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Preface

It is the hope of the authors that the following tables, giving for the first time the complete list of the 267 groups of order 64, will
be of enduring value to those interested in finite groups. Theories change, but the groups remain.

No single presentation of a group or list of groups can be expected to yield all the information which a reader might desire. Here,
each group is presented in three different ways: (1) by generators and defining relations; (2) by generating permutations; and (3) by
its lattice of normal subgroups, together with the identification of every such subgroup and its factor group. In this lattice the charac-
teristic subgroups are distinguished.

For each group, additional information is given. Here are included the order of the group of automorphisms and the number of
elements of each possible order 2, 4, 8, 16, 32, and 64. Thus the groups containing exactly three elements of order 2, or the groups of
exponent 4, or the groups in which every normal subgroup is characteristic, may readily be found. All the groups are divided into
twenty-seven families, following Philip Hall’s theory of isotopy.

Chapters 3 and 4 give the theoretical background for the construction of the tables. But these chapters are not necessary for the use of
those tables; for that purpose Chapter 2 is adequate. Chapter 5 draws attention to a number of the more interesting individual groups.

MarsHALL HarL, Jr.
James K. SENIOR
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CHAZPTER

Introduction*

The work reported in the ensuing chapters of this monograph
was begun about 1935. 1 was then attempting to determine all
the groups of order 64 by methods which I now see to have been
absurdly cumbersome and inept. All that I had to go by was
a paper by G. A. Miller { which I found to be neither clear nor
accurate. { .

At that time, a mathematical friend called my attention to
the fact that Professor Philip Hall of King’s College, Cambridge,
England, was also working on the groups of order 64. He
advised me to get in touch with Professor Hall, and to request
him to let me compare my results with his. Professor Hall kindly
permitted me to do this. We found some slight discrepancies
between the two lists, but these were rapidly cleared up. A
month or two later, we settled the one-to-one correspondence
between his groups and mine.

By this time, it was evident to me that Professor Hall’s methods
were much superior to the ones I had been using. We set to
work to decide such questions as the following:

The linear sequence of the families.
The linear sequence of the genera within one stem or branch.
The linear sequence of the groups within one genus.

These decisions involved a prolonged correspondence, but, by
the summer of 1939, we were within a few months of being ready
to send in our results (minus the diagrams) to Acta Mathematica,
where we hoped to have them published.

Then World War II broke out, and since that time ill luck
has dogged our footsteps. For five years Professor Hall and I
were forced to lay groups aside and engage in far different
occupations. In 1945, when the war was over, we attempted to
start the work once more, but something always interfered. For
example, I was twice incapacitated for over a year by illness.

About five years ago, Professor Philip Hall indicated that he
wished to withdraw from the project. Professor Marshall Hall,
Jr., was willing to take up the work at the point where Professor
Philip Hall had left it, and this arrangement met with the
latter’s approval. Since that time, Professor Marshall Hall and
I have collaborated in the preparation of the present monograph.
We are, however, fully aware how much that work owes to the

* Introduction by James K. Senior.

t G. A. Miller. “Determination of all the groups of order 64.” Am. 7. of Math.,
vol. 52 (1930), pp. 617—634.

I Miller states that there are 294 groups of order 64. As a matter of fact, there
are only 267 of them.

labors of Philip Hall. The only reason why his name does not
appear on the title page as coauthor is that he requested us to
omit it.

CHAPTER 2

Use of the Tables:
Notation and
Terminology

An individual group in these tables is given a designation such
as 32 T ¢y, Here the 32 gives the order of the group, I's the
family* to which it belongs, and ¢; means that the group in ques-
tion is the second group of genus ¢ in that family. The groups
are listed by families. The groups of lowest order in a family
are called stem groups. If the stem groups of a family T' are of
order 27, then T is of rank r. The groups of order 27** in a family
T' of rank r are said to form the sth éranch. Thus, the family T's
is of rank 4, and the group 32 T3¢, is in its first branch. This
group is numbered 28 in the list. The groups of each order are
numbered from family to family, going from Ty, the family of
Abelian groups, to Ty, the last family including groups of
order 64.

The following table shows the number of groups of each order
treated.

Order Number of Groups
2 il
4 2
8 5
16 14
32 51
64 267

Before proceeding further, it is desirable to define family and

* This term and others will be defined below, They arise from the paper by Philip
Hall, “Classification of prime power groups.” . fiir die reine u. ang, Math., vol. 182
(1940), pp. 130-141,
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genus. For a group G, let Z(G) designate its center and G’ its

derived group, generated by all commutators x Yy, x, y € G;
here the notation is [x, y] = x~y=1yy,

D_EFI,NITION' ‘T'wo groups G; and G, belong to the same
family T if (1) Gi/Z(G1) and G,/2(G,) are Isomorphic; (2) Gy’
and G, are isomorphic; (3) It is possible to choose the, isorno:-
phisms (1) and (2) in such a way that whenever, under (1), the
elements a.Z(Gy) and b1.(Gh) of G1/Z(Gh) correspond respecti’vely
to the elements a,J(G2) and 5:X(G2) of Go/Z(Gy), then, under
(2), the element [ay, 1] of Gi’ corresponds to the element [as, ba]
of Gy'.

With respect to property (3), note that, if 21 and 2, are ele-
ments of Z(G), then [x, ] = [x21, y2:]; whence a commutator
[x, »] may be regarded as a function with arguments in G/Z(G)
and values in G'.

DEFINITION. Two groups G: and G, of the same order
are in the same genus if there is an isomorphism between the
lattice of normal subgroups of G and G, such that corresponding
normal subgroups belong to the same family.

This definition tells when two groups of the same order are
in the same genus. Furthermore, a group and its direct product
with a group of order 2 are (by definition) in the same genus.
Thus every genus in a branch appears again in the next branch.
For example, the three stem groups of I's are in a single genus,
all three having the following lattice of normal subgroups:

G.\ G €T3
R S T ReT,
Zr =G = H, S, T, 21,22 € T1
2= R(G) = Hy
1

Defining relations are given for every group G of a family of
rank 7 in terms of r elements oy, as, - - . , @, using only these
elements if G is a stem group, and using further elements
B1, - - - Bm (which are a basis of the center £1(G)) when G is not
a stem group. There is in G a chain of subgroups

GCGCGC...E6G =G

where G; = (G, a;) is the subgroup generated by G, and the
element «;. For a stem group Go = 1, and, for other groups, Go
is the center generated by the 8’s. A complete set of defining
relations for G is given by the values of @;% ¢ = 1,...,7, the
commutators [ai, a;], ¢ < j, and the orders of the §’s, together
with the fact that the §’s are in the center of G. The o’s are so
chosen that certain relations hold for every group of the family.



These relations are listed at the beginning of the family. Certain
squares a;” are given, as well as all commutators [a, j], t < J
which are not the identity. For an individual group, further
relations involving o’s are given in columns headed ‘“Defining
Relations.” The orders of the §’s are obtained from the column
subtitled 27 under the heading “Generic Invariants,” these
being the invariants of the center, which is an Abelian group.
If there is more than one g, the §’s are numbered so that f1 is
of highest order, 8, of next highest order, and so on. It may
happen that some of the §’s do not occur in the defining relations
involving the o’s. When such is the case, these B form an
Abelian direct factor of G.

As an illustration, consider the group 64 T's72. Here T'; is of
rank 3, and every G of I'; is generated by three elements au, @z
a3, and the g’s. Hence, for 64 T'y rs,

a?l=1, [z, @3] = o,
[, ] = 1, ; < j, otherwise
612 = 13 622 = 1’

o1 = Ba, as? = B, a3 = fo.

The first relations are given at the beginning of T's. Here the
orders 8 and 2 for g and g respectively are determined by the
generic invariants (3, 1) for <1 in genus 7. The last relations come
from the columns headed ‘“Defining Relations.” Since g1 does
not occur in these columns, §; generates an Abelian direct factor
of G. Hence G is the direct product of the quaternion group and
a cyclic group of order 8.

There are a number of invariants common to all groups of a
family. These are listed in a series of tables on plates I, II, III,
and IV.

The rank of a family T is r if the stem groups of T' are of order
‘27 The class is the length of the lower central series. The families
Ty, Ts, . . ., Ty are arranged in increasing order of the following
invariants taken in turn:

The rank 7.

The middle length b, where |G':Zi(G)| = 2° for a stem
group G.

The class ¢ in decreasing order.

The symbol for the family in the second column of the table of
family invariants has the form “X;, where, since G is a stem
group, 2* = |G:G’|, 2* = |Zi(G)|, and sor = u + b -+ . Thus
there is a correspondence between the letter X=BC D, EF
and the values of b and ¢ as follows

Beb=0c=2  Deb=
Ceb=1,c=3 Eeb=
Feb=230c=5.

= 4’
= 3,
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The group of inner automorphisms of a group of G is of course
G/21(G); by definition it is a family invariant. The terms of
the lower central series (except for G itself) are family invariants.
H, is the kth term in this series. Hi/Hrn is an Abelian group.

In the column headed H, (if Hy # 1) are given the invariants
of Hk/Hk_H.

Under class numbers, the value j; is the number of classes
of conjugates in G (a stem group) having 2% elements each,
and Jx* is the number of inequivalent absolutely irreducible
representations of degree 2%. For a group G of the same family
and sth branch (ie., |G| = 2¢|G|), ju(G) = 2°jx(G), and
JE¥(G) = 2°5,%(G).

A self-centralizer is a maximal Abelian subgroup. The table
lists the number of these, there being s, maximal Abelian sub-
groups of index 2%,

On plate II the invariants of the Abelian groups H, M Z; and
G/H,Z,, which are of course family invariants, are given.

Here, 4 is the minimum number of generators of a stem group
G, and (by the Burnside basis theorem) 2¢ = |G:8(G)|, where
®(G) is the Frattini subgroup of G, the intersection of all the
maximal subgroups.

The tensor product Tp = (G/G’) X Zi(G), where G is a stem
group, is isomorphic with the group of all automorphisms of G
which induce the identity on G/Z,(G). The column headed 7o
gives the invariants of this group.

The group of autologisms of the family is represented by U.
This is the group of those automorphisms of G/Z1(G) which
induce automorphisms on G’ = H,. The column headed u gives
the order of U. The group U itself is given in most instances.
Here 25, 34, Z; are the respective symmetric groups. In a number
of cases U is one of the groups of the table. Aut (1%) is the simple
group of order 168, which is the group of automorphisms of the
clementary group of order 8. 232, is the “wreath product”
of 23 by 2y, i.e., the direct product of a Z3on 1, 2, 3 and another
on 4, 5, 6 together with an element (1, 4)(2, 5)(3,6). (23X Z5)t
is the subgroup of even elements of the direct product of a Z;
and a Z5. Hol (4) is the holomorph of the cyclic group of
order 16.

The group U, is induced on G’ = H, by U.

Most of the rest of the table of family invariants is related to
the diagrams for the families. These diagrams give the lattice of
normal subgroups of G/Z1(G) and that of G’ = H,(G), together
with dotted horizontal lines which show the identification of
groups in G/Z1(G) with those in Hy(G), when G is a stem group.
To simplify the diagrams, a box [;{] represents j subgroups equiv-

alent under automorphism. The general procedure may be
illustrated by reference to the diagram for Ts. Here G contains 15
subgroups of index 2 labeled Xi; the 15 below the G box indicates
this. Each of the subgroups Xi contains 3 subgroups of type Xa
and 4 of type X;. There are 15 groups of type X each contained in
3 of type Xi. There are 2 groups of type X3 each contained in 3 of
type Xi1. A group of type X, contains 3 subgroups of type Xj, and a
group of type X3 contains 3 subgroups of type Xj. There are 15
groups Xs cach contained in 3 groups X» and in 4 groups Xj. The
group £ = < is the center of G and is contained in all 15 of the

X, subgroups. Ha, the derived group, is of order 2. In a stem
group £ = H,.

A heavily outlined box means that the corresponding group
is characteristic.

Plate II, by reference to the diagrams, lists the self-centralizers
(i.e., maximal Abelian subgroups) and the pairs of groups which
centralize each other. Thus in Ty, an X, and an appropriate X
centralize one another; this happens 15 times. Similarly, in ten
instances, two groups of type X; centralize one another.

The lower central series of G is

GDODH,DH; D ... DH: D1,
and the upper central series is

1CAHCRLC...CRaCG.
As is well known, any central series for G is of the form
G 2 B2 2 P 2 Bt 2 1)

where B; D H; and B,_; C ;1. Under maximal central factors
are listed those maximal central factors which may occur in
some central series which are not trivially consequences of the
upper and lower series.

Plate III gives the defining relations on the o«’s which are
common to all groups of the family. Also, there are listed the
congruences modulo £ which hold for the o’s. Plate IV gives,
in relation to the family diagrams, the choice of the groups
Gy ..., Gs where G; = (Gi, ;) is used in determining the
relations on the o’s.

The first signals of a 2-group G are the subgroups of index 2
and the factor groups modulo a normal subgroup of order 2.
For every stem group G, the families of the first signals are
determined. The second signals are similarly the normal sub-
groups of index 4 and the factor groups modulo normal sub-
groups of order 4.

H,* is the centralizer of H, and its type is indicated; so also
are the invariants of G/H* and H,*/2,, these last being Abelian
groups.

Further information is given for individual groups. Here
Ys = G/H,. The first subgroup signals and quotient signals are
given. Under order structure is given the number of elements
in G of order 2, 4, 8, 16, 32.

The order of the group of automorphisms A(G) of G is the
product #¢,. Here # is the order of the subgroup of 4(G) inducing
the identity on G/®(G), where ®(G) is the Frattini subgroup of
G. Hence ¢; is always a power of 2 and is a multiple of the order
of G/Z1(G), the group of inner automorphisms. Hence also ¢, is
the order of the group of automorphisms of G/®(G) induced by
automorphisms of G. The symbol 5, when listed, gives supple-
mentary information. It is the order of the group of automor-
phisms of G/Zi(G) induced by automorphisms of G. Hence #
always divides u, the order of U, which is the group of autologisms
of T. When H, = Zi, then ty = 5.




Index of Terms and Symbols

A, B, C, D, E, F. These letters correspond to a division of the
27 families of groups according to a systematic ordering.

(See p. 4)

Autologisms. 'The group U of those automorphisms of G/Z1(G)
which induce automorphisms on G’ = H, (see p. 5).

Branch. The sth branch of a family of rank r consists of the
groups of order 27* in the family,

Family. A collection of closely related groups (See the definition
on p. 3).

First quotient signal.  The list of factor groups modulo normal sub-

groups of order 2.

First subgroup signal. 'The list of subgroups of index 2.
r;. Thezth family,: = 1, ..., 27,

Genus. TFor definition of genus see p. 3.

H;. The ith term of the descending (lower) central series.
Here H, = G.

H;*. The centralizer of H;.
I;. 'The factor group G/Z;.

A(a). A family invariant when it exists. There is an Abelian
subgroup of index 2 which is of type (a) modulo 2. For
example, Ty is of type A(2, 1).

Order structure. These columns list the number of elements of

orders 2, 4, 8, 16, 32, 64 respectively in the group.
Rank. A family is of rank r if the stem groups are of order 2.
Self-centralizer. A maximal Abelian subgroup.

Stem. The groups of lowest order in a family.

4. Order of group of automorphisms of G which are the identity
on G/®(G) (see p. 6).

t». Order of group of automorphisms of G/®(G) induced by
automorphisms of G (see p. 6).

t3.  Order of group of automorphisms of G/Z1(G) induced by
automorphisms of G (see p. 6).

Type. An Abelian 2-group is of type (a, b, ..., ¢) if it has a

basis of elements of orders 22 2, . . ., 2¢
U. The group of autologisms of a family (see p. 5).
Uz The group induced on G’ = H, by U.

Verbally characteristic. Same as fully invariant. A subgroup is
verbally characteristic if it is mapped into itself by every
endomorphism of the group.

Y.. The factor group G/H,.

< The ith term of the ascending (upper) central series. Here
<o is the identity.

CHAUPTEHR 3
The Families of

2-Groups of Rank < 6

Let G be a stem group (i.e., {1 = Zi(G), the center of G, < ')
of order 2.

3.1 Let G have an Abelian subgroup A of index 2

Let G = {4, x} and let y € A. Then (since 4 is Abelian and
normal in G) yx~'yx = ¥ yxp = ¥ (pxrLyx)x. x2 € 4, and is
therefore commutative with y. Hence yx~px is commutative
with x, and therefore lies in Z;. Or

x1yx =y mod 2.

Since x* € {1, it follows that G/Z is the split extension of the
Abelian group 4/Z) by an element of order 2 which transforms
each element of 4/Z; into its inverse.

Let 4/Z: be of type N with parts Ay > Ay > ... > A, > 0.
Let G* = {x* »* ..., »*}, with the defining relations
@) =1, M =1, 2% = ()7 [t % = 1
(t,j = 1,2, ...,5). Put z:* = (»*)?". The center 2,* of G*
is then the elementary group {z1%, ..., 2,*} of order 2, and if
A* = {p* ..., »*}, then 4*/21* is of type A, 4* is Abelian
of index 2 in G* and G*/Z* = G/ More precisely,
if y1, ..., are elements of 4 such that <y, . . ., »,2; form a
basis of 4/Z1 with »;<; of order 2%, then there is an isomorphism
of G*/Z: formed by making the cosets of Z,* which contain
x*, y:* correspond to the cosets of 1 which contain x, y; (1 = 1,

ey S5)

Since 4 is Abelian, the mapping y — [y, x] is homomorphic
(for y € 4), and maps 4 onto G, with 2, as kernel. Hence G’
is also of type \, with a basis consisting of the elements [yi x] = t:

(t=1,...,5), the order of ¢; being 2. Write L* = [p:%, x*] =

(y:i*)~ Th.en the above Isomorphism of G/Z: with G*/2,
induces an isomorphism of ¢’ with (G*)’

tot;,*(@=1,..., s). Thus G and G* belon
Hence the following theorem:

where ¢; corresponds
g to the same family,

THEOREM 1.1. There is a 1-4o-1 correspondence between the

set of all partitions N and the set of all famities of 2-groups with an
Abelian subgroup of index 2.

