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INTRODUCTION

Polynomials are a classical subject of mathematics. The first steps
towards the abstract concept 'of a polynomial were the investigation of
algebraic equations and the theory of real and complex functions f oi
the form I(x) = anxn+ ... +'olx+aO. The introduction of the abstract
notions of a field and ring at the beginning of this century subsequently
brought about the development of the abstract concept of a polynomial
over a commutative ring with identity. While polynomials over the fields
of real or complex numbers play an important role in analysis andnumer-
ical mathematics, the algebraic properties of polynomials have also
been a research object for a great number of papers and under various
different points of view.

There are, however, features in the algebraic theory of classical poly-
nomials that have been treated in several papers to some extent, but so
far have not been given a coherent representation. Among all these
aspects we think the most important ones to be the connection between
polynomials and polynomial functions and the properties of polynomial
functions. In particular, the so-called permutation polynomials over fin-
ite fields (i.e. polynomials which represent permutations) have suggested
plenty of interesting algebraic and number-theoretical investigations.
Moreover we think that an important and interesting part of the theory
consists of the composition of polynomials. Questions concerning the
decomposition of polynomials into indecomposable factors, permutable
polynomials, or congruences which are compatible with the composition
operation, have been tackled by.various authors.

It may appear somewhat strange that polynomials over commutative
rings with: identity have been dealt with quite extensively while polynomials
over other classes of algebraic structures, such as groups, semigroups,
lattices etc. have been given little attention. Those papers on polynomials
over classes other than rings, fields, and maybe Boolean algebras, are
scarce and scattered, and so far not even a general agreement on basic
definitions has been achieved. The first author who has endeavoured to

ix



x INTRODUCTION INTRODUCTION Xl

use some concept of polynomials over arbitrary algebraic structures,
is G. GRATZER in his book on universal algebra, but these polyno-
mials have turned out not to be a straightforward generalization of the
classical polynomials.

With this state of the theory of polynomials in mind, this book will serve
two different purposes. First we want to give a general approach to the
notion of a polynomial via universal algebra in such a way that the class-
ical concept of a polynomial becomes a special case within the general the-
ory, hence we will endeavour to extend the classical theory to generalized
polynomials. Secondly, our object is to give a representative sample of res-
ults on polynomials over special classes of algebraic structures, such as
commutative rings or groups, which refer to the connection between poly-
nomials and polynomial mappings or to the composition of polynomials.

This book consists of six chapters. Chapter 1 gives first of all a short
exposition of those facts of universal algebra that are needed in this book,
then the definitions and theorems on polynomial algebras and the algebra
of polynomial functions that are fundamental for all the subsequent
chapters. Finally these definitions and theorems are illustrated by special
algebraic structures like rings, groups, lattices, and Boolean algebras.
Chapter 2 deals with systems of algebraic equations and related topics
such as algebraic extensions and algebraic dependence for arbitrary
algebras, and finally specializes to systems of equations over groups.
Chapter 3 is based merely on Chapter 1 and investigates the composition
of polynomials and polynomial functions for universal algebras in
general, then for multi operator groups in particular, and, again by
specializing, for rings and groups. The last sections are devoted to poly-
nomial vectors and polynomial function vectors over arbitrary universal
algebras, and furthermore, to polynomial permutations, permutation
polynomial vectors, and permutation polynomials. Chapter 4 is based
just on Chapters 1 and 3 and deals with polynomial composition, poly-
nomial vectors, permutation polynomials and polynomial permutations
over rings and fields while Chapter 5 which again depends only on Chap-
ters 1 and 3, does the same for groups. Each chapter concludes with a
section "Remarks and Comments" which gives references to the sources
being used for that chapter, mentions papers related to that chapter
(which have been completed by summer 1971), and states some open
problems (the number of which could be easily enlarged by a lot more
problems, a task we leave to the reader).

We have tried to make this book comparatively "self-contained". This
goal should be achieved by Chapter 6, Appendix. Here we have collected
all those definitions and theorems (without proof) of classical algebra
which are used in this book but can also be found in lots of textbooks in
more detail. Furthermore concepts and results that cannot be found in
textbooks but are necessary for understanding various proofs in the book
are treated in detail.

We hope that this book will stimulate the interest in a field which still
has lots of open problems that are often easily accessible and, in part,
not too difficult. Moreover it was our goal to contribute to the develop-
ment of a more "universal" approach to algebraic problems, i.e. consid-
ering the problems not only for a single class of algebraic structures but
for a number (if not all) classes of structures simultaneously.

