 = [\alpha_4, \alpha_6, \alpha_6] = \alpha_2^2 \alpha_1$ by (7); so

$$\alpha_2^2 = \alpha_1. \tag{14}$$

Finally, $[\alpha_4^2, \alpha_6] = \alpha_2^2$, since $[\alpha_2, \alpha_4] = 1$. Hence by (14), α_4^2 does not commute with α_6 . But $\alpha_4^2 \in D$. Hence

$$\alpha_4^2 \equiv \alpha_2 \bmod Z_1. \tag{15}$$

The relations (7) to (15) define the family Γ_{24} and so $G/\mathcal{Z}_1 \cong 32 \Gamma_4 b_1$. These statements may be summarized as follows:

THEOREM 4.3. There are just three families of rank 6 for which the central quotient group is a stem group of Γ_4 , to wit, the families Γ_{24} , Γ_{25} , and Γ_{26} .

In view of the results obtained in secs. 3 and 4, the determination of the families of rank ≤ 6 of 2-groups of class 3 is now complete. The families in question are Γ_3 , Γ_6 , Γ_7 , Γ_{14} – Γ_{18} inclusive and Γ_{24} , Γ_{25} , Γ_{26} .

3.5 Let r = 6 and Let G Be of class 2

Note first that, since G is a stem group, $G' = \mathcal{Z}_1$. Also, the two highest invariants of the Abelian group G/\mathcal{Z}_1 must be equal; for otherwise if x_1 is of highest order $2^{\lambda_1} \mod \mathcal{Z}_1$, $x_1^{2\exp(\lambda_1-1)}$ must be in \mathcal{Z}_1 —a contradiction. Therefore $|G:\mathcal{Z}_1|=4$ implies $G\in\Gamma_2$, and $|G:\mathcal{Z}_1|=32$ implies that \mathcal{Z}_1 is cyclic. Therefore r (by sec. 2) is odd. It follows that the only possibilities for the type of G/\mathcal{Z}_1 are the partitions (1³), (2²), and (1⁴).

It is easy to see that for G/Z_1 of type (1^3) , the chief family is precisely of rank 6, namely, Γ_9 . For G/Z_1 of type (2^2) , the chief family is again of rank 6, namely, Γ_{12} (already obtained in sec. 2). Indeed, for given partition $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_r)$ with $\lambda_1 = \lambda_2$, the rank of the chief family is easily shown to be

$$\sum_{i=1}^r \lambda_i + \sum_{i < j} \min (\lambda_i, \lambda_j).$$

Therefore it remains to consider only the case G/\mathbb{Z}_1 of type (1⁴), where \mathbb{Z}_1 is an elementary group $\{u, v\}$ of order 4.

The three groups $G_1 = G/\{u\}, G_2 = G/\{v\}, \text{ and } G_3 = G/\{uv\}$

belong either to Γ_2 or else to Γ_5 , since their derived groups are of order 2.

- (1) Suppose two of these groups G_i belong to Γ_2 . Without loss of generality, let G_1 and G_2 belong to Γ_2 . Let $H_1/\{u\}$ and $H_2/\{v\}$ be the centers of G_1 and G_2 . Then $|G:H_1|=|G:H_2|=4$ and $H_i\geq \mathcal{Z}_1$. From $[H_1,G]\leq \{u\}$ and $[H_2,G]\leq \{v\}$, it follows that $H_1\cap H_2\leq \mathcal{Z}_1$. Since G/\mathcal{Z}_1 is of type (1,4), it follows that $H_1H_2=G$ and that, if $H_1=\{\mathcal{Z}_1,x_1,x_2\}$ and $H_2=\{\mathcal{Z}_1,x_3,x_4\}$, then x_1,\ldots,x_4 form a base of G mod \mathcal{Z}_1 . Also $[H_1,H_2]\leq \{u\}\cap \{v\}=1$. Thus $[x_1,x_3]=[x_1,x_4]=[x_2,x_3]=[x_2,x_4]=1$. It follows that $[x_1,x_2]=u$, $[x_3,x_4]=v$ (since otherwise $[x_1,x_2]=1$, and x_1 would belong to \mathcal{Z}_1). Thus $G\in \Gamma_{10}$.
- (2) Suppose $G_1 \in \Gamma_2$, but neither G_2 nor G_3 is so contained. Let $H_1/\{u\}$ be the center of G_1 . As before, $|G:H_1|=4$ and it may be assumed that $H_1=\{\mathcal{Z}_1,x_1,x_2\}$. Since G_2 and G_3 belong to Γ_5 , every element of $G-H_1$ has 4 conjugates in G, whereas x_1 and x_2 have only two such conjugates. Let X_1,X_2 be the centralizers of x_1,x_2 in G. Then $|G:X_1|=2$ and so $|G:X_1\cap X_2|\leq 4$. It follows that $X_1\cap X_2=H_1$, since otherwise $X_1\cap X_2$ would be an element of $G-H_1$, commuting with both x_1 and x_2 , and hence having only two conjugates in G. Thus $[x_1,x_2]=1$ and $X_1\neq X_2$. Let $x_3\in X_1-H_1$ and $x_4\in X_2-X_1$. Then $[x_1,x_3]=[x_2,x_4]=1$, and $[x_1,x_4]=[x_2,x_3]=u$, since $x_3\notin X_2$ and $x_4\notin X_1$. Clearly $G=\{\mathcal{Z}_1,x_1,x_2,x_3,x_4\}$ and $G'=\mathcal{Z}_1$, since it is generated by the six commutators $[x_i,x_j]$ (i< j). Hence necessarily $[x_3,x_4]=v$ or uv (the choice is irrelevant). Thus $G\in \Gamma_{11}$.
- (3) Suppose G_1 , G_2 , G_3 all belong to Γ_5 . Then every element of $G - Z_1$ has four conjugates in G. The centralizers of two of these elements either coincide or intersect in \mathcal{Z}_1 , since such centralizers (of order 16) are Abelian. There are therefore just five of these centralizers C_1, \ldots, C_5 , each containing, besides \mathcal{Z}_1 , three of the fifteen remaining cosets of \mathcal{Z}_1 . Also $G = C_i C_j$ for $i \neq j$, since $C_i \cap C_j = \mathcal{Z}_1$. Let $C_1 = \{\mathcal{Z}_1, x_1, x_2\}$ and $C_2 =$ $\{Z_1, x_3, x_4\}$. Then $[x_1, x_2] = [x_3, x_4] = 1$ and it may be assumed (by choosing x_3 , x_4 in C_2 suitably) that $[x_1, x_3] = u$, $[x_1, x_4] = v$. Then $[x_2, x_3] = v$ or uv (since x_3 has four conjugates) and similarly $[x_2, x_4] = u$ or uv. But since x_2 has four conjugates $[x_2, x_3]$ and $[x_2, x_4]$ cannot both be uv. The case $[x_2, x_3] = v$, $[x_2, x_4] = u$ is also impossible, since it makes x_1x_2 commute with x_3x_4 as well as with x_1 and x_2 ; so that x_1x_2 would then have only two conjugates. The remaining two cases are equivalent. They are interchanged by an exchange of x_1 and x_2 , and the implied change $u \to v$, $v \to uv$. Thus there is here only a single family, Γ_{13} . Hence the following conclusion:

THEOREM 5.1. The families of 2-groups of class 2 with rank 6 are Γ_9 , Γ_{10} , Γ_{11} , Γ_{12} , and Γ_{13} .

In view of Theorems 1.2 and 4.1, 4.2, 4.3, the groups G with r = 6 which do not belong to any one of the families $\Gamma_1 - \Gamma_{17}$ or Γ_{27} (already obtained) are either (1) of class 4 or else (2) of class 3 with centers of order 2.

3.6 Groups of Class 4 or 5

If G (of an order dividing 64) is of class 5, then by Theorem 1.2, $G \in \Gamma_{27}$. If G is of class 4 and order ≤ 32 , then, by the same theorem, $G \in \Gamma_8$. Hence it may be assumed that |G| = 64 and that G is of class 4. Then the order of the center \mathcal{Z}_1 of G is ≤ 4 . If $|\mathcal{Z}_1| = 4$, then G/\mathcal{Z}_1 is a class-3 group of order 16, and can only be dihedral. By Lemma 3.3, this happens only when G belongs to the first branch of Γ_8 . Thus \mathcal{Z}_1 may be supposed to be of order 2. Then G/\mathcal{Z}_1 is of class 3 and order 32; it belongs therefore to one of the families Γ_3 , Γ_6 , Γ_7 .

Applying the criterion of Lemma 3.1 to $G/Z_1 = H$, it is evident that the following groups (in the notation of the tables) are incapable:

$$H = 32 \Gamma_3 a_2 = \{\alpha_3, \alpha_4 \alpha_3, \alpha_3 \beta_2\}, \qquad u = \beta_1,$$

$$32 \Gamma_3 a_3 = \{\alpha_3, \alpha_4, \alpha_3 \beta_2\}, \qquad u = \beta_1,$$

$$32 \Gamma_3 b = \{\alpha_3, \beta\alpha_4, \beta\}, \qquad u = \beta^2,$$

$$32 \Gamma_3 c_2 = \{\alpha_3, \alpha_4\}, \qquad u = \beta_1,$$

$$32 \Gamma_3 d_1 = \{\alpha_4 \alpha_3, \alpha_4\}, \qquad u = \beta_2,$$

$$32 \Gamma_3 e = \{\alpha_4 \alpha_3, \alpha_4 \beta\}, \qquad u = \beta^2,$$

$$32 \Gamma_3 f = \{\alpha_3, \alpha_4\}, \qquad u = \beta^2.$$

Thus only the groups a_1 , c_1 , and d_2 in this branch of Γ_3 are left as possibly capable.

$$H = 32 \Gamma_6 a_1 = \{\alpha_4, \alpha_4 \alpha_3, \alpha_5\}, \qquad u = \alpha_1,$$

 $32 \Gamma_6 a_2 = \{\alpha_4, \alpha_4 \alpha_3, \alpha_5\}, \qquad u = \alpha_1,$

so neither of the two Γ_6 groups is capable.

$$H = 32 \Gamma_7 a_2 = \{\alpha_5, \alpha_5 \alpha_4\}, \qquad u = \alpha_1,$$

 $32 \Gamma_7 a_3 = \{\alpha_4, \alpha_5\}, \qquad u = \alpha_1.$

Hence only 32 $\Gamma_7 a_1$ is possibly capable.

But the cases $H=32~\Gamma_3~a_1$ and $32~\Gamma_3~c_1$ have already been settled by Theorems 3.4 and 3.5, where n is taken as 3. They yield one family each, namely, Γ_{19} and Γ_{21} . Thus it remains only to deal with

(1)
$$H = 32 \Gamma_3 d_2$$
 and (2) $H = 32 \Gamma_7 a_1$.

Case(1). Here it may be assumed that $H = \{a, b\}$, with the defining relations:

$$a^8 = b^4 = 1, b^{-1}ab = a^3.$$
 (1)

Let $G = \{Z_1, \alpha, \beta\}$ be any group with $G/Z_1 \cong H$, as given by (1), so that $Z_1\alpha$ and $Z_1\beta$ correspond respectively to a and b. Then $\alpha_1 = [\alpha, \beta] = \alpha^2 \mod Z_1$. Hence α_1 commutes with α and consequently G' is generated by $\alpha_1, \alpha_2, \ldots$, where $\alpha_{i+1} = [\alpha_i, \beta]$. Note that $G' \leq \{\alpha^2, Z_1\}$; it is therefore Abelian, so that $\alpha_1, \alpha_2, \ldots$, are commutative. Hence $\alpha_2 = [\alpha_1, \beta] = [\alpha^2, \beta] = \alpha_1^{\alpha}\alpha_1 = \alpha_1^2$, so that $\beta^{-1}\alpha_1\beta = \alpha_1^3$. Transforming with β gives $\alpha_3 = \alpha_2^2$, $\alpha_4 = \alpha_3^2$, and so on. Hence $G' = \{\alpha_1\}$ is cyclic. Since $\alpha_1 = \alpha^2 \mod Z_1$ and $\alpha^8 = 1$, it follows that $\alpha_1^4 = \alpha_3 \in Z_1$. Hence $\alpha_4 = 1$. Thus G' is of order ≤ 8 , and since $\alpha_1^2 = \alpha^4 \mod Z_1$, it follows that $G' \cap Z_1 = \{\alpha_3\}$ is of order ≤ 2 . The multiplier of H is

therefore of order ≤ 2 . But the group $G = \{\alpha, \beta\}$ of order 64 defined by the relations,

$$\alpha^{16} = \beta^4 = 1, \, \beta^{-1} \, \alpha \beta = \alpha^3, \tag{2}$$

has as a center $\mathcal{Z}_1 = \{\alpha^8\}$ and $G/\mathcal{Z}_1 \cong H$. Thus there is obtained the following theorem:

THEOREM 6.1. The Schur multiplier of $H = 32 \Gamma_3 d_2$ is of order 2, and the groups G with $G/\mathbb{Z}_1 \cong H$ form the single family $\mathfrak{M}(H) = \Gamma_{20}$.

Case(2). $H = 32 \Gamma_7 a_1$. This case is the split extension of an elementary Abelian group of order 8 by a single element inducing an automorphism of order 4. Take $H = \{a, b\}$, with the defining relations,

$$a^4 = 1$$
; $[b, a] = c$; $[c, a] = d$;
 $[d, a] = [d, b] = [d, c] = [c, b] = 1$; $b^2 = c^2 = d^2 = 1$.

As in previous cases, let $G = \{ \mathcal{Z}_1, \alpha, \beta \}$ have $G/\mathcal{Z}_1 \cong H$, with $Z_{1}\alpha$ and $Z_{1}\beta$ corresponding respectively to a and b. Define $[\beta, \alpha] = \gamma, [\gamma, \alpha] = \delta, [\delta, \alpha] = \epsilon$. Then ϵ is in ζ_1 , as also are β^2 , γ^2 , δ^2 . Thus $1 = [\delta^2, \alpha] = \epsilon^2$. Further, the commutators of β, γ, δ in pairs lie in \mathcal{Z}_1 and so $1 = [\beta^2, \gamma] = [\beta, \gamma]^2$ and, similarly, the orders of $[\beta, \delta]$ and $[\gamma, \delta]$ are ≤ 2 . Also, $1 = [\gamma^2, \alpha] = \delta[\delta, \gamma]\delta$ gives $\delta^2 = [\gamma, \delta]$. Similarly $\gamma^2 = [\beta, \gamma]$, so that $\delta^4 = \gamma^4 = 1$. But $\alpha^4 \in \mathcal{Z}_1$ and $[\beta, \alpha^2] = \gamma^2 \delta$ and $[\delta, \alpha^2] = \delta^2 = 1$, so that $[\beta, \alpha^2]$ is commutative with α^2 . Hence $1 = [\beta, \alpha^4] = [\beta, \alpha^2]^2 = \gamma^4 \delta^2 =$ δ^2 , since $\gamma^4 = 1$. Finally $[\beta, \alpha^2] = \gamma^2 \delta$, and hence $1 = [\beta^2, \alpha^2] =$ $[\beta, \alpha^2]^{\beta}[\beta, \alpha^2] = \gamma^2 \delta[\delta, \beta] \gamma^2 \delta$; or, since γ^2 is in \mathcal{Z}_1 and $\gamma^4 = 1$, $[\beta, \delta] = \delta^2 = 1$. Now G' is generated by $[\beta, \alpha] = \gamma$ and its conjugates in G. The foregoing relations therefore show that $G' = \{\gamma, \delta, \epsilon\}$, where ϵ and γ^2 are in \mathcal{Z}_1 and $[\gamma, \delta] = \delta^2 = \epsilon^2 = 1$. Hence G' is Abelian of type at most (2, 1, 1), because commutation with α maps γ , δ into δ , ϵ , and commutation with β maps γ , δ into γ^2 , 1. The fact that $G = \{Z_1, \alpha, \beta\}$ proves that $\{\gamma, \delta, \epsilon\}$ is normal in G. Since it contains γ it must coincide with G'.

It follows that the multiplier of H is at most elementary and of order 4, since $G' \cap \mathcal{Z}_1 = \{\gamma^2, \epsilon\}$. But it is possible to define a group $G = \{\alpha, \beta, \gamma, \delta, \epsilon\} = \{\alpha, \beta\}$ (of order 128) by the relations which express the fact that $\{\beta, \gamma, \delta, \epsilon\}$ is the direct product of the octic group $\beta^2 = \gamma^4 = (\beta\gamma)^2 = 1$, with the two cyclic groups $\{\delta\}$ and $\{\epsilon\}$ of order 2 extended by the element α (where $\alpha^4 = 1$), which transforms $\beta, \gamma, \delta, \epsilon$ into $\beta\gamma, \gamma\delta, \delta\epsilon, \epsilon$. This transformation effectively defines an automorphism of $\{\beta, \gamma, \delta, \epsilon\} = G_1$ of period 4. Moreover the centralizer of α in G_1 is $\{\gamma^2, \epsilon\}$, which is easily seen to be the center of G, since α^2 transforms G_1 by an outer automorphism. It then follows that $G/\mathcal{Z}_1 \cong H$. The multiplier of H is therefore elementary of order 4, and the group G of order 128 described above is a stem group of $\mathfrak{M}(H)$. Hence $\{\gamma^2, \epsilon\} = \mathcal{Z}_1(G)$ may be used as the Schur multiplier of H.

Any families of rank 6 which have H as a central factor group may be represented by factor groups G/\mathcal{N} , where \mathcal{N} is one of the three subgroups of order 2 in $\mathcal{Z}_1(G)$. Moreover, $\mathcal{N} = \{\alpha\}$ is

inadmissible, since it puts \mathcal{N}_{δ} in the center of G/\mathcal{N} . In fact $G/\{\epsilon\}$ is in Γ_{17} . But $\mathcal{N}=\{\gamma^2\}$ gives a stem group of Γ_{22} with a derived group $G'/\{\gamma^2\}$ of type (1³), whereas $\mathcal{N}=\{\gamma^2\,\epsilon\}$ gives a stem group of Γ_{23} with $G'/\{\gamma^2\,\epsilon\}$ of type (21). Thus these two families are seen to be distinct without the necessity of considering the effect of automorphisms of H on the multiplier. We may summarize as follows;

THEOREM 6.2. The Schur multiplier of $H = 32 \Gamma_7 a_1$ is elementary of order 4; and in the groups of the maximal family $\mathfrak{m}(H)$ of rank 7, the derived groups are Abelian of type (2, 1, 1). Thus the groups G with $G/\mathbb{Z}_1 \cong H$ fall into three distinct families, to wit, $\mathfrak{m}(H)$ and the two families Γ_{22} and Γ_{23} of rank 6.

CHAPTER 4

Construction of the Groups in a Family

Let Γ be a given family of 2-groups, say of rank r, and let G_0 be any stem group in Γ ; hence, $|G_0| = 2^r$. Let G_0 be used as a "group of reference." If G is an arbitrary group in Γ , there will be exactly $u = u(\Gamma)$ isomorphisms θ mapping $G_0/\mathcal{Z}_1(G_0)$ onto $G/\mathcal{Z}_1(G)$ in such a way as to induce isomorphisms of G'_0 onto G'. Here u is the order of the group of "autologisms" of Γ .

Suppose G belongs to the sth branch of Γ ;

and let $|C| = 2^c$, so that c depends only on Γ and not on G. Also $|\mathcal{Z}_1(G):c| = 2^s$, so that $|\mathcal{Z}_1(G)| = 2^{c+s}$.