Denote by 2, the family corresponding to \. If » has s parts
the rank of Ay is 1 + s + Z A;. This expression is <6 in the,:
following cases: !

%o = Iy, the family of Abelian 2-groups. Here zero stands
for the empty partition.

Aqy = Iy, the family of all non-Abelian 2-groups with more
than one Abelian subgroup of index 2 (hence with a
center of index 4), Uy = Ts; Uy, 2 = I'; Ay = T
Nz, n = Ty Ay = Ty

Note that the class of G € Ny is N + 1.

THEOREM 1.2. A4 group G of order 2* (n > 3) and maximal
class (i.e.,n — 1) is a stem group of N(n_s), and has a cyclic subgroup
of index 2.

When n = 3, there occur the
octic and quaternion groups of order 8, which contain elements

Proof by induction on n.

of order 4. These are the stem groups of Ty = Y. Suppose
n > 3. Since G is of class n — 1, <1 must be of order 2 and G/Z:
is a group of maximal class and order 2", By the induction
hypothesis, G/Z1 has a cyclic subgroup of index 2. Hence G has a
subgroup 4 = {y, z} of index 2, where z generates 2,. If 4 were
noncyclic, it would be the direct product of y of order 2*—2 and L1
But then {y*"~*} (since it is characteristic in 4) would be normal
in G; since it is of order 2, it would belong to £1—a contradiction.
Hence 4 = {y}iscyclic, 4/Z1is of type (n — 2), and G € Ay
G is necessarily a stem group since 25 is of order 2.

For n > 2, there are three stem groups in ,_, with gener-
ators x, », and the defining relations:

271—1

=1, ayx =y a2 =1 say ai
n—1 _ _ _ —1 n—2
p? =1, x7x =y~ x% = 2 as
n—1 _ — —2 n—2
g =1,x Yx =D LU , x2 =1 (OI‘_y2 ) as

with subgroups of index 2 other than A4 these are given by
An—sy a1?, as* and aras (for An—9) a1, as, and a;, respectively).

3.2 Maximal Families

Notation. H is a given abstract group, and F/K is any factor
group of a free group F which happens to be isomorphic with H:

F/K =~ H. (1)



Hence the lattice diagram

F
K yod
M=KNF (2)
NO = [K) F]
Note that
K /Ny is a central factor of F, hence Abelian; (3)
K/Ny = F'K/F’, a subgroup of the free Abeclian group
F/F’; hence it is itself a free Abelian group; 4)
whence

K/N, is the direct product of Ni/N, with a free Abelian
group. (5)

DEFINITION. Call H capable if there exists a group G
such that G/Z1(G) =~ H.

Suppose H is capable.

Problem. Given H, to classify all such G groups into families.

Write G ~ Gi to signify that G and G, belong to the same
family. Recall that

if Gy is a subgroup of G such that G = GiL1(G), then G ~ Giy;
() andif M 9 G and M NG’ = 1, then G ~ G/M. (7)

Assuming that G/Zi(G) = H, (8) let x1, xa, . .
generators of F; let @ and B8 be fixed isomorphisms mapping
F/K onto H and H onto G/Z,(G). Let T = T(H) be the group
of autornorphisms of H. Then, for any 6 € 7, 88 = v (say) will
be an isomorphism of ¥/K onto G/Z(G). Suppose v maps Ax;
onto Zi1(G)y: (1 = 1,2, ...), the y’s being chosen arbitrarily in
their cosets. Then the map x; — »; extends uniquely to a homo-
.} with kernel M (say),

., be a set of free

morphism ¥ of F onto Gy = {y1, ys, . .
so that

F/M = G, %)
since G = G1Z1(G) by construction, then by (6),
G ~ Gy, (10)
and therefore
(G = Gi N Z(G), Gi/R(G) = G/(G) =H.  (11)
By definition of v,

M <K and K = ,Zl(Gl)T_l is the inverse image of the
center of Gy under 7. (12)

Thus K/M is the center of /M and therefore

10

M > No = [K, F], and K/N, is the center of F/No. ~ (13)

Let M NN, =N so that Ny < N < M. By (4), M/N =~
Ni M /Ny, a subgroup of the free Abelian group K/Ni. So M /N
is free Abelian, and hence

M/Ny = M/Ny X L/No, (14)

for a suitable choice of L. All these subgroups L, M, N are
normal in F since they lie between K and Mo = [K, F].

Since M <K, MNF =MMNN =JN, and so the sub-
group M/N of F/N intersects the derived group F'/N of F/N
in the unit subgroup. Hence F/M ~ F/N and, in view of (6)
and (9),

G ~ F/N. (15)

Also K/N is the center of F/N. The conclusion is that every
family of groups G with G/Z\(G) = H has at least one repre-
sentative among the factor groups F/N of F/N, for which
M <N <N, (16a) and K/N is the center of F/N. (16b)

The choice N = N, is always possible by (13). The family
M(H) to which F/N, belongs is called the maximal family asso-
ciated with the given H. The remaining problem is to decide
when F/N ~ F/N*, where N and N* are subgroups satisfying
(16a and b).

Now by (16a), the central quotient groups of F/N and F/N*
effectively coincide; in F/K = H. Therefore F/N ~ F/N¥*,
if and only if there exists an automorphism ¢ of F/K which
induces an isomorphism mapping the derived group F’/N
of the former onto the derived group F’/N* of the latter. Induces
is to be understood in the obvious sense: if ¢ maps Ku and
Kv onto Ku* and Kv* respectively, then @ maps N[y, v] onto
No[u*, v*]. Since Ny = [K, F] these cosets of N, are uniquely
determined by the cosets Ku, Kv, Ku*, and Kv* of K.

Thus ¢ — g may be regarded as a homomorphism of
T(F/K) = T = T(H) into T(F'/N,). Obviously the auto-
morphism induced by ¢ on the subgroup KF'/K of F/K and
that induced by ¢ on the factor group F'/N; of F// Ny are related
by the natural isomorphism of KF'/K with F'/N,. However, o
leaves Ni/N, invariant; and the only really interesting items are
the automorphisms of N;/ /N, induced by o for the various ¢ € T.
For it has been shown

(LEMMA 2.1) that F/N ~ F/N*if and only if there exists
o € T such that o maps N onto N* (or more strictly N/ Ny onto N*/No).

Note that inner automorphisms of F/K can be realized by
transforming with elements of F. Since N1/N; is a central factor
of F, ¢ acts trivially on N:/N, whenever ¢ is an inner auto-
morphism.

Schur proved that the group N;/N is independent of the
choice of presentation (1) of H as a factor group of a free group,
and depends only on the abstract group H itself. More precisely,
he proved that £’ /No depends only on H. Both these results are

embodied in the still more precise fact that the maximal family

1

M (H) depends only on H. For if a different presentation of I
(say) F¥*/K* ~H (17)

is taken and the above argument is applied, then, by (15), with
the obvious notation,

F*/No* ~ F/N, (18)

for some N between Ny and V. Similarly, by interchanging the
roles of the two presentations,

F/Ny ~ F*/N*, (19)

for some N* between No* and N, *. In order to obtain (18) and
(19), it is necessary to use an isomorphism v of F/K onto F*/K*
and an isomorphism y* of F*/K* onto F/K. But it is always
possible to choose v* = y~L If this is done, the induced homo-
morphisms 5 of F'/Ny onto (F*)'/N,* (with kernel N/N,) and
¥ of (F*)'/No* onto F'/Ny (with kernel N*/Ny*) immediately
make yv* and ¥* ¥ the identity maps of F'/N, and (F*)'/N,,
respectively, so that ¥* = ()71 and N = N, N* = N*.
Summarizing:

THEOREM 2.2. The outer automorphisms of H (strictly
F/K) are represented in a natural way by automorphisms of the
Schur  multiplier Ni/No of H. The subgroups N/N, such that
No £ N < WN: and such that K/N = Zy(F/N) are permuted among
themselves in this representation; and F/N ~ F/N* if and only if
N and N* belong to the same transitive set.

The distinct families of groups G with G/Zi(G) = H are in
one-to-one correspondence with these transitive sets. In partic-
ular, the maximal family corresponds to the set consisting of
Ny alone.

The group of autologisms of the maximal family is 7 = T(H),
the group of automorphisms of H. For the family to which F/N
belongs, the group of autologisms is the stabilizer of /N, in 77
i.c., it consists of all the automorphisms of F/K = H which
induce in N;/MNo an automorphism leaving N/N, invariant. An
easy corollary of the foregoing general theory is the following
theorem:

THEOREM 2.3. FEuvery family contains stem groups.

For by (5), K/MNo is the direct product of Ni/No with a free
Abelian group (say) L/N,. Here L < F; and F/L ~ F/N, so
that F/L ¢ M(H), the maximal family. Further F/L is a stem
group. If Ny < N < M, and if K/N is the center of F/N, then
F/LN ~ F/N and F/LN is again a stem group. But every family
of groups G with B/2y(G) = H contains members of the form
E/N, with N as described.

Remark. In principle, the above theory gives a method
which can be used systematically to classify the 2-groups of order
< 64 into families. It is most useful in those cases where M (H)

is small. When m(H) is too large, other methods are easier.
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3.3 Applications of the Multiplier Method

Not every group H can function as the group of inner auto-
morphisms of some other group G. The following criterion is

the simplest:

LEMMA 3.1. Let H= {x, ... , %}, and suppose H con-
tains an element u 7 1 such thatu € {x;} for eachi = 1, ..., 1. Then
G/2(6G) = H is impossible.

For if Zl(G)v is the coset corresponding to u, and y, . . ., Jr are

arbitrary elements from the cosets of 2,(G) corresponding to
Xly oo s X then v = »;" mod <\(G) for some integer m;. Hence
» commutes with each y;. But G = {Z,(G), », . . . »r}. Hence
v € 2(6), which contradicts v < 1.

COROLLARY 3.2. A fiite Abelian group is capable if and
only if its two largest invariants coincide.

Suppose for example that H = {x’} X ... X {x'} with
{x/} of order h;, where Ay divides A, = 1,...r —1). If
hy/he > 1, write x = 2’ and x; = x/x;/ for ¢ > 1, and let
u = xi"2 Then H = {x1,...,x}, u# 1 and u = x;*2 for each
¢. Thus H is incapable.

But it is easy to see that the multiplier of I has as invariants
1 equal to kg, 2 equal to 43, ..., r — 1 equal to 4,, and that, if
hi = hy, there is a group of the maximal family M (H) in the form
G = {»y, ..., -} with the defining relations [ y;, y;]¥ = 1 (¢ <),
together with those which express the fact that the [ y;, ;] lie in
the center. This group has Z1(G) generated by the [y, y;] and
yr"%=1; hence, effectively, G/Z1(G) = H.

Where H is an Abelian 2-group of Type A, and the partition
N has parts

MM >N 0, (1)

then necessarily Ay = Ny, if H is to be capable. Assuming this
condition, the rank of the maximal family is

i)\;—l— S min Ay N) =M+ 20+ ... A
i=1 i<j

When r = 2, H is of type (M, M) and the multiplier is cyclic
of order 2™, Here (in the notation of sec. 2) N > N, implies
that the center of F/N is larger than K/N. Thus only the
maximal family exists. This family is T'; when M = 1, T1; when
A= 2.

Equally simple is the case A = (13). Here the multiplier
N1/ Ny is an elementary group of order 8 and therefore isomorphic
with H itself. Hence it is easy to see that the group of automor-
Phisms 7' = T(H) of order 168 is faithfully represented on
M/ N,. Besides the maximal family Ty, there occurs only one
other family, Iy, formed by taking N/N, of order 2 (all such
N's being equivalent under T). It is impossible for N/N; to be
of order 4, since that condition would make the center of F/N
of index 4, not 8.
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It is easy to see that 7 is the smallest rank of a family of 2-
groups with G/Zi(G) of type (1°) or (2*1). Hence the groups G
of class 2 and order dividing 64 which are not included in the Jamilies
Ty, Iy, Ty, and Ty, obtained above all have central quotient groups of
type (1%). For if H is of type (1), the multiplier is of type (1°),
and since this type is rather large, these remaining class-2 groups
are best divided into families by another method (see sec. 3.5.).

Of the two non-Abelian groups of order 8, the quaternion
group is incapable by Lemma 3.1. More generally, of the three
groups of order 2" (n > 4) and maximal class n — 1, only the
dihedral group is capable, again by Lemma 3.1.

LEMMA 3.3, Let H= {a, b} with a® = b2 =1, pgp =
a™ (n > 1), be the dihedral group of order 2"*'. Then the multiplier of
H is of order 2. Only the maximal family M(H) exists, and its stem
consists of the groups of order 2"** and of maximal class.

For let G be a stem group with G/Z1 = H where {1 = 24(G).
Let <wx correspond to a. Then 4 = {Z), x} is of index 2 in G
and Abelian. By Theorem 1, if G’ is of type A, G/Z1 will be the
split extension of an Abelian group of type X by an element of
order 2 which transforms each element of the Abelian group into
its inverse. Hence A = (n), and G’ is cyclic of order 2". But
G'/Z: =2 H', which is cyclic of order 2*~1. Hence & is of order 2,
and G (by Theorem 1) is of maximal class.

In particular, for H = 8 I'y a3, the only family is Ty = M(H);
for H = 16 T'; a;, the only family is Ty = M(H).

It follows that the groups with G/Z; of order 8 fall into the
three families Ts, Ty, and T'y. Consider next those with G/<; of
order 16. Of these, those of class 2 but not in T';; are (as already
remarked) to be treated later. By Lemma 3.3, those of class 4
constitute the family I's. It remains to deal with those of class 3.
For these, H =~ G/Z\ is a group of the first branch of T';. Now,
in the notation of the tables, the groups as, b, ¢s, and d of this

- branch are incapable by Lemma 3.1.

For 16Tyas = {as, as, asB:}, take u = B
For 16736 = {asB, asB, 8}, take u = B2
For 16Tycs = {@sas, as}, take u = B,.
For 16Txd = {azaa, as}, take u = g%

Thus there remain only the groups a; and ¢; to be discussed.

Now 16T2a; is the direct product of an octic group with a
group of order 2. Rather more generally, consider the case where
H is the direct product of a group of order 2 with a dihedral
group of order 2"t (n > 1). Say H = {a, b, ¢}, where

a? = b2 =2 =1, bab = a7\, bc = ¢b, ac = ca. (3)

Let G be any group with G/{1 & H, and suppose that to a, b,
and ¢ there correspond the cosets of <; containing «, 8, and 4.
Then y?and [e, v] liein £i. Hence 1 = [a, v?] = [o, v]? = [a? 7]
Hence, v commutes with o’; and ¢ = [a, v] is of order 2. Simi-
larly n = [8, v] is of order 2. Also G, = {«, 8} has G,/Z, N Gy,
which is dihedral and of order 271, Hence, by Lemma (3.3),
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G is .cyclic, of order at most 27, and generated by [«, 8]. But
[, 8] is of order 2 mod 2. So, if ¢ = [a 8] % = 1. Thus
N = {&m ¢} is elementary and of order < 8; it lies in .Z). Now
[, 8] = 72 mod {}; therefore [a, B commutes with v; and Gy’
is normal in G. But G = {2, o, 8, v}; and so &’ is gene
[@ 6], & and », together with their conjugates inL G. Since it
has been shown that {[«, 8]} = G is normal in G it fOilows
that G' = {[e, 6], & n} and that G" N = {g 0, ?}.’Hence the
multiplier of H is elementary and of order < 8.

To prove that this multiplier is actually of order 8, define a
group G = {a, B, 7, £ n} by the relations:

rated by

a2"+1=;6’2='y2= £2=772= 1,180‘6:0!—1, [a,‘y] = ¢

[637] =7))£E'€1;17€zl-

Thus G is the split extension of the direct product {e, 8} X {£} x
{n} of a dihedral group of order 2"*2 and two cyclic groups of
order 2 by an element vy of order 2 which induces the automor-
phism «, 8, £, 7 — a &, 81, £ 1. Note that [a?% v] = 1, and that
21 = Ri(G) is {&n, ¢} where ¢ = a®. So in fact G/ =~ H.
Since G’ = {a% & 1}, <1 is contained in G’. The multiplier of
H is of order > 8, since {1 is of order 8. Combining this result
with those previously obtained proves that the group in question
is a stem group of the maximal family M (). This family there-
fore has rank n 4 5. It is next necessary to obtain representatives
of all families with central quotient groups isomorphic with H
in the form G/N, where N < ). To avoid extra notation, 2,
may be regarded as itself the multiplier of H. There remains to
be considered how its subgroups N are affected by automor-
phisms of H.

Let ¢ map a, b, ¢ into a, ab, ¢. The induced automorphism 8
maps £, 1, ¢ into £, &, ¢. Again, let ¢ map a, b, ¢ into a, b, a®* ' ¢.
Then ¢ maps &, », ¢ into &, 4¢, ¢; and if ¢ maps a, b, ¢ into ac, b, ¢,
then ¢ is the identity on Zi. These three automorphisms suffice,
since they generate 7 = T(H) modulo inner automorphisms
of H. |

In order that G/N shall have the center £/, it is obviously
necessary that N shall not contain ¢, since, if it did, 2" N
would belong to the center of G/N. Excluding & = {¢}, the
remaining six subgroups of order 2 in £ fall into three transitive
sets under the influence of 7. The first consists of {£} alone, the
second of {#} alone; the remaining four are all equivalent. Thus
there are three distinct families of rank #n 4 4, when N = {¢},
{&¢} or {#n}. When n = 2, these families are I'u, I's and Ty re-
spectively.