Finally the authors wish to express their deep gratitude to all those who
have contributed to the completion of this book by their kind help and
assistance. Our special thanks go to Mr. D. G. GREEN who did the
proofreading, to Prof. C. WELLSand Dr. R. LIDL for helping us with
compiling the bibliography, to Herr G. EIGENTHALERwho also read the
proofs and prepared the drawings, and to Frau A. CrSKOVSKYwho
typed the manuscript with care and endurance. Moreover we owe our
thanks to the North-Holland Publishing Company anditsstaff, in particul-
ar, to Drs. H. J. STOMPSand Mr. E. FREDRIKSSONwhose invitation to
publish this book, appointing a deadline for its completion, and kind
advice on preparing the manuscript have substantially influenced our
work. The book is partly based on our previous research work on this sub-
ject which, to a large extent, has been done at the Mathematisches Institut
der Universitat Wien, Vienna (Austria), and partly at the Department of
Mathematics, Institute of Advanced Studies, Australian National Uni-
versity, Canberra (Australia). Consequently we express our gratitude to
these institutions and their heads, Prof. E. HLAWKA, Prof. N. HOF-
REITER,and Prof. B. H. NEUMANN.Last not least we are grateful
to those mathematicians and students who attended our lectures on
subjects of this book and, by their interest, have given us encouragement
and moreover frequently valuable suggestions.

Clayton, Vienna, April 1973 HANSLAUSCH

WILFRIEDNbBAUER



CHAPTER 1

POLYNOMIALS AND POLYNOMIAL FUNCTIONS

1. Basic concepts of universal algebra

1.1. Let M be a non-empty set and n a positive integer. An n-ary operation
W on the set M is a mapping from the Cartesian power Mil to M. That
means' that w assigns a well-defined element waIa2 ... an of M to each
ordered z-tuple (aI' ci2, ••• , aJof elements of M. For n = 2, which is a
very important special case, we often use infix notation: The operation
symbol w stands between the two elements or may be omitted. A O-ary
operation on the set.M means singling out a fixed element of M. This
particular element is also denoted by the symbol co of the O-ary operation.

A universal algebra or, briefly, an algebra is a pair (A; Q) where A is a
non-empty set and Q = {Wi liE I} is a family of operations on A being
indexed by the set I of all ordinals ~-< 0, 0 being an arbitrary ordinal.

. ; If no confusion can arise, we will denote the algebra (A; Q) by A. The
, family T = {ni I Wi is an ni-ary operation, i E I} is called the type of Q or

also the type of (A; Q). Any two algebras A, B of the same type are
called similar. Forsimilar algebras A, B we can use the same operation

I symbol for those operations of A and B respectively which are indexed by
the same i E I. If A is an algebra, the cardinal I A I of the set A is called the
order of A. An algebra A of finite order is called a finite algebra. Thus the
order of a finite algebra A is the number of distinct elements of A.

Classical algebra gives us quite a lot of examples of algebras, e.g. a
lattice V with the operations U, n yields the (similar, but distinct)

. algebras (V; U, n) and (V; n, U) of type {2, 2}.

1.2. Let (A; Q) be a universal algebra, and U a non-empty subset of A
such that, for all i E I, wjaIa2 ... an, E U whenever aI' a2, ... , ani E U
and ni :> 0, and Wi E U if nj = O. Then the restriction of any WI to U
yields an operation on U which we will denote again by Wi' The algebra
(U; Q) is called a subalgebra of A, and A an extension of (U; Q).

Clearly, any non-empty intersection of subalgebras of A is again a sub-
algebra of A. If S is' a non-empty subset of A, then the intersection of all
subalgebras of A containing S as a subset is called the subalgebra of A
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generated by S, and will be denoted by [S]. If [S] = A, then S is called
a generating set for A.

The operations Wi on F are well-defined since the result of any operation
does not depend on the particular choice of the representatives. The
algebra (F; Q) is called the factor algebra of A with respect to the con-
gruence e and will be denoted by A Ie.(l.4) implies that the mapping
1) : A ->- A Ie defined by 1)a = C(a) is aI1 epimorphism. 1) is called the
canonical epimorphism from A to A Ie. Thus A Ie is a homomorphic
image of A.