Let $G_0 = (x_1, \ldots, x_a)$. Suppose any one of the *u* isomorphisms

 θ maps $x_i \not\subset (G_0)$ onto $y_i \not\subset (G)$, $i = 1, \ldots, a$. Then if z_1, \ldots, z_h in $Z_1(G)$ are chosen so that

$$\mathcal{Z}_1(G) = \{c, z_1, \ldots, z_h\},\,$$

then

$$G = \{y_1, \ldots, y_a, z_1, \ldots, z_h\}.$$

Here h has only to be chosen sufficiently large, say $h \geq s$. Since z_1, \ldots, z_h are in the center of G, G is evidently the homomorphic image of the direct product $F \times A$, where F is a free group of rank a, $F = \{\bar{y}_1, \ldots, \bar{y}_a\}$, and $A = \{\bar{z}_1, \ldots, \bar{z}_h\}$ is a free Abelian group of rank h. Let \mathcal{N} be the kernel of this homomorphism, so that $G \cong (F \times A)/\mathcal{N}$. By the given choice of y_1, \ldots, y_a , the kernel \mathcal{N} intersects F' in one and the same subgroup M for every G of Γ . Hence $F'/M \cong G'_0 \cong G'$. It may be supposed for simplicity that $\bar{y}_1, \ldots, \bar{y}_a$ generate $\mathcal{T} = F'/M$.

It is easy to see that Υ (and hence also $H = A \times \Upsilon$) belongs to Γ . Also $\mathcal{Z}_1(H) = A \times \mathcal{Z}_1(\Upsilon) \cap \Upsilon' = \overline{C}$, where (say) $\overline{C} \cong C$, and $\mathcal{Z}_1(H)$ is thus dependent only on Γ and not on G. Also $\mathcal{Z}_1(\Upsilon) = B \times \overline{C}$, where B is a free Abelian group of rank a. The fact that $\mathcal{Z}_1(\Upsilon)$ has this structure depends on the general theory of the multiplicator.*

The general theorem covering this situation is as follows;

THEOREM. Every group G of a family Γ is the homomorphic image of a direct product $\Upsilon \times A = H$, where Υ is a particular group depending only on Γ , and A is a free Abelian group with a sufficient number of generators. If G is in the sth branch of Γ , A may be taken as a free Abelian group with S generators. Here $\mathcal{Z}_1(H) = A \times \mathcal{Z}_1(\Upsilon) = A \times B \times \overline{C}$, $\mathcal{Z}_1(\Upsilon) \cap \Upsilon' = \overline{C} \cong C$. Also, $G \cong H/N$, where the kernel N satisfies (i) $N \cap \overline{C} = 1$ and (ii) $A\overline{C}N = \mathcal{Z}_1(H)$.

This theorem is next illustrated by application to the family Γ_3 . Here G/\mathcal{Z} is the octic group and G' is cyclic of order 4.

$$G = \mathcal{Z} + \mathcal{Z}x + \mathcal{Z}x^2 + \mathcal{Z}x^3 + \mathcal{Z}y + \mathcal{Z}xy + \mathcal{Z}x^2y + \mathcal{Z}x^3y$$

If $x \to g$ and $y \to h$ in the homomorphism $G \to G/\mathcal{Z}$, then

$$g^4 = 1, h^2 = 1, hgh = g^{-1}.$$

Hence, in G,

$$b_0 = x^4 \in \mathcal{Z},$$

$$b_1 = y^2 \in \mathcal{Z},$$

$$b_2 = xyxy \in \mathcal{Z}.$$

Also in G, $u = \{x, y\} = x^{-1}y^{-1}xy$ generates G', and $u^4 = 1$.

Next define a group $Y = \{x, y\}$ subject to the requirements, (1) $b_0 = x^4$, $b_1 = y^2$, and $b_2 = xyxy$ are in the center of Y, and (2) $(x^{-1}y^{-1}xy)^4 = 1$. Here $u = x^{-1}y^{-1}xy = x^{-2}xy^{-2}x^{-1}xyxy = x^{-2}xb_1^{-1}x^{-1}b_2 = x^{-2}b_1^{-1}b_2u^2 = x^{-4}b_1^{-2}b_2^2 = b_0^{-1}b_1^{-2}b_2^2 = c \in \mathcal{Z}(Y)$. Hence $u^4 = 1 = c^2$. It follows that $\mathcal{Z}(Y) = \{b_1\} \times \{b_2\} \times \overline{C}$ where $\overline{C} = \{c\}$, and $\overline{C} = Y' \cap \mathcal{Z}(Y)$. Recalling that every G of

 Γ_3 is generated by the elements x and y and elements of \mathcal{Z} , it appears that G is a homomorphic image of the direct product $\mathcal{T} \times A$, where \mathcal{T} is as given above and A is a free Abelian group.

Having found the group Υ for the family Γ , other groups of the same family may be found by taking kernels \mathcal{N} with $\mathcal{N} \cap \overline{C} = 1$. Here $G \cong (\Upsilon \times A)/\mathcal{N}$, with $\mathcal{N} \subseteq \mathcal{Z}(\Upsilon \times A) = A \times B \times \overline{C}$. If $(A \times B \times \overline{C})/\mathcal{N}\overline{C} = 2^s$, then G is in the sth branch of Γ . An autologism γ of Γ , as applied to $\Upsilon \times A$ has the property that a kernel \mathcal{N} and $\mathcal{N}\gamma$ yield isomorphic groups.

For Γ_3 the autologisms of Υ are generated by $\gamma:(x)\gamma=x$, $(y)\gamma=xy$ and $\delta:(x)\delta=x^{-1}$, $(y)\delta=y$.

$$(b_1) \ \gamma = b_2,$$
 $(b_1) \ \delta = b_1,$ $\gamma: (b_2) \ \gamma = b_1^{-1}b_2^2,$ $\delta: (b_2) \ \delta = b_1^2b_2^{-1},$ $(c) \ \gamma = c,$ $(c) \ \delta = c,$

and $\gamma^4 = 1$, $\delta^2 = 1$, $\delta \gamma = \gamma^{-1} \delta$. For a stem group, the group A is not needed and $\overline{NC} = B \times \overline{C}$. The possible kernels N are

$$\mathcal{N}_1 = \{b_1, b_2\},\$$
 $\mathcal{N}_2 = \{b_1, b_2c\},\$
 $\mathcal{N}_3 = \{b_1c, b_2\},\$
 $\mathcal{N}_4 = \{b_1c, b_2c\}.$

The second and third of these are interchanged by the autologism γ , since

$$\{b_1, b_2c\} \gamma = \{b_2, b_1^{-1}b_2{}^2c\} = \{b_1c, b_2\}.$$

Thus there are three stem groups in Γ_3 .

In the notation of the tables for Γ_3 , $\alpha_3 = x$, $\alpha_4 = y$, $u = [\alpha_3, \alpha_4] = [x, y] = \alpha_2$, $\alpha_2^2 = \alpha_1 = c$, $\alpha_1^2 = c^2 = 1$. For the three stem groups;

(1) 16
$$\Gamma_3 a_1$$
: $\alpha_3^2 = \alpha_2^{-1}$, $\alpha_4^2 = 1$,

or in terms of the above notation.

$$x^2 = u^{-1}, y^2 = 1,$$

or (since $u = x^{-2}b_1^{-1}b_2$, $u^2 = c$, $y^2 = b_1$) it follows that $b_1^{-1}b_2 = 1$, $b_1 = 1$; hence the kernel is $\mathcal{N}_1 = \{b_1, b_2\}$. Similarly,

(2) 16
$$\Gamma_3 a_2$$
: $\alpha_3^2 = \alpha_2, \alpha_4^2 = 1$.

Whence $x^2 = u = x^{-2}b_1^{-1}b_2$, $y_2 = b_1 = 1$ or $b_1 = 1$, $b_1^{-1}b_2c = 1$. Here the kernel is $\mathcal{N}_2 = \{b_1, b_2c\}$.

(3) 16
$$\Gamma_3 a_3$$
: $\alpha_3^2 = \alpha_2^{-1}$, $\alpha_4^2 = \alpha_1$

or $b_1^{-1}b_2 = 1$, $b_2 = c$, and the kernel is $\mathcal{N}_4 = \{b_1c, b_2c\}$.

One way of constructing the groups in a branch is first to find the possible groups which are generated by the coset representatives of the center, and then if necessary to adjoin further central elements to these groups. In other words, first find the homomorphic images of the group Υ of the theorem, and then adjoin further central elements.

This process is illustrated by application to the first branch of Γ_3 . Here the groups are of order 32; in an individual group G

^{*} I. Schur. "Über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen." *Crelle*, vol. 127 (1904), pp. 20–50, and *ibid.*, vol. 132 (1907), pp. 85–137.

the elements $x = \alpha_3$ and $y = \alpha_4$ generate a group of Γ_3 , which is either a stem group of Γ_3 or the entire group of order 32. If x and y generate a stem group G_1 of order 16, then G/G_1 is of order 2. And if $G = G_1 + G_1 z$ then z^2 is in the center of G_1 ; whence $z^2 = 1$ or $z^2 = \alpha_1 = c$. With $z^2 = 1$, G is the direct product of a stem group and a group $\{z\}$ of order 2. This extension gives the first three groups of the branch in question. Their symbols are a_1 , a_2 , a_3 . If $z^2 = \alpha_1$, and G_1 is any one of the three stem groups of order 16, the group of order 32 obtained in all three cases is the same. Its symbol is b.

There remain cases in which x and y generate the entire group. With the notation used above, there are twelve possible kernels \mathcal{N} ;

$\mathcal{N}_1 \{b_1^2, b_2\},$	$\mathcal{N}_{5} \{b_{1}, b_{2}^{2}\},$	$\mathcal{N}_9 \{b_1b_2, b_2^2\},$
$\mathcal{N}_2 \{b_1^2c, b_2\},$	$\mathcal{N}_{6} \{b_{1}c, b_{2}^{2}\},$	$\mathcal{N}_{10} \{b_1b_2c, b_2^2\},$
$\mathcal{N}_3 \{b_1^2, b_2c\},$	$\mathcal{N}_7 \{b_1, b_2^2 c\},$	$\mathcal{N}_{11} \{b_1b_2c, b_2{}^2c\},$
$\mathcal{N}_4 \{b_1^2c, b_2c\},$	$\mathcal{N}_{8} \{b_{1}c, b_{2}{}^{2}c\},$	$\mathcal{N}_{12} \{b_1b_2c, b_2{}^2c\}.$

The autologism γ permutes these in the following way;

$$(\mathcal{N}_1, \mathcal{N}_5)(\mathcal{N}_2, \mathcal{N}_8, \mathcal{N}_4, \mathcal{N}_7)(\mathcal{N}_8, \mathcal{N}_6)(\mathcal{N}_9)(\mathcal{N}_{10})(\mathcal{N}_{11})(\mathcal{N}_{12}).$$

The group c_1 is given by \mathcal{N}_5 , c_2 by \mathcal{N}_6 , d_1 by \mathcal{N}_9 , d_2 by \mathcal{N}_{10} , e by \mathcal{N}_7 , and f by \mathcal{N}_{12} . Thus these are all the possible groups except that given by kernel \mathcal{N}_{11} . But \mathcal{N}_{11} gives group f just as does \mathcal{N}_{12} Using \mathcal{N}_{11} the table would read $\alpha_1 = \beta^2$, $\alpha_3^2 = \alpha_2^{-1} \beta^2$, $\alpha_4^2 = \beta^2$

For \mathcal{N}_{11} , $G_{11} = \{x, y\}$ and $x^8 = 1$, $y^8 = 1$, $y^{-1}xy = x^{-1}$, $y^4 = x^4$ If, in G_{11} , x_1 is taken as xy^2 then $x_1^8 = 1$, $y^{-1}x_1y = x^3y^2 = x^{-1}y^{-2} =$ x_1^{-1} . It follows that $G_{11} = \{x, y\} = \{x_1, y\}$ is isomorphic with G_{12} .

CHAPTER 5

Notes on Various Groups of Orders 8, 16, 32, and 64

 S_x is the symmetric group of degree x. A_x is the alternating group of degree x.

Γ_2	8 a ₁	The octic group. Dihedral. Sylow subgroup	Γ_6
1 2	0 41	of S_4 , S_5 , A_6 , and A_7 .	10
	$8 a_2$	The quaternion group. Dicyclic. Hamiltonian.	
	$16 a_1$	Generalized dihedral. Sylow subgroup of S_6	
	4-2-	and S_7 .	Γ_7
	$16 \ a_2$	Hamiltonian.	
	32 a_1	Generalized dihedral.	
	$32 a_2$	Hamiltonian.	
	$64 a_1$	Generalized dihedral.	
	64 a ₂	Hamiltonian.	
Γ_3	16 a ₁	Dihedral.	
	16 a ₂	Every invariant subgroup characteristic. The	T
		Sylow subgroup in the group of automor-	Γ_8
		phisms of the Abelian group of order p^2 and	
		type (1 ²), where $p \equiv 3(8)$.	
	$16 a_3$	Dicyclic.	
	$32 a_1$	Generalized dihedral.	
	$32 a_2$	The Sylow subgroup in the group of auto-	
		morphisms of the Abelian group of order p³	
		and type (13), where $p \equiv 3(8)$.	
	32 e	Every invariant subgroup characteristic. The	
		Sylow subgroup in the group of automor-	
		phisms of the Abelian group of order p^2 and	
		type (1 ²) where $p \equiv 5(8)$.	Γ_9
	$64 a_1$	Generalized dihedral.	~ 9
	64 p	Every invariant subgroup characteristic.	
Γ_4	$32 a_2$	Generalized dihedral.	
•	32 <i>d</i>	This group has only one invariant subgroup	
		of order 4, and it is noncyclic. For this group	
		t_2 is odd and >1. In both of these respects,	
		the group is unique among the groups of	
		order 32.	
	$64 a_2$	Generalized dihedral.	
			Γ_{10}
$\Gamma_{\mathfrak{b}}$	$32 a_1$	Generated by 8 Γ_2 a_1 expressed as a regular	
		group, and its conjoint. Also generated by	Γ_{12}
		$8 \Gamma_2 a_2$ expressed as a regular group, and its	- 12
		conjoint.	
	$32 a_2$	The only non-Abelian group of order 32	
		which has (1) an automorphism of order 5	Γ_{13}
		and (2) an insolvable group of automorphisms.	
	$64 a_1$	Generated by 16 Γ_2 a_1 and its conjoint or by	
		16 $\Gamma_2 a_2$ and its conjoint.	
	$64 a_2$	Has an insolvable group of automorphisms.	Γ_{14}
	64 <i>b</i>	Generated by 16 Γ_2 b and its conjoint. Has	
		an insolvable group of automorphisms.	
	$64 c_1$	Generated by 16 $\Gamma_2 c_1$ and its conjoint or by	
		16 $\Gamma_2 c_2$ and its conjoint.	r

16 $\Gamma_2 c_2$ and its conjoint. 64 d Generated by 16 Γ_2 d and its conjoint. $32 a_1$ When expressed as a transitive group of degree 8, this group is the holomorph of the cyclic group of order 8. Genus a. The only genus whose order

32, divides 32 where neither t_1 nor the maximal order of the operators is a generic invariant. 64, Genera a and b. In these genera, t_1 is not a generic invariant.

Genera a, b, and c. In these genera, the maxi-64, mal order of the operators is not a generic invariant.

Dihedral. $32 a_1$ $32 a_2$ Every invariant subgroup characteristic. The Sylow subgroup in the group of automorphisms of the Abelian group of order p^2 and type (1²), where $p \equiv 7(16)$. Dicyclic. $32 a_{3}$

 $64 a_1$ Generalized dihedral. $64 a_2$ Sylow subgroup in the group of automorphisms of the Abelian group of order p³ and type (1³), where $p \equiv 7(16)$.

Every group in this stem contains at least

64 e Every invariant subgroup characteristic.

Stem of

order 64 one subgroup 32 $\Gamma_2 h$. 64 c The only two groups of order 64 where t_2 is 64 e odd and >1. 64 e The only non-Abelian group of order 64 which contains only one invariant subgroup of order 8. Sylow subgroup of the simple group of order 29,120 discovered by M. Suzuki (Proc. Nat. Acad. Sci., vol. 46 (1960), p. 868).

This group can be expressed as an intransi- Γ_{10} $64 a_1$ tive group of degree 8.

Of all the stems whose orders divide 64, the Γ_{12} Stem of stem of Γ_{12} is the only one which has a nonorder 64 elementary center.

Has a solvable group of automorphisms the Γ_{13} $64 a_{5}$ order of which is divisible by three distinct primes.

64 a_1 Γ_{14} Generalized dihedral. Stem of In genera a and d, t_1 is not a generic inorder 64 variant.

 $(64 f_1)$ Every invariant subgroup characteristic. Γ_{15} $64 f_2$

Γ_{16}	64	Genus a . In this genus, t_1 is not a generic invariant.
Γ_{17}	$\begin{cases} 64 \ b_1 \\ 64 \ b_2 \end{cases}$	Every invariant subgroup characteristic.
Γ_{21}	64 a ₂	Every invariant subgroup characteristic.
Γ_{22}	64 a ₁	This group can be expressed in two distinct ways as a transitive group of degree 8.
	$\begin{cases} 64 \ a_1 \\ 64 \ a_2 \end{cases}$	Every invariant subgroup characteristic.
Γ_{23}	64 a ₁	This group can be expressed in one way as a transitive group of degree 8.
	Stem of order 64	(Genus a) The maximal order of the operators is not a generic invariant.
Γ_{24}	64 a ₂	Every invariant subgroup characteristic.
Γ_{25}	64 a ₁	Can be expressed in two distinct ways as a transitive group of degree 8. Its positive expression is the Sylow subgroup in A_8 and A_9 . This same expression is the holomorph of the Abelian group of order 8 and type $(2, 1, 1)$, as well as the Sylow subgroup in the holomorph of the Abelian group of order 8 and type (1^3) .
Γ_{26}	64 a ₁	This group can be expressed in one way as a transitive group of degree 8. As such, it is the holomorph of 8 Γ_2 a_1 and the Sylow subgroup in the group of automorphisms of 8 Γ_2 a_2 .
Γ_{27}	64 a ₁ 64 a ₂	Dihedral. Every invariant subgroup characteristic. The Sylow subgroup in the group of automorphisms of the Abelian group of order p^2 and of type (1 ²), where $p \equiv 15(32)$.
	$64 \ a_3$	Dicyclic.