If /Vis to be of order 4, it must contain neither { nor £ For
if £€ N, G/N has an Abelian subgroup of index 2 (as, for
example, in family I'y). But when W is of order 4, the derived
group of G/N is cyclic, since NV must not contain ¢ = [a, 8],
and G’ is of type (n, 1, 1). Thus if ¥ is of order 4 and contains £,
G/N has as a central factor group a dihedral group which is
not isomorphic with H. But of the seven subgroups of order 4
in <1, there are just two which contain neither ¢ nor ¢, namely,
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{¢r,n} and {&, nc}, and these two are equivalent under the
influence of 7. Thus there is only a single family of rank n + 3.
When n = 2 this family is T's, and when n = 3 it is I'\g—as may
easily be verified. The following Theorem summarizes this
situation:

THEOREM 3.4. Let H be the direct product of a dihedral
group of order 21 with a cyclic group of order 2, where n > 1. Then
the Schur multiplier of H is elementary and of order 8. The groups G
with G/Z\(G) = H fall into five distinct families; the maximal Sfamily
of rank n + 5, three families of rank n + 4, and one family of rank
n 3. Those among these families which have rank < 6 are I's, T,
I's, Tie (for n = 2), and T1g (for n = 3).

Turning next to the case H = 16Ty, it is again just as easy
to deal with a rather more general case, H = {a, b}, with the
defining relations:

a® = b2 =1, bab = ate, ¢ = 1,ca = ac, cb = be, (4)

where n > 1. When n =2, H = 16T;c.. When n =3,
H = 32T3¢;. When n = 4, H = 64Ts¢1. In general, the I n
question has the same order and belongs to the same family as
the H of Theorem 3.4.

Let G be a group with G/Z1 = H, and let the cosets of L1 in
G which contain «, 8, v correspond as before to the elements
a, b, ¢ of H. Hence G = {1, a, 8} and G’ is generated by [a, §]
together with its conjugates in G. Now H' is cyclic and of order
2"1 since it is generated by [4, b] = a~*¢. Hence [a, B] is of
order 2"! mod Zi. If ¢ is taken as [a, B]Y"™Y, then ¢ € Zi. As
before, since v% and [a, ¥] = 7 lie in <3, 72 = 1 and o? commutes
with v. Write ap = a and a1 = [, 8] Since 8% € £, it follows
that 1 = [ai_l, ﬁ2] = [0(1'_1, B]Z [a¢_1, B, ﬁ], so that Qi1 = a; 2 for
i > 0o0r am = o2 But m = [a, 8] = a1™?” mod 2, so that
a7 € 21 Therefore o, € {1, and $0 anp1 = a,~? = 1. Hence
an = ¢ and ¢2 = 1. Thus {1} is of order < 27, and is trans-
formed into itself by 8. But [ay, o] = [e7%v,a] = [v; ] =1,
since 4% = 1. And since n € 2, {a, 7} is transformed into itself by
both @ and 8 and is therefore normal in G. But G’ is generated
by a; and its conjugates in G. Hence G = {ay, n}and G' N L, =
{n, ¢} is elementary and of order < 4. To prove that the multi-
plier of H is of order 4, use the group G = {a, 8, v} with the
defining relations =g =42=1, [a,v] =B 7] =
=1 1€L, BaB = a'v. Note that G = {a,ﬁ} and is the
split extension (by 8 of order 2) of the group {a, v} of class 2,
with the automorphism a, ¥y — a7, v7 which is effectively of
period 2. Since n > 1, the centralizer of 8 in {a, v} is the group
{a?", 3} of order 4, which is also in the center of {a, v}. Since 8
transforms {a, v} by an outer automorphism, it follows that
2y = 21(G) is precisely {a®", n}. Hence G/ = H. Finally, G’
contains 5 and [a, 8] = a %y, and hence also a®" = (o *7) A
Thus 2y < G’ and G is a stem group. It follows that G € m(H),
and the multiplier of H is the elementary group of order 4.

Any families other than M(H) with H as central factor group
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may be represented by groups G/, where JV is one of the three
subgroups of order 2 in <. But ; must not contain g, for if it did
Ny would lie in the center of G/N. If n > 2, N must also not con-
tain o = an, for if it did it would make en—1 = [a, £]*"" =
o' commute with both « and g mod W, so that Ne,_; would
lie in the center of G/N. Finally if n = 2, N must not contain
o', since if it did, [&, v, @] = 1 and [e1 7, 8] = o ; hence again
G/N would have too large a center. The only admissible choice
of N is therefore N = {a*n} if n > 2 and N = {a'} il n = 2.
Thus the maximal family has rank n + 4; hence there is just one
other family, of rank n 4 3. For n = 2, M(H) = Ty; and the
second family, where this H = 16Tye is T7. For n = 3, the
unique family of rank 6 is T'y. To summarize:

THEOREM 3.5. Let H be the group of order 27%% (n > 1)
defined by equation (4). Then the Schur multiplier of H ts elementary and
of order 4. The groups G with G' D Z(G) fall into two distinct
Sfamilies; the maximal family has rank n + 4, and there is one other
family of rank n 4 3. Those among these families which have rank < 6
are Ty and T1g (for n = 2) and Ty, (for n = 3).

3.4 Groups G of Class 2 or 3 with Center of Order 2

These groups are stem groups. Suppose first that G is of class
2. Then G/ = 21 = Z(G) is of order 2. Hence G/ is elementary
and every element of G — < has exactly two conjugates in G.
The following theorem may be proved:

THEOREM 4.1. If G isa 2-group of class 2 with center <
of order 2, then G is the central product of a certain number v of oclic
groups O with a certain number s of quaternion groups Q: symbolically
G == 0"Q, so that G/ is elementary and of order 2™ where
n=r-+s Also O Q= 0r Q7 if and only if r = p mod 2 (and
hence s = o mod 2). For given n, there are just two distinct such groups,
Jorming the stem of a single family ©,.

When |G:21| has its smallest possible value 4, G is a non-
Abelian group of order 8, hence, as is well known, G is either
octic or quaternion. These two groups form the stem of the
family ®, = T2. Suppose then that |G: 1| > 4. Choose any two
elements x;, y1 in G which do not commute and let their central-
izers in G be X1 and 7. Since X and 71 are distinct and are both
of index 2 in G, it follows that G = X1 /M 11 is of index 4 in G.
Also x; and y; are independent mod Gi. Hence G = PiGy where
Py = {x, n}, and P1 N\ Gy = Zi. Since [Py, Gi] = 1, the center
of G, is again 2y, and consequently G is the central product of
P, and G; (i.e., the direct product with amalgamated centers).
P, being non-Abelian and of order 8, is cither octic or quater-
nion. The first result now follows by induction.

It is easy to verify that the central product O of two octic
groups is isomorphic with the central product Q* of two quater-
nion groups, while 0% and OQ are distinct. More generally,
(for example, by counting the numbers of elements of order 4)
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O™ and O™ ' () may be shown to be distinct. Thus the order
of G has the form 2¥*! and either G =2 0" or G = 0" (.
In either case, if x; and y; are chosen to generate the ith of
these central factors ( = 1, ..., n) and z generates <1, then
xt=p2=1mod {1, 22 =1, [xyps] =2 (G =1,...,n), and
the x’s and y’s with distinct suffixes commute. Thus the two
groups belong to the same family &,: 0" ~ 0" Q. Note that
®, is of rank 2n + 1, ®; = I';. Note, as a corollary, that there
is no family of rank 6 of groups G where G/Z. is elementary,
Abelian, and of order 32.

Now let G be of class 3 with center {i of order 2. Then <5/
is clementary. Let W be the centralizer of e in G. For x € G
and y ¢ 2, the function [x, y], with values 1 or z, where 1 = {z}
is distributive with respect to both arguments, and establishes a
dual correspondence § between J2/S1 (regarded as a linear
space over the field of two elements) on the one hand and G/ W
on the other. Thus G/W is also elementary and |G:W/| =
| Z5:21|. By 8, any subgroup L of G lying between < and <,
is associated with its centralizer L* in G, which lies between W
and G. Moreover |L:2i| = |G:L*].

Now let L be complementary in {3/<i to the center W M L
of 2y, so that LW N Z,) = Z» and LN W = 1. The cen-
tralizer L* M £y of L in J, must then coincide with the center
W N Zy of 25 Hence L* N Zy =W NZ, But [G:iL*] =
|L:2 = |[Re:W N 2| = |Ze:L* N Z3|. Thus G = L*Z, =
L*L is the central product of L with L*. Since the center of L
is 21 and L is of class 2, it follows from Theorem 4.1 that either
L = 2, (in which case L*¥ = G) or else L = O™ or 0*71 Q for
some n > 0. On the other hand, L* must be of class 3, for
otherwise G would not be of that class. And since [L, L*] = 1,
G = LL*, it follows that Zx(L*) = L* M Z2(G), which is the
center of Jy = Z3(G). Thus the second center of L* is Abelian.
For the same reason, the center of L* is <.

THEOREM 4.2. A group G of class 3 with center of order 2
is the central product of a subgroup L* of class 3 with a center of order
2 and an Abelian second center containing a certain number n (possibly
zero) of octic or quaternion groups.

The only family of class-3 groups of rank as small as 4 is Ts.
Applying Theorem 4.2, where L* is in Ty and n = 1, there is
obtained a single family TI'js of rank 6. All other families obtained
by applying Theorem 4.2, with n > 1, are of rank > 6 and hence
are no further considered here. Hence it will be assumed that
2y = Z2(G) is Abelian.

In this case Z» < W, and if |Zy:54] = |G:W| = 2¢, the
order of G is 21| W:2,|. It may therefore also be supposed
that s = 1 or 2.

Since G is of class 3, 21 < G’ < 2, Suppose first that G’ is
of order 4 and let U be its centralizer in G. Since [G':Z1| is then
2, Uis of index 2 in G. Also U’ < Zi (a general truth about the
centralizer of the derived group). Thus G/<{1is a group of class 2
with a derived group G'/Z:of order 2, and with an Abelian sub-
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group U/Z, of index 2. These facts imply that G/{i € T» and
hence that |G: <] = 4 Consequently |G| = 27 = 16 or 32.
It follows that G/Zu is either the octic group or else 16I'za1 or
else 16 T'y¢1, CasEs already dealt with in sec. 3. In these cases, G
is a stem group of one of the families Ty, T, I, already found.

Thus it remains only to deal with the case s = 2, G’ = < of
order 8. Assuming |G| < 64, G/Zi is then a group of class 2;
its order is < 32 and its derived group is G'/Z; of order 4. G/Zi
must therefore be a stem group of family I'y. Hence there is
a uniquely determined subgroup 4 of index 2 in G such that
A" < 2y A itself cannot be Abelian (see sec. 1) for, since i
is of order 2, that would mean that G’ was cyclic, whereas in
fact G'/Z1 1s an elementary group of order 4. Thus either (1) 4
is a stem group of Ts or (2) 4 € T,

Case (1). Since [G":Z| =|Z5:21] =4, it follows that
|G: W| = 4, where (as previously) W is the centralizer of G’ in
G. Now by hypothesis {2 = G’ is Abelian. Therefore, in case
(1), K. must be its own centralizer in 4. Hence A N\ W = <,
AW = G. Also, since A € T and has 2, as a center, 4/ is
Abelian and elementary. Therefore G/.Z; is 32Ty a;, since this is
the only stem group of Ty whose Abelian subgroup of index 2
is elementary.

Case (2). Inasmuch as < is either of type (1%) or (21),
2y = {au, @z as}, where {a} = K1 and i’ = a,? = 1; either
as? = 1 (X, elementary) or a3? = a1 ({2 of type (21)). Then
as and a3 form a base of 2 mod <. Since G = AW and
Zy = AN W, the dual relation 6 between Z»/Z: and G/W
induces an isomorphism between J»/<1 and A/Z». The “linear
spaces’’ are only of dimension 2. Hence as,a5 in A — s may be
chosen so that

[ag,05] = [asa] = 1, [az,a] = [a5,05] = o, (1)

Let oy € W — 2, so that as, a5, as form a base of G mod <.
Since 4/Z: is elementary,

a52 = Ot62 =1 mod Zl. (2)

For & € A, write £* = [ay, £§]. Then, since G/{i € Ty, the
mapping et — <1£* is an isomorphism of 4/<: onto Z2/<y;
and [g*, §] = 1 or a1 From (2) it follows that 1 = [as, &?] =
(£*%)?[£*, £] so that

(£%)% = [£% £]. (3)
Also [£, as?] = [£, au]? since aq € W, the centralizer of G’. Hence
(£%)? = [as®, ] (4)

When 2, is elementary, (£%)2 = 1 for all £ € 4. Hence by (4),
as? belongs to the center ) of A; and by (3), [, €] = 1 for
every £ Since the relations (1) remain unaffected when as, o3
are replaced (either or both) by aas, aias respectively, the
bresent case may be written

a® =1 mod g and [ag,05] = 3. (5)

[Ct4,0£5] = a9,
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Relations (1), (2), and (5) define family T'y;.

When 2, is of type (21), au® ¢ Zi since ¢ may be chosen so
as to make ¢* of order 4. On the other hand, (4) gives [a4, £] = 1
for every ¢ in 4, since (¢%)” € 1. Hence & = o, mod 2.
Relations (1), (3), and (4) now give (e5*)* = 1 = [a5*, o], 50
that a;* is either as Or anas, and it may be assumed that az* = qy-
a; may be replaced by aa: if necessary. On the other hand
(as™)? = lag,a5] = a1 = [as*,a6]. Hence as™ # a3 mod 2y Never-
theless, as* # oy mod <1 also, since @ = o™, as has already
been shown. Thus it may be assumed that as® = aza; (a3 may be
replaced by aya; if necessary). Thus in this case 5 is of type (21)
and the relations obtained are

a? = ay mod <1 and [oeuscs] = a2y [ouy05] = agag, (6)

which together with (1) and (2) define the family I's.

It remains only to discuss the case where 4 € T',. NaturallyA’
is again 23, since this is the only normal subgroup of order 8.
But C 5 2, since the centralizer W of £ is of index 4 in G.
Since < is Abelian and A is not, CJ» must be of order 16. But
CZ; = W. Hence the following diagram where D = C N 2,
and all subgroups given are characteristic in G. Choosing &; 5 1
inlyaeinD —Z2,ainls — D,auinC — D, asin 4 — W,
and a5 in G — A, gives the following relations:

[ag,as] = og, [a4,ae] = ay, (7)
since [a2,4] = 1 and «; is not in &y; whereas [ay,A] = 1 and oy
is not in <. (It might be that [as,as] = aas, but then a4 could
be replaced by asas.) Note also that (as just remarked)

[az,a,'] - [(X.;,d,'] =1fori <60. (8)

In view of the dual correlation of <3/<; with G/W, in which
D/Z; corresponds to A/ W, as may be chosen so that [as,as] = 1.

Then
[as,a] = 1 for i # 5. (9)

[as,a5] = o1,

Finally, [as,a5] € £ — D since [ay,a6] is in D. By adjusting the
choice of @; (which does not affect (8) or (9)) it may be assumed
(in view of (7)) that

[os,06] = . (10)
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Now by (9) as® € Z» and commutes with az. But by (7) it does
not commute with ay or wyas. Hence

ag? = a3 mod zl- (11)
Next (by (9)) e = [anes] = R (by (11)) since

[as,06] = a3 commutes with «g. Hence

az” = wj. (12)
Next [as’,a0] = as®ay = ag’ar = 1 by (12). a2 ¢ <2 and the
centralizer of ag in s is {as}. But a5 does not commute with g
and therefore a5 # o3 mod 1. Hence ’

a52 = 1 mod zl. (13)

Again, (by (11)) 1 = [aas] = [as,06”] = [es,06]® = [y, a5,05] =
a2’ by (7); so

a22 =

a, (14)

Finally, [as%as] = as? since [ag,a] = 1. Hence by (14), a? does
not commute with «g But au? € D. Hence

a42 = Qg mod zl. (15)

The relations (7) to (15) define the family I'yy and so G/ =
327T,b;. These statements may be summarized as follows:

THEOREM 4.3. There are just three families of rank 6 for
which the central quotient group is a stem group of Ty, to wit, the families
P24, F25, and Tgs.

In view of the results obtained in secs. 3 and 4, the determina-
tion of the families of rank <6 of 2-groups of class 3 is now
complete. The families in question are T3, T's, I'7, T'y—T'15 inclusive
and Ty, Tosy Tog.

3.5 Let r = 6 and Let G Be of class 2

Note first that, since G is a stem group, G’ = ;. Also, the
two highest invariants of the Abelian group G/<; must be equal;
for otherwise if ; is of highest order 2* mod Zi, x,2*® ™1~ must
be in Z;—a contradiction. Therefore |G:Zi| = 4 implies G € Ty,
and |G:<i| = 32 implies that <y is cyclic. Therefore r (by sec.
2) is odd. It follows that the only possibilities for the type of
G/Z, are the partitions (1%), (22), and (1%).

It is easy to see that for G/Z; of type (1%), the chief family is
precisely of rank 6, namely, Ty. For G/< of type (22), the chief
family is again of rank 6, namely, I'1; (already obtained in sec. 2).
Indeed, for given partition N = (A, Ag, . .., A) with A = g
the rank of the chief family is easily shown to be

Z )\«; + Z min ()\5, )\j).
i=1 i<

Therefore it remains to consider only the case G/<Z1 of type (1%),
where Z; is an elementary group {u, »} of order 4.
The three groups Gy = G/{u}, G; = G/{v}, and G; = G/{uv}
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belong either to I'; or else to T, since their derived groups are
of order 2.