1.3. Let A and B be similar algebras. A homomorphism from the algebra
A to the algebra B is a mapping 1) : A ->- B such that 1)W;G1 ... ani =
wi1)al1)a2 ••• 1)an; for nj >- ° and 1)wi = Wi' for nj = 0, for all i E 1.
If 1) is injective (surjective), 1) is called a monomorphism (epimorphism),
and if 1) is bijective we call it an isomorphism. In case B = A, 1) is an endo-
morphism .of A; and if 1~is an isomorphism, we call it an automorphism
of A.

The algebra B is called a homomorphic image of A if there exists an
epimorphism from A to B, and B is isomorphic to A if there is an isomor-
phism from A to B. In this case .we write B == A.

As immediate consequences of the definitions we get: If 1) is a homo-
morphism from A to Band 1] is a homomorphism from B to C, then
1]1) is a homomorphism from A to C; if 1) is a homomorphism from A to
B, then (1)A; Q) is a sub algebra of B; if 1) is an isomorphism from A to B,
and 1] is an isomorphism from B to C, then 1]1) is an isomorphism from
A to C; if 1) is an isomorphism from A to B, then 1)-1 is an isomorphism
from B to A. Thus the relation "is isomorphic to", in any set of similar
algebras, is an equivalence relation. If A is finite, then any monomorphism
from A to A and any epimorphism from A to A is an automorphism of A.

Let 1) be a monomorphism from A to B. Then there exists an algebra
II ==B such that Ais asubalgebraofll:WLOG, we may assume An B = <p.
Then we get such an algebra II if we replace every element 1)a E B by the
element a E A,but do not change other elements in B. This procedure is
called an embedding of A into B, and the isomorphism e : B ->- II defined
by e1)a = a, for a E A, eb = b, for b E B ~ 1)A, is called an embedding
isomorphism from B to B.

1.5. Up to isomorphism, the factor algebras are just all the homomor-
phic images of the algebra A. -This is an immediate consequence of the
following theorem:

1.51. Theorem (Homomorphism Theorem). Let cp:A ->- B be an epimorphism
of algebras. Then there exists a congruence K on A and an isomorphism
1jJ : B ->- A IK such that 1jJCp= 1), the canonical epimorphism from A to A IK.

Proof. Let bE Band cp-1(b) be the set of inverse images of b under cpo
Then A = U (cp-1(b) I bE B) is a partition of A. Let K be the corresponding
equivalence relation on A, then K is a congruence, for let avKbv' v =
1, 2, , n.; then cpav = cpbv' v = 1, 2, , ni, hence wicpa1 ... cpa"j =
wicpb1 cpbn" thus (wia1 ... all.)K(wib1 h"J Moreover b ->- cp-1(b)
is a bijective mapping 1jJ from B to A IK. It is also a homomorphism,
for, let b. = cpa., and nj >- 0, then

1.4. Let (A; Q) be an algebra. An equivalence relation e on A is called
a congruence on the algebra A if, for any Wi with ni >- 0, a1eb1, ... , an.ebn.
implies (WP1 ... an)e(w;b1 ... bnJ Let F be the set of all equivalence
classes under e, and C(a) the class of a E A. On F, we define, for any
i E I, an nrary operation Wi by

1jJwib1 ' , , b
ni

= cp-1(wib1 . , . bn,) :

= cp-1(cpwia1 ' , . an.)

= C(W;Gl ••• an)

= w;C(a1) ••• C(an)

= WiCP-1(b1) • , , cp-1(bn,)

= wi1jJb1' .. 1jJbn,·

If nj =0, then 1jJWi= cp-1(W) = C(wi) = Wj' Thus 1jJ: B ->- A IK is an
isomorphism, Furthermore, if a EA, then 1pcpa= cp-1(cpa) = C(a) = 1)a
which completes the proof.

(r Ct'''"' )

w;C(a1) . , . C(an,.) = C(wja1 ' ,. an), for nj >- 0,

Wi = C(wj), for nj = 0;
(1.4) 1.52. If cp : A ->- B is an algebra homomorphism then, by changing the

range from B to tpA, we obtain an epimorphism from A to cpA which is
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also denoted by ip, As in the proof of Th. 1.51, the set {rp-l(b) I b E rpA}
constitutes a partition of A which induces a congruence K on A. K is
called the kernel of rpand we write K = Ker rp.