· ·	68																					2	2		9	7	
F- IZERS	2 2			4	5	m	m		7	0	_	7	5		m	C		က	3	n	_		_			-	
SELF- CENTRALIZE		~	_	_				-													-						_
CE	* N	က										0.1				01		2	2	2	2	3	m	2	2	2	
S	* _				-		_		₹ †	~	7		3	7	0	<u> </u>	0	4	9	9	9	2	2	9	9	9	5
м с			സ	9	0	2	~	7	4	8 9	4	5 4	0		∞	8	—	9	ω	©	Φ	©	8	©	©	∞	4
Ø	*-•	4	4	0	9	0	0	4	Φ		9	9	9	Φ	w	ω	ω										2
> 2	4													_	01		01		-	<+		2	5	4	3	m	0
2								2	-		01	01	5	4	2	4	2		4	4	2	5	5	5	œ	∞	0
Ø	-		2	4		9	9	0	7	<u>o</u>	12	12		0	<u>o</u>	9	<u></u>		5	5	5	4,		5		m	5
δ	·	က	က	9	15	C	က	7	0	12	9	9	0	4	4	2	4	0	5	5	5			2		2	2
C	j	2	2	4	7	7	2	2	Φ	4	4	4	4	4	4	4	4	2 2	2	2	2	2	3 2		9	9	6
	JA 107	5	7	7	17	=	=	=	22	25	22	22	6	22	<u>6</u>	91	6	23	9	91	9	<u>E</u>		9			
	H																										Ξ
TRA	4																		\equiv	\equiv	\equiv	\equiv	\equiv				(2)
CEN	H														\subseteq		2	\equiv	(2)	(2)	(2)	(2)	(15)	\subseteq	\equiv	\equiv	(E)
ER SER	Ŧ		\equiv			-	\equiv		_																		
LOWER CENT SERIES	I	\equiv	(2)	(2)	\equiv	(2)	(2)	(3)	(3)		(2)	(2)	$(^2)$	(21)	(21)	(21)	(21	(2)	(3)	\mathbb{C}	(9)		(12)	(21)	$\left \left(\left \right \right \right $	(21)	4
	NS NS														_		_		_	_ ~	_	ф _	<u></u>	-	a,	a _	-a
P 0F	INNER AUTOMORPHISMS	(12)	8[2a.	(3)	(4	16F2a,	16 F2 C,	16 F3 a ,	(3)	4	4	22)	4	16 [2 a	16 L ₂ a	Γ ₂ a	16 F ₂ c	32F ₂ a ₁	32F3 a	32F3d	32 [3c,	32F, a	321, a	32 [_b	321, a,	32 [4 a	325
GROUP	N N OF		8			19	19	9						9	91	191	9	32	32	32	32	32	X	3,	3	3,	3;
-	<u>₹</u> < 7 >	2	3	2	2	3	~	4	2	2	2	2	2	3	3	c	c	n	4	4	4	4	4	m	n	n	5
	W 13	3	4	5	5	5	2	5	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	ဖ
	мум		7				N			m	m	6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Q	ت	S	ပ်	5	ပ	٥	٥	٥	30	ا ک	е —	T ₂	F.	<u>LL</u>
К		+		-	~	15	()									_			u .							(4)	Al - -
К		a	S	n ~	4 -	<u>ي</u> د -	m -	2 -	e e	4 0		4 0	4 0	w 0	w 0	€ N		4 -	6 -	m - 0	e -						
М	FAMILY	+			ر و م	ا ت	ا ا ا	2 - 2	ے ع	4 0		4 2	- Ei		T 3	T 3	7 3	8 -	E -	202	-	7 3		24 - 3		28	72

٨٦	1				=	=	N U	CENTPALIZERS	M A X I M A I.
E W	H/9 U ^z H) •)	° 0	8 F F	Ø - «	FACTORS
_~	(1)	2/2	(15)	9	N _s	0	××		
	(1)	2	(13)	00		Ξ	×		Z ₂ /H ₃
□ 4	(13)	3	=)24	Σ ₄	~	X X *		$(X_3/K_1)^3$
<u>د</u>	(1)	4	([14]	022	~°	0	× ×	$(X_{1}, X_{4})^{15}(X_{3}, X_{3})^{10}$	
Lº	(1)	3	([]))32	a,	(=	$Z_2X_4^2$	$(X_1, X_7) (X_2, X_6)^2$	Z ₂ /H ₃
7	(1) (21)	2	[[2]	32	T 8 9	\equiv	$Z_2 \chi_3^2$	$(X_1, X_2)^2 (X_2, X_5)$	Z2/H3
سِا	(1)	2	[[F]	2) 32	_6a_	(15)	×		Z ₃ /H ₃ , Z ₂ /H ₄
டு	(13)	3		(1,)	Aut (13)	Aut (13)	×		$(X_2/K_1)^7$
<u>_</u> °	(12) (14	4	([")	3) 72	$\sum_{3} \sum_{2}$	\equiv	× 4	$(X_1, X_7)^6(X_3, X_3)$	$(X_3/K_1)^2$
	(13) (14	4		96(1)	Aut (2 ²)	\equiv	$\underset{3}{\times}$	$(X_1, X_7)^3$	X ₃ /K
7	(2) (2²)	2	[(23)	366	Aut (2 ²)	\equiv	X ₂ X ₃	$(X_1, X_2)^3$	X2/K,
	(12) (14)	4		(1,)360(2	$(\Sigma_3 \times \Sigma_5)^{\dagger}$	×3	×2×2		
<u> </u>	(13)	3	([])	9 (8F ₂ a ₁	×		Z/K,(X,/K2),(X,/K3), X,/H3
s	(13)	3		91 (1)	(4	(3)	$\sum_{2} \chi_{5}^{2}$	$(X_1, X_10)(X_2, X_8)$	$Z_{2}/K_{1},(X_{8}/K_{2})^{2},X_{8}/K_{3},X_{o}/H_{3}$
<u>8</u>	(13)	()	<u> </u>	18)64	7. 2.5.a.	81 ₂ a ₁	$Z_2 X_4^2$	(X_1, X_7)	$Z_2/K_1(X_4/K_2)^2 X_7/H_3$
	(12)(21)	1) 2		4)32	Г ₄ а,	8 ₅ a₁	Z ₂	$(X_1, X_2)^2$	$Z_2/H_3,(X_4/K_1)^2$
	(1) (1)	4	<u> </u>	14) 192	8	(1)	X³	$(X_1,X_1)(X_4,X_1)^6(X_9,X_1)^4$	Z_2/H_3
آ_ق	(1)	3	([]	3) 128		(3	$Z_3X_4^2$	$(X_1, X_7)(X_2, X_8)^3$	Z_3/H_3 , Z_2/H_4
_%	(1)(51	1 2		2) 28		(13)	$Z_3X_3^2$	$(X_1, X_6)^2(X_2, X_5)$	$Z_3/H_3, Z_2/H_4$
	(1)(51	1 2		13)64		(3	Z ₃	$(X_1,X_5)(X_2,X_7)(X_3,X_8)$	Z ₃ /H ₃ .Z ₂ /H ₄
722	(1)(5	1) 2	<u> </u>	₂) 64	[25a	8[2a,	X X 5	(X_2, Z_2)	Z ₃ /H ₃ . Z ₂ /H ₄
7	(1)(5	1) 2		12) 64	[2581	85 _a	XX ²	(X_2,Z_2)	Z ₃ /H ₃ , Z ₂ /H ₄
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		3)	$\widetilde{}$	[13]	. F ₂ a,	(3	×	$(X_1,X_8)(X_3,X_{12})(X_5,X_{14})$	(X,,X,e)(X3,X12)(X5,X14) X6/K1, X8/K2,X10/K3,Z2/H3
7	(1) (1)	3)		(13)		\sim	XXX	$(X_2,X_8)^3$	$(X_{5}/K_{1})^{3}, Z_{2}/H_{3}$
) (I)	[3]	3 (1	13)64	149	81 ₂ a,	X ₆ X ₁₂	$(X_2, X_{13})^2(X_3, X_{12})$	$(X_{7}/K_{1})^{2}, X_{8}/K_{2}, Z_{2}/H_{3}$
7		2)	2 (1	1 ²) 128	Hoi (4)	(21)	×		Z ₄ /H ₃ , Z ₃ /H ₄ , Z ₂ /H ₅

A	COR	CORRELATION OF	ION OF	DEFINING	0 X	FIRST	SIGNALS	CEN	CENTRALIZER	ER OF H2	S E C O	ND SIGNALS
TIM A 3	S	5	G	2	· n	GROUPS	SUBGROUPS	*_~	6/H*	H ₂ /Z,	QUOTIENT	SUBGROUPS
_~	H	anX,					E	9		(3)		٦,
	H	Ŧ	×			_2	Γ ₁ Γ ₂	×	=	(2)	_	<u>_</u>
*	aK,	Ŧ	anX ₃	×		3	2 -	9		(13)	<u></u>	3
L.	T	anX.	anX2	anX			T 15	9		(14)		
L°	Ŧ	I	7	×		_~		×	(3)	(21)		
	I	I	7	× ×		_~	2 2 2	×	\equiv	(13)		Γ' Γ' ₁
	I,	Ŧ	I	×			2 3	×	(=)	(3)	~	<u>.</u>
	aK	a X	I	anX	anX,	L 4	Γ ⁷ 2	ပ		(13)	7 2	
٥	ak,	I	anX,	anX³	anX,	727255	0 2 4	5		(14)		[2 9 18 6
=	×	I 2	anX,	× e	anX,	2 5 5	3 7 12	9		(4)	<u></u>	F F F 2 2 2
تم	¥	I ~	anX,	×°	anX	_~	m 2	9		(2^2)		° -
T ₁₃	aK,	H	anX,	anXa	anX,	£ 5	<u>.</u> 4	9		(14)		5 - 30
<u>_</u>	Ŧ.	×	I	22	×	2 4		×	=	(21)	7 2 2	[
<u>s</u>	I	×	I	Z 2	×	364		×	\equiv	(21)	2 2	[
<u>s</u>	I	×	T	Z ₂	×	2 4	\[\begin{array}{c c} 2 & 2 & 4 \\ 2 & 2 & 3 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	×	\equiv	(21)	T 2 2	2
	\prec	Ŧ	Ŧ	22	×	Γ ² Γ ₃	727	Z ²	((5)	~	- L
 8_	H	H	× 513	anX。	×	_ 2	[2 [2 [6 [6]	×	\equiv	(21²)		2 2 3 3 12 12 4
_ <u>e</u>	T,	Τ̈́	I ~	Z ₃	×			×	(=)	(31)	~	2
20	I,	I	I	Z ₃	×	<u>_</u>	3 2	×	\equiv	(31)	_ ~	2 - 1
	I	I	I,	2	×		7 3 3	7	(15)	(21)		2 8
7	T,	H ₃	Ŧ°	×	×		7 7 4	\times_{4}	(2)	(3)	_~	
7	I,	I	H	×	×		2 4	$\times_{_{4}}$	(2)	(21)	2	7 2 2
7	H	×	I,	× ° °	×	_*	3 6 2 7 3	×	(3)	(21)	7272	
	T.	aK,	T [°]	× 4	anX2	4	\[\begin{array}{c} 3 arr	\times_{4}	(3)	(l_3)	2 3	
28	H	× ×	H 2	×	×	4	5	×	(15)	(21)	2 2 2	
[2,	H	H.	Н	H	×	8		×	(1)	(4)		L

GROUPS BY FAMILY

FAMILY $\Gamma_i = A$. Rank 0. Class I. u = I. Abelian. $H_2 = I_1 = I$ dentity. $Y_2 = Z_1 = G$. $t_3 = t_2$.

The first quotient signal and the first subgroup signal are identical. Each group constitutes a complete genus.

				Г				1																									
	Auto-	morphisms	+ 2			2.3		23.3.7	2		° 26.32-5.7	23.3	2.3	2		210-32-5-7-31	26.3.7	23.3	23.3	2	2	_	215.34.5.72.31	210.32.5.7	26.32	76.3.7	73.3.7	\ \ \ \ \ \	23.3	2.3	2	2	
			+-	ů	2	2	N	3	22	22	°	S ³	7	23	\sim	$^{\circ}$	₹	Z°	7	Š	7	7	ů	72	28	25	· ^	Z.	25	Z8		2 -	- 5
			64																														32 2
	ure		32																			9						_				2	
æ	Structure		9												∞						9	∞							32		32	5 32	_
)	Str		∞							4				∞	4				9	9		4				32		2		48			
	ler	Ī	4				2		4	2		∞	2	4 (2		9							2	φ	(1)	9	4		12 4	01		7
	Order		2		-	m	_	~	3	_	2		(n)	m .		$\frac{1}{\infty}$	2	7	_	<u> </u>	m	_	3	<u>(1)</u>	5 4	-	5	2	<u> </u>			7	2
			—п	_			_				· · · · ·					_							9	<u>(1)</u>		<u></u>				<u>~</u>	<u> </u>	<u> </u>	=
																				_							_		_	_	_		
	First	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E - 	I I I	(0)	<u>e()</u>		(12)7	(15)(2)5	(5)	(3)15	·(17)(s1)	E(12)	(21)(3) ²	(3)	(4)	$(14)(212)^{14}$	(212)3(22)4	(212)(31)	$(2^2)(31)^2$	(31)(4)2	(4)	(5)63	(12)(513)30	(213)3 (221)12	(213)(312)14	$(2^2 I)^7$	2	(312) (41)6	(32)3	(32)(41)2	$(41)(5)^{2}$	(2)
	dno	qw	1S	9	=	(3)	(2)	([3)	(21)	<u></u>	4	7 3		3	(4)	(2)	$\frac{1}{2}$	(2²-1)	$(3 ^2)$	(35)	4	(2)	(e	(214)	22/2)	3 (%)	(23)	321)	412)	32)	42)	(5)	(9)
	9r ق	equi	nΝ				7		7	- 1	(00			
L	19k	Ord		-	7	4		∞			9					32						-	64										

Class 2. u=6. FAMILY [== FB= \m. Rank 3.

Commutator $\neq 1$: $[\alpha_2, \alpha_3] = \alpha_1$.

Square: α ?=1

Congruences (mod Z₁): $\alpha_s^2 \equiv \alpha_3^2 \equiv 1$. $H_2 \sim (1)$. $I_1 \sim (1^2)$.

Ys is the unique F, group in the first quotient signal.

STEM. Order 8. $Z_1 = H_2$. $Y_2 = I_1$. $t_2 = t_3$.

Relation: $\alpha_z^2 = \alpha_1$.

_	_
$(1^2)^2(2)$	(2)

FAMILY F. (Continued). FIRST BRANCH. Order 16.

	-		-	200					
1		sms	+ 8	2	9	9	2	2	7
Auto-		morphisms	+ + 2	23.8	23.24	23.6	24.2	24.2	23.2
_		ure	∞						∞
Order) . 5	Structure	4	4	7	∞	∞	2	4
1) 	<u> Str</u>	7		ന	7	7	3	3
_	dno		_ L ~	4 -	4 d	332			
First	Subgr	Signa	e –	(13)2 (21)	(21)3	(21)3	(13)(21)2	$(21)(21)^{2}$	(21)(3)2
First	tient	Signal	E ~	ص - ۵	<i>Q</i> <i>n n</i>		9-	9,92	
نت	0 n (>)	Sig	<u> </u>	(ϵ)	(<u>e</u>)	(<u>s</u>)	(21)	(21)	(21)
eric	Invari-	ants	Z ₁	(2)		(2)	(2)		(2)
Generi	> U	a	\ \ \	(٤)		(3)	(21)		(21)
20	o	SU (α_3^2	_	B	_	β_{z}	B	B
fini		Relations	α_2^2	β	8	-		∞_	
Defining		L L	$\alpha_{_{\rm I}}$	B	8	β^2	ω_	∞_	B2
dno	10	oqu	Syr	مّ	a ₂	q	ပ်	C2	Ф
Group	اد	əqu	ınN	9	7	∞	ರಾ	9	=

FAMILY F. (Continued).
SECOND BRANCH. Order 32.

(0	_	Г					_	_		T		_				
l sms	+	7	9	9	2	2	2	2	9	2	9	9	2	N	\sim	2
Auto— morphisms	+ + + = + = + = + = + = + = + = + = + =	24 · 192	2+.576	24.48	2°.8	2°.8	24.8	2°.2		1 4	2.6			1	25.2	24.2
e e	91															91
Order	∞						9				9		9	9	9	∞
Order Structure	4	∞	24	9	9	75	∞	2	28	24	∞	24	12	∞	2	4
Ś	2	23	_	15	5	_	_	=	ന	_	_	_	m	7	\sim	m
rst roup nal	<u> </u>	a 12	a 2 5	a, a b	C-4	O 4 u	40	a, c, c,	a c c 3		₽ p q					
First Subgro Sign	e –	(14)2(212)	(212)3	(212)	(14)(212)2	(212)(212)2	(212)(31)2	(2P)=(2=)	(22)3	(212)(22)2	(31)3	(212)3	(22)(31)2	(212)(31)2	$(2^2)(31)^2$	(31)(4)2
First Quotient Signal	٤~	۵ - ه	D n	р ²	a 2 C 4	a, a 2 C2	9 p	a p	a ₂ b	29		C 3 C2	d ²	p'o	c ₂ d	
QuS		<u>+</u>	(4	(4	$(2l^2)$	(212)	(212)	(212)	(212)	(212)	(212)	(2^2)	(22)	(31)	(3)	(3)
eric ari- ts	Z,	(٤)		([2]	(3)		(21)	(21)		(21)	(3)	([3])	(21)	(21)		$\widehat{\mathbb{C}}$
Generi Invari ants	> >	(4)		(4)	$\left(2 l^2\right)$		(213)	(212)		(212)	(213)	(22)	(22)	(3)		(3)
ng ns	α_3^2	_	8	_	8	B	β,		B	β_{z}	_	β_3	B	ω_ (_	8
Defining Relations	α_2^2	8	8	-		ω_	-	<i>α</i> ^ν	$\beta_{\rm z}$	_	_	β	Ba	— (B	
De	β'	8	82	B.2	8	ω_	B2-	8	B	β2	84	β.	Ba	ω, (200	Δ ₄
3 lodm	lβ	a ₋	a ₂	9	ū	C2	0	ō.	e s	4	00		a —		0	<u>×</u>
Group mber mbol	nN	∞	0	9		2	<u>m</u>	7	15	9	_	<u>∞</u>	<u>ත</u>	20	7	22

FAMILY Fz (Continued).
THIRD BRANCH. Order 64.

sw	+-	2	9	9	2	7	7	2	9	7	9	9	2	N	2	2	9	7	7	9	7	2	7	7	9	9	2	2	2	2	7	\sim
Auto— morphisms	+1 - +2			M	2.192		25.192		2°.48	2°.32		2° · 24			3 5 V	2.8	28.12	7 .	2°.4	2°.24	· ·	2. 2		27.2					٠.	2°.2		•
	32																															32
er	9															32										32			32	32		9
Order ructure	8						32				32		32	32	32	9					32	32	32	32	7	9	32	48	91	9		∞
Stri	4	9	48	32	32	48	9	40	99	48	9	48	24			∞	48	48	99	99		24		20 3				12 1	12	000		\
,	2		0			10	15	~	7			5		5		_			7						3			m	3	~ (3
st roup nai	2		a 28	a3 a 2 b24	C - 2		d 12	a, C, C26,	2 C 2 C 2		b d ³ g ⁸	4	4	4 -	4 u	4	beee2f3	C 1 h 2	C2 h2	h 4	d² j²	dfi²	2 j 2 j 2 j 2	e.j.j.	P2 j3	g k³						
Subgi	e	(15)2(513)	(213)3	(2 33	(15)(213)2	(213)(213)=	(213)(312)2	(213)=(221)	(221)3	(213)(21)2	$(3 z)^3$	(213)3	(221)(312)2	(213)(312)2	(221) (312)2	(312)(41)2	(221)3	(513)(551)5	$(2^21)(2^21)^2$	(221)3	(221)(32)2	3	$(2^21)(32)^2$	(3/2/2(32)	(32)³	(41)3	(221)(312)2	(35)(35)=	(32)(41)2		(32/41)	(41)(5)2
First uotient Signal	E S	41 6	Б 4 ч	pe	a 2 C 12	a, a = C2	g p	a,be,	asbe2	b ² f ⁴	200	C3 C2 h8	d ² j ⁴	C, d j.	C2d] 4	К²	b ²	C, e, f	c2e1e2f	f 6	d²	8 2	d f	e _ Ø	e 200		h i j² j²	5	N X	، ب ج -	Jak	
Qu			(5)	(5)	(213)	(213)	(213)	(213)	(213)	(213)	(213)	(2^2I)	(2=1)	(3 (3)	(3 12)	(3 2)	(213)	(22)	(2^2I)	(221)	(221)	(221)	(3/2)	(3 2)	(3/2)	(312)	(35)	(35)	(35)	42	(41)	(41)
eric ari- ts	7	(4)		(212)	(4		(212)	(212)		(212)	(3)	(4	213)	(213)		(31)	(2^2)	(215)		(212)	22)	(3)	(22)	(3)		(4)	213)	22)	(3)	(31)	-	(4)
Generic Invari- ants	>2	(2			(213)			(213)		<u>e</u>	(213)	(221)		(312)	_	(312)	(213)			221)	[Sel]		3 (2)	(3 2)				(35)	(35)) (14)	(17)	(41)
	α_3^2		8		B	B	β, (B	B	_	β	β	8		$\beta_{\rm i}$. 6	β	β_3 (β, (2	Bel		B		_	B		B. 0	0 0	A
efining elations	α_z^2	82.0	8	_	_	β	-	B	B		_	β	8		B	-	_	_	B	β_{2}	_	_	_	B	B	_	Вз	B	B	— c	Q -	
Defir Relati	$\alpha_{\rm i}$	8 .	ω_	B2-	B	B	B ²	B	B	β_1^2	\$_	8	Be	Bz	B	B4	82	B	B	β2	β2	84	82	B	B	B®	B	&_	β4	800	200	βg
3 10 qu	ıλS	a_	a a	9	C	C2	Р	a -	e ₂	4	00				a	-×		E.	m ₂	n	0	0	Ь		7 2	S	+	5	>	×	Wz	×
Group nber lodm	nnN	7	<u>n</u>	14	15	9	17	<u>∞</u>	0	20	7	22	33	24	25	26	27	28	29	30	31	32	33	34		36	37	38	39	9 -	4	45

FAMILY [3=20=1/2]. Rank 4. Class 3. u=8.