(1) Suppose two of these groups G; belong to T',. Without
loss of generality, let Gy and G: belong to T's. Let Hi/{u} and
H,/{v} be the centers of Gy and Ga. Then |G:Hy| = |G:H,| = 4
and H; > 2. From [Hy, G] < {u} and [H,, G] < {0}, it follows
that H; N He, < Zi. Since G/Zi is of type (1, 4), it follows that
H,H, = G and that, if H, = {Zi, x1, x2} and Hy, = {Z, x3, x4},

then xy,...,%s form a base of G mod <. Also [H,, H,] <
{u} M {Z)} = 1. Thus [xl, x;;] b [xl, X4] . [XQ, X3] = [XQ, X4] = |,
It follows that [x1, x2] = u, [x3, xs] = v (since otherwise

[x1, x2] = 1, and x; would belong to {1). Thus G € T,

(2) Suppose Gi € T, but neither G, nor Gj is so contained.
Let H,/{u} be the center of Gi. As before, |G:H,| = 4 and it
may be assumed that Hy = {Zi, x1, x2}. Since G» and Gj belong
to I's, every element of G — H; has 4 conjugates in G, whereas
x1 and x, have only two such conjugates. Let X;, X; be the
centralizers of xi, x; in G. Then |[G:X;| = 2 and so |G: X1 N
X:| < 4. It follows that X; N X, = Hj, since otherwise X; M X
would be an element of G — H;, commuting with both x; and
x5, and hence having only two conjugates in G. Thus [x1, x5] = 1
and X; # X, Let x € X1 — Hy and x; € Xo — Xi. Then
[x1, Xs] = [xe, 2] = 1, and [x1, xa] = [xs, x5] = u, since x3 § Xo
and x; ¢ Xi. Clearly G = {Zi, x1, %3, x5, x4} and G’ = Z,, since
it is generated by the six commutators [x; x;] (i <j). Hence
necessarily [xs, x4] = v or wy (the choice is irrelevant). Thus
G € I'nn.

(3) Suppose Gi, Gi, G all belong to Ts. Then every element
of G — 2, has four conjugates in G. The centralizers of two of
these elements ecither coincide or intersect in <, since such
centralizers (of order 16) are Abelian. There are therefore just
five of these centralizers Cj, ..., Cs;, each containing, besides
21, three of the fifteen remaining cosets of <. Also G = C.C; for
i #j, since C;N\C; =2 Let C = {Zy,x1, %2} and C, =
{21, X3, %4}. Then [x1, x2] = [x3, x4] = 1 and it may be assumed
(by choosing x3, x4 in Cj suitably) that [xi, x5] = u, [x1, xs] = v.
Then [xs, x3] = » or up (since x; has four conjugates) and
similarly [xs, ] = u or uv. But since x, has four conjugates
[x2, x3] and [x2, x4] cannot both be wv. The case [xs, x5] = 2,
[x2, x4] = u is also impossible, since it makes x1x; commute with
x3xs as well as with x; and x2; so that x1x, would then have only
two conjugates. The remaining two cases are equivalent. They
are interchanged by an exchange of x; and x,, and the implied
change u — v, v — uv. Thus there is here only a single family,
T3 Hence the following conclusion:

THEOREM 5.1. The families of 2-groups of class 2 with
rank G are Ty, 'y, Ty, T'1e, and Tia.

In view of Theorems 1.2 and 4.1, 4.2, 4.3, the groups G with
r = 6 which do not belong to any one of the families I'y — Ty
or I'y; (already obtained) are either (1) of class 4 or else (2) of
class 3 with centers of order 2.

22

3.6 Groups of Class 4 or 5

If G (of an order dividing 64) is of class 5, then by Theorem
1.2, G € Ty If G is of class 4 and order < 32, then, by the same
theorem, G € Ts. Hence it may be assumed that |G| = 64 and
that G is of class 4. Then the order of the center £ of G is < 4.
If |2i| = 4, then G/Zi is a class-3 group of order 16, and can
only be dihedral. By Lemma 3.3, this happens only when G
belongs to the first branch of Iy, Thus <1 may be supposed to
be of order 2. Then G/Z is of class 3 and order 32; it belongs
therefore to one of the families I';, T, I'z.

Applying the criterion of Lemma 3.1 to G/Z = H, it is evi-
dent that the following groups (in the notation of the tables) are
incapable:

H=32Tsa, = {0{3, a4 ag, agﬂg} U= f,
32T3a3 = {a3, oy, O3 62} u = B,
32T3b = {as, Bou, B}, u = g2
32 T3¢0 = {as, au}, u =g,
32T5d) = {eu oy o4}, U = B,
32T5¢ = {ou as, o B, u = @
32 I‘;;f = {a3, a4} u = 2

Thus only the groups a, ¢1, and d; in this branch of T'; are left
as possibly capable.

= 32 Fsdl = {a4, o4 a3, a5}, u = ai,

32 I'sas = {a4, a4 O3, a5}, u = ai,
so neither of the two I's groups is capable.

H = 32 P702 b {a5, (273 Ol4}, u = a,
32 I'vas = {014, a5}, U = ai.

Hence only 32 T a; is possibly capable.

But the cases H = 32 T34, and 32 I';¢; have already been
settled by Theorems 3.4 and 3.5, where n is taken as 3. They
yield one family each, namely, Ty and T»x. Thus it remains
only to deal with

(1) H = 32 I’y dz and (2) FHs= 372 I'7 a;.

Case(1). Here it may be assumed that H = {a, b}, with
the defining relations:
a®=bt=1,b"1ab = d’ (1)

Let G = {Z1, @, 8} be any group with G/Z; = H, as given by
(1), so that {1« and <48 correspond respectively to a and 4. Then
a1 = [a, 8] = «® mod <. Hence a; commutes with a and conse-
., where a1 = [a; 8]
Z1}; it is therefore Abelian, so that ai, as,

, Bl = ar%ar =

quently G’ is generated by a, as, . .
Note that ¢/ < {a?

., are commutative. Hence a; = [a1, 8] = [«?
o2, so that ' B = a® Transforming with 8 gives az = a.?
s = 3% and so on. Hence G’ = {a} is cyclic. Since oy = o?
mod <i and 4* = 1, it follows that «,* = a3 € <1. Hence oy = 1.
Thus G’ is of order < 8, and since a;? = o' mod Zj, it follows
that G’ N 2, = {as} is of order < 2. The multiplier of H is
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therefore of order < 2. But the group G = {q, 8} of order 64
defined by the relations,

alﬁ = 184 . 1) Bﬁl OZB = 0‘35 (2)

has as a center {1 = {a®} and G/.2, = H. Thus there is obtained

the following theorem:

THEOREM 6.1. The Schur multiplier of H = 32 Tsd, is
of order 2, and the groups G with G/ = H form the single family
M(H) = Ty

Case(2).
elementary Abelian group of order 8 by a single element induc-
ing an automorphism of order 4. Take H = {aq, b}, with the

H = 32 Ty a;. This case is the split extension of an

defining relations,

at = 1; [b,a] = ¢; [¢c,a] = d;
[4, a] = [d, 6] = [, ] = [e,

As in previous cases, let G = {Z}, a, B} have G/Zy =~ H, with
Zie and <48 corresponding respectively to a and 4. Define
B,a] =, [v,a] =8, [6,a] = e Then e is in <j, as also are
8% ~2% 6% Thus 1 = [6% a] = % Further, the commutators of
B, v, 8 in pairs liein <3 and so 1 = [B% v] = [B, v]? and, similarly,
the orders of [, 6] and [v, §] are < 2. Also, 1 = [v% a] = 4[4, v]o
gives 62 = [y, 8]. Similarly v* = [B, 7], so that §* = * = 1. But
o' € &y and [B, @?] = %6 and [5, o?] = 6% = 1, so that [B, o?
is commutative with % Hence 1 = [8, '] = [B, a?]? = +* 8% =
62, since v* = 1. Finally [8, a?] = 4?4, and hence 1l = [8% o?] =
[8, «?]?[B, a?] = v?% 4[5, B]¥? 8; or, since ¥2 is in ) and +* = 1,
[8,8] = 62 = 1. Now G’ is generated by [B8,a] = v and its
conjugates in G. The foregoing relations therefore show that
G’ = {v, 6, ¢}, where eand y?arein {1 and [y, §] = 8% = ¢ = 1.
Hence G’ is Abelian of type at most (2, 1, 1), because commuta-

b =1;b%=¢? =q% = 1.

tion with « maps v, § into §, ¢, and commutation with 8 maps
v, 8 into v2 1. The fact that G = {2, o, B} proves that {v, 5, ¢}
is normal in G. Since it contains v it must coincide with G’.

It follows that the multiplier of H is at most elementary and
of order 4, since G’ N\ 2y = {2 ¢}. But it is possible to define a
group G = {a, 8,7, 8, ¢} = {a, 8} (of order 128) by the relations
which express the fact that {8, v, 8, ¢} is the direct product of
the octic group 82 = y* = (8y)® = 1, with the two cyclic groups
{6} and {e} of order 2 extended by the element a (where
o' = 1), which transforms 8, v, , e into By, v6, d¢, e. This trans-
formation effectively defines an automorphism of {8, v, 5, e} =
G, of period 4. Moreover the centralizer of « in Gi is {73 €},
which is easily seen to be the center of G, since «? transforms G,
by an outer automorphism. It then follows that G/<1 = H. The
multiplier of /1 is thercfore clementary of order 4, and the group
G of order 128 described above is a stem group of m (). Hence
{v% ¢} = Z1(G) may be used as the Schur multiplier of H.

Any families of rank 6 which have H as a central factor group
may be represented by factor groups G/, where N is one of the
three subgroups of order 2 in Zi(G). Moreover, N = {a} is
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inadmissible, since it puts ‘N5 in the center of G/N. In fact
G/{¢) is in Ty But N = {7*} gives a stem group of T's; with a
derived group G'/{7*} of type (1%), whereas N = {v* ¢} gives a
stem group of I's with G'/{y* €] of type (21). Thus these two
families are seen to be distinct without the necessity of consider-
ing the effect of automorphisms of H on the multiplier. We may

summarize as follows;

THEOREM 6.2. The Schur multiplier of H = 3217 a1 s
elementary of order 45 and in the groups of the maximal family M(H) of
rank 7, the derived groups are Abelian of type (2,1,1). Thus the groups
G with G/Zx == H fall into three distinct families, to wit, M(H) and
the two families Taz and T of rank 6.

CHAPTER 4

Construction of the
Groups in a Family

Let I be a given family of 2-groups, say of rank r, and let G, be

any stem group in T; hence, |G,| = 2. Let Gy be used as a

“group of reference.” If G is an arbitrary group in T, there will

be exactly u = u(I') isomorphisms 6 mapping Go/Zi(Go) onto

G/Z1(G) in such a way as to induce-isomorphisms of G’y onto

G’. Here u is the order of the group of ‘“autologisms’ of T'.
Suppose G belongs to the sth branch of T;

G

) = G'2(6)
20 G' = Hy
=206
1

and let |G| = 2° so that ¢ depends only on T' and not on G. Also
121(G) 2| = 2%, so that | Z1(G)| = 2¢*2.
Let Gy = (%1, . . ., x,). Suppose any one of the « isomorphisms
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6 maps x; Z1(Go) onto »i {(G), i = 1,...,a. Thenif z, . . ., 2,
in Z1(G) are chosen so that

2(G) = {e, 21, - - - 5 2a},
then

G = {.yh'-")’a’zb---,é'h}-

Here 4 has only to be chosen sufliciently large, say & > 5. Since
21, - . ., 23 are in the center of G, G is evidently the homomorphic
image of the direct product F X A, where F is a free group of
rank a, F = {3, ...,%), and 4 =1{Z, ..., Z} is a free
Abelian group of rank 4. Let N be the kernel of this homomor-
phism, so that G =~ (F X 4)/N. By the given choice of y,, . . , | y,,
the kernel W intersects #’ in one and the same subgroup A for
every G of T. Hence F'/M = G’y = G'. It may be supposed for
simplicity that y, . . ., y, generate ¥’ = F'/M.

It is easy to see that ¥ (and hence also H = 4 X ¥) belongs
to T. Also 2i(H) = 4 X 21(¥) N ¥’ = C, where (say) C =~ C,
and Zi(H) is thus dependent only on I' and not on G. Also
Z1(Y) = B X C, where B is a free Abelian group of rank a. The
fact that Z1(7) has this structure depends on the general theory
of the multiplicator. *

The general theorem covering this situation is as follows;

THEOREM. Every group G of a family T is the homomorphic
image of a direct product ¥ X A = H, where ¥ is a particular group
depending only on T, and A is a free Abelian group with a sufficient
number of generators. If G is in the sth branch of I', A may be taken as
a free Abelian group with s generators. Here S1(H) = A X Zi(Y) =
AXBXGC, () NTY =C=C. Also, G = H/N, where the
kernel N satisfies (i) N N C = 1 and (i) ACN = Z21(H).

This theorem is next illustrated by application to the family
T';. Here G/ is the octic group and G’ is cyclic of order 4.

G=R+x++ 35+ 2y + Iy + Ay + b
If x — ¢ and y — 4 in the homomorphism G — G/Z, then

g=1,h=1 hgh =g

Hence, in G,

bo = xt € Z,
bl =))2€ Z:
by = xyxy € Z.

Also in G, u = {x, } = x~Yy'xy generates G, and u* = 1.
Next define a group 7" = {x, »} subject to the requirements,
(1) bo = &% b1 = »?, and b, = xpxy are in the center of 7, and
(2) (Y )t = 1. Here u = xYlxy = x 2y oy =
x2wb1 Ty = x 2 hou® = x b 2h,% = byl 2h,% = ¢ € Z(Y).
Hence u* = 1 = ¢% It follows that Z(¥) = {b} X {3} X C
where C = {¢}, and C = ¥’ N Z(¥). Recalling that every G of

* 1. Schur. “Uber die Darstellung der endlichen Gruppen durch gebrochene lineare
Substitutionen.” Crelle, vol, 127 (1904), pp. 20-50, and ibid., vol. 132 (1907), pp.
85-137.
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Ty is generated by the elements x and » and elements of <, it
appears that G is a homomorphic image of the direct product
Y X 4, where ¥'is as given above and 4 is a free Abelian group.

Having found the group 7 for the family T, other groups of the
same family may be found by taking kernels Nwith NN C = 1.
Here G = (¥ X 4)/N, with N © 2(¥ X 4) = 4 % B % C. If
(A X B X C)/NC =2 then G is in the sth branch of T'. An
autologism v of I, as applied to ¥ X 4 has the property that a
kernel &V and N+ yield isomorphic groups.

For Ty the autologisms of ¥ are generated by vi(x)y = x
(p)y = xp and 8:(x)6 = x7%, (p)o = . ’

(bl) Y = b23 (bl) 6 = bl,
vi(be) v = b17bo% 85:(bg) 6 = by2y1,
(C) Y =6 (C) 5=(,‘,

and v* =1, 62 =1, oy = 7_16:_For a stem group, the group 4
is not needed and NC = B X C. The possible kernels N are

N1 = {by, by},

Ne = {b1, bzc},
Ns E {blc, bg},
Ny = {b1€, bgb’}.

The second and third of these are interchanged by the auto-
logism v, since

{bl, b2€} Y = {b2, b1_1b220} = {blc, bg}

Thus there are three stem groups in I's.

In the notation of the tables for T's, a3 = x, a4 = p, u = [a3,
ag] = [%, 9] = as, as? = a1 = ¢, 21> = ¢ = 1. For the three stem
groups;

(1) 16 Pa (1116!32 = az—-l, 0542 = 1;

or in terms of the above notation,

W=yt =1,

or (since u = x~ %7y, u? = ¢, y* = b;) it follows that b,y = 1,
by = 1; hence the kernel is N; = {by, b2}. Similarly,

(2) 16 I‘s dg:aaz = g, 0(42 =1 il

Whence x* = u = x %17y, yp = by = 1 or by = 1, by lhyec = 1.
Here the kernel is N, = {b1, by},

(3) 16Tsa3:a? = oo™, au? = oy

or bylby = 1, by = ¢, and the kernel is N; = {bic, byc}.

One way of constructing the groups in a branch is first to
find the possible groups which are generated by the coset repre-
sentatives of the center, and then if necessary to adjoin further
central elements to these groups. In other words, first find the
homomorphic images of the group 1 of the theorem, and then
adjoin further central elements.

This process is illustrated by application to the first branch of
I3. Here the groups are of order 32; in an individual group G
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the elements x = a3 and » = a4 generate a group of I's, which is
either a stem group of T'; or the entire group of order 32. If x
and y generate a stem group G, of order 16, then G/G is of order
2. And if G = G1 + Gz then 22 is in the center of G;; whence
z2=1or 2> = a1 = ¢c. With 22 = 1, G is the direct product of
a stem group and a group {z} of order 2. This extension gives
the first three groups of the branch in question. Their symbols
are ai, az as. If 22 = o, and G, is any one of the three stem
groups of order 16, the group of order 32 obtained in all three
cases is the same. Its symbol is 4.

"There remain cases in which x and y generate the entire group-
With the notation used above, there are twelve possible kernels
N;

M b1, b}, Ns {b1, 027}, Ny {bibs, b2},

Ny {bi%, by}, Ns {b1c, b}, Nuo {b1bac, b2},
Ns {812, bacl, Ny {by, b2}, Nu {bibac, ba’c},
No {bi%, bac},  Ni {bue, ba%c},  Nuz {bibac, ba¥}.

The autologism v permutes these in the following way;
(N1, Ns)(Na, Ng, Nay No) (N, Ne)(No) (N1o) (N11) (MN1a).

The group ¢, is given by N, ¢z by Ne, di by No, d2 by N, € by
N, and f by Nis. Thus these are all the possible groups except
that given by kernel M. But My gives group f just as does N,
Using Ny the table would read a1 = 82 a® = az™' 6% o’ = £

For My, G = {x, 9} and #® = 1,5 = 1,y lp = &7, p* = a*,
If, in Guy, &y is taken as xp% then x,® = 1, 37l y = a%? = x™H™? =
x17L It follows that Gn = {x, »} = {x1, y} is isomorphic with Gis.

CHAPTETR 5

Notes on Various
Groups of Orders 8.
16. 32. and 64

S, is the symmetric group of degree x.
A, is the alternating group of degree x.
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Ty

Ty

Ts

8(11

8(12
16 ar

16 as
32 a1
32 asp

64 ay
64 as

16 a

16 ag

16 as
32 a
32 as

32e

64 a

64 p

32 an
32d

64 as

32 al

32 as

64 al

64 as
64 b

64 €1

64 d

The octic group. Dihedral. Sylow subgroup
of Sy, s, 4s, and 4.

The quaternion group. Dicyclic. Hamiltonian.
Generalized dihedral. Sylow subgroup of S
and S7.

Hamiltonian.

Generalized dihedral.