Commutators \neq |: $[\alpha_2, \alpha_4] = \alpha_1$, $[\alpha_3, \alpha_4] = \alpha_2$. Squares: $\alpha_1^2 = |, \alpha_2^2 = \alpha_1$.

Congruences (mod Z,): $\alpha_s^2 \equiv \alpha_z$, $\alpha_4^2 \equiv 1$. $H_z \sim (1)$. $I_1 \sim 8\Gamma_z a_1$, $I_2 \sim (1^2)$. $Y_3 = \overline{I}_i$ is the unique Γ_z group in the first quotient signal.

STEM. Order 16.

 $V_2 = I_2$, $V_3 = I_1$. $Z_1 = H_3$, $Z_2 = H_2$.

1	sms	−	∞	4 (∞
Auto-	morphisms	+ 4	2	ē	2
1	M0	+-	24	7	7
_	ure	∞	4	4	4
Order	Structure	4	2	9	9
		2	0	2	_
First	Signal	25	Д и-	9,92	95
	Sig		(B)	$\widehat{\mathbb{S}}$	(3)
First	S. 40 	\ 	<u>a</u>	a_	a,
)efining	elations	α_4^2	_	-	$\alpha_{_{1}}$
		Q33	α_2^{-1}	α_{2}	α_2^{-1}
Group	lodr	uγS	ā	D s	a _s
Gro	nber	unN	12	<u>N</u>	4

BRANCH. Order 32 FAMILY [(Continued).

1	SMS	+	∞	4	Φ	∞	4	4	∞	∞	4	∞
Auto-	morphisms	+ 2	∞	4	00	. 2		-	7	2		. 2
< <	mor	+-	25	25	25	25	26	Z°	2e	2°	25	25
_	ure	∞	8	∞	∞	8	∞	∞	8	∞	∞	24
Order	Structure	4	4	2	20	2	12	20	20	20	91	4
0	Str	2	61		\mathcal{C}	=	_	\mathcal{C}	\mathcal{C}	ന		m
+	oup al	n 3	Ф 4-	9 4 s	4 °C	a, a = a 3						
First	Signal	2 2	a 2 -	9,92	9 8	p 2	31C2	de Ce	C 2 2	0 0	pq	0/2
C	/)		(31)	$\widehat{\mathbb{B}}$	(31)	(31)	(31)	(31)	(31)	(31)	(2^2)	(31)
First	zuotient Signal	_m ∃	a ₋ 2	9 0	Q 3 8		d 1 dz	a2 a3	a , a 3	<i>Q</i> , <i>u</i> , <i>u</i>		
ند	on Sis	2	a	ā	a	a,	ت	J	C2	Ca	ū	Ca
eric	nvari- ants	Zi	(2)			(2)	(2)		(٤)		(2)	(2)
Generic	ants	>2	(e)			(٤)	(21)		(21)		(21)	(21)
να.	n S	α_4^2	-	-	$\beta_{_{1}}$		_	B	β_{2}	B	—	B
Group Defining	Relations	α_3^2	Q_2^{-1}	α_2	α_2^{-1}	$\bar{\alpha}_2^{-1}$	$\vec{\alpha_2} \beta_2$	$\vec{\alpha_2} \beta_2$	α_2^{-1}	α_2	$\vec{\alpha_2} \beta$	$ \bar{\alpha}_{\mathbf{z}}^{I} $
Det	Rel	$\alpha_{_1}$	B	β	8	Bz	$\tilde{\omega}$	$\beta_{\rm i}$	8	8	βz	Bz
dn(lodn	Syr	a.	B	a _s	9	ت	C2	þ	− ₂₄	വ	ч.
Gre	nber	InN	23	24	25	26	27	28	29	30	3	32

FAMILY F. (Continued). SECOND BRANCH. Order 64.

N	11 -	2	2	<u>C</u>			(1)	6:	(ci																	
Z =	19	(212)	(2 12)	(212)	(212)	(2 2	(2 12)	(213)	(212)	(212)	(212)	(2/2)	(212)	(22)	(2^2)	(2^2)	(31)	(212)	(212)	7 (2)	22)	(22)	22)	22)	3	(31)
sms	+-	$ \infty $	4	∞	∞	4	4	∞	∞	4	∞	4	∞	∞	4	∞	∞	8			-				4	8
Auto	+4	192	96	192	9	4	4	∞	∞	4	∞	2	4	2		7	2	2		2					,	
Auto- morphisms	-	26.	26.	Z6.	2°.	28	28	28	م	26.	26.	28.	28.	2°.	 8	28	Z.	28.	28.			27.	2.2	2, 2	Z° -	2. 2
	9												-					-						_	2	2
er	∞	9	9	9	9	9	9	9	9	9	48	9	9	9	9	9	32	9	9	48	32	32	∞	90	6 3%	3
Order Structure	4	∞	24	40	24	24	40	40	40	32	00	32	40	28	36	44	20 3	40	40	8			2 48	2 48		2 16
S	2	39	23		23	23		7	_	5	_	5	7 /	6	=	3 7	<u>-</u>	7	7 4	N		3	<u></u>	3	2	
Q.					8 q										02				ľ							3
roup	_ E	а й-	В 9 ч	8 5 E	U U	4 -	O 4 u	4 -	<u>0</u> 4 م	4	4	0 N	2 d 2	c d	C1 C2 (C2 d	e ² f									
Subg					a a							O	0	۵	a2 C	Q	Ω							1		
	20	9-8	a ₁ a ₂	92	P 9	a, C2	a ₂ C ₂	N N	C 2	p q	9	b f	f 2	a -	e ₁ e ₂	6 2 2	200	O N	d f	0 s	e, j2	6232	<u>a</u> a	üa	× 200	2
First		(3/2)	(3 12)	3 (2)	(3/2)	(312)	(3 12)	(312)	(312)	(221)	3 (2)	3 2)	3 2)	(32)		32)	(2)	312)	(2=1)	(3 5)		(32)	5)	(32)		2)
+			$\underline{\smile}$							2)	(3)	(3)	(9)	<u>.</u>			0	(3)	(2)	(3	<u>e</u>	9	<u>(3</u>	0	7	(32
irst otien gnal	E m	ص - ه	9 8	900	p 2	a.a2C.	223 C2	a 1 a 3 d 1	2 0 4 4 4	ره د	f 2	p 2	P ₂	a _b	asb	3 P	ĺ	$\frac{1}{2} d_1 d_2$	62	2	c'e	ە		<i>ب</i>		
First Quotier Signal						ā	az	م	a			P		D	D	a		C ² C ²	Φ	4	O	S	Р	da		
	<u>~</u>	a_	ā	ā	ā	ن	υ	S	C 2	ပ	Ca	J	C2	ā	ē	a l	ē.	4	ح				~~	. ~	. –	. <u>a</u>
eneric nvari- ants	7	$(\varepsilon \mid)$			(21)	(3)		(3		(21)	(21)	(21)	(2)	(2)			(3)	(13)	(21)	(21)	(21)		(21)		$\widehat{\mathbb{C}}$	(3)
Gen (In v a	>~	(4)			(4)	(212)		(212)		(212)		_	_	(2 2		-	(2)		(23)		(18)					
	α_4^2			B	_			_	B		B		β ₂		_	β ₂	<u>~</u>				\leq	-	(3)		- 1	(3)
efining elations	2°	α_2^{-1}	α_{2}	α_2^{-1}	α_2^{-1}	$\alpha_2^{-1}\beta_2$. 01			$\vec{\alpha}_2 \beta_1$		ma		\mathcal{Q}_{2}^{\perp}		-				B2 B1				\ \alpha \	\mathcal{L}	2
Defini Relati		B		8					-			2 Q=1					\$ Q_2		Q_Z	Q2		a	α_2^{-1}	à	22	$\alpha_{2}^{\bar{c}}$
		<u>a</u>	a2 F	a ₃	b β				-		\dashv		\dashv	Z C	$\frac{1}{\beta}$	+	<u>δ</u>	B	Big	\dashv	_		- α α	-	D 4	B
mber Group		43		45 8		7 61			\Rightarrow		52 f		4		0 1	- B		Z Z		٤	, u	2	0		٥	0
	11	4	7	7	4	47	4 8	49	2	2	5	2	72 1	55	56	5	3	59	9	0	62	3	40	69	90	/9

FAMILY $\Gamma_4 = {}^{3}\mathbf{B} = \Lambda_{(1^2)}$. Rank 5. Class 2. u = 24.

Commutators \neq 1: $[\alpha_3, \alpha_5] = \alpha_1, [\alpha_4, \alpha_5] = \alpha_2$.

Squares: $\alpha_1^2 = \alpha_2^2 = 1$.

Congruences (mod Z_1): $\alpha_3^2 \equiv \alpha_4^2 \equiv \alpha_5^2 \equiv 1$. $H_2 \sim (|^2)$. $I_1 \sim (|^3)$.

STEM. Order 32.

 $Z_1 = H_2$. $Y_2 = I_1$. $t_2 = t_3$.

n is the number of self-conjugate subgroups of order 4.

						1		¥					
Number	Symbol =	- '	efini Iatio		First Quot Signal	Su	First bgroup Signal		der ruc- re	Auto- morphisms	cer	Self- ntralizers	n
N	Sy	Q_3^2	α_4^2	Q 2 5	\[\begin{array}{c} 3 \\ 2 \end{array}	$\Gamma_{\rm m}$	☐ 6 2	2	4	† , · † 2	16Г,	(8۲,)⁴	
33	aı	- 1			a³	(4)	a³c³	19	12	26 . 6	(4)	(13)(21)3	7
34	a₂	$\alpha_{_{\rm I}}$	α_{2}		a ³	(2^2)	a ·	19	12	26 - 24	(22)	(3)4	7
35	aз	$\alpha_{\rm l}$	α_2	$\alpha_{_{\rm I}}$	a ₁ a ₂	(2^2)	a 2 C2	3	28	26 . 8	(2^2)	(21)4	7
36	bı	$\alpha_{\rm l}$			aiaib	$(2 ^2)$	$a_1a_1^2C_1^2C_2$	15	16	26 , 2	$(2 ^2)$	(3)2(2)2	5
37	b ₂	$\alpha_{_{\rm I}}$		$\alpha_{_{\rm I}}$	a,a,b	$(2 ^2)$	a2C1 C2 C2	7	24	26.2	$(2 ^2)$	$(21)^{2}(21)^{2}$	5
38	Cı	1	$\alpha_{\rm I}$	1	a,b²	$(2 ^2)$	$a_1C_1C_1^2C_2^2$		20	26.2	(21 ²)	$(3)(2)(2)^2$	3
39	C2	$\alpha_{_{\rm I}}$	$\alpha_1 \alpha_2$	1	a,b²	$\left \left(2^{2}\right)\right $	$a_1 a_2 c_1^4$	11	20	2° · 4	(5 ₅)	$(3)^{2}(2)^{2}$	3
40	Сз	$\alpha_{_{\rm I}}$	$\alpha_1 \alpha_2$	α_2	a ₂ b ²	(2 ²)	C 2 C2	3	28	26 · 4	(2 ²)	(21)4	3
41	d	α_2	$\alpha_1 \alpha_2$		b³	(2^2)	$C_1^3 C_2^3$	7	24	26 . 3	(2^2)	$(1_3)(51)_3$	

FAMILY [4 (Continued).
FIRST BRANCH. Order 64.

Relation: $\alpha_2 = \beta_2$.

1		1				r												÷	
Gr				inin tior	δ		eric ari-	Quot	ient		First Su	•	Or Sti	der uc-		uto			Self-
l qu	mbol	Γ.(210	1101	15	ar	nts	Sig	nal		518	gnal	tu		mor	phis	sms	ce	entralizers
Number	Sy	$\alpha_{_{1}}$	α_3^2	Q24	Q_5^2	Y2	Z,	٦ 2	Γ ₄	Γ,	「6 2	_	2	4	†1.	†2	†3	325,	(16 Γ,)⁴
68		$\beta_{_{1}}$		1	1	(4)	(3)	a³	a ⁴	(5)	a³ c³	a ₁	39	24	28 .	48	6	(5)	(4)(2 2)3
69	- 3	$ \beta_i $	β_{l}	β_{2}				a³	a 4 2	(2^2)	a 6	a 8 2	39	24	28 .	192	24	(2 ² 1)	(4)4
70	aз	β_{i}	β_1	β_z	$\beta_{\scriptscriptstyle \rm I}$			a, a2	a 4 3	(2°1)	a2 C2	a 8	7	56	28 .	64	8	(2 ² 1)	(2 2)4
	b	$ \beta_{i} $	$\beta_{\scriptscriptstyle \rm I}$		1	(4)	(3)	a, a, b	b⁴,	(21^3)	$a_1 a_1^2 c_1^2 c_2$	p,	31	32	2° .	16	2	(2l³)	(14)2(212)2
72	b2	β_i	β_{l}	1	β_{1}			aıazb	b ₂	(2 j³)	a ₂ C ₁ C ₂ C ₂	b ₂	15	48	2ª ·	16	2	(21 ³)	$(2 ^2)^2(2 ^2)^2$
73	C,	$ \mathcal{B}_{i} $		β_1	1	(4)	(3)	a,b2	C 1	(2 ³)	$a_1 C_1 C_1^2 C_2^2$	C 8	23	40	2ª ·	16	2	(21^3)	$(^4)(2 ^2)(2 ^2)^2$
74	C2	β_{i}	β_{l}	$\beta_1\beta_2$	1			a,b²	C 4	(221)	a ₁ a ₂ C ₁	C 8	23	40	28 .	32	4	(2 ²)	(14)2(2 2)2
75	Сз	β_{i}	β_1	$\beta_1 \beta_2$	β_z			a_2b^2	C3	(2°1)	C2 C2	C &	7	56	28 .	32	4	(2°1)	(2 2)4
76		β_1	β_{z}	$\beta_1 \beta_2$]	(4)	(3)	b³	d⁴	(2^2)	C ₁ C ₂	d*	15	48	28 .	24	3	(2°1)	(4)(2 ²) ³
77	e,	BZ	β_1^2		1	(4)	(21)	a ₁ b ²		$(2 ^3)$	be⁴f	a 2 b 2 b 2 c 2	23	40	2в .	4	4	(213)	$(2 ^2)^2(2^2)^2$
78	e ₂	β²	1	$ \beta_2 $	1			a ₁ b ²		(2 ² 1)	b² e₁⁴	a ₂ a ₃ b ₁ c ₂	23	40	28	8	8	(2°1)	(2 ²)4
79	e _a	β_1^2	1	β_{z}	β_z			a_2b^2		(2°1)	e ₂ f ²	$a_3^2 b_2^4 c_3^2$	7	56	28 .	8	8	(2^2)	(22)4
80	f	Bz	β ₂	1	1	(4)	(21)	bbb		(2 ²)	e, e, e, f 2	b ₁ b ₂ C ₁ C ₂ C ₃ d ²	15	48	28 .	2	2	(2ªI)	$(2 ^2)^2(2^2)^2$
81	g,	β_{i}		1	β_3	$(2 ^2)$	(³)	Cı	a ⁴	(5)	C		31	32	2° ·	24	24	(5)	(2 ²)4
82	g ₂		β_{1}	β_{z}	β_3			C ₂	a ₂ a ₃		C 6 2		7	56	29 .	24	24	(2 ²)	(2 2)4
83	h	β_{1}	β,		β_{3}	(2 z)	(3)	C1 C2 f	b2b2	(2l³)	C1 C2 h2		15	48	2° ·	4	4	(2l³)	(2 2)4

FAMILY [(Continued).
FIRST BRANCH (Continued).

Number S	Symbol =	1 -		nin	•	Inv	eric ari- ts	111 21	Quotient	Fir	st Subgroup Signal		Orde Cuct		Au	to- hism	Se	lf-centralizers
Nur	Syn	$\alpha_{\scriptscriptstyle \rm I}$	α_3^2	α_4^2	Q_5^2	Y ₂	Zı	٦3 2	☐m ₄	Γ,	☐ 6 2	2	4	8	†, · †	—	325,	(16 [,)4
84	Ėı	β_1		$\beta_2\beta_3$	1	$(2 ^2)$	(3)	c _i e ²	a, b, c,	(2 3)	a, c, c² h²	23	40		2° · 2	2 2	(2 l³)	(14)(212)(212)2
85	ء ا	$\beta_{\rm I}$	β_1	β_{3}				C'6 ₅	$a_2b_1^2c_2$	(2 ² 1)	a, C ⁴ C ₂	23	40		29 . 4	1 4	(2^2)	(4)2(2 2)2
86	İa	β_{I}	1	$\beta_2\beta_3$				C ₂ e ₁ ²	a b 2 c	(2 l³)	c, c, c2 h2	15	48		2° - 2	2 2	$(2 ^3)$	$(2 ^2)(2 ^2)(2 ^2)^2$
87	14	β_1	β_1		β_1			C ₁ e ₂	a3 b2 C2	(2°1)	a₂c₂h⁴	7	56		2° . 2	1 4	(2°1)	$(2 ^2)^2(2 ^2)^2$
88	İ ₅	β_{i}	β_1	β_3	β_2	, ,		C ₂ e ₁ e ₂	a3b1b2C3	(221)	C2 C2 C2 h2	7	56		2° · 2	2 2	(2 ²)	$(2 _{5})_{5}(2 _{5})_{5}$
89	jı	β_{1}	1	$ \beta_{i} $		(2 s)	(3)	C_1f^2	C 4	$(2 ^3)$	c2 h4	15	48		2° . 8	8 8	(21 ³)	(2 2)4
90	j2	β_{i}		$\beta_1 \beta_2$				$C_2 f^2$	C 2 C 3	(2 ² 1)	C2h4	7	56		2° . 8	8 8	(2 ² 1)	(2 2)4
91	k,	$ \beta_{i} $	β_{z}			(2 ²)	(3)	e,e,f	b ₁ c ₁ c ₂ d	(2°1)	cicicic2h h	15	48		29 .	1	(2 ² 1)	$(4)(2 ^2)(2 ^2)(2 ^2)$
92	K ₂	β_{i}	β_2		$\beta_{\rm I}$,		e,e2f	p5c1c3q	(2 ² 1)	c_2c_2hhhhh	7	56	İ	29.	1	(2 ² 1)	$(2 ^2)(2 ^2)(2 ^2)(2 ^2)$
93	l	β_{i}				$(2 ^2)$		f³	d⁴	(2°1)	h °	7	56		2° · 12	2 12	(2°1)	(2 2)4
94		β_1^2		1		$(2 ^2)$	(21)	$C_1 d^2$		(2l³)	d² j⁴	15	16	32	27 . 8	8	$(2 ^3)$	(31)4
95	m ₂		1		β_1			$C_2 d^2$		(2 ₂ 1)	d² j42	7	24	32	27 . 8	8	(2²I)	(31)4
96	n,	β_1^2	l	β_1	- 1	(212)	(21)	CIB2		$(3 ^2)$	b dj⁴	15	16	32	27 · 4	4	(3 2)	$(2 ^2)^2(3)^2$
97	n ₂	B²			β_2	/		C2g2		(31 ²)	d f j⁴₂	7	24	32	27 · 4	4	(3 ²)	(2 ²) ² (31) ²
98		BZ	β_{2}		_	(2 2)		ddf		(2 ₂)	12 1 2 2	7	24	32	27 · 4	4	(2 ² 1)	(31)4
99	p _i	Ba	β_1^{-1}		1	(2 ²)	(21)	de,g		$(3 ^2)$	$de_1ij_1j_1j_2$	11	20	32	27 · 1		(3 l²)	$(21^2)(2^2)(31)(31)$
100	p ₂	_	β_{i}	β_2				deig		(32)	$d^2e_1j_1^2j_2$	11	20	32	27 • 2	2	(32)	$(21^2)^2(31)^2$
101		_	β_{i}		β ₂	,		de ₂ g		(32)	e ₂ i ² j ₂ j ₂ ²	3	28	32	27 · 2	2	(32)	$(2^2)^2(31)^2$
102	q	β_1^2	β_{z}	β_1		$(2 ^2)$	(21)	fg²		(32)	$f i j_1^2 j_2^2$	7	24	32	27.2	2	(32)	$(2 ^2)(2^2)(3)^2$

FAMILY $\Gamma_5 = ^{4}$ B. Rank 5. Class 2. u = 720.

Commutators \neq |: $[\alpha_3, \alpha_4] = [\alpha_2, \alpha_5] = \alpha_1$.

Square: $\alpha_1^2 = 1$.

Congruences (mod Z_1): $\alpha_2^2 \equiv \alpha_3^2 \equiv \alpha_4^2 \equiv \alpha_5^2 \equiv 1$

 $H_2 \sim (1)$. $I_1 \sim (1^4)$.

Each group is the central product of two \(\Gamma \) groups, in ten distinct ways.

Y₂ is the unique \(\Gamma\) group in the first quotient signal.

STEM. Order 32.

 $Z_1 = H_2$. $Y_2 = I_1$. $t_2 = t_3$.

Relations: $\alpha_2^2 = \alpha_3^2 = \alpha_4^2 = \alpha_1$.

er	bol	Defining Relation	First Quot. Sig.	First Subgroup Signal	Str	der uc- re		Self- central- izers	Central Factors
Numb	Sym	Υ ₅ ²	۲	15 2	2	4	†, • †2	(85)15	[852 * 852]10
42	a ₁	$\alpha_{_{1}}$	(4)	a° b°	19	12	24 · 72	(13)e(51)a	$\{a_1*a_1\}^9\{a_2*a_2\}$
43	a ₂		(4)	a2 b10	11	20	24 · 120	(21)15	{a1*a2}10

FAMILY √ (Continued).
FIRST BRANCH. Order 64.

Number S	Symbol =	l .	Det Rela	fini atio	0			eric ari- ts	_	rst ot. nal	First Subgro Signa)rde		Auto morphi		Self- centralizers	Central Factors
Nur	Syr	$\alpha_{\scriptscriptstyle \parallel}$	α_2^2	Q 3	Q_4^2	α_5^2	Y2	Zı	Γ,	∏m ₅	15 2	ſn ₅	2	4	8	† ₁ † ₂	†3	(1617)15	{16[2*16[2]10
103	a ₁	β_1	β_{i}	β_{I}	β_{I}	β ,	(5)	(2)	(5)	a²	a°b°	a16	39	24		25.1152	72	(4)6 (2 2)9	$\{\underline{a_1 * a_1}\}^9 \{\underline{a_2 * a_2}\}$
104	a₂	$\beta_{\scriptscriptstyle \rm I}$	$\beta_{\scriptscriptstyle \rm I}$	β_{l}	β_{1}	1			(5)	a ₂	a2b10	a ₂	23	40		25.1920	120	(2 2)15	{a₁*a₂}10
105	b	β²	(4)	1	1	1	(5)	(2)	(5)		b ¹⁵	310 a2	31	32		25.720	720	(2 2)15	{ <u>b*b</u> }''
106	C ₁	β_{I}		β_{1}		β_{z}	$(2 ^3)$	(2)	$(2 ^3)$	a²	a,c,e,f2		23	40		28.16	16	$(14)^2(21^2)(21^2)^8(2^2)^4$	${a_1*c_1}^4{c_1*c_1}^4{c_2*c_2}^2$
107	C2	β_{I}	$\beta_{\scriptscriptstyle \rm I}$	$\beta_{\scriptscriptstyle \rm I}$	β_{I}	β_{z}			(2 3)	a ₁ a ₂	b c2e1e2f3		15	48		28 · 12	12		${a_1 * C_2}^3 {a_2 * C_2} {C_1 * C_2}^6$
108	Сз	β_{l}	1	β_{I}	$\beta_{\scriptscriptstyle \rm I}$	β_z			$(2 ^3)$	a ²	a ₂ e ₂ f ₆		7	56		28.48	48	$(5 _5)_3(5_5)_{15}$	$\{a_2 * C_1\}^4 \{\underline{C_2 * C_2}\}^6$
109	d	β²	1			β	(2l³)	(2)	$(2 ^3)$		b dege		15	16	32	25.48	48	(212)3(31)12	$\{b * d\}^4 \{\underline{d} * d\}^6$

FAMILY $\Gamma_6 = {}^3\mathbf{C}_1$. Rank 5. Class 3. u = 32.

Commutators \neq |: $[\alpha_3, \alpha_4] = [\alpha_2, \alpha_5] = \alpha_1$, $[\alpha_4, \alpha_5] = \alpha_2$.

Squares: $\alpha_1^2 = 1$, $\alpha_2^2 = \alpha_1$.

Congruences (mod Z₁): $\alpha_3^2 \equiv \alpha_5^2 \equiv 1$, $\alpha_4^2 \equiv \alpha_2$.

 $H_2 \sim (2)$, $H_3 \sim (1)$. $I_1 \sim 16 \Gamma_2 a_1$, $I_2 \sim (1^2)$.

Z₂ is the verbally characteristic self-centralizer.

 $Y_3 = \widehat{I}_1$ is the unique I_2 group in the first quotient signal.

H₂ is the verbally characteristic \(\Gamma_2\) group in the first subgroup signal.

STEM. Order 32.

 $Z_1 = H_3$, $Z_2 \sim (21)$. $Y_2 \sim (1^3)$, $Y_3 = I_1$.

Relations: $\alpha_3^2 = 1$, $\alpha_4^2 = \alpha_2^{-1}$.

Number 5	ymbol and		First Quot. Sig.		irs ogr ign	t oup al	1	rde uct		Auto			lf- lizers
N Z	Syr	Q 2 5	ړ	\[\begin{array}{c} 2 \\ 2 \\ \end{array}	Γ ₂	۲ ₄	2	4	8	†, †2	†3	85,	(81,)2
44	a,	ĺ	aı	a, b	d	a2a2	15	8	8	25.2	8	(21)	(3)2
45	a ₂	α_{I}	aı	a₂b	d	a2a3	7	16	8	25.2	8	(21)	(3)2

FAMILY To (Continued). FIRST BRANCH. Order 64.

Number	oup Joqu	1		inin ation	•		eric ari— ts	Quo	rst otient gnal	F		t Subgro Signal	up	١.)rde uct		Δ mor	uto phis		1	Self- ralizers
N	Sy	α_1	Q23	Q24	Q_5^2	Y ₂	Zı	٦	☐m	\[\begin{array}{c} 2 \\ 2 \\ 2 \\ \end{array}	Γ ₂	Γ ₄	L ^e	2	4	8	†, •	†2	† ₃	165	(16[,)2
110	a ₁	β_1 β_1		α_2^{-1} α_2^{-1}	 	(4)	(2)	a _i	a ₁ ²	a₁b a₂b	d	a ₁ ² a ₂ ² a ₂ ² a ₃ ²	a ₁ a ₂	31 15	16 32	16 16	2° .	16 16	8	(21 ²)	(31)2
112	b	β²		Q-1	1	(4)	(2)	aı	uz	b ²	d	b ⁴	a ₁ a ₂	23	24	16	2°	8	32	$\frac{(2 2)}{(2 2)}$	(31)2
113	Cı	β_{1}		$\bar{q_2}\beta_2$	1	(2 2)	(²)	Cı	a²	a _i f	d	C 4		23	24	16	2ª ·	4	16	$(2 ^2)$	(31)2
1114	C2	β_{1}	β_{l}	$\bar{\alpha_2}^{\dagger}\beta_2$	β_{l}			Cı	a, a2	bc2	d	C 2 C 2		15	32	16	28.	2	8	(2 2)	(3 I) ²
115	Сз	$\beta_{\rm I}$]	$\bar{\alpha}_{z}^{l}\beta_{z}$	β	(0.0)	/. a\	C,	a ₂	a ₂ f	d	C ₂		7	40	16	2°.	4	16	$(2 ^{2})$	(31)2
116	d	β _i		\bar{Q}_2^{I}	β ₂	$(2 ^2)$	(2)	C2	a1a2	C ₂ f	d	d2 d2		7	40	16	2ª ·	2	8	$(2 ^2)$	(31)2
1117	e,	β_1	β_{z}	Q_2^{-1}		(5 ₅)	(²)	e,	a²	e ₁	İ	$a_1 c_1^2 d_2$		19	28	16	2ª ·	2	8	(2^2)	(31)(31)
118	e ₂	β_{i}	β_2	α_2				e,	a 1a2	e ₁ e ₂	Ť	a2 C1 C2 d1			36	16	2ª ·	1	4	(2^2)	(31)(31)
119	ез	β_{i}	β_z	Q_2	βι		()	e,	a²	e ₂	i	$a_3 C_2^2 d_2$		3	44	16	2°	2	8	(2 ²)	(31)(31)
120	f	β^2	1	$\bar{\alpha_2}\beta$		$(2l^2)$	(2)	Ст		bd	f	e⁴		15	32	16	26.	4	16	(21 ₂)	$(2^2)^2$
121	g	β²	1	Q21	β	(2 2)	(2)	C2		d ²	d	f 4		7	8	48	26 .	8	32	(2 2)	(31)2
155	h	β²	β	Q_2		(21²)	(2)	e,		g²	İ	b e² f			20	32	26.	2	8	(31)	(22)(31)

u = 32. Rank 5. Class 3. FAMILY $\Gamma_7 = {}_1^3\mathbf{C}_2$. Commutators $\neq \mid$: $[\alpha_3, \alpha_4] = [\alpha_2, \alpha_5] = \alpha_1$, $[\alpha_4, \alpha_5] = \alpha_2$.

Squares: $\alpha_1^2 = \alpha_2^2 = 1$, $\alpha_5^2 = \alpha_3$. Congruences (mod Z₁): $\alpha_3^2 \equiv \alpha_4^2 \equiv 1$. $H_2 \sim (I^2)$, $H_3 \sim (I)$. $I_1 \sim 16 \, \Gamma_2 \, c_1$, $I_2 \sim (I^2)$.

Zzisthe verbally characteristic self-centralizer.

H* is the verbally characteristic [2 group in the first subgroup signal. $Y_3 = \widetilde{I}_i$ is the unique Γ_2 group in the first quotient signal

STEM. Order 32. $Z_1 = H_3 \quad Y_2 \sim (21), \quad Y_3 = I_1.$

Great	dno	Defir	Group Defining	First	First	-S+	0	Order	_	Auto-	ı	Se	Self-
uper	lodn	Rela	Relations	Sig.	Signal	roup	Str	Structure	Jre	morphisms centralizers	sms	centr	alizers
Mur	JλS	α_3^2	α_4^2	_~	2	22	2	4	∞	11. 12	+ =	8	(81)2
46	a'	_	_	ت	a,	C - 2	=	20		25.2	91	(ε)	(13)(51)
47	B	$\alpha_{_1}$		ى	a_	9	=	4	9	2° 2	32	(21)	(3)2
48	a ₃	α٬	$\alpha_{_{i}}$	ن	g ₂	0 0	ന	12	9	2° 2	32	(21)	(21)2

FIRST BRANCH. Order 64. FAMILY F, (Continued).

											lose -		
Self-	centralizers	z(191)	(14)(212)	(4)	(212)	(212)2	(212)2	(212)2	(212)2	(31)2	(14)(212)	(212)(212)	(212)(31)
S		191	4	(21 ²)	(212)	(212)	(212)	(4	(212)	(212)	(212)	(212)	(31)
1	sms	<u>+</u>	9	32	32	32	32	32	32	9	9	9	9
Auto-	morphisms	+ + + = + = = = = = = = = = = = = = = =	2° 8	2, 8	27 . 8	S. 8	27 - 4	2° . 2	2°.2	28 .	2. 2	2 2	2.2
	9	91	8.										32
Order	Structure	∞		32	32		32		32	32	32	32	91
0	.ru	4	40	∞	24	48	9	48	24	24	9	24	∞
	S	2	23	23	_	15	15	91	_	7	15	7	7
	Signal	ر ۲ ا	4 -	4 g	9 ° °	94	$a_2^2 a_3^2$						
First	180 180	22	C-2	0	02	42	d²	C.2	d ²	дþ	2 -	<u>u</u> –	2
	n S	2	a ₁	ā	a 2	q	Q	ت	C2	р	J	S	٥
First	Quot. Signal	m	a -	D U U	0 8 8			a-2	d2 d3		a, a2	a, a ₃	
نڌ	Sign	LN	ت	J	ت	ت	ت		ح	4	. –		
eric	nvari— ants	Z ₁	(5)			(2)		(2)		(2)	(2)		(2)
Generic	in vari ants	>	(212)			(212)		(2^2)		(22)	(3)		(31)
200	Suc	α_4^2	_		β	*****	_	B	β_{2}	β		$\beta_{_{\rm I}}$	_
Defining	Relations	α_3^2	_	$\beta_{\underline{I}}$	ω_		Be		β	_	B	B	B
	Re	$\alpha_{_1}$	β	$\beta_{_{_{\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!\!\!\!\!\!\!$	B	B ²	β^2	8	β_{l}	β²	B	Θ_	B ²
Group	Iodn	Syr	a.	a ₂	a ₃	p'	b 2	ى	C2	þ	a_	e ₂	4
Gra	nber	ınN	123	124	125	126	127	128	129	130	3	132	33

FAMILY [= 2D=AB - Rank 5. Class 4 u=32.

Commutators $\neq |: [\alpha_z, \alpha_s] = \alpha_1, [\alpha_3, \alpha_s] = \alpha_2, [\alpha_4, \alpha_s] = \alpha_3.$

Squares: $\alpha_1^2=1$, $\alpha_2^2=\alpha_1$, $\alpha_3^2=\alpha_2^1$.

Congruences (mod Z₁): $\alpha_4^2 \equiv \sigma_3^2$, $\alpha_5^2 \equiv 1$. $H_2 \sim (3)$, $H_3 \sim (2)$, $H_4 \sim (1)$. $I_1 \sim 16 \Gamma_3 a_1$, $I_2 \sim 8 \Gamma_2 a_1$, $I_3 \sim (1^2)$. $V_4 = \overline{I}_1$ is the unique Γ_3 group in the first quotient signal.

STEM. Order 32.

 $\bigvee_3 = I_2, \quad \bigvee_4 = I_{1,3}$ $Z_2 = H_3$, $Z_3 = H_2$. $Y_2 = I_3$, $Z_1 = H_4$

Auto-
er Ture
Order Structure
S
First Subgroup Signal
Sub Si
First Quot. Sig.
ining ations
Def Rela
Todm For Jodm
mber 5

Order 64. FAMILY F. (Continued).
FIRST BRANCH. Order
Zz~(21), Zz~(31).

lodmy2 e)	5 -		= (rst	(First			Order	ler		⋖	Auto-	ı	
γ2 œ α ω	s u o	ants		Signa	nal	Λ	Signal	oup Jal	Ś	Struc	ture	ပ	morphisms	siyc	SW	> <u>m</u>
a, a	α_5^2	>~	7		E 80		3 8	n 8	2	4	ω	9	<u>-</u> -	<u> </u>	_m	16 [
((2)	a __	9-	(41)	a ²	a ₊ 4	35	4	ω	9	27 .	ω	32	à
$ 35 $ az $ \beta_1 $ α_3^3	_			ā	gs	(4) (14)	a 1 a3	Д 4 и	<u>ත</u>	20	∞	9	2,	4	9	ā
a _s	8			ā	92	(41)	a ²	9.4 0.5	സ	36	ω	9	2,	∞	32	a_
$137 \text{ b} \beta^2 \alpha_3$	_	(e)	(5)	a_		(41)	р ₂	a, a2 a3	<u>ග</u>	20	∞	9	27.	2	32	a_
38 c, B, G3B2		(21)	(2)	ت	a ₁ a ₂	(41)	a, d,		<u>ග</u>	20	Φ	9	28		9	ت
$ 39 _{\text{C}_2}$ $ \beta_1 _{\text{C}_3}$ $ \beta_2 _{\text{R}}$	B			ت	a2a3	(41)	a ₃ d,		ന	36	∞	9	58		9	ت
d' (B	(21)	(2)	-ō	a, a ₃	(4)	0 -8		ന	36	∞	9	Z	2	32	S
	B			ص_ -	92	(4)	d ²		m	36	∞	9	Z	2	32	S
$42 e \beta^2 \vec{\alpha_3} \beta$	-	(21)	(2)	ت		(4)	bf		=	12	24	9	27.		9	ت
43 f $\beta^2 \bar{\alpha_3} $	B	(21)	(2)	-p		(41)	fz		3	4	40	9	27.	2	32	C2

FAMILY [3=3] Rank 6. Class 2. u=168.

Commutators \neq |: $[\alpha_4, \alpha_5] = \alpha_1$, $[\alpha_4, \alpha_6] = \alpha_2$, $[\alpha_5, \alpha_6] = \alpha_3$.

Squares: $\alpha_1^2 = \alpha_2^2 = \alpha_3^2 = 1$.

Congruences (mod Z_1): $\alpha_4^2 \equiv \alpha_5^2 \equiv \alpha_6^2 \equiv 1$.

 $H_2 \sim (|^3)$. $[\sim (|^3)$.

STEM. Order 64.