Hamiltonian.

Generalized dihedral.

Hamiltonian.

Dihedral.

Every invariant subgroup characteristic. The
Sylow subgroup in the group of automor-
phisms of the Abelian group of order p? and
type (12), where p = 3(8).

Dicyclic.

Generalized dihedral.

The Sylow subgroup in the group of auto-
morphisms of the Abelian group of order p*
and type (1%), where p = 3(8).

Every invariant subgroup characteristic. The
Sylow subgroup in the group of automor-
phisms of the Abelian group of order p* and
type (12) where p = 5(8).

Generalized dihedral.

Every invariant subgroup characteristic.

Generalized dihedral.

This group has only one invariant subgroup
of order 4, and it is noncyclic. For this group
I3 is odd and >1. In both of these respects,
the group is unique among the groups of
order 32.

Generalized dihedral.

Generated by 8 I'; a; expressed as a regular
group, and its conjoint. Also generated by
8 I'y a; expressed as a regular group, and its
conjoint.

The only non-Abelian group of order 32
which has (1) an automorphism of order 5
and (2) an insolvable group of automorphisms.
Generated by 16 I'; a1 and its conjoint or by
16 T'; a2 and its conjoint.

Has an insolvable group of automorphisms.
Generated by 16 T'2 b and its conjoint. Has
an insolvable group of automorphisms.
Generated by 16 I'2 c1 and its conjoint or by
16 I'y ¢; and its conjoint.

Generated by 16 I's 4 and its conjoint.
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T

I'y

Tg

Ty

T

Ty

T3

{

{

32 ai

32,

64,

64,

32 ax
32 as

32 as
64 ay
64 as

64 ¢

Stem of
order 64
64 ¢
64 ¢
64 e

64 al

Stem of
order 64

64 as

64 ay
Stem of
order 64

64 fi
64 f,

When expressed as a transitive group of
degree 8, this group is the holomorph of the
cyclic group of order 8.

Genus a. The only genus whose order
divides 32 where neither # nor the maximal
order of the operators is a generic invariant.
Genera q and 4. In these genera, ¢ is not a
generic invariant.

Genera g, b, and ¢. In these genera, the maxi-
mal order of the operators is not a generic
invariant,

Dihedral.

Every invariant subgroup characteristic. The
Sylow subgroup in the group of automor-
phisms of the Abelian group of order p? and
type (12), where p = 7(16).

Dicyclic.

Generalized dihedral.

Sylow subgroup in the group of automor-
phisms of the Abelian group of order p* and
type (1), where p = 7(16).

Every invariant subgroup characteristic.

Every group in this stem contains at least
one subgroup 32 T'y A.

The only two groups of order 64 where ¢, is
odd and >1.

The only non-Abelian group of order 64
which contains only one invariant subgroup
of order 8. Sylow subgroup of the simple
group of order 29,120 discovered by M.
Suzuki (Proc. Nat. Acad. Sci., vol. 46 (1960),
p. 868).

This group can be expressed as an intransi-
tive group of degree 8.

Of all the stems whose orders divide 64, the
stem of Ty, is the only one which has a non-
elementary center.

Has a solvable group of automorphisms the
order of which is divisible by three distinct
primes.

Generalized dihedral.
In genera ¢ and d, ¢ is not a generic in-

variant.

Every invariant subgroup characteristic.
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Tos

Ty

T'2s

Tag

Toy

{

{

64

64 b,
64 b,

64 as
64 a1

64 a;
64 a

64 a1

Stem of
order 64

64 7]

64 ai

64 a

64 ai
64 as

64 asg

Genus a. In this genus, # is not a generic
invariant.

Every invariant subgroup characteristic.

Every invariant subgroup characteristic.

This group can be expressed in two distinct
ways as a transitive group of degree 8.
Every invariant subgroup characteristic.

This group can be expressed in one way as
a transitive group of degree 8.
(Genus @) The maximal order of the opera-
tors is not a generic invariant.

Every invariant subgroup characteristic.

Can be expressed in two distinct ways as a
transitive group of degree 8. Its positive ex-
pression is the Sylow subgroup in 4s and 4.
This same expression is the holomorph of the
Abelian group of order 8 and type (2, 1, 1),
as well as the Sylow subgroup in the holo-
morph of the Abelian group of order 8 and

type (1%).

This group can be expressed in one way as
a transitive group of degree 8. As such, it is
the holomorph of 8 I'; a; and the Sylow sub-
group in the group of automorphisms of
8 Ty as.

Dihedral.

Every invariant subgroup characteristic. The
Sylow subgroup in the group of automor-
phisms of the Abelian group of order p* and
of type (12), where p = 15(32).

Dicyclic,
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FAMILY [=3:B=A. Rank 5. Class 2. u=24
Commutators # 1 (@5, a,)=a,, (@, @]l=a,.
Squares: at=ai=|.

Congruences (mod 7,): a?=a?=«

Ho~ (1), I~ (P).

STEM. Order 32.
Z|: Hz. Yz"_' I|- 1'2=+3-
n is the number of self-conjugate subgroups of order 4.

2
5

|

11

TouP) Defining | fret | ¢ First AQrder | Auto- | Self-

_é) _é Relations Signal| Signal ture |morphisms|centralizers
=|al@| ezl 2 | T [e 24 t,t, |I60| (8I)¢
Bla LT ar )] azee o2 226 [0 (30e): |7
Mla.|a | @ | || at (22 2t [19]12] 2024 (2] (=) |7
35| as|a | @ | @ a8z |(22)| azc: | 3|28 2¢-8 |(22)| (21)¢ |7
36/bi|a| | | I |aab |2B) aazcic.|15/16] 22 28] (9201 |5
37 b fa| | |a|aab |@RF) acc, 2| 724 222 |28 )(2)e | 5
38lc |||l ab |28 acczcz|Il20] 2¢- 2 [2R](DC)2N=] 3
39| c.| @ |aa| | | a,b* |(2] ajaact |11]20] 2°-4 (23] (=02 |3
40| cs| @ @) @ | ab* |(29)] czer | 3(28| 204 (23] (2 |3
411 d |aa@ || b> |23 c3c2 |7 (24| 2223 (2] (ACP ||




FAMILY T Continued).
FIRST BRANCH. Order 64

Relation: a>=pF..

Oroupl Defining [Generic|  Firsf First Subgroup Order| Ayto- Self-

o e | nvari—| Quotient | Struc | |
_g_é Relations | 4pts Signal Signal ture |morphisms| centralizers
Salalala vz e lr ] T o |2lal 11 [ nlzer] (er)e
68la (B 1| | 1{UD()] a2 | a¢ (10| &3¢ 2% 391242248 | 6| (1°) | (4217
69 a,|B, |8 | 8. | | a | ar |(22l)] ac¢ a8 39|24 2= 192 |24 |(221) (]4)
0|a,|8 |8, (8. |8 aa2 | a3 |(22l)] azce a 715622648 |(2l)| (Pl2)e
TUb BB T U (B)aab| b* |(2F)]a, a%c2c, he 3113212016 | 2 [(2B) | (147(212)2
2| b|B | B 1|8, aa:b | bt |(2F) azcc, ¢ b 1514812° 16 | 2 [2F)| (212 (217
BleBTIBHUD] abz | ¢ |27 a,¢ c2c ¢ 231401 22 16 | 2 (211 [(19(212)(212)
74| c.|B | B BB | ab? | c2 |22)| aa.c ¥ 23140[22-32 [ 4 |(221)| (14)(212)
_7§_(_3_3_ Bu Bl IB|BZ 182 aab2 o (221) CgCg cs 7 56 28'32 4 (22|) (2|2)4
61 d|B B 1BA L [U4)][(12)] b° | d* [(2%)] ¢3¢ de 51481 2° 24 |3 [(22)| (14213
MielB2 B2l || 1{U4)C]] ab? (1) betf aibtbic? (2314012 4 14 |21F)] (2192(P2)
78] e B2| | | Bal | 2 b’ (27)]  bPet | asasbtcZ [23/40|2°- 8|8 (2| (Pp)
79 | B2| | | 8,8, a,b? (221)]  exf2 azbscz [ 7156|2088 |(221)  (p2)
B0 f | Bz B 1| 1]0+)]@N] bbb (221)] eretenf? |bibacicacad?[15]48] 20 - 2 [ 2 |(2=))] (212)2(22)
SLg B 1] 1 1Bf@B) ()] e | at |(9)] e 31|32 202424 (1) | (217)¢
B2 | B, |8, | B, | B, c; |a.a3|7)]  cs 7156]2° 24124 ((22)| (2P%)
63 h[B B | 1 [B|@A] ()] cicaf | b3b2[2F)] c3czhe 5/48) 2 - 4|4 |2P)] (217)*




FAMILY I; (Continued)
FIRST BRANCH (Continued)

Gqu;ou-p /Defin‘iﬂg ?ﬁf\;gm Firs’r.Quo’riemL FirsfSubgroup Order Au’rg— Self=centralisepe

2|3 Relations | ants Signal Signal Sfrﬂure morphisms

Sl&lalalale| Lz 2T 7 [T T [2laTs|v 1. n 321 (6l

84| iy (B 1 BB 1219 (17 | ciez | abie, |2F)] accihe [23]40] [22-2]2[@R)] (21721
85| i, |B.|B|Bs| | cef | abic, |2 acte. (23140 [ 2044 |(27)]  (14R(212)

86| i, [B.| | BB B ceet | abier |2P)] cccZh® [15[48) |22 2|(2F) (2R A(R):

87| is |Bi|Bi| Bs | B cied | asbica |220)] a.coh® [ 7 (56 | 2o-4l4|(22)]  (2192(21F

88/ is |B | B |Bs | B caeiez | asbibacs [R71)] cocaczh® [ 7056] | 2020 2|(22)]  (2ER(2Rp

89| ji || 1B |B:[2R] (1] c.f? ¢t |@P) c2ht [15]48] | 2288 (2] (21)*

90| j. |8, | B.1BB B, c.f* | c3cd |221)]  czh 7156] |2°-8]|8]|(22) (217)"

91k, |8/] B.| B> |1(2I2) (P)]eef | bicicad [(221)] cicicocah h 15148 2211 |(22)) (14)212)(218)(2 17

92| k. | B, |B.| B, B eiexf | bacicad %) cocchhhh [ 7056 [ 221 1|22 2RRAERAER R

B| 1|8 B.|BA B |21 (1) f° d (22 he 7156 [2°-12]12]@22) (212)*

94\ m | B2 82| | |B.]2B)(21)] c.d? (2P) 42 15116132) 27- 8| 8 |(2P) (31)*

95| m,| B2 1 |8, |8, ¢, d? (221)] 2 7124|32] 27- 81 8 |(22 (31)4

9| n |82 1|8 | 1]2E)QN] cig? B bdjt  |15[16[32] 2744 [BRE]  (21FF(3))

97 n. B2 | | B, |8, C.8” 31| dfijz 71241320 2741437 (22@E1)?

98| o (B[R] I |B[CH(C)]ddf (220)]  izrjz | 7 |24]32 2744 (=) [31)

P p B2 1| 12E) 2N deg BE)| deijijj. [11]20[32] 27 1] 1]BA] CREIGENEI

00/ p= |82 B | B, | | deg 32) de, 2y, [11]20132] 22| 2((32)] (21E(3IF

101] ps |82 8,| B, | B, de, 32)| e.itjajz (312832 22| 2|(32)] (2231

02 q 18318:| 8.] 1|28 )] fg? 32)] fijzjz | 7]24[32[ 272212 2F)@)3):




FAMILY ,=1B Rank 5. Class 2. u=720.

Commutators # I
Square: a2=1

Congruences (mod Z): a2=a?

Ha~ (1)

1|~(I4)-

[Qa, Q)= [azl Ts] = Q.

bach group is the central product of two [, groups, in ten distinct ways.
Y. is the uniquel, groupin the first quotient signal.

STEM. Order32.
/,=H,. Y.=I. t,=t1,.

Relations: @a=ai=a?=a,.

Group Defining Firstl First |Order[ Ayto— Self- Central
@ | S |Relation %L-JOJL Subgroup S’rruc—mor hisms i Factors
2|2 ig.| Signal | ture P izers

25| B [s 1214 1 - t, (8M)s | 8 « 8L
420 a | @ |09 &b 19]12] 2¢- 72 | (P)(21)° |{axa)fasxal
43| a, | 14) 1 asbe | 11]20 2¢-120 | (21)® {a,xai®




FAMILY I (Continued).
FIRST BRANCH. Order 64.

. .
G:OU_p Deflhlng (?r?r\)gr;lii QFluro’rJr. Su%gi;up Urder AUT(.)— Self— Central Factors
é‘é Relations ants | Signal Signal Structurelmorphisms| centralizers

2|2 a ez |az|az|az| Y, | Z, T (T T2 Ire|2]4|8]t-t. |1, (161 ) {1 60% B
03[ a, | B, | B 1B [ BB )| (12)](15) | a2 | abe | a®|39/24 [2=-1152[72] (1)) {axa} {a.xa.]
04 a,| B, | B | B | B.| | (15)| a2 | asb® |a%]2340| [2=1920{120[ (2P {a,xa,}°
05/ b [zl L1 1] 1100 b Javae31(32] [22720(720  (21)s {b+ bi®

06| ¢, | B | 1|8 |1|B|R2R)(7)|Q2F)] a2 | actesf? 23140 | 2516 |16 (1472132 P22 famc, I *{cxc 4o o.f?
07| .| B, | B | B, | B, | Bs (21°)|a,a,| b c2esezf 1548 2e- 12 112 (212P(2125(29° Ka,«cd2{a.xc {cxc e
08| c.| B | | | B, | B | B (2P) az| asecfe 7156 |[2°:48 (48] (21F(22) {avcif* {eanc e
09 d |8 1| 1|18 ][Rr @)@ b deg® 516(32] 22-48 |48]  (2F}(31)® {bx df*{d = df°




FAMILY [,=3C,. Rank 5. Class3. u=32.
Commutators # |: (@, a)=[a, @sl=a,, [%,)=a,
Squares: ai=l, ai=a,
Congruences (mod Z,): az=az=|, az=aq,
He~(2) Ho~(1). I~16Fa, L.~(12)
/s is the verbally characteristic self-centralizer.
Y,=T,is the unique [> group in the first quotient signal.
Hz is the verbally characteristic [z group in the first subgroup signal .

STEM. Order 32.
Z|=H3, Zz~(2l) Y2~(|3), Ya=1,.

Relations: a3=1 a2=a?}

GJOUP Defining (Siurg}; Suiigrf;up Order Auto- Self-

_é’ :z Relation | Sig Signal  [Structure|morphisms| centralizers
=l @ [ L2148 tt, |t.| 81 |(8M)
44| a, | a, [aib|d faza3[15] 8|82 28] (2) | (3)
45 a.| @ a, |a:b| d |azaz| 716|825 2|8 (21) | 3)z




FAMILY T (Continued)
FIRST BRANCH. Order 64.

Group| Defining [Genericf First First Subgroup Order Auto— Self-
o| 2| Relations Invari- Qu.ohen’r Sign al Structure|morphisms | centralizers
_é—g ants. | Signal 8 P

Zlola|glag| |V | Z| L] M (rzin| re |rel2lalslt 1 [t|er](60):
10 a | 1 ia | | [U)[(%)] a | af |ab|d]| a%a2 |at [31]16]16] 2% 168 |(17)] (31)
NlalB|1|a]|8 a, | a3 |a,b|d| a%a2 | a2 |15|32|16] 2¢- 16| 8|(219| (3))
12[ b 1B 1 [a| | [(4)](Q2)] a b* | d | b*  |atai[23[24|16[ 2 8 [32](21)] (3))z
1Bl e |B| | |@Bf | |@B) %) ¢ | a2 |laf|d]| 231241161224 161219 (312
114] c.| B, | B, |&B. B ¢, | a3, |be.| d| c3c? 15(32/16] 2¢- 2 18|21RA| (I
15/ ¢, [B, | | |&B) B, c, | a2 la.fld]| 7140116 2°- 4 |16[21)] B1)?
16| d [B | 1| @& | B[P ¢z |avas |cof | d | d242 7140016]2° 2 |8|0RR)| BI7
7 e |Bi B @ | | |2B)(2)| e | a2 |e2 | i ] ac2d, 9(28[16]2°- 2 (8| (27 [(3)(3I)
18| e[ B | B:| | | e | a,a2 [ee] 1 |a.¢,Cad, [1(36[1612° | [ 4122 |(31)(31)
19 e | B | B.| @i | B e | a: |e:|i| ascid, 31441161 2° 2|8 |27 QI3
1200 £ [B2] 1 |@B] | |(2R)|(2)] bd| f| e 15132(16] 22~ 4 [16](217)] (27
lell g B 1| a| B |RR2)] c. 2| d| f 718 (48] 2¢- 8 (32|21 (3>
22 h Bzl B | 1 [(2R] Q)] e g | i | be*f 11120(32] 25~ 2 | 8 |(31) [ (29)(3])
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FAMILY T,=3B. Rank 6. Class 2. u=168.