 $Z_1 = H_2$. $Y_2 = I_1$. $t_2 = t_3$.

n is the number of self-conjugate subgroups of order 8.

	oup	-	efini Tatio	•	First	First Subgroup Signal	Sti	der ruc-			
Number	Symbol	Q_4^2	Q2 5	α_6^2	Signal Γ ₄	Signal F ₂	2	re 4	1sms 1, 1,	(16Г,)7	n
144	aı	1	1	I	a3 a2 b3	a³ c³ h	31	32	2•. 6	(14)3(212)(212)3	13
145		$\alpha_{\rm l}$	α_{1}	$\alpha_2\alpha_3$	a ₁ a ₃ b ₂	a ₂ c ₂ h ³	7	56	2° · 6	$(2 ^2)(2 ^2)^3(2 ^2)^3$	13
146	b,		1	$\alpha_2 \alpha_3$	a, b, b, c, c, c,	$a_1 c_1^2 c_1^2 c_2 h$	23	40	29 . 2	(14)2(212)(212)(212)(212)2	9
147	be	$\alpha_{\rm I}$	α_1	l	a, b2 C2	$a_2 c_1^3 h^3$	15	48	2° · 6	$(4)(2 ^2)^3(2 ^2)^3$	9
148	bз	$\alpha_1\alpha_2$	$\alpha_1\alpha_3$	1	a2b2 c1	$C_1^3 C_2^3 h$	15	48	2° 6	$(4)(2 ^2)^3(2 ^2)^3$	9
149	b₄	α_{2}	$\alpha_{1}\alpha_{3}$	α_{3}	$a_3b_1b_2^2 c_1c_3^2$	$c_2 c_2 c_2^2 h h^2$	7	56	2° · 2	$(2 z)(2 z)(2 z)(2 z)^2(2 z)^2$	9
150	С	$\alpha_{\rm I}$	α_3	α_{2}	$b_1^3 b_2^3 d$	$C_1^3 C_2^3 h$	15	48	2°.3	(14)(212)3(212)3	9
151	dı	1	α_2	α_1	b1 C1 C2 C2 d2	$C_1 C_1^2 C_2 h h^2$	15	48	2° · 2	$(4)(2 ^2)(2 ^2)(2 ^2)^2(2 ^2)^2$	5
152	d ₂	α_{z}	$\alpha_2 \alpha_3$	α_{1}	b2C1C2C3d2	$c_2c_2hh^2h^2$	7	56	29 - 2	$(2 ^2)(2 ^2)(2 ^2)(2 ^2)^2(2 ^2)^2$	5
153	е	$\alpha_1 \alpha_3$	$\alpha_2\alpha_3$	$\alpha_1\alpha_2$	ď7	h²	7	56	2°-21	(2 2)7	1

FAMILY $\Gamma_{10} = {}^{4}\mathbf{B}_{1}$. Rank 6. Class 2. u = 72.

Commutators \neq |: $[\alpha_3, \alpha_4] = \alpha_1$, $[\alpha_5, \alpha_6] = \alpha_2$.

Squares: $\alpha_1^2 = \alpha_2^2 = |$.

Congruences (mod Z₁): $\alpha_3^2 \equiv \alpha_4^2 \equiv \alpha_5^2 \equiv \alpha_6^2 \equiv 1$.

 $H_2 \sim (|^2)$. $I_1 \sim (|^4)$.

Each group is the central product of two \(\Gamma\) groups, in one and only one way.

STEM. Order 64.

 $Z_1 = H_2$. $Y_2 = I_1$. $t_2 = t_3$.

n is the number of self-conjugate subgroups of order 4.

Number S	Symbol =		efi elat	•	_	Fir Qu Sig	ot.	First Sub g	roup Signal		- 1	Auto- morph- isms	Self-centralizers	Central Factors	n
Nur	Syr	Q_3^2	α_4^2	α_5^2	α_6^2	□ 2	Γ ₅	□ 6 2	5	2	4	† † † 2	(1617)°	{16[2*16[2}	
154 155	1	α_1 α_1	 α ₁	α_2	1	a ² a ₁ a ₂	a ₁	$a_{1}^{4} e_{1}^{2}$ $a_{2}^{2} e_{1}^{3} e_{2}$	a ⁴ a ₂ b ⁴ a ³ b ⁶	35 11	28 52	2°. 8 2°. 12	(1 ⁴) ⁴ (21 ²) ⁴ (2 ²) (21 ²) ⁶ (2 ²) ³	$ \begin{cases} \underline{a_1 * a_1} \\ \underline{a_1 * a_2} \end{cases} $	3 3
156	аз	α_{I}	$\alpha_{\rm l}$	α_2	α_2	a ₂	aı	e ⁶ ₂	a ₃	3	60	2°.72	(2 ²) ⁹	{ <u>a₂ * a₂</u> }	13
157	bı	α_1	1		$\alpha_{\scriptscriptstyle \rm I}$	aıb	aı	aıb c ² eıeı	a ² b ₁ b ² b ₂ C ² C ₂	27	36	28. 2	$(4 ^2(2 ^2)(2 ^2)(2 ^2)^2(2 ^2)^2(2^2)$	{ai*ci}	9
158	p³	$\alpha_{\rm l}$	$\alpha_{\rm I}$	α_2	$\alpha_{\rm l}$	a _i b	aı	$b^2 e_1^3 e_2$	a ₂ b ₁ 6	27	36	2°. 12	(212)6(22)3	{a ₂ * C ₂ }	9
159	bз	$\alpha_{\rm l}$	$\alpha_{\rm l}$	- 1	$\alpha_{\rm I}$	a,b	a ₂	a2be1e2	b 3 b 2 C 2	19	44	28.6	$(2 z)^3(2 z)^3(2z)^3$	{a2* C1}	9
160	b₄	$\alpha_{_{ }}$	1	α_{z}	$\alpha_{\rm I}$	a,b	a₂	b ² c ₂ ² e ₁ e ₁	$a_3 b_1^2 b_2^2 c_1^4$	19	44	2°. 4	$(2 ^2)^2(2 ^2)^2(2 ^2)^4(2^2)$	{a₁ * C₂}	9
161	b ₅	$\alpha_{\rm l}$	1	α_2	$\alpha_1 \alpha_2$	a₂b	aı	C ₂ e ₁ e ₁ e ₂	a ₃ b ₂ b ₂ c ₃]	52	2° 4	$(2 ^2)^2(2 ^2)^4(2^2)(2^2)^2$	{a1 * C2}	9
162		$\alpha_{_{1}}$	$\alpha_{\rm I}$	α_{z}	$\alpha_1\alpha_2$	a₂b	a ₂	$e_{2}e_{2}^{2}e_{2}^{3}$	a3 C3	3	60	28.12	$(2^2)^3(2^2)^6$	{a ₂ * C ₂ }	9
163		1	Q_2	1	α_1	b²	aı	Ci ei f2	aıb²cıc²c2d²	19	44	28.2	$(14)(212)(212)^2(212)^2(22)(22)^2$	$\{\underline{c_1 * c_1}\}$	5
164	-	Q_1	$\alpha_1 \alpha_2$	1	$\alpha_{\rm l}$	bb	a,	$c_2 e_1 e_1 e_1^2 f$	b, b, b, c, c, d2	19	44	28. 2	$(5 _{5})(5 _{5})(5 _{5})_{5}(5 _{5})_{5}(5 _{5})_{5}$	$\{C_1 * C_2\}$	5
165	3	$\alpha_{_{1}}$	$\alpha_1 \alpha_2$	α_{2}	$\alpha_1 \alpha_2$	b²	a _i	$e_1^4 e_2^2$	a ₂ C ₁ C ₂	19	44	2° · 8	$(2 ^2)^4(2^2)(2^2)^4$	$\{C_2 * C_2\}$	5
166	1 7	$\alpha_{_{\rm I}}$	α_2	α_{2}	$\alpha_{\rm l}$	b²	aı	e1 f4	a ₃ b ₁ c ₂	19	44	28 - 8	$(2 ^2)^4(2^2)(2^2)^4$	$\{C_2 * C_2\}$	5
167	C ₅	$\alpha_{_{\rm I}}$	α_2	1	$\alpha_{_{1}}$	bb	a₂	c2e1e2ff2	b2b2 C1 C3 C3 d2		52	28 - 2	$(2 ^2)(2 ^2)(2 ^2)^2(2^2)(2^2)^2(2^2)^2$	$\{C_1 * C_2\}$	5
168	Ce	α_{i}	Q_1Q_2	α_{2}	α_{l}	bb	a ₂	e, e, e, f 2	a ₃ b ₂ c ₂ d ⁴		52	2°.4	$(2 ^2)^2(2^2)(2^2)^2(2^2)^4$	{C2* C2}	5

FAMILY $\Gamma_{II} = {}^{4}\mathbf{B}_{2}$. Rank 6. Class 2. u = 96.

Commutators \neq |: $[\alpha_4, \alpha_5] = [\alpha_3, \alpha_6] = \alpha_1, [\alpha_5, \alpha_6] = \alpha_2.$

Squares: $\alpha_1^2 = \alpha_2^2 = 1$.

Congruences (mod Z_1): $\alpha_3^2 \equiv \alpha_4^2 \equiv \alpha_5^2 \equiv \alpha_6^2 \equiv 1$. $H_2 \sim (|^2)$. $I_1 \sim (|^4)$.

The meet of the three \(\Gamma\) groups of the first subgroup signal is the verbally characteristic self-centralizer.

STEM. Order 64.

 $Z_1 = H_a$. $Y_2 = \overline{I}_1$. $t_2 = t_3$.

n is the number of self-conjugate subgroups of order 4.

Number S	Symbol =		efii ela		~ I	Qι	rst iot. inal	Sub	First group Signal	Str	der ruc- re	Auto- morph- isms	Sel	f-centralizers	n
Nun	Syn	Q ₃ ²	α_4^2	α_5^2	Q 2 6	ړ	Γ ₂	\[\begin{array}{c} 3 \\ 2 \end{array}	☐ 12 4	2	4	†, • †2	165	(16 [,)6	
169	a,		Ĵ	α_{z}		aı	a²	a² cı	a⁴b⁴c⁴	31	32	28.8	(4)	$(4)^2(2 ^2)^2(2 ^2)^2$	7
170	a₂	1	Q_1	1		aı	a²	a, b f	$a_1^4 a_2^2 b_1^4 c_2^2$	31	32	2°·8	(2 z)	$(4)^2(2 ^2)^2(2^2)^2$	7
171	a ₃	1	$\alpha_{_{1}}$	$\alpha_{\mathbf{z}}$		aı	a ₁ a ₂	p _c c _s	b ₁ b ₁ b ₂	23	40	2*. 8	$(2 ^2)$	$(2 ^2)^2(2 ^2)^4$	7
172	a ₄	1	$\alpha_{_{1}}$	$\alpha_{_{\rm I}}$		aı	a ₂	a₂bf	$a_3^2 b_2^4 C_1^4 C_2^2$	15	48	2 ° .8	(2 z)	$(5 _5)_5(5 _5)_5(5_5)_5$	7
173	a ₅	1	1	α_{z}	α_{2}	a₂	a²	C ₃	b ¹²	15	48	2°·24	(4)	(5 s)e	7
174	a _e]	$\alpha_{_{1}}$	α_{z}	α_2	a₂	a ₁ a ₂	C2f2	a ₃ b ₂ c ₃	7	56	2°. 8	(2l ₂)	$(2 2)^{2}(2^{2})^{4}$	7
175	b,	1	α_{2}	1		b	a _i a _i	C161	$a_1^2 b_1 b_1^2 b_2 c_1^2 c_2^2 d^2$	23	40	28. 2	(2 ²)	$(4)(2 2)(2 2)^2(22)^2$	3
176	ba	$\alpha_{_{1}}$	Q_2	1	α_2	b	a²	e² f	a ₂ b ₁ b ₁ c ₁ c ₃	23	40	28.4	(2 ₂)	(2 2)(2 2)4(22)	3
177	ba	1	α_2	$\alpha_{_{1}}$	1	b	a₁a₂	C_2e_2	b, b2 b2 c2 c2 c3 d2	15	48	2° . 2	$(2 ^2)$	$(5 _{5})(5 _{5})(5 _{5})_{5}(5 _{5})_{5}$	3
178	b₄	$\alpha_{_{\rm I}}$	α_{2}	1	1	Ь	a, a ₂	e _i e ₂ f	a3b1b2b2c2c2c2d2	15	48	2°. 2	(2^2)	(5 s)(5 s)s(5s)(5s)s	3
179	b 5	$\alpha_{\rm I}$	α_2	. [$\alpha_1 \alpha_2$	b	a ₂	e²f	$a_3b_2^2C_3C_3^4d^4$	7	56	28 4	(2^2)	$(2 ^2)(2^2)(2^2)^4$	3

u = 96Class 2. Rank 6. $FAMILY \Gamma_{12} = {}^{4}\mathbf{B}_{3}$

 $[\alpha_{s},\alpha_{e}]=\alpha_{z}.$ Commutators \neq |: [α_4 , α_5] = [α_3 , α_6] = α_1 ,

Squares: $\alpha_1^2=1$, $\alpha_2^2=\alpha_1$, $\alpha_5^2=\alpha_3$, $\alpha_6^2=\alpha_4$.

Congruences (mod Z_1): $\alpha_3^2 \equiv \alpha_4^2 \equiv 1$ $H_2 \sim (2)$. $I_1 \sim (2^2)$.

The meet of the three Γz groups of the first subgroup signal is the verbally characteristic self-centralizer.

STEM. Order 64.

 $Z_1 = H_2$. $Y_2 = I_1$.

		S	T	T N		4
	S P f	centralizers	(191)	$(2^2)^4(31)^2$		(22)
		cen	† 16T	32 (212)	(212)	(31)
	1	sms		32	96	∞
	Auto-	morphisms	+ + 2	28.2	2° . 6	2.2
		ψ	9			32
	Order	Structure	∞	9	48	12 16 32
	Orc	‡ru0	4	40 16	∞	12
			2	7	_	ന
	First	Subgroup Signal	23	d f²	<u>e</u> 0	! K 2
**		Sig.	2	حـ		
	Group Defining	fions	α_4^2	_	$\alpha_{_{\rm I}}$	α_2
	Defin	Relations	α_3^2	$\alpha_{_{ }}$	$\alpha_{_{\rm l}}$	_
	dnc	lodn	Syr	a	an	9
	Gre	nber	Mur	180	8	182

Rank 6. Class 2. u=360. FAMILY $\Gamma_{13} = {}^4\mathbf{B}_4$.

Commutators \neq |: $[\alpha_3, \alpha_5] = \alpha_1$, $[\alpha_4, \alpha_5] = [\alpha_3, \alpha_6] = \alpha_1\alpha_2$, $[\alpha_4, \alpha_6] = \alpha_2$

Squares: $\alpha_1^2 = \alpha_2^2 = 1$.

Congruences (mod Z₁): $\alpha_3^2 \equiv \alpha_4^2 \equiv \alpha_5^2 \equiv \alpha_6^2 \equiv |$. $H_z \sim (|^2)$. $I_r \sim (|^4)$.

STEM. Order 64.

 $Z_1 = H_2$. $Y_2 = I_1$, $t_2 = t_3$.

Relation: $\alpha_3^2 = \alpha_1$

There is only one self-conjugate subgroup of order 4.

Gra	dno	Group Defining	finir	, , ,		First	0	er		Self-
nber	lodm	Relations	atic	Suc	Sig.	Signal	Struc- ture	uc-	morph- isms	centralizers
	Syı	α_4^2	α_5^2	α_6^2	<u>ا</u> ب	5.7	2	4	1. +	(191)
83	ā	Q_2		_	<u>6</u>	30,0	27 36	36	2.36	(14)2(22)3
\$	g ₂	Q1 Q2	_	_	ය • –	3 2 b c d2	27	36	2°.6	$(1^4)(21^2)^3(2^2)$
185	G w	α_2	$\alpha_1^{\prime}\alpha_2^{\prime}$	(1	a- a-	b1b2c1c2c3	6	44	2° · 4	(212)4(22)
186	94	α_2		β'	9.92	3 b c c c d		52	28 . 4	(212)2(22)(22)2
187	as as	Q2	a_2	$\alpha_1 \alpha_2$	B 4	C IS	m	9	2. 60	(22)5

Squares: $\alpha_1^2 = \alpha_2^2 = 1$, $\alpha_3^2 = \alpha_1$. Congruences (mod Z_1): $\alpha_4^2 \equiv \alpha_6^2 \equiv 1$, $\alpha_5^2 \equiv \alpha_3$. H_z~(21), H₃~(1). I₁~16 Γ₂ a₁, I₂~(1²). Y₃ is the unique Γ₄ group in the first quotient signal. Commutators \neq |: $[\alpha_3,\alpha_6]=\alpha_1$, $[\alpha_4,\alpha_6]=\alpha_2$, $[\alpha_5,\alpha_6]=\alpha_3$. FAMILY 1,4 = 3C = A(21). Rank 6. Class 3. u = 64.

STEM. Order 64. $Z_1 \sim (1^2)$. $Y_2 \sim (1^3)$.

١	2 7	<u></u>	22)	22)	22)	22)	22)	(22)	(2^2)	(212)	(213)	(212)	(5)	2)	2
	S	9	<u> </u>			<u>``</u>	\sim	_		2	<u>U</u>	<u>U</u>	(22)	(22)	(22)
1	orphisms	+	64	32	32	32	64	9	9	∞	4	∞	9	9	∞
Auto	l hd	+-	∞	4	∞	∞	∞	4	4	2		2	2	4	2
\forall	mor		2,	⁶ 2	⁸ \(\frac{1}{2}\)	28	23.	2°.	28.	28.	28	S	5	28.	2
L	ure	∞	9	9	9	9	9	9	9	9	9	9	9	9	9
Order	Structure	4	12	28	44	44	44	28	4	24	32	40	28	44	36
0	Str	2	35	<u>o</u>	\sim	\sim	ന	6	\mathcal{C}	23	5	/	<u>ත</u>	ω	
dnc	-	24	9 2 2	az 33	92	a e	CD M W	az a 3	d3 d3	1 q	b, b2	~ N	N N C	C S	C ₂ C ₃
First Subgroup	Signal	40	a.+ -	9 8 4 s	4-	4 %	∂ ₃ 4	C ₁ ⁴	C2	$a_1 c_1^2 d_1$	az Cı Cz dz	3°5 d,	a, a = a 3	d2d2	C2 C2
Firs			(35)	(35)	(35)	(32)	(32)	(32)	(35)	(312)	(3 z)	(3/2)	(35)	(35)	(35)
-S	ot. nal	-4	a 2	a ₂	a ₃	93	a ₂	Cz	Cz	P ₁	p -q	b,	a ₂	a 3	Cz
First	Signa	~ m	9-	9	a ₁ a ₃	92	a ₃	a1 a2	d2 d3	a'p	a ₂ b	a _s b	р ₂	р ²	p ₂
200		α_6^2	_		α_2	α_{2}	$\alpha_{_{_{{}^{\prime}}}}$		$\alpha_{_{ }}$		_	$\alpha_{_{1}}$		α_2	
Defining	Relations	α_5^2	α_3^{-1}	α_3	α_3^{-1}	α_3	α_3^{-1}	$\alpha_2 \vec{\alpha_3}$	$\alpha_2 \bar{\alpha_3}$	\(\alpha_{3}^{-1}\)	α_3	$ec{lpha_3}$	\vec{Q}_3^{-1}	$ec{lpha_{\!$	$\alpha_2 \bar{\alpha}_3^{ }$
	Re	α_4^2	$\alpha_{\scriptscriptstyle 2}$	α_2	α_2	α_{z}	α_{2}	α_2	α_{z}	-	_		$\alpha'\alpha_2$	$\alpha_1 \alpha_2$	$\alpha_1 \alpha_2$
dn	lòdm	ίS	a_	a ₂	Q ®	B	a 5	<u>-</u>	b2	ر ت	C 2	င္ခ	ō	d2	Φ
Group	nber	1n M	188	189	190	6	192	193	194	195	961	197	86	661	200

FAMILY [15=302. Rank 6. Class 3. u=16.

Commutators \neq |: $[\alpha_3, \alpha_6] = \alpha_1$, $[\alpha_4, \alpha_5] = \alpha_2$, $[\alpha_5, \alpha_6] = \alpha_3$. Squares: $\alpha_1^2 = \alpha_2^2 = |, \alpha_3^2 = \alpha_1$. Congruences (mod Z_1): $\alpha_4^2 = \alpha_6^2 = |, \alpha_5^2 = \alpha_3$. $H_z \sim (21)$, $H_3 \sim (1)$. $I_1 \sim 16\Gamma_2 a_1$, $I_2 \sim (1^2)$. Z₂ is the verbally characteristic self-centralizer.

 Y_s is the unique Γ_4 group in the first quotient signal. Hz is the Γ_2' group in the first subgroup signal.

STEM. Order 64. $Z_1 \sim (1^2)$. $Y_2 \sim (1^3)$

2	2	a	N	N	N	N	01	ΔI	01	O.I.	01	61	ď	N	OI.	01	3	<u>=</u>	3	<u> </u>	33)	31)	31)	710
191	(31)	(3)	(3)	(31)	(31)	(3)	(31)	(31)	(3)	(33)	(31)	(31)	(3)	(3)			\simeq	\simeq			$\stackrel{\cdot}{=}$	\simeq	31)(3	_
	<u> </u>	<u>c</u>	2	(2)	21			_		_	_		- Ct	<u> </u>										C (
19	(213				(22	(22	(22	(2^2)	(22	(22	(2^2)	(22	(21)	<u>[2</u>	<u>Z</u> ,	(2)	(212	(212	(22)	(2^2)	(2^2)	(2 ²)	(212)	(2 C)
- 	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	∞	ω	Φ	∞	∞	ω	4	4	4	4	4	4	4	
-	2	7	2	2	2	2	2	7	7	7	7	7	2	2	7	7	_	-				3	_	
+-	28.	28	28	Z ₈ .	28.	, S	28.	28.	28	Z ₈ .	28	5	28	~ ~	\sim	2	28	~ ~	28	%	$\sum_{i=1}^{n}$, 7	28	°.
∞	91	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
4	91	24	32	40	20	28	36	36	36	44	44	44	32	32	9	40	24	32	28	36	36	44	32	40
2	31	23	2	7	27	<u>ත</u>				\sim	\sim	ന	5	2	1	7	23	15	6		_	ന	15	_
□ 4	۵.	b 2	q	b2	a ₂	a a	<i>ه</i>	Q	Q	Q	<i>ه</i>	D B	<u>-</u> a	q	D ₂	bal	<u>م</u>	ba	Ca	S	ూ	္	اً م	
4-41	'S -	0 -	N N	9,0	N -	α <u>-</u>	2-	N N	22	44	N N C	2-	2 - D	0 0 0	9 8	d	C1 C2	C1 C2	C1 C2	C C 2	d d 2	d, d2	d de	- C
					9-10	92	C-2(922	C-2	N N	98	CR	C ₂	C-2	O N N	C).	a, a2	de da	a, a2	B	J	C2 C2	C ₁ C ₁ 0	ر رو ر
<u>\</u> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-			ر . ر	. ~	- N	۳. رم	~	0	. ~		. ~		. –	. –		. —		0	. ~	N		::- <u>-</u>	· · ·
0	a ₁	ā	a ₂	a ₂	ē.	e ₂	هَ	آه ا	ته	e _s	å	⊕ &	Cz	C2	گ	S	9	p	e e	e 8	ه آ	e ₂	+	4
و ا	a	ā	9	as	a	ā	<i>a</i> ₂	g	a_	D No.	a g	۵	as	<u>a</u>	92	a_	ā	a ₂	a ₁	a g	ā	a ₂	a_	ď
L_4	a	ā	a -	a	مَ	p	D ₂	٩	D ₂	20	مَ	bz	<u>5</u>	ت	5	ر ت	a	a ₁	P	_م	P	bz	ت	ت
<u>_</u>	a	g _s	a ₂	g	<u>a</u>	a a	ā	9	a ₂	S _s	9	Q	ā	8	9	a ₃	_0	9	9	_0	_0	9	q	
$\alpha_{\rm e}^{\rm z}$	-		α'	8		$\alpha_{_{\scriptscriptstyle \rm I}}$		-	_	$\alpha_{_{1}}$	الم	$\alpha_{_{\rm I}}$	Q2	$\alpha_1 \alpha_2$	8	α_{α_2}		ď		β_{-}	_	$\alpha_{\vec{l}}$	$\alpha'\alpha_{2}$	8
α_5^2	$ar{lpha_3}$	α_3	\mathcal{Q}_{3}	$ec{lpha_3}$	$ec{lpha_3}$	α_3	$\alpha_2 \vec{\alpha_3}$	α_3	$\alpha_2\alpha_3$	$\alpha_2 \alpha_3$	$\mathcal{Q}_{\overline{3}}$	$\alpha_2 \vec{a_3}$	α_3^{-1}	Q ₃	α_3	Q_3^{-1}	α_3^{-1}	α_3^{-1}	α_3^{-1}	α_3^{r}	$\alpha_2 \vec{\alpha_3}$	$\alpha_2 \alpha_3^{ }$	$ec{lpha_3}$	$ec{Q_5}$
α_4^2	_		_		25	8	Z	α_2		125		Q_2	_	8 8	-	_	$\alpha_{_{\!\scriptscriptstyle 1}}$	$\alpha_{_{\rm l}}$	$\alpha_1 \alpha_2$	$\alpha_1^{\prime}\alpha_2^{\prime}$	$\alpha_1 \alpha_2$	$\alpha_1^2 \alpha_2^2$	$\alpha_{_{\! 1}}$	8
ıks	a,	d s	a ₃	В 4	- q	b 2	e Q	0.4	ια Ω	۵	b ₇	be	J	S	ڻ	∜ی	9	dz	a J	a _s	e ₃	9,	4	40
nnN	102	202	203	204	205	206	207	208	209	210		212	213	214	215	912	217	218	219	220	22	222	223	224
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\vec{a} \vec{a}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a_1 a_2 a_2 a_3 a_1 a_1 a_1 a_1 a_1 a_1 a_1 a_1 a_1 a_2 a_3 a_4 <t< td=""><td>a_1 a_2 a_2 a_3 a_4 <t< td=""><td>a. a. b. a. b. b.<</td><td>3. \$\alpha_{2}^{2}\$ <</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>a₂ a₃ a₄ a₅ a₇ a₇ <th< td=""><td>3. \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\begin{array}{c c c c c c c c c c c c c c c c c c c </td><td>3. 0.2. 0.3. 0</td></th<></td></t<></td></t<>	a_1 a_2 a_2 a_3 a_4 <t< td=""><td>a. a. b. a. b. b.<</td><td>3. \$\alpha_{2}^{2}\$ <</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>a₂ a₃ a₄ a₅ a₇ a₇ <th< td=""><td>3. \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\begin{array}{c c c c c c c c c c c c c c c c c c c </td><td>3. 0.2. 0.3. 0</td></th<></td></t<>	a. b. a. b. b.<	3. \$\alpha_{2}^{2}\$ <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	a ₂ a ₃ a ₄ a ₅ a ₇ <th< td=""><td>3. \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\begin{array}{c c c c c c c c c c c c c c c c c c c </td><td>3. 0.2. 0.3. 0</td></th<>	3. \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\alpha_{2}^{2}\$ \$\begin{array}{c c c c c c c c c c c c c c c c c c c	3. 0.2. 0.3. 0

FAMILY $\Gamma_{16} = \frac{3}{2}C_3$. Rank 6. Class 3. u = 64.

Commutators \neq |: $[\alpha_4, \alpha_5] = [\alpha_3, \alpha_6] = \alpha_1$, $[\alpha_4, \alpha_6] = \alpha_2$, $[\alpha_5, \alpha_6] = \alpha_3$.

Squares: $\alpha_1^2 = \alpha_2^2 = 1$, $\alpha_3^2 = \alpha_1$,

Congruences (mod Z₁): $\alpha_4^2 \equiv \alpha_6^2 \equiv 1$, $\alpha_5^2 \equiv \alpha_3$.

 $H_2 \sim (21)$, $H_3 \sim (1)$. $I_1 \sim 16 I_2 a_1$, $I_2 \sim (1^2)$.

Z₂ is the verbally characteristic self-centralizer.

Y₃ is the unique \(\bar{\mathbb{L}}\) group in the first quotient signal.

Hz is the unique 12 group in the first subgroup signal.

STEM. Order 64. $Z_1 \sim (|^2)$. $Y_2 \sim (|^3)$.

Number S	Symbol =		efini elatio	-	Quo	rst tient gnal	Fi	rst Subgr Signal	oup		Ordo Tuct		Auto morphi			Self- ralizers
Nur	Syl	α_4^2	α_5^2	$\alpha_{\rm e}^{\rm 2}$	Γ₄	□ 2 6	Γ ₂	T4 3	\[\begin{align*} 2 \\ 4 \end{align*}	2	4	8	†1 + 2	t ₃	16Г.	(161,)2
225	a,	α_{2}	$ \alpha_3^{-1} $	1	a₂	a ₁	i	$a_1^2 a_2^2$	a ₂ C ₂	27	20	16	2° 2	16	(2 ²)	(31)²
226	a ₂	α_2	Q-1	α_{l}	a₂	a ₂	i	a ₂ a ₃	a ₃ c ₂		36	16	2° - 2	16	(2 ²)	(31)2
2 27	a ₃	α_{2}	Q_3	α_{2}	a₃	a ₁ a ₂	î	d2d2	a ₃ C ₃	3	44	16	2° 2	8	(2 ²)	(31)2
228	b,		α_3^{-1}	1	bı	a ₁	d	$a_1c_1^2d_2$	bi	23	24	16	2° · 2	8	(21 ²)	(31)(31)
229	b ₂		α_3^{-1}	α_{z}	b,	a, a2	d	a2 C1 C2 d1	biba	15	32	16	28	4	(212)	(31)(31)
230	bэ		$\bar{\alpha_3}^1$	α_1	b	a2	d	$a_3 C_2^2 d_2$	b ₂	7	40	16	28.2	8	(2 2)	(31)(31)
231	C,	α_{z}	$\alpha_2 \bar{\alpha}_3^{l}$		C2	a ₁ ²	i	C ₁	a ₂ C ₃	19	28	16	2° 4	16	(2 ²)	(31) ²
232	C2	α_{z}	$\alpha_2\bar{\alpha}_3^{l}$	α_{2}	C2	a ₁ a ₂	į	C; C2	a ₃ C ₂		36	16	2. 5	8	(2 ²)	(31)2
233	Сз	α_2	$\alpha_2\bar{\alpha_3}$	α_1	C2	az	ij	C2	а₃ с₃	3	44	16	2•. 4	16	(2 ²)	(31)2

FAMILY $\Gamma_{17} = {}^{3}\mathbf{C}_{4}$. Rank 6. Class 3. u = 32.

Commutators \neq : $[\alpha_3, \alpha_5] = \alpha_1$, $[\alpha_3, \alpha_6] = \alpha_1 \alpha_2$, $[\alpha_4, \alpha_5] = \alpha_2$, $[\alpha_5, \alpha_6] = \alpha_3$.

Squares: $\alpha_1^2 = \alpha_2^2 = 1$, $\alpha_3^2 = \alpha_1$, $\alpha_6^2 = \alpha_4$.

Congruences (mod Z_1): $\alpha_4^2 \equiv \alpha_5^2 \equiv 1$. $H_2 \sim (21)$, $H_3 \sim (1^2)$. $I_1 \sim 16 \Gamma_2 c_1$, $I_2 \sim (1^2)$.

 $Z_2 = H_2^*$ is the unique self-centralizer.

STEM. Order 64.

 $Z_1 = H_a$. $Y_2 \sim (21)$, $Y_3 = I_1$.

Number S	Symbol =	Defir Relat	- 1	Fir Qu Sig	ot.	Fir Subgi Sigi	roup		rde		Auto morphi		Z ₂
Nun	Syr	α ₄ ²	Q2 5	۲ ₂	Γ ₇	[2	Γ ₄	2	4	8	† + † 2	† 3	165
234	aı	α_{z}		CI	a ₂	j 2 j 2	a₂	19	12	32	2* 2	32	(2 ²)
235	a₂	α_{z}	α_{2}	C ₁ C ₂	aз	j ₂ j ₂	a₃	3	28	32	2°, 1	16	(2²)
236	a₃	α_2	$\alpha_{_{1}}$	C ₂	a₂	j ² ₂	a₃	3	28	32	2° 2	32	(2^2)
237	b	1		c, e	aı	hj	b,	15	32	16	27 .	8	(2 2)
238	b ₂	1	$\alpha_{_{1}}$	C ₂ e	a,	h j,	b ₂	7	40	16	27 .	8	$(2 ^2)$
239	C ₁	$\alpha_1 \alpha_2$		e ²	a₂	į²	C2		20	32	27 · 2	16	(2 ²)
240	C2	$\alpha_{1} \alpha_{2}$	α_{2}	e²	a ₃	2	C3	3	28	32	27 · 2	16	(2 ²)

FAMILY | T₁₈ = 10. Rank 6. Class 3. u=192.

Commutators \neq |: $[\alpha_4, \alpha_5] = [\alpha_2, \alpha_6] = \alpha_1, [\alpha_3, \alpha_6] = \alpha_2.$

Squares: $\alpha_1^2 = 1$, $\alpha_2^2 = \alpha_1$.

Congruences (mod Z_1): $\alpha_3^2 \equiv \alpha_2$, $\alpha_4^2 \equiv \alpha_5^2 \equiv \alpha_6^2 \equiv 1$. $H_2 \sim (2)$, $H_3 \sim (1)$. $I_1 \sim 32\Gamma_2 a_1$, $I_2 \sim (1^2)$.

 $Y_3 = \widetilde{I}_1$ is the unique I_2 group in the first quotient signal.

Hz is the unique [group in the first subgroup signal.

Each group is the central product of a \(\Gamma \) group and a \(\Gamma \) group in four distinct ways.

STEM. Order 64.

 $Z_1 = H_3$, $Z_2 \sim 16\Gamma_2 b$. $Y_2 \sim (14)$, $Y_3 = I_1$. $H_2^* \sim 32\Gamma_2 g$.

Relations: $\alpha_4^2 = \alpha_5^2 = \alpha_1$.

Number	mbol 6		ning			Subg	rst rou snal	р	ı)rde ·uct		Auto morphi:	- 1	Self- central- izers	Central Factors
Nur	Syr	α_3^2	α_6^2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Γ ₂	□ 6 3	\[\begin{array}{c} 2 \\ 5 \end{array} \]	□ 6	2	4	8	† + + 2	†3	(16√)³	{852*1653}4
241	aı	₫2	$\alpha_{\rm L}$	a,	g	a³ b³	a²	a ₁	31	16	16	26 · 12	48		{8[2a, * 16[3a]}3{8[2a2*16[3a3]}
242		α_{z}	1	aı		$a_2^3 b^3$				1	16	2° 6	24		[8[2a1 * 16[3 a2]3[8[2 a2 * 16[3 a2]
243	a ₃	\tilde{q}_2^1	1	aı	g	93 p3	aş	a ₂	15	32	16	26 - 12	48	(31)3	{8[2a1 * 16[3a3}3{8[2a2*16[3a1]

u = 128. Rank 6. Class 4. FAMILY Fig = 3D1.

Commutators $\neq |$: $[\alpha_4, \alpha_5] = [\alpha_2, \alpha_6] = \alpha_1$, $[\alpha_3, \alpha_6] = \alpha_2$, $[\alpha_5, \alpha_6] = \alpha_3$.

Squares: $\alpha_1^2 = 1$, $\alpha_2^2 = \alpha_1$, $\alpha_3^2 = \alpha_2^{-1}$.

Congruences (mod Z₁): $\alpha_4^2 \equiv \alpha_6^2 \equiv 1$, $\alpha_5^2 \equiv \overline{\alpha_3}$. $H_2 \sim (3)$, $H_3 \sim (2)$, $H_4 \sim (1)$. $I_1 \sim 32\Gamma_3 a_1$, $I_2 \sim 8\Gamma_2 a_1$, $I_3 \sim (1^2)$. Z₃ is the verbally characteristic self-centralizer.

 $Y_4 = \widehat{I}_1$ is the unique \mathbb{I}_3 group in the first quotient signal.

Hz is the unique [2] group in the first subgroup signal.

H*~32[k $\stackrel{>}{\sim}_{4}$ STEM. Order 64. $Z_1 \sim (21)$, $Z_2 \sim (31)$. $Y_2 \sim (13)$, $Y_3 \sim 16\Gamma_2 a_1$, $\alpha_5^2 = \alpha_3^{\dashv}$ Relations: $\alpha_4^2 = 1$,

Group	Defining			First	+-		Order	Jer		Auto-	1	Splf	<u>-</u>
nber	Relation	Quot. Sig.	Sub Si	2000	&roup anal p	S	Structure	n +0		morphisms	sms	centra	centralizers
	α_{ϵ}^{2}		<u></u> 2	3.8	4 80	2	4	∞	9	2 +	+3	161	(161,)2
244 a,	_	a_	- X	aıb	a ² a ²	27	12	∞	9	2.2	32	(31)	(4)2
245 az	2 \alpha_1	a,	<u>×</u>	a _s b	az az	=	28	∞	9	2, 2	32	(31)	(4) s
							-						

 $[\alpha_{5},\alpha_{6}]=\alpha_{3}.$ $V_4=\widetilde{\Gamma}_1$ is the unique Γ_3 group in the first quotient signal. H* is the unique [2 group in the first subgroup signal. Squares: $\alpha_1^2 = 1$, $\alpha_2^2 = \alpha_1$, $\alpha_3^2 = \alpha_2$, $\alpha_6^2 = \alpha_4$ Congruences (mod Z₁): $\alpha_4^2 \equiv 1$, $\alpha_5^2 \equiv \alpha_3$. $H_2 \sim (3)$, $H_3 \sim (2)$, $H_4 \sim (1)$. $I_1 \sim 32 I_3 d_2$, $I_2 \sim 8 I_2 a_1$, $I_3 \sim (1^2)$. Z3 is the verbally characteristic self-centralizer. Commutators $\neq \mid: [\alpha_4, \alpha_5] = [\alpha_2, \alpha_6] = \alpha_1, [\alpha_3, \alpha_6] = \alpha_2,$ u = 128FAMILY 120=3D2. Rank 6. Class 4.

STEM. Order 64.

V=I, H*~32[k $Z_3 \sim (31)$. $Y_2 \sim (21)$, $Y_3 \sim 16\Gamma_2 c_2$, $\alpha_5^2 = \alpha_3.$ $Z_1 = H_4$, $Z_2 \sim (21)$, Relations: $\alpha_4^2 = 1$,

A STATE OF THE PARTY OF THE PAR		All of the last of	1
[-	Hizers	(101)	(4)2
Self-	centra	191	(31)
-(sms	+	32
Auto-	morphisms centralizers	+-	
		9	20 24 16 27
Order	Structure	9 8	24
O	tru	4	20
	Ś	2	ന
First	gnal	F2 3	dzf
نــ ــــــــــــــــــــــــــــــــــ	S. L	2	~
First	Sid	e	d²
dno	Iodn	Syr	B
Gr.	nper	ınΝ	246

FAMILY [2,= 3,12, Rank 6. Class 4. u = 64.

Commutators $\neq |$: $[\alpha_{s}, \alpha_{s}] = [\alpha_{z}, \alpha_{6}] = \alpha_{l}$, $[\alpha_{3}, \alpha_{6}] = [\alpha_{4}, \alpha_{6}] = \alpha_{2}$, $[\alpha_{s}, \alpha_{6}] = \alpha_{3}$.

26

Squares: $\alpha_1^2 = 1$, $\alpha_2^2 = \alpha_1$, $\alpha_3^2 = \overline{\alpha_2}$, $\alpha_5^2 = \alpha_4$.

Congruences (mod Z₁): $\alpha_4^2 \equiv \alpha_2$, $\alpha_6^2 \equiv 1$.

 $H_{z} \sim (3)$, $H_{s} \sim (2)$, $H_{4} \sim (1)$. $I_{r} \rightarrow 32I_{3}c_{1}$, $I_{z} \sim 8I_{2}a_{1}$, $I_{s} \sim (1^{2})$.