Commutators # |1 [@,, %)= @, [, @)=, (@ @s]=a,.
Squares: &? =az=az=|.
Congruences (mod 7)) a2=az=za=|

H2~(13)~ I.~(|3)-
STEM. Order 64,

/=H.. Ya=1,. t=t,.

n is the number of self-conjugate subgroups of order 8.
G:ou_p Defm.lng QlJFcl)’r;iSefnf Su,ljlgrrsgup (S){rdtfg— onurJrF?h- Self-centralizers
_“é .é Relations Signal Signal [ ture | isms n
2la)] ez | a? | a [z [ 21411, (161)7
44l a | || 1| T aabs | atesh |31132] 206 (1p(2R)21: |3
452, | @ | @, |@a| aaibi | a.cih® [ 7[56] 22 6|  (21E)2RRCR): |13
46 b, | | | | |@a| a,b,b2c2c, |a c2czc,h [23]40] 2o 2 (1)2(212)(212)(2 12)(212)2 | 9
A7 bo[ @ | @ | 1] abic | a.cth® [1548] 226 (°2rRr2R |9
48| b, [eau|aa| | | a.bc cicch  [15]48] 2°- 6 (14)(212p(212)2 9
49| by | @ |aa| @ | a,bbicici| c.c.czhh? | 7 156] 20 2 | 2R(21ACIRCRERE 9
150/ ¢ | @ | @ | @ | b*b2d cicsh | 15]48] 2°- 3 (1) (212212 9
ISI1di | || @ | @ [bicicicad®]| cicieahh? [15]48] 22 2 | (19(21)(2 2)( 2172 (21| 5
152] d. | @ |@@| @ |bycic,cid®| coc.hh?h? | 7156) 2 2 [ (2P)21F)(21) (212R(2R)| 5
153 e |a x| @ Q\Q; d’ h’ 7156 29'2’ (212)7 |




Commutators # I

[QS/Q ]-—

(@, @ ]=

. FAMILY r‘o _ ;BI  Ran k6c|ass 2_u=_72f_ e e e ——
41=a@y, s, Lel= Q5.
Squares: ai= as=|.

ST

Congruences (mod

H,~ (7). 1,~ ().

Z,):

Fach group is the central product of two [ groups, in one and only one way.

EM. Order 64
Z.=H2 Yz II

' 3.

n is the number of self—conjugafe subgroups of order 4.

First

Order

Auto-

G:OT Deflqlng Quot. | FirstSubgroup Signal |Struc{morph{ Self-centralizers B
o _é Relations Signal ture ¥ isms Factors | n
Slaelelela|rz L]l = (204t (167 (60% 16031
54la || | || | a2 |a| ate ata:.bt  [35(28] 2% 8 (14)+(212)+22) faxal |13
95|a; | @ | @ | @ | | |amz|a.| aZele. a3 be 11152 2% 12 (212)5(2)? farvast |13
56| a: | | & | @ | @a | 32 | & es as 3 (60| 2° 72 (22)° %2z |13
i, 157\b [a | | | || labla &b cieer [a2bib?bacic: [27(36] 25 2 | (14)2RR)2E)2ERQIERRY) | {a,xc} |9
i 98| b, | @, | @ | @, | @ |ab|a | b2ele. a2bt  [27136] 2= 12 P22 favca |9
199 by | | @ | || @ |ablas| a:bele. | b2bica  [19]44] 25 6 ( 2 212)(22) baxct |9
60| b, [ | | | @l a labla,| b2ciees | ab2bzct [19144| 20 4 )( )( 12)4(22 forcd |9
161{bs | | | |a|aslash|a | cGeieles | asbzbicz |11(52] 2 4 ( )22 12)+(22) (22)2 faixed |9
102/ bs |, | @ | @ |laalasb |2 | e2e2€l as Ca 3160 2% 12 (2P (22 faaxcd |9
63| e[| Tan| | [ [ b2 ]2 | ce?f® |abicicicd?|19(44| 22 2 [(14RRCEQ1E223(2)2 | {exct |5
; 64| co| @, laa| || @ [bbla, | caereie®f |bibib2cicad?|19 |44 2o 2 r(2|2)(2|2)(2|)(212)“’(22(2)2 foxcd |5
105 ¢, | @, || @, |aa| b° | & e} €; a.cics (19]44]2° 8 (21)422)(22)* feaxcd |5
100 e | | @, | | @ | b2 |0 | e f asbtct |19]44] 2= 8 (21)(22) (22)# fexcd |5
167 ¢ | q | a, | | | o |bbla, | coeienf 2 |bobacieyczd? |11]52] 20~ 2 [ (2R)2k)(212)2(22)(222(292 | {eixcd | D
108 ce | @ laa| o |l @ Ibbla | e e.e22 | abzezd* |11152] 254 |  (ppRR(22)(02)2(p2) faxcd | 5




FAMILY T, = :B.. Rank 6. Class 2. u=96.
Commutators # |1 [a@,,a,1= (@5, ]l = @, [@s, &= Qe
Squares: ai=ai=|,
Congruences (mod Z,): atzaizai=ai=|,
Ho~ (1), T~ ().
The meet of the three [z groups of the first subgroup signal is the verbally characteristic self-centralizer.
STEM. Order 064.
7= He Yo=1. t=t.

nis the number of self- conjugate subgroups of order 4.

'Grmﬁ) Defmllng (FQIJSI | FII’S]‘. gfrrduecr— n'?\ourfgh- Self-centralizers
g_é Relations Signal Subgroup Signal |[+yre | isms N
Sl alalalz|nlrl i >Talt 1 l6r] (6r)e

60, | 111 [l | |a |a® ] ac atbrer  [31(32f 20 8 | (4| (1422212 |7
70la, | 1 || 1|1 |a a2 |abf| aazbicz  |31132] 2 8 [(2F) (l)(2|2) (292 | 7
THa |l la|al | |a |ae] b, b b?h? 231401 2¢- 8 |21 (212217 |7
72 a1 1 | | |a a2 |abf|  abicicz  [15(48) 20 8 |(21) (2|)(21)(2~°—) 7
Bla |l |a|alala]| % 15|48 2224 [(14) (212)e 7
T4 ae| | | @ || @ | a:|aa| caf* | abics | 7(56) 2= 8 |8 (PRI |7
750, [ T[] I | 1]b |aa] ce | @bbb.czcad? [23[40] 22 2 |21 (14)2R)21)E09) | 3
76/ b,|a | @| | |a|b|& |ef | abtbicte, [23/40[ 25 4 |(22)| (2)QR12)+(22) |3
770 b, | | | 2| | | | b |aas] ce? | bibsb2c2czczd? [15]48] 22~ 2 |21)| R1=)21) (21r)(22)2 | 3
118 b, 1a | a| || | |b laalee |asbb.bicic.c2d?|15(48] 22 2 | (2 (212)2121(22) (29 | 3
79 bs |a | @ | | |aa| b | a2 | e3f | abicscid®* | 7156 2 4 |23 @ACI(2I* |3
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FAMILY T.=:C, Rank 6. Class 3. u=064
Commutators #1: (@, @] =[a,,a,] =@, [@,q]=a,, [, @] = @,
Squares: at=ai=|, ai=aq,
Congruences (mod Z,): az=q2=|, A= a,.
Ho~ 2l He~(). I~16Ga, I.~(12)
Lo is the verbally characteristic self-centralizer.
Ys is the unique [o group in the first quotient signal.
HY is the unique [, group in the first subgroup signal.

STEM. Order 64.
7~ (12). Y~ ().

Group Defining Qch;IiS;nf Firs’rSubgroup Order Auto- Self -

B _g Relations Signal Signal Structure|morphisms | centralizers
S\alalala|n|r|n] = Trlelalsln 1 5 her Tue:
250 a @ | @ | | e &l |i| a2 |aca|27]2016]2° 2 16|23 | (31)2
20| 2, | @ | @ | @ 8. | a2 |0 | aZad |a.co|ll (3616|202 [16] (29| (3))

20| | &G | %G |as (a0 | didZ |ac|3|44(1622-2 829 (38
2B b1 [a| | [b|af [d] acid. | b2 [23/24/16]2° 2|8 |27 ] BIE]
229/ b.| | | @& | @ | b |aa.|d|a.cicad [bibe|15[32]16] 25 1 | 4 [(219 | (3)3)
230/ bs| | | | @ | b | a2 [d]| acid. | b2 ]| 7]40/16] 2 2 |8 |(2F) | 3NE))
Blle|la|aa || |a®|i| & |acs|1928/16]20-4 1602 @)
22| .| @ || @ | ca |ad| i | 22 Jasca|I1]36]16]2¢- 28 [(2)] (3)e
2B | @ |edd| @ | ca | a2 | i o asca| 3 |44(16]1 2% 4 |16 (23 | (31)




FAMILY [,=3C. Rank 6. Class 3. u=32
Commutators #l: (&, @l=q;, [@,, %)= %, @,a)=a, [@,q]=a.
Squares: at=ai=|, at=a, aj=a.
Congruences (mod Z,): az=az=1
H,~ (21), Ha~(12). 1,~16hc, L~(12).

Z>,=H% is the unique self-centralizer.

STEM. Order 64.
leHa- YaN(zl), Y3:L.

Grous peining | e | frst | Order | o

Relations Signal | Signal Structure[morphisms

Numbe
Symbo
Q

2laz (3| L2 | L2418t ta]1t:]06

Mo | @ | | [z |a| j2 | a|19]12]32]25 2 |32((22)

2350, | @ | @ |eica| an | jaje | @ |3 ]28(32] 20 1 |16](22)

236 2 | @ | @ | c2|a.| j2 | & |3]28]32] 20 2[32](2

23706, | 1| 1 feela [h) b [15]32]16]27- 1|8 |8

238 b,| | | @ |c.e|a | hj | b |7]40[16[27 1|8 |2H

20 c, lea| | |e*]a| i?2 | co|11]20|32]27 2 |16]?
2

)
20 c, laa,| a | e2 |a | i | ¢y |3 (2832272 |16](>)

¥ |




FAMILY Te=°G Rank 6. Class 3. u=192

Commutators#|: [a, asl=[a, a]=q,,
Squares: @?=l, az=aqa,

Congruences (mod Z,): a?=a,, a2za2=za?=|.

Ho~(2), Ho~(1). 1,~32La, I.~(I?).

Y,=T, is the unique [, group in the first quotient signal.

[a3/ ae] = az'

H% is the unique [, group in the first subgroup signal.
Each group is the central product of a l, group and a [, group in four distinct ways.

STEM. Order 64
7.=H,, Z.~160b. Y.~ VY,=1, H¥~32l. ¢.

Relations: a2=a2=a,.
Group Defining First First Ordier Auto- Self-
& |5 |Relations QSLI'%J[ Squiggrnoapr Structure|morphisms crz;l:gl- Central Factors

E| & '

2|\ A| a2 |2 | L (LT T2 Te|2]4]8]t t.|1] (I65) {8 % 1613}
Ala| @ | o | a |glaba|as|31]16]16]2¢ 12(48] (BI) [BLax*I6 a8l a.16Fa,f
242 a,| @ | | a | ¢ |20 |ae.|ala2|23(24(16|2° - 6 |24 (317 Bl * 16622 *{8l az* 16z aaf
243 a,| @ | | | a |g|a3b|ad|as|1532]16)2°- 12|48 (31)° |8l a %166 asf3{8% a:% 6k a}
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FAMILY E7:|2F=/\(4). Rank 6. Class 5. u=I28.
CommutatorsZ |l [@,@]l=a, [@,%]=0s, (@, &)=, [XQ]=Q.
Squares: ai=l, az=a, a3=0>, X =;.
Congruences (mod Z): a?=a?, a?=l
H~ @), H~B) HA2), He~l) I-32La, I~l6ha, I8La, L~(12)
Y.=1, is the unique [s group in the first quotient signal.

STEM. Order 64.
Z=Hs, Z,=H., Z;=H,, Z,=H. Y=L, Y.,=L,, Y.=L, Y.=IL,

Group Defining First| First Order Auto-

= ~°1Quot |Subgroup .

& g [Relations Sig.| Signal Structure  [morphisms
c | E

Slala |a| [ [ ] 13 [214]8]16132]1 1o |+t
2650a | @ | || a [(B)] & |33|2|4]|8]|16]2 2|28
266la.| @ | | | a |(5) |aas [I7]18]4|8|16]2% | |64
267\ 2| @ | @ | a |(5)] a2 |1(34|4|8]i6]2 2128
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INDIVIDUAL GROUP DIAGRAMS
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Hence the lattice diagram

F
K yod
M=KNF (2)
NO = [K) F]
Note that
K /Ny is a central factor of F, hence Abelian; (3)
K/Ny = F'K/F’, a subgroup of the free Abeclian group
F/F’; hence it is itself a free Abelian group; 4)
whence

K/N, is the direct product of Ni/N, with a free Abelian
group. (5)

DEFINITION. Call H capable if there exists a group G
such that G/Z1(G) =~ H.

Suppose H is capable.

Problem. Given H, to classify all such G groups into families.

Write G ~ Gi to signify that G and G, belong to the same
family. Recall that

if Gy is a subgroup of G such that G = GiL1(G), then G ~ Giy;
() andif M 9 G and M NG’ = 1, then G ~ G/M. (7)

Assuming that G/Zi(G) = H, (8) let x1, x2, . . . , be a set of free
generators of F; let @ and B8 be fixed isomorphisms mapping
F/K onto H and H onto G/Z,(G). Let T = T(H) be the group
of autornorphisms of H. Then, for any 6 € 7, 88 = v (say) will
be an isomorphism of ¥/K onto G/Z(G). Suppose v maps Ax;
onto Zi1(G)y: (1 = 1,2, ...), the y’s being chosen arbitrarily in
their cosets. Then the map x; — »; extends uniquely to a homo-

morphism ¥ of F onto Gy = {y1, ys, . . .} with kernel M (say),

so that
F/M = G, %)
since G = G1Z1(G) by construction, then by (6),
G ~ Gy, (10)
and therefore
(G = Gi N Z(G), Gi/R(G) = G/(G) =H.  (11)
By definition of v,

M <K and K = ,Zl(Gl)T_l is the inverse image of the
center of Gy under 7. (12)

Thus K/M is the center of /M and therefore
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M > Ny = [K, F], and K/N, is the center of F/N,.  (13)

Let M NN, =N so that Ny < N < M. By (4), M/N =~
Ni M /Ny, a subgroup of the free Abelian group K/Ni. So M /N
is free Abelian, and hence

M/Ny = M/Ny X L/No, (14)

for a suitable choice of L. All these subgroups L, M, N are
normal in F since they lie between K and Mo = [K, F].

Since M <K, MNF =MMNN =JN, and so the sub-
group M/N of F/N intersects the derived group F'/N of F/N
in the unit subgroup. Hence F/M ~ F/N and, in view of (6)
and (9),

G ~ F/N. (15)

Also K/N is the center of F/N. The conclusion is that every
family of groups G with G/Z(G) = H has at least one repre-
sentative among the factor groups F/N of F/N, for which
M <N <N, (16a) and K/N is the center of F/N. (16b)

The choice N = N, is always possible by (13). The family
M(H) to which F/N, belongs is called the maximal family asso-
ciated with the given H. The remaining problem is to decide
when F/N ~ F/N*, where N and N* are subgroups satisfying
(16a and b).

Now by (16a), the central quotient groups of F/N and F/N*
effectively coincide; in F/K = H. Therefore F/N ~ F/N¥*,
if and only if there exists an automorphism ¢ of F/K which
induces an isomorphism mapping the derived group F’/N
of the former onto the derived group F’/N* of the latter. Induces
is to be understood in the obvious sense: if ¢ maps Ku and
Kv onto Ku* and Kv* respectively, then @ maps N[y, v] onto
No[u*, v*]. Since Ny = [K, F] these cosets of N, are uniquely
determined by the cosets Ku, Kv, Ku*, and Kv* of K.

Thus ¢ — g may be regarded as a homomorphism of
T(F/K) = T = T(H) into T(F'/N,). Obviously the auto-
morphism induced by ¢ on the subgroup KF'/K of F/K and
that induced by ¢ on the factor group F'/N; of F// Ny are related
by the natural isomorphism of KF'/K with F'/N,. However, o
leaves Ni/N, invariant; and the only really interesting items are
the automorphisms of N;/ /N, induced by o for the various ¢ € T.
For it has been shown

(LEMMA 2.1) that F/N ~ F/N*if and only if there exists
o € T such that o maps N onto N* (or more strictly N/ Ny onto N*/No).

Note that inner automorphisms of F/K can be realized by
transforming with elements of F. Since N1/N; is a central factor
of F, ¢ acts trivially on N:/N, whenever ¢ is an inner auto-
morphism.

Schur proved that the group N;/N is independent of the
choice of presentation (1) of H as a factor group of a free group,
and depends only on the abstract group H itself. More precisely,
he proved that £’ /No depends only on H. Both these results are

embodied in the still more precise fact that the maximal family

1

M (H) depends only on H. For if a different presentation of I
(say) F¥*/K* ~H (17)

is taken and the above argument is applied, then, by (15), with
the obvious notation,

F*/No* ~ F/N, (18)

for some N between Ny and V. Similarly, by interchanging the
roles of the two presentations,

F/Ny ~ F*/N*, (19)

for some N* between No* and N, *. In order to obtain (18) and
(19), it is necessary to use an isomorphism v of F/K onto F*/K*
and an isomorphism y* of F*/K* onto F/K. But it is always
possible to choose v* = y~L If this is done, the induced homo-
morphisms 5 of F'/Ny onto (F*)'/N,* (with kernel N/N,) and
¥ of (F*)'/No* onto F'/Ny (with kernel N*/Ny*) immediately
make yv* and ¥* ¥ the identity maps of F'/N, and (F*)'/N,,
respectively, so that ¥* = ()71 and N = N, N* = N*.
Summarizing:

THEOREM 2.2. The outer automorphisms of H (strictly
F/K) are represented in a natural way by automorphisms of the
Schur  multiplier Ni/No of H. The subgroups N/N, such that
No £ N < WN: and such that K/N = Zy(F/N) are permuted among
themselves in this representation; and F/N ~ F/N* if and only if
N and N* belong to the same transitive set.

The distinct families of groups G with G/Zi(G) = H are in
one-to-one correspondence with these transitive sets. In partic-
ular, the maximal family corresponds to the set consisting of
Ny alone.

The group of autologisms of the maximal family is 7 = T(H),
the group of automorphisms of H. For the family to which F/N
belongs, the group of autologisms is the stabilizer of /N, in 77
i.c., it consists of all the automorphisms of F/K = H which
induce in N;/MNo an automorphism leaving N/N, invariant. An
easy corollary of the foregoing general theory is the following
theorem:

THEOREM 2.3.

For by (5), K/MNo is the direct product of Ni/No with a free
Abelian group (say) L/N,. Here L < F; and F/L ~ F/N, so
that F/L ¢ M(H), the maximal family. Further F/L is a stem
group. If Ny < N < M, and if K/N is the center of F/N, then
F/LN ~ F/N and F/LN is again a stem group. But every family
of groups G with B/2y(G) = H contains members of the form
E/N, with N as described.

Every family contains stem groups.

Remark. In principle, the above theory gives a method
which can be used systematically to classify the 2-groups of order
< 64 into families. It is most useful in those cases where M (H)

is small. When m(H) is too large, other methods are easier.
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3.3 Applications of the Multiplier Method

Not every group H can function as the group of inner auto-
morphisms of some other group G. The following criterion is

the simplest:

LEMMA 3.1. Let H= {x, ... , %}, and suppose H con-
tains an element u 7 1 such thatu € {x;} for eachi = 1, ..., 1. Then
G/2(6G) = H is impossible.

For if Zl(G)v is the coset corresponding to u, and y, . . ., Jr are

arbitrary elements from the cosets of 2,(G) corresponding to
Xly oo s X then v = »;" mod <\(G) for some integer m;. Hence
» commutes with each y;. But G = {Z,(G), », . . . »r}. Hence
v € 2(6), which contradicts v < 1.

COROLLARY 3.2. A fiite Abelian group is capable if and
only if its two largest invariants coincide.

Suppose for example that H = {x’} X ... X {x'} with
{x/} of order h;, where Ay divides A, = 1,...r —1). If
hy/he > 1, write x = 2’ and x; = x/x;/ for ¢ > 1, and let
u = xi"2 Then H = {x1,...,x}, u# 1 and u = x;*2 for each
¢. Thus H is incapable.

But it is easy to see that the multiplier of I has as invariants
1 equal to kg, 2 equal to 43, ..., r — 1 equal to 4,, and that, if
hi = hy, there is a group of the maximal family M (H) in the form
G = {»y, ..., -} with the defining relations [ y;, y;]¥ = 1 (¢ <),
together with those which express the fact that the [ y;, ;] lie in
the center. This group has Z1(G) generated by the [y, y;] and
yr"%=1; hence, effectively, G/Z1(G) = H.

Where H is an Abelian 2-group of Type A, and the partition
N has parts

MM >N 0, (1)

then necessarily Ay = Ny, if H is to be capable. Assuming this
condition, the rank of the maximal family is

i)\;—l— S min Ay N) =M+ 20+ ... A
i=1 i<j

When r = 2, H is of type (M, M) and the multiplier is cyclic
of order 2™, Here (in the notation of sec. 2) N > N, implies
that the center of F/N is larger than K/N. Thus only the
maximal family exists. This family is T'; when M = 1, T1; when
A= 2.

Equally simple is the case A = (13). Here the multiplier
N1/ Ny is an elementary group of order 8 and therefore isomorphic
with H itself. Hence it is easy to see that the group of automor-
Phisms 7' = T(H) of order 168 is faithfully represented on
M/ N,. Besides the maximal family Ty, there occurs only one
other family, Iy, formed by taking N/N, of order 2 (all such
N's being equivalent under T). It is impossible for N/N; to be
of order 4, since that condition would make the center of F/N
of index 4, not 8.
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It is easy to see that 7 is the smallest rank of a family of 2-
groups with G/Zi(G) of type (1°) or (2*1). Hence the groups G
of class 2 and order dividing 64 which are not included in the Jamilies
Ty, Iy, Ty, and Ty, obtained above all have central quotient groups of
type (1%). For if H is of type (1), the multiplier is of type (1°),
and since this type is rather large, these remaining class-2 groups
are best divided into families by another method (see sec. 3.5.).

Of the two non-Abelian groups of order 8, the quaternion
group is incapable by Lemma 3.1. More generally, of the three
groups of order 2" (n > 4) and maximal class n — 1, only the
dihedral group is capable, again by Lemma 3.1.

LEMMA 3.3, Let H= {a, b} with a® = b2 =1, pgp =
a™ (n > 1), be the dihedral group of order 2"*'. Then the multiplier of
H is of order 2. Only the maximal family M(H) exists, and its stem
consists of the groups of order 2"** and of maximal class.

For let G be a stem group with G/Z1 = H where {1 = 24(G).
Let <wx correspond to a. Then 4 = {Z), x} is of index 2 in G
and Abelian. By Theorem 1, if G’ is of type A, G/Z1 will be the
split extension of an Abelian group of type X by an element of
order 2 which transforms each element of the Abelian group into
its inverse. Hence A = (n), and G’ is cyclic of order 2". But
G'/Z: =2 H', which is cyclic of order 2*~1. Hence & is of order 2,
and G (by Theorem 1) is of maximal class.

In particular, for H = 8 I'y a3, the only family is Ty = M(H);
for H = 16 T'; a;, the only family is Ty = M(H).

It follows that the groups with G/Z; of order 8 fall into the
three families Ts, Ty, and T'y. Consider next those with G/<; of
order 16. Of these, those of class 2 but not in T';; are (as already
remarked) to be treated later. By Lemma 3.3, those of class 4
constitute the family I's. It remains to deal with those of class 3.
For these, H =~ G/Z\ is a group of the first branch of T';. Now,
in the notation of the tables, the groups as, b, ¢s, and d of this

- branch are incapable by Lemma 3.1.

For 16Tyas = {as, as, asB:}, take u = B
For 16736 = {asB, asB, 8}, take u = B2
For 16Tycs = {@sas, as}, take u = B,.
For 16Txd = {azaa, as}, take u = g%

Thus there remain only the groups a; and ¢; to be discussed.

Now 16T2a; is the direct product of an octic group with a
group of order 2. Rather more generally, consider the case where
H is the direct product of a group of order 2 with a dihedral
group of order 2"t (n > 1). Say H = {a, b, ¢}, where

a? = b2 =2 =1, bab = a7\, bc = ¢b, ac = ca. (3)

Let G be any group with G/{1 & H, and suppose that to a, b,
and ¢ there correspond the cosets of <; containing «, 8, and 4.
Then y?and [e, v] liein £i. Hence 1 = [a, v?] = [o, v]? = [a? 7]
Hence, v commutes with o’; and ¢ = [a, v] is of order 2. Simi-
larly n = [8, v] is of order 2. Also G, = {«, 8} has G,/Z, N Gy,
which is dihedral and of order 271, Hence, by Lemma (3.3),
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G is .cyclic, of order at most 27, and generated by [«, 8]. But
[, 8] is of order 2 mod 2. So, if ¢ = [a 8] % = 1. Thus
N = {&m ¢} is elementary and of order < 8; it lies in .Z). Now
[, 8] = 72 mod {}; therefore [a, B commutes with v; and Gy’
is normal in G. But G = {2, o, 8, v}; and so &’ is gene
[@ 6], & and », together with their conjugates inL G. Since it
has been shown that {[«, 8]} = G is normal in G it fOilows
that G' = {[e, 6], & n} and that G" N = {g 0, ?}.’Hence the
multiplier of H is elementary and of order < 8.

To prove that this multiplier is actually of order 8, define a
group G = {a, B, 7, £ n} by the relations:

rated by

a2"+1=;6’2='y2= £2=772= 1,180‘6:0!—1, [a,‘y] = ¢

[637] =7))£E'€1;17€zl-

Thus G is the split extension of the direct product {e, 8} X {£} x
{n} of a dihedral group of order 2"*2 and two cyclic groups of
order 2 by an element vy of order 2 which induces the automor-
phism «, 8, £, 7 — a &, 81, £ 1. Note that [a?% v] = 1, and that
21 = Ri(G) is {&n, ¢} where ¢ = a®. So in fact G/ =~ H.
Since G’ = {a% & 1}, <1 is contained in G’. The multiplier of
H is of order > 8, since {1 is of order 8. Combining this result
with those previously obtained proves that the group in question
is a stem group of the maximal family M (). This family there-
fore has rank n 4 5. It is next necessary to obtain representatives
of all families with central quotient groups isomorphic with H
in the form G/N, where N < ). To avoid extra notation, 2,
may be regarded as itself the multiplier of H. There remains to
be considered how its subgroups N are affected by automor-
phisms of H.

Let ¢ map a, b, ¢ into a, ab, ¢. The induced automorphism 8
maps £, 1, ¢ into £, &, ¢. Again, let ¢ map a, b, ¢ into a, b, a®* ' ¢.
Then ¢ maps &, », ¢ into &, 4¢, ¢; and if ¢ maps a, b, ¢ into ac, b, ¢,
then ¢ is the identity on Zi. These three automorphisms suffice,
since they generate 7 = T(H) modulo inner automorphisms
of H. |

In order that G/N shall have the center £/, it is obviously
necessary that N shall not contain ¢, since, if it did, 2" N
would belong to the center of G/N. Excluding & = {¢}, the
remaining six subgroups of order 2 in £ fall into three transitive
sets under the influence of 7. The first consists of {£} alone, the
second of {#} alone; the remaining four are all equivalent. Thus
there are three distinct families of rank #n 4 4, when N = {¢},
{&¢} or {#n}. When n = 2, these families are I'u, I's and Ty re-
spectively.

If /Vis to be of order 4, it must contain neither { nor £ For
if £€ N, G/N has an Abelian subgroup of index 2 (as, for
example, in family I'y). But when W is of order 4, the derived
group of G/N is cyclic, since NV must not contain ¢ = [a, 8],
and G’ is of type (n, 1, 1). Thus if ¥ is of order 4 and contains £,
G/N has as a central factor group a dihedral group which is
not isomorphic with H. But of the seven subgroups of order 4
in <1, there are just two which contain neither ¢ nor ¢, namely,
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{¢r,n} and {&, nc}, and these two are equivalent under the
influence of 7. Thus there is only a single family of rank n + 3.
When n = 2 this family is T's, and when n = 3 it is I'\g—as may
easily be verified. The following Theorem summarizes this
situation:

THEOREM 3.4. Let H be the direct product of a dihedral
group of order 21 with a cyclic group of order 2, where n > 1. Then
the Schur multiplier of H is elementary and of order 8. The groups G
with G/Z\(G) = H fall into five distinct families; the maximal Sfamily
of rank n + 5, three families of rank n + 4, and one family of rank
n 3. Those among these families which have rank < 6 are I's, T,
I's, Tie (for n = 2), and T1g (for n = 3).

Turning next to the case H = 16Ty, it is again just as easy
to deal with a rather more general case, H = {a, b}, with the
defining relations:

a® = b2 =1, bab = ate, ¢ = 1,ca = ac, cb = be, (4)

where n > 1. When n =2, H = 16T;c.. When n =3,
H = 32T3¢;. When n = 4, H = 64Ts¢1. In general, the I n
question has the same order and belongs to the same family as
the H of Theorem 3.4.

Let G be a group with G/Z1 = H, and let the cosets of L1 in
G which contain «, 8, v correspond as before to the elements
a, b, ¢ of H. Hence G = {1, a, 8} and G’ is generated by [a, §]
together with its conjugates in G. Now H' is cyclic and of order
2"1 since it is generated by [4, b] = a~*¢. Hence [a, B] is of
order 2"! mod Zi. If ¢ is taken as [a, B]Y"™Y, then ¢ € Zi. As
before, since v% and [a, ¥] = 7 lie in <3, 72 = 1 and o? commutes
with v. Write ap = a and a1 = [, 8] Since 8% € £, it follows
that 1 = [ai_l, ﬁ2] = [0(1'_1, B]Z [a¢_1, B, ﬁ], so that Qi1 = a; 2 for
i > 0o0r am = o2 But m = [a, 8] = a1™?” mod 2, so that
a7 € 21 Therefore o, € {1, and $0 anp1 = a,~? = 1. Hence
an = ¢ and ¢2 = 1. Thus {1} is of order < 27, and is trans-
formed into itself by 8. But [ay, o] = [e7%v,a] = [v; ] =1,
since 4% = 1. And since n € 2, {a, 7} is transformed into itself by
both @ and 8 and is therefore normal in G. But G’ is generated
by a; and its conjugates in G. Hence G = {ay, n}and G' N L, =
{n, ¢} is elementary and of order < 4. To prove that the multi-
plier of H is of order 4, use the group G = {a, 8, v} with the
defining relations =g =42=1, [a,v] =B 7] =
=1 1€L, BaB = a'v. Note that G = {a,ﬁ} and is the
split extension (by 8 of order 2) of the group {a, v} of class 2,
with the automorphism a, ¥y — a7, v7 which is effectively of
period 2. Since n > 1, the centralizer of 8 in {a, v} is the group
{a?", 3} of order 4, which is also in the center of {a, v}. Since 8
transforms {a, v} by an outer automorphism, it follows that
2y = 21(G) is precisely {a®", n}. Hence G/ = H. Finally, G’
contains 5 and [a, 8] = a %y, and hence also a®" = (o *7) A
Thus 2y < G’ and G is a stem group. It follows that G € m(H),
and the multiplier of H is the elementary group of order 4.

Any families other than M(H) with H as central factor group
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may be represented by groups G/, where JV is one of the three
subgroups of order 2 in <. But ; must not contain g, for if it did
Ny would lie in the center of G/N. If n > 2, N must also not con-
tain o = an, for if it did it would make en—1 = [a, £]*"" =
o' commute with both « and g mod W, so that Ne,_; would
lie in the center of G/N. Finally if n = 2, N must not contain
o', since if it did, [&, v, @] = 1 and [e1 7, 8] = o ; hence again
G/N would have too large a center. The only admissible choice
of N is therefore N = {a*n} if n > 2 and N = {a'} il n = 2.
Thus the maximal family has rank n + 4; hence there is just one
other family, of rank n 4 3. For n = 2, M(H) = Ty; and the
second family, where this H = 16Tye is T7. For n = 3, the
unique family of rank 6 is T'y. To summarize:

THEOREM 3.5. Let H be the group of order 27%% (n > 1)
defined by equation (4). Then the Schur multiplier of H ts elementary and
of order 4. The groups G with G' D Z(G) fall into two distinct
Sfamilies; the maximal family has rank n + 4, and there is one other
family of rank n 4 3. Those among these families which have rank < 6
are Ty and Tre (for n = 2) and Ty, (for n = 3).

3.4 Groups G of Class 2 or 3 with Center of Order 2

These groups are stem groups. Suppose first that G is of class
2. Then G/ = 21 = Z(G) is of order 2. Hence G/ is elementary
and every element of G — < has exactly two conjugates in G.
The following theorem may be proved:

THEOREM 4.1. If G isa 2-group of class 2 with center <
of order 2, then G is the central product of a certain number v of oclic
groups O with a certain number s of quaternion groups Q: symbolically
G == 0"Q, so that G/ is elementary and of order 2™ where
n=r-+s Also O Q= 0r Q7 if and only if r = p mod 2 (and
hence s = o mod 2). For given n, there are just two distinct such groups,
Jorming the stem of a single family ©,.

When |G:21| has its smallest possible value 4, G is a non-
Abelian group of order 8, hence, as is well known, G is either
octic or quaternion. These two groups form the stem of the
family ®, = T2. Suppose then that |G: 1| > 4. Choose any two
elements x;, y1 in G which do not commute and let their central-
izers in G be X1 and 7. Since X and 71 are distinct and are both
of index 2 in G, it follows that G = X1 /M 11 is of index 4 in G.
Also x; and y; are independent mod Gi. Hence G = PiGy where
Py = {x, n}, and P1 N\ Gy = Zi. Since [Py, Gi] = 1, the center
of G, is again 2y, and consequently G is the central product of
P, and G; (i.e., the direct product with amalgamated centers).
P, being non-Abelian and of order 8, is cither octic or quater-
nion. The first result now follows by induction.

It is easy to verify that the central product O of two octic
groups is isomorphic with the central product Q* of two quater-
nion groups, while 0% and OQ are distinct. More generally,
(for example, by counting the numbers of elements of order 4)
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O™ and O™ ' () may be shown to be distinct. Thus the order
of G has the form 2¥*! and either G =2 0" or G = 0" (.
In either case, if x; and y; are chosen to generate the ith of
these central factors ( = 1, ..., n) and z generates <1, then
xt=p2=1mod {1, 22 =1, [xyps] =2 (G =1,...,n), and
the x’s and y’s with distinct suffixes commute. Thus the two
groups belong to the same family &,: 0" ~ 0" Q. Note that
®, is of rank 2n + 1, ®; = I';. Note, as a corollary, that there
is no family of rank 6 of groups G where G/Z. is elementary,
Abelian, and of order 32.

Now let G be of class 3 with center {i of order 2. Then <5/
is clementary. Let W be the centralizer of e in G. For x € G
and y ¢ 2, the function [x, y], with values 1 or z, where 1 = {z}
is distributive with respect to both arguments, and establishes a
dual correspondence § between J2/S1 (regarded as a linear
space over the field of two elements) on the one hand and G/ W
on the other. Thus G/W is also elementary and |G:W/| =
| Z5:21|. By 8, any subgroup L of G lying between < and <,
is associated with its centralizer L* in G, which lies between W
and G. Moreover |L:2i| = |G:L*].

Now let L be complementary in {3/<i to the center W M L
of 2y, so that LW N Z,) = Z» and LN W = 1. The cen-
tralizer L* M £y of L in J, must then coincide with the center
W N Zy of 25 Hence L* N Zy =W NZ, But [G:iL*] =
|L:2 = |[Re:W N 2| = |Ze:L* N Z3|. Thus G = L*Z, =
L*L is the central product of L with L*. Since the center of L
is 21 and L is of class 2, it follows from Theorem 4.1 that either
L = 2, (in which case L*¥ = G) or else L = O™ or 0*71 Q for
some n > 0. On the other hand, L* must be of class 3, for
otherwise G would not be of that class. And since [L, L*] = 1,
G = LL*, it follows that Zx(L*) = L* M Z2(G), which is the
center of Jy = Z3(G). Thus the second center of L* is Abelian.
For the same reason, the center of L* is <.

THEOREM 4.2. A group G of class 3 with center of order 2
is the central product of a subgroup L* of class 3 with a center of order
2 and an Abelian second center containing a certain number n (possibly
zero) of octic or quaternion groups.