 $Z_3 = H_2^*$ is the unique self-centralizer,

 $Y_4 = \widetilde{I}_i$ is the unique Γ_3 group in the first quotient signal.

His is the unique Is group in the first subgroup signa

In the first subgroup signal [] and [] are such that []/Z1-16[2a], []/Z1-16[2c].

STEM. Order 64. $Z_1 = H_2$, $Z_2 \sim (21)$,

,	sms	+ 8	64	32	64
Auto-	morphisms	† . † 2	28. 1	27. 1	28, 1
		9	9	9	9
er	Structure	∞	24	∞	24
Order	ruc	4	4	28	20
		2	<u></u>	=	\mathcal{C}
	ou p)_E	+	9	4.
First	Signal	e	a,	٩	a _s
	N S	Z	-*	~	-\
First	Quot. Sig.	_ e	Ü	ى	ر
n in	. 0	$\alpha_{\rm c}^2$	·	-	$\mathcal{A}_{_{\!$
Defi	Relat	α_4^2	$ \alpha_{\scriptscriptstyle 2}^{\scriptscriptstyle -1} $	α_2	α_2^{-1}
dn	lodn	υίς	ā	92	D 9
Group	uper	nuM	247	248	249

EAMILY $\Gamma_{zz} = \frac{3}{7} \mathbf{D}_4$. Rank 6. Class 4. u = 64.

 $[\alpha_4, \alpha_5] = [\alpha_3, \alpha_6] = \alpha_2,$ Commutators $\neq \mid : [\alpha_3, \alpha_5] = [\alpha_2, \alpha_6] = \alpha_1$ Squares: $\alpha_1^2 = \alpha_2^2 = \alpha_3^2 = 1$, $\alpha_6^2 = \alpha_5$.

Congruences (mod Z₁). $\alpha_4^2 \equiv \alpha_5^2 \equiv 1$.

 $H_2 \sim (I^3)$, $H_3 \sim (I^2)$, $H_4 \sim (I)$. $I_1 \sim 32\Gamma_7 a_1$, $I_2 \sim 16\Gamma_2 c_1$, $I_3 \sim (I^2)$

 $Y_4 = \widetilde{I}$, is the unique Γ , group in the first quotient signal

 H_z^* is the unique self-centralizer of index 4. $G/H_z^* \sim (2)$ H³ is the unique [4] group in the first subgroup signal.

STEM. Order 64.

 $Z_3 \sim 16\Gamma_2 a_1$. $Y_2 \sim (21)$, $Y_3 = I_2$, $\alpha_5^2 = 1$ $Z_1 = H_4$, $Z_2 = H_3$, Relation:

	S	OI.	=	
Self-	Structure morphisms centralizers	(817)2	(13)(51)	$(C)(\varepsilon I)$
S	centr	191	(4	(2/5)
	sws	+ 10	32	32
Auto-	phi	- + · · · +	-	_
	M O	- -	27	7
	ure	∞	9	
Order	_uc†	2 4	19 28 16	36
		7	6	
First	. Subgroup . Signal	2 7	a, a ₂	2,2,
ر انت _	Siga Sig		a ₁	ت
First	Quot. Sig.	۱_7	a	ā
P Defining	Relation	$lpha_4^2$		α_{i}
Group	lodn	ıγS	a	2
Gro	nber	ın N	250	251

Class 4. u = 64. Rank 6. FAMILY [23=3D5. Commutators \neq |: $[\alpha_3, \alpha_5] = [\alpha_2, \alpha_6] = \alpha_1$, $[\alpha_4, \alpha_5] = [\alpha_3, \alpha_6] = \alpha_2$, $[\alpha_4, \alpha_6] = \alpha_2\alpha_3$.

 $\alpha_3^2 = \alpha_1, \quad \alpha_6^2 = \alpha_5.$ Squares: $\alpha_1^2 = \alpha_2^2 = 1$,

Congruences (mod Z₁): $\alpha_4^2 \equiv \alpha_2$, $\alpha_5^2 \equiv 1$. $H_2 \sim (21)$, $H_3 \sim (1^2)$, $H_4 \sim (1)$. $I_7 \sim 32\Gamma_7 a_1$, $I_2 \sim 16\Gamma_2 c_1$, $I_3 \sim (1^2)$. $V_4 = \overline{I}_1$ is the unique Γ_7 group in the first quotient signal.

 H_2^* is the unique self-centralizer of index 4. G/H_2^* ~(2)

H* is the unique [4] group in the first subgroup signal

STEM. Order 64.

 $Z_1 = H_4$, $Z_2 = H_3$. $Y_2 \sim (21)$, $Y_3 = I_2$, $Y_4 = I_1$. $H_2^* \sim (2^2)$.

7	73	1612	ā	ā	d ₂	a ₂
Self-	centralizers	(8 Γ,)≥	z(e)	2 (3	(21)2	(51)=
Se	centr	161,	(22)	(22)	(22)	(22)
- (Structure morphisms	+3	64	64	64	64
Auto-	phi	1, 12	2	2	\sim	\sim
4	mor	- -	27	27,	27	27
۲	ure	∞			32	32
Order	uct	7	44	52	20	28
0	Str	C7	61		=	ന
rst	roup	[2	a.	9-2	9 0	988
ا ا	Sons Sign	_4	a2	ی	C2	Q
First	Sig.	7	a ₁	a_	a_	a_
 	ons	α_s^2		S	$\alpha_{_{\!\scriptscriptstyle \sf I}}$	ď
Group Defining	Řelations	α_4^2	α_{z}	$\alpha_1 \alpha_2$	$\alpha \alpha_2$	α_{2}
dn	lodn	Syn	ā	a _s	g	<i>a</i>
Gro	nber		252	253	254	255

u = 64Class 3. Rank 6. FAMILY [24 = 3E.

 $[\alpha_{5}, \alpha_{6}] = \alpha_{3}.$ Commutators \neq |: $[\alpha_3, \alpha_5] = [\alpha_2, \alpha_6] = \alpha_1$, $[\alpha_4, \alpha_6] = \alpha_2$,

Squares: $\alpha_1^2 = 1$, $\alpha_2^2 = \alpha_3^2 = \alpha_1$.

Congruences (mod Z₁): $\alpha_4^2 \equiv \alpha_2$, $\alpha_5^2 \equiv 1$, $\alpha_6^2 \equiv \alpha_3$. $H_2 \sim (21)$, $H_3 \sim (1)$. $I_1 \sim 32 \Gamma_4 b_1$, $I_2 \sim (1^3)$. $Y_3 = \overline{I}_1$ is the unique Γ_4 group in the first quotient signal.

 H_2^* is the unique self-centralizer. $G/H_2^* \sim (1^2)$.

In the first subgroup signal [] and [] are such that []/Z1~16[2a],

STEM. Order 64.

 $V_2 = I_2$, $V_3 = I_1$, $H_2^* \sim (31)$ $Z_1 = H_3$, $Z_2 = H_2$.

 $\alpha_5^2 = \alpha_1$ Relation:

Gro	dno	Group Defining	n i n	First	. <u>=</u>	S	Sub	First Subgroup	dr	0	Order	_	Auto-	_(
nber	Ioqu	Relation	ions	Kuot. Sig.		<i>(</i>)	Signal	<u>a</u>	-	Str	uct	Structure	morphisms	sms
Mur	Syr	α_4^2	$\alpha_{\rm c}^2$		Z		e	9	[2 7	2	4	∞	+ + +	+ 6
256	a,	$ec{ec{lpha}}_{2}^{!}$	$ar{lpha_{\mathtt{3}}^{\scriptscriptstyle -1}}$	þ'	00	a ₁	Ŧ	a ₁	g ²	23	∞	32	27. 2	32
257	d 2	α_2	\mathcal{Q}_3	p	00	92	+	a, a ₂	aza3	15	9	32	27.	9
SE		7	5	_(· ×	C	J	2	2	7	77	20	07.0	22

Commutators \neq 1: $[\alpha_3, \alpha_5] = [\alpha_2, \alpha_6] = \alpha_1$, $[\alpha_4, \alpha_5] = \alpha_2$, $[\alpha_4, \alpha_6] = \alpha_3$

Squares: $\alpha_1^2 = \alpha_2^2 = \alpha_3^2 = 1$.

Congruences (mod Z_1): $\alpha_4^2 \equiv \alpha_5^2 \equiv \alpha_6^2 \equiv 1$,

 $H_2 \sim (I^3)$, $H_3 \sim (I)$. I, $\sim 32\Gamma_4 a_1$, $I_2 \sim (I^3)$. $\gamma_3 = \widetilde{\Gamma}_1$ is the unique Γ_4 group in the first quotient signal. self-centralizer of index 4. G/Hz~(l2). H* is the unique

STEM. Order 64.

 $\bigvee_3 = \prod_{1:}$ $V_2 = \mathbb{I}_2$ $Z_1 = H_3$, $Z_2 = H_2$.

 $\alpha_5^2 = \alpha_6^2 = |$ Relations:

	Dafining First	Relation Sig. Signal ture	α_4^2 Γ_4	1 a, a, a, a, 27 36 2° 6 48 (14)	α_1 α_1 α_2 α_1 α_3
	Group		lm y S		g 4

u = 64Class 3. Rank 6. FAMILY [26 = 3E3. $[\alpha_4, \alpha_6] = \alpha_2 \alpha_3$ $[\alpha_4,\alpha_5]=\alpha_2,$ $[\alpha_3, \alpha_5] = [\alpha_2, \alpha_6] = \alpha_1,$ Commutators ≠1:

 $\alpha_3^2 = \alpha_1$. $\alpha_1^2 = \alpha_2^2 = |$ Squares:

Congruences (mod Z₁): $\alpha_4^2\equiv\alpha_2$, $\alpha_5^2\equiv\alpha_6^2\equiv 1$. $H_z\sim(21)$, $H_3\sim(1)$. $I_1{\sim}32\Gamma_4a_1$, $I_2{\sim}(1^3)$. $Y_3=\widetilde{\Gamma}_1$ is the unique Γ_4 group in the first quotient signal

 $6/H_2^* \sim (1^2)$ 4. Hzisthe unique self-centralizer of index

STEM. Order 64.

 $Y_3 = I_1$, $H_2^* \sim (2^2)$ $\bigvee_{2} = \prod_{2,}$ $Z_2 = H_2$ $Z_1 = H_3$

Relation : $\alpha_e^2 = 1$,

							=
	Self-	centralizers	(81,)2	2 ()	2(8)	(21)2	(21)2
			16 Г.	(22)	(2 ₂)	(22)	(22)
	1	sms	+3	32	32	32	32
	Auto-	Structure morphisms	1 = 1	2. 2	2.2	2. 2	2. 2
ŀ		re	∞	91	9	9	9
	Order	u ctu	4	20	28	28	36
	0	Stri	2	27	<u>o</u>	<u>6</u>	
Ī				B	a ₂	D ₃	Q ₃
١	First	Subgroup Signal	6 2	9-1	D N N	a2 -	92
١		2000 0000	ட்	a	ت	dz	a,
		Sub	<u> </u>			C2	
			2 6	6 ²	Ф ₂	6 ₂	6 ²
	First	Quot. Sig.	_4	a -	. p		~
		ions	α_5^2	-	-	β'	8
	Group Defining	Relations	α_4^2	α	α,α,	$\alpha_1 \alpha_2$	Q,
	d n	- loq	my2	, a	, C		, ~
	Gro	per	mnN		_	263	264 3

FAMILY $\Gamma_{27} = {}^{2}\mathbf{F} = \Lambda_{(4)}$. Rank 6. Class 5. u = 128.

Commutators \neq |: $[\alpha_2, \alpha_6] = \alpha_1$, $[\alpha_3, \alpha_6] = \alpha_2$, $[\alpha_4, \alpha_6] = \alpha_3$, $[\alpha_5, \alpha_6] = \alpha_4$

Squares: $\alpha_1^2 = 1$, $\alpha_2^2 = \alpha_1$, $\alpha_3^2 = \alpha_2^{-1}$, $\alpha_4^2 = \alpha_3^{-1}$

Congruences (mod Z_1): $\alpha_5^2 \equiv \alpha_4^{-1}$, $\alpha_6^2 \equiv 1$

 $H_{2} \sim (4)$, $H_{3} \sim (3)$, $H_{4} \sim (2)$, $H_{5} \sim (1)$. $I_{1} \sim 32 I_{8} a_{1}$, $I_{2} \sim 16 I_{3} a_{1}$, $I_{3} \sim 8 I_{2} a_{1}$, $I_{4} \sim (1^{2})$.

 $Y_5 = \widetilde{I}_1$ is the unique I_8 group in the first quotient signal.

STEM. Order 64.

 $Z_1 = H_5$, $Z_2 = H_4$, $Z_3 = H_3$, $Z_4 = H_2$ $Y_2 = I_4$, $Y_3 = I_3$, $Y_4 = I_2$, $Y_5 = I_1$.

Number S	Symbol =	Defining Relations		First Quot. Sig.	First Subgroup Signal		Order Structure				Auto- morphisms			
N N	Syn	α_5^2	α_6^2	\[\begin{align*} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Γ,	\[\begin{aligned} 2 \\ 8 \end{aligned}	2	4	8	16	32	†, •	† 2	†3
265	aı	$\bar{\alpha_4}^1$	1	aı	(5)	a²	33	2	4	8	16	2ª .	2	128
266	a ₂	Q_4^7]	a,	(5)	a ₁ a ₃	17	18	4	8	16	2ª .	1	64
267	аз	$\bar{\mathcal{Q}}_4^1$	$\alpha_{_{1}}$	aı	(5)	a ²		34	4	8	16	28.	2	128

INDIVIDUAL GROUP DIAGRAMS

 $\beta_{\parallel} = aAiIeEmMbBjJfFnN - cCkKgGoOdDiLhHpP$

 $\beta_2 = qs$

a_j = ac·b·d·eg·fh

α₂= abcd·efgh

a₃ = aecg-bhdf

 $\beta_2 = i k \cdot j l$

 $\alpha_3^2 \equiv \alpha_2$ $\alpha_4^2 \equiv 1$ $\alpha_$

 $\alpha_1 = ac \cdot bd \cdot eg \cdot fh$ $\alpha_2 = ik \cdot j|$ $\alpha_3 = abcd \cdot efgh$ $\alpha_4 = ijk|$

 $\alpha_5 = aecg \cdot bhdf \cdot ji$

a = ac·bd·eg·fh·

 $\alpha_3 = abcd \cdot efgh$

 $a_4 = ij \cdot kl$

 $\alpha_5 = aecg \cdot bhdf \cdot jl$

a = a c·b d·e g·fh

 $\alpha_2 = i k \cdot j l \cdot m \cdot n p$

 $\alpha_3 = obcd \cdot engf$

 $\alpha_4 = abcd \cdot efgh \cdot ijkl \cdot mnop$

 $\alpha_5 = ae \cdot bf \cdot cg \cdot dh \cdot imko \cdot jpln$

 $\alpha_{\parallel} = ac \cdot bd \cdot eg \cdot fh$

 $\alpha_2 = i k \cdot j l \cdot m o \cdot n p$

 $a_3 = eg fh \cdot ijkl \cdot mnop$

 $\alpha_4 = abcd \cdot efgh \cdot ijkl \cdot mpon$

α₅ = a e · b f·c g · d h · i m · j n· k o·l p €

a₃= ab.cd.ef.gh.i]kl.mnop

 $\alpha_5 = aebf.cgdh.lm]nkolp$

 $\alpha_{\parallel} = \sigma c.bd.eg.fh$ a₂= ik.j1 a3= mo.np $a_4 = abcd.efgh.ij.k!$ $\alpha_5 = \text{decg.bhdf.mn.op}$ ae ijkl. mnop

 $\alpha_{\parallel} = ac.bd$

 $\alpha_2 = eg.fh$

α₃= ik.jl.mo.np

a₄ = bd.efgh

 $\alpha_5 = abcd.ijkl.mnop$

a₆= fh.imko.jp!n

 $\alpha_{\parallel} = \text{oc.bd.eg.fh}$

 $\alpha_2 = ac.bd.eg.fh.ik.jl.mo.np$

 $\alpha_3 = i k_1 j_1 \cdot mo.np. qs.rt$

 $a_4 = abcd.efgh.ijkl.mpon$

 $\alpha_5 = \text{aecg.bhdf.mo.np.qrst}$

a₆ = aecg.bhdf im.jn.kolp.rt

 $\alpha_j = ac.bd.eg.fh.ik.jj.mo.np$

a₂ = ac.bd.eg.fh.ik.jl.mo.np.qs.rt.uw.vx

a3 = ac.bd.eg.fh, qe.rt.uw.vx

 $\alpha_{\Delta} = eg.fh. in kp.jolm.qvsx.rwtu$

 $a_{5} = a f \cdot b g \cdot ch \cdot de \cdot imko, jnip \cdot qu.rv.sw.tx$

 $\alpha_6 = \alpha_6.bf.cg.dh.,in.jo.kp.lm.,qusw.rytx$

 $\alpha_{\uparrow} = \sigma c_1 b d_1 e g_1 f h$

 $\alpha_2 = ac.bd.eg.fh.ik.jl.mo.np$

 $\alpha_3 = abcd. efgh.ik.jl.mo.np$

 $a_4 = abcd.efgh.ijki.mpon$

 $\alpha_5 = \alpha ebfcgdh.mo.np$

a= aecg.bhdf.lm.jn.ko.lp

 $\alpha_{\parallel} = a c.b d.e g.fh.ik.j f.mo.np$

 $\alpha_2 = qs.rt.uw.vx$

 $\alpha_3 = odcb.ehgf.llkj.mpon$

 $\alpha_4 = aick.bjdl.emgo.fnhp.qrst.uvwx$

 $a_5 = aebfcgdh.imjnkolp$

 $\alpha_6 = bd$, eh.fg.jl.mp.np.qusw.rxty

 $\alpha_1 = ac.bd.eg.fh.ik.jl.mo.np$

 $\alpha_2 = qs.rt.uw.vx$

 $\alpha_3 = adcb.ehgf.ilkj.mpon.qs.rt.uw.vx$

 $\alpha_4 = aick.bjdl.emgo.fnhp.qrst.uxwv$

 $\alpha_5 = aebfcgdh.imjnkolp.uw.vx$

a6 = bd.eh.fg.jl.mp.on.qu.rv.sw.tx

 $a_1 = ac.bd.eg.fh.ik.jl.mo.np$ A.C.B.D.E.G.FH.IK.JL.MO.NP a'c'.b'd'.e'g'.f'h'.l'k'.j'l'.m'o'.n'p' A'C'.B'D'.E'G'.F'H'.l'K'.J'L'.M'O'.N'P'

 $\left(\frac{1}{\log a_3}\right)^2$

α₂= σ d c b , ehg f , iik j , mpon

A D C B , EHG F , I L K J , M PO N

α 'd 'c'b', e'h'g'f', i'l'k'j', m'p' o'n'

A'D'C'B', E'H'G'F', I'L'K'J', M'P'O'N'

α₃= ae bfcgdh.imjnkolp AEBFCGDH.IMJNKOLP a'e'b'f'c'g'd'h',i'm'jh'k'o'lþ' A'E'B'F'C'G'D'H',I'M'J'N'k'O'L'P'

 α_5 = α A i le E m M bB j J f F n N —

c C k K g G o O d D L h H p P. α' A' i'l b' E' m' M'b' B' j 'J' f' F' n' N'
c'C'k' K' g'G'o' O' α' D' l'L' h' H' p' P'.

a₆ = a a'c c', b d'db', e h'g f', fg'h e',

| p'k n', j o'| m', m | 'o j', n k'p i',

A P'C N', B O'D M', E L'G J', F K'H l',

| H'K F', J G'L E', M D'O B', N C'P A',