The only family of class-3 groups of rank as small as 4 is Ts.
Applying Theorem 4.2, where L* is in Ty and n = 1, there is
obtained a single family TI'js of rank 6. All other families obtained
by applying Theorem 4.2, with n > 1, are of rank > 6 and hence
are no further considered here. Hence it will be assumed that
2y = Z2(G) is Abelian.

In this case Z» < W, and if |Zy:54] = |G:W| = 2¢, the
order of G is 21| W:2,|. It may therefore also be supposed
that s = 1 or 2.

Since G is of class 3, 21 < G’ < 2, Suppose first that G’ is
of order 4 and let U be its centralizer in G. Since [G':Z1| is then
2, Uis of index 2 in G. Also U’ < Zi (a general truth about the
centralizer of the derived group). Thus G/<{1is a group of class 2
with a derived group G'/Z:of order 2, and with an Abelian sub-
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group U/Z: of index 2. These facts imply that G/{i € T» and
hence that |G: <] = 4 Consequently |G| = 27 = 16 or 32.
Tt follows that G/Z1 is either the octic group or else 16Tya, or
else 16 T'y¢1, CasEs already dealt with in sec. 3. In these cases, G
is a stem group of one of the families Ty, T, I, already found.

Thus it remains only to deal with the case s = 2, G’ = < of
order 8. Assuming |G| < 64, G/Zi is then a group of class 2;
its order is < 32 and its derived group is G'/Z; of order 4. G/Zi
must therefore be a stem group of family I'y. Hence there is
a uniquely determined subgroup 4 of index 2 in G such that
A<z 4 itself cannot be Abelian (see sec. 1) for, since
is of order 2, that would mean that G’ was cyclic, whereas in
fact G'/Z1 1s an elementary group of order 4. Thus either (1) 4
is a stem group of Ts or (2) 4 € Ty,

Case (1). Since [G":Z| =|Z5:21] =4, it follows that
|G: W| = 4, where (as previously) W is the centralizer of G’ in
G. Now by hypothesis {2 = G’ is Abelian. Therefore, in case
(1), {> must be its own centralizer in 4. Hence 4 N\ W = 5,
AW = G. Also, since A € T and has 2, as a center, 4/ is
Abelian and elementary. Therefore G/.Z; is 32Ty a;, since this is
the only stem group of Ty whose Abelian subgroup of index 2
is elementary.

Case (2). Inasmuch as < is either of type (1%) or (21),
2y = {au, @z as}, where {a} = K1 and i’ = a,? = 1; either
as? = 1 (X, elementary) or a3? = a1 ({2 of type (21)). Then
as and a3 form a base of 2 mod <. Since G = AW and
Zy = AN W, the dual relation 6 between Z»/Z: and G/W
induces an isomorphism between <»/<1 and A/Z». The “linear
spaces’’ are only of dimension 2. Hence as,a5 in A — s may be
chosen so that

[ag,05] = [asa] = 1, [az,a] = [a5,05] = on. (1)

Let oy € W — 2, so that as, a5, @ form a base of G mod <.
Since A/Z: is elementary,

a52 = Ot62 =1 mod Zl. (2)

For & € A, write £* = [ay, £§]. Then, since G/{i € Ty, the
mapping ot — <1£* is an isomorphism of 4/<: onto Z2/<;
and [g*, §] = 1 or a1 From (2) it follows that 1 = [as, &?] =
(£*%)?[£*, £] so that

(£%)% = [£% £]. (3)
Also [£, as?] = [£, au]? since aq € W, the centralizer of G’. Hence
(£%)? = [as®, ] (4)

When 2, is elementary, (£%)2 = 1 for all £ € 4. Hence by (4),
as? belongs to the center ) of A; and by (3), [, €] = 1 for
every £ Since the relations (1) remain unaffected when as, ag
are replaced (either or both) by aas, aias respectively, the
bresent case may be written

a® =1 mod 2, and [ag,05] = 3. (5)

[a4,a5] = a9,
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Relations (1), (2), and (5) define family T'y;.

When 2, is of type (21), au® ¢ Zi since ¢ may be chosen so
as to make ¢* of order 4. On the other hand, (4) gives [a4, £] = 1
for every ¢ in 4, since (¢%)” € 1. Hence & = o, mod 2.
Relations (1), (3), and (4) now give (e5*)* = 1 = [a5*, o], 50
that a;* is either as Or anas, and it may be assumed that az* = qy-
a; may be replaced by aa: if necessary. On the other hand
(as™)? = lag,a5] = a1 = [as*,a6]. Hence as™ # a3 mod 2y Never-
theless, a* £ @, mod <1 also, since a2 = a5*, as has already
been shown. Thus it may be assumed that as® = aza; (a3 may be
replaced by aya; if necessary). Thus in this case 5 is of type (21)
and the relations obtained are

a? = ay mod <1 and [agyas] = a2, [a,a5] = agay, (6)

which together with (1) and (2) define the family I's.

It remains only to discuss the case where 4 € T',. NaturallyA’
is again 23, since this is the only normal subgroup of order 8.
But C 5 2, since the centralizer W of £ is of index 4 in G.
Since < is Abelian and A is not, CJ» must be of order 16. But
CZ; = W. Hence the following diagram where D = C N 2,
and all subgroups given are characteristic in G. Choosing &; 5 1
inlyaeinD —Z2,ainls — D,auinC — D, asin 4 — W,
and a5 in G — A, gives the following relations:

[ag,as] = o, [a4,ae] = ay, (7)

since [a2,4] = 1 and «; is not in &y; whereas [ay,A] = 1 and o4

is not in <. (It might be that [as,as] = aas, but then a4 could
be replaced by asas.) Note also that (as just remarked)

[az,a,'] - [(X.;,d,'] =1fori <60. (8)

In view of the dual correlation of <3/<; with G/W, in which
D/Z; corresponds to A/ W, as may be chosen so that [as,as] = 1.

Then
[as,a] = 1 for i # 5. (9)

[as,a5] = o1,

Finally, [as,a5] € £ — D since [ay,a6] is in D. By adjusting the
choice of @; (which does not affect (8) or (9)) it may be assumed
(in view of (7)) that

[os,06] = . (10)
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Now by (9) as® € Z» and commutes with az. But by (7) it does
not commute with ay or wyas. Hence

as® = a3 mod L. (11)
Next (by (9)) e = [anas] = [ee,05] = @5~2 (by (11)) since

[as,06] = a3 commutes with «g. Hence

az” = wj. (12)
Next [as’,a0] = as®ay = ag’ar = 1 by (12). a2 ¢ <2 and the
centralizer of ag in s is {as}. But a5 does not commute with g
and therefore a5 # o3 mod 1. Hence ’

a52 = 1 mod zl. (13)

Again, (by (11)) 1 = [a,a5] = [as,0"] = [a,a6]? = [, a6,06] =
az’ey by (7); so

a22 =

ay. (14)

Finally, [as%as] = as? since [ag,a] = 1. Hence by (14), a? does
not commute with «g But au? € D. Hence

a42 = Qg mod zl. (15)

The relations (7) to (15) define the family I'yy and so G/ =
327T,b;. These statements may be summarized as follows:

THEOREM 4.3. There are just three families of rank 6 for
which the central quotient group is a stem group of Ty, to wit, the families
P24, F25, and Tog.

In view of the results obtained in secs. 3 and 4, the determina-
tion of the families of rank <6 of 2-groups of class 3 is now
complete. The families in question are T3, T's, I'7, T'y—T'15 inclusive
and Ty, Tosy Tog.

3.5 Let r = 6 and Let G Be of class 2

Note first that, since G is a stem group, G’ = ;. Also, the
two highest invariants of the Abelian group G/<; must be equal;
for otherwise if ; is of highest order 2* mod Zi, x;2® ™~ must
be in Z;—a contradiction. Therefore |G:Zi| = 4 implies G € Ty,
and |G:<i| = 32 implies that <y is cyclic. Therefore r (by sec.
2) is odd. It follows that the only possibilities for the type of
G/Z, are the partitions (1%), (22), and (1%).

It is easy to see that for G/Z; of type (1%), the chief family is
precisely of rank 6, namely, Ty. For G/< of type (22), the chief
family is again of rank 6, namely, I'1; (already obtained in sec. 2).
. A) with A = N2,
the rank of the chief family is easily shown to be

Indeed, for given partition A = (g, Ay, . .

Zr: A + Z min ()\1‘, )\j).
i=1

1<J

Therefore it remains to consider only the case G/<Z1 of type (1%),
where Z; is an elementary group {u, »} of order 4.
The three groups Gy = G/{u}, G; = G/{v}, and G; = G/{uv}
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belong either to I'; or else to T, since their derived groups are
of order 2.

(1) Suppose two of these groups G; belong to T',. Without
loss of generality, let Gy and G: belong to T's. Let Hi/{u} and
H,/{v} be the centers of Gy and Ga. Then |G:Hy| = |G:H,| = 4
and H; > 2. From [Hy, G] < {u} and [H,, G] < {0}, it follows
that H; N He, < Zi. Since G/Zi is of type (1, 4), it follows that
H,H, = G and that, if H, = {Zi, x1, x2} and Hy, = {Z, x3, x4},
then xy,...,%s form a base of G mod <. Also [H,, H,] <
{u} N {o} = 1. Thus [xy, x5] = [x1, xa] = [x2, x3] = [x2, %] = 1.
It follows that [x1, x2] = u, [x3, xs] = v (since otherwise
[x1, x2] = 1, and x; would belong to {1). Thus G € T,

(2) Suppose Gi € T, but neither G, nor Gj is so contained.
Let H,/{u} be the center of Gi. As before, |G:H,| = 4 and it
may be assumed that Hy = {Zi, x1, x2}. Since G» and Gj belong
to I's, every element of G — H; has 4 conjugates in G, whereas
x1 and x, have only two such conjugates. Let X;, X; be the
centralizers of xi, x; in G. Then |[G:X;| = 2 and so |G: X1 N
X:| < 4. It follows that X; N X, = Hj, since otherwise X; M X
would be an element of G — H;, commuting with both x; and
x5, and hence having only two conjugates in G. Thus [x1, x5] = 1
and X; # X, Let x € X1 — Hy and x; € Xo — Xi. Then
[x1, Xs] = [xe, 2] = 1, and [x1, xa] = [xs, x5] = u, since x3 § Xo
and x; ¢ Xi. Clearly G = {Zi, x1, %3, x5, x4} and G’ = Z,, since
it is generated by the six commutators [x; x;] (i <j). Hence
necessarily [xs, x4] = v or wy (the choice is irrelevant). Thus
G € I'nn.

(3) Suppose Gi, Gi, G all belong to Ts. Then every element
of G — 2, has four conjugates in G. The centralizers of two of
these elements ecither coincide or intersect in <, since such
centralizers (of order 16) are Abelian. There are therefore just
five of these centralizers Cj, ..., Cs, each containing, besides
21, three of the fifteen remaining cosets of <. Also G = C.C; for
i #j, since C;NC; =2 Let C = {Zy,x1, %2} and C, =
{21, X3, %}. Then [x1, x2] = [x3, x4] = 1 and it may be assumed
(by choosing x3, x4 in C, suitably) that [xi, x3] = u, [x1, 4] = 0.
Then [xs, x3] = » or up (since x; has four conjugates) and
similarly [xs, ] = u or uv. But since x, has four conjugates
[x2, x3] and [x2, x4] cannot both be wv. The case [xs, x5] = 2,
[x2, x4] = u is also impossible, since it makes x1x; commute with
x3xs as well as with x; and x2; so that xix, would then have only
two conjugates. The remaining two cases are equivalent. They
are interchanged by an exchange of x; and x,, and the implied
change u — v, v — uv. Thus there is here only a single {amily,
T3 Hence the following conclusion:

THEOREM 5.1. The families of 2-groups of class 2 with
rank G are Ty, 'y, Ty, T'1e, and Tia.

In view of Theorems 1.2 and 4.1, 4.2, 4.3, the groups G with
r = 6 which do not belong to any one of the families I'y — Ty
or I'y; (already obtained) are either (1) of class 4 or else (2) of
class 3 with centers of order 2.
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3.6 Groups of Class 4 or 5

If G (of an order dividing 64) is of class 5, then by Theorem
1.2, G € Ty If G is of class 4 and order < 32, then, by the same
theorem, G € Ts. Hence it may be assumed that |G| = 64 and
that G is of class 4. Then the order of the center £ of G is < 4.
If |2i| = 4, then G/Zi is a class-3 group of order 16, and can
only be dihedral. By Lemma 3.3, this happens only when G
belongs to the first branch of Iy, Thus <1 may be supposed to
be of order 2. Then G/Z is of class 3 and order 32; it belongs
therefore to one of the families I';, T, I'z.

Applying the criterion of Lemma 3.1 to G/Z = H, it is evi-
dent that the following groups (in the notation of the tables) are
incapable:

H=32Tsa, = {0{3, a4 ag, agﬂg} U= f,
32T3a3 = {a3, oy, O3 62} u = B,
32T b { s, Bou, BY, u = B2
32 T3¢0 = {as, au}, u =g,
32T5d) = {eu oy o4}, U = B,
32T5¢ = {ou as, o B, u = g2
32 I‘;;f = {a3, a4} u = 2

Thus only the groups a, ¢1, and d; in this branch of T'; are left
as possibly capable.

H = 32 Fsdl b= {a4, o4 a3, a5}, u = ai,

32 I‘Gag B {a4, a4 O3, a5}, u = ai,
so neither of the two I's groups is capable.

H = 32 P702 b {a5, (273 Ol4}, u = a,
32 1‘7 as = {014, a5}, U = og.

Hence only 32 T a; is possibly capable.

But the cases H = 32 T34, and 32 I';¢; have already been
settled by Theorems 3.4 and 3.5, where n is taken as 3. They
yield one family each, namely, Ty and T»x. Thus it remains
only to deal with

(1) H = 32 I’y dz and (2) FHs= 32 I'7 a;.

Case(1). Here it may be assumed that H = {a, b}, with
the defining relations:

a®=bt=1,b"1ab = d’ (1)

Let G = {Z1, @, 8} be any group with G/Z; = H, as given by
(1), so that i« and <48 correspond respectively to a and 4. Then
a1 = [a, 8] = «® mod {1. Hence a; commutes with « and conse-
quently G’ is generated by ay, a3, ..., where a1 = [y 8]
Note that G’ < {a% <i}; it is therefore Abelian, so that ai, as,

., are commutative. Hence «; = [a1, 8] = [@? 8] = a1%1 =
o2, so that ' B = a® Transforming with 8 gives az = a.?
s = 3% and so on. Hence G’ = {a} is cyclic. Since oy = o?
mod <i and 4* = 1, it follows that «,* = a3 € <1. Hence oy = 1.
Thus G’ is of order < 8, and since a;? = o' mod Zj, it follows
that G’ N 2, = {as} is of order < 2. The multiplier of H is
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therefore of order < 2. But the group G = {q, 8} of order 64
defined by the relations,

alﬁ = 184 . 1) Bﬁl OZB = 0‘35 (2)

has as a center {1 = {a®} and G/.2, = H. Thus there is obtained
the following theorem:

THEOREM 6.1. The Schur multiplier of H = 32 Tsd, is
of order 2, and the groups G with G/ = H form the single family
M(H) = Ty

Case(2). H = 32T7a;. This case is the split extension of an
elementary Abelian group of order 8 by a single element induc-
ing an automorphism of order 4. Take H = {aq, b}, with the
defining relations,

at = 1; [b,a] = ¢; [¢c,a] = d;
[d,a] = [d 6] = [d,c] = [, 6] = 1; 62 = c® = a2 = 1.

As in previous cases, let G = {Z}, a, B} have G/Zy =~ H, with
Zie and <48 corresponding respectively to a and 4. Define
B,a] =, [v,a] =8, [6,a] = e Then e is in <j, as also are
8% ~2% 6% Thus 1 = [6% a] = % Further, the commutators of
B, v, 8 in pairs liein <3 and so 1 = [B% v] = [B, v]? and, similarly,
the orders of [, 6] and [v, §] are < 2. Also, 1 = [v% a] = 4[4, v]o
gives 62 = [y, 8]. Similarly v* = [B, 7], so that §* = * = 1. But
o' € &y and [B, @?] = %6 and [5, o?] = 6% = 1, so that [B, o?
is commutative with o% Hence 1 = [, a'] = [B, @?]? = +*§* =
62, since v* = 1. Finally [8, a?] = 4?4, and hence 1l = [8% o?] =
[8, «?][B, a?] = v?% 4[5, B]¥? 8; or, since ¥2 is in ) and +* = 1,
[8,6] = 62 = 1. Now G’ is generated by [B8,a] = v and its
conjugates in G. The foregoing relations therefore show that
G’ = {v, 6, ¢}, where eand y?arein {1 and [y, §] = §% = ¢ = 1.
Hence G’ is Abelian of type at most (2, 1, 1), because commuta-
tion with « maps v, § into §, ¢, and commutation with 8 maps
v, 8 into 7% 1. The fact that G = {2, o, B} proves that {v, 5, ¢}
is normal in G. Since it contains v it must coincide with G’.

It follows that the multiplier of H is at most elementary and
of order 4, since G’ N\ 2y = {2 ¢}. But it is possible to define a
group G = {a, 8,7, 8, ¢} = {a, 8} (of order 128) by the relations
which express the fact that {8, v, 8, ¢} is the direct product of
the octic group 82 = y* = (8y)® = 1, with the two cyclic groups
{6} and {e} of order 2 extended by the element a (where
o' = 1), which transforms 8, v, , e into By, v6, d¢, . This trans-
formation effectively defines an automorphism of {8, v, 8, ¢} =
G, of period 4. Moreover the centralizer of « in Gy is {v% €},
which is easily seen to be the center of G, since «? transforms G,
by an outer automorphism. It then follows that G/Zi = . The
multiplier of /1 is thercfore clementary of order 4, and the group
G of order 128 described above is a stem group of M(/1). Hence
{v% ¢} = Zi(G) may be used as the Schur multiplier of ddh

Any families of rank 6 which have H as a central factor group
may be represented by factor groups G/, where N is one of the
three subgroups of order 2 in Zi(G). Moreover, N = {a} is

24