Every algebra A has at least two congruences, the congruence where
the classes consist of only one element, and the congruence whose only
class is A itself. These are the trivial congruences. In case there are no
further congruences we call A a .~i..rm2le.llJgl?bra.The algebra A is simple
if and only if every homomorphism of A is a monomorphism or maps A
onto an algebra of order 1. Indeed, if A has only homomorphisms of
this kind, and if 19 is a congruence on A, then the canonical epimorphism
1}: A -+ Ale is an isomorphism or I Aiel = 1, thus 19 is a trivial con-
gruence. Conversely, if A has only the trivial congruences, rp is a
homomorphism of A, and Ker rp = K, then, by Th. 1.51, there is an
isomorphism V! such that V!rp = 1}, the canonical epimorphism from A
to A IK. Since K is a trivial congruence, 1} is an isomorphism, or
I A IKI = 1. Thus rpis a monomorphism, or I rpA I = 1.

1.6. Let 2(A) be the set of all congruences on A. On 2(A) we define a
binary relation ~ as follows: 191 ~ 192 if and only if the set-theoretical
inclusion 191<; 192 holds; 191, 192 considered as subsets of the Cartesian
product A X A.

1.61. Theorem. The set 2(A) is a complete lattice with respect to the rela-
tion ~, the so-called congruence lattice of the algebra A.

Proof. It is clear that ~ is a partial order relation. It remains to show that
every non-empty subset of 53(A) has a greatest lower bound, for 2(A)
has a greatest element.

Let M = {l9i liE I} be a non-empty set of congruences on A, and
Ll = n (l9i liE l), the set-theoretical intersection of the subsets 19i of
A X A. Clearly, Ll is a congruence on A, and also the greatest lower bound
of M. Hence 2(A) is a complete lattice.

1.62. In order to obtain a description of the least upper bound of M
we proceed as follows: Let tp be the binary relation on A defined by atpb if
and only if there are congruences 19i1, ... , 19i, in M and elements
c1' ... , cr-1 E A such that

al9ilcl, cll9i2c2, ••. , cr-2I9iHcr-1 ,cr_II9;,b. (1.6)

§ 1 BASIC CONCEPTS OF UNIVERSAL ALGEBRA 5

We call (1.6) a chain of length r from a to b. One can easily verify that <P
is an equivalence relation. Suppose now that ag<Pbg, for some integer g,
1 ~ g ~ n;. Then there exists a chain of the form (1.6) from ag to bg

which yields a chain from wial ... ag •. : . a"j to wiar ... bg an;, Since <P
is transitive, av<Pbv' 11 = 1, ... , n, implies wial ... ani<Pwibl bni, hence
tp is a congruence, and, of course, the least upper bound of M.

Let P be a subset of AX A, then the intersection of all congruences on A
containing P as a subset is called the congruence on A generated by P.

1.7. We want to know the connections between the congruences on an
algebra A and those on its factor algebra Ale. These are given by

1.71. Theorem (Second Isomorphism Theorem). Let A be an algebra, 19 a
congruence on A, C(a) the congruence class containing a E A, and Sl) the
sublattice of 53(A) consisting of all congruences tlr > 19 on A. Then

a) If <PE Sl), then there is a congruence tp 119E 2(A 119) defined by,'
C(a){tp 119)C(b) if and only if atpb.

b) If P E 2(A I B), then there is a congruence WE Sl) defined by,' aWb
ifandonly ifC(a)PC(b).

c) The mapping a :Sl) -+ 53(A IB) defined by a<P = tp IB is a lattice iso-
morphism, and a-lP = P.

d) AI<P::= (AIB)i(<PIB),for any <PESl).

i
!

Proof. a) <PIB is well-defined since atpb, alBa, bIBb imply altpa, bl<Pb and
hence al <Pbl. <PIB is a congruence on A IB by definition of A lB.

b) By definition of A Ie, W is a congruence on A. Moreover aeb implies
C(a) = C(b), hence P ~ B. _ v/\ J)~~(;

c) Lettp E Sl), then <PIe =<Psince a<PIBb is equivalent to a<Pb.Similarly,
for P E 2(A IB), WI B = P. Thus a is bijective. Since <PI~ <P2implies
tpll e ~ <P21 B and vice versa, a is a lattice isomorphism. The lastasser-

tion follows from <PIB = <P.
d) Let tp be a congruence of Sl), C I(a) the congruence class of <Pcon-

taining a, and C 2(a) the congruence class of tp IB containing C(a). Then
Cl(a) -+ C2(a)isanisomorphismfromAltpto(AIB)i(tpIB). For, by a),
this is a well-defined mapping and is bijective since tp 119 = <P.That this
mapping is a homomorphism follows from straightforward calculation.

1.72. Remark. A straightforward argument shows: Let tp ~ B be con-
gruences on A and C(a), C(a) the congruence classes of tp, B resp., con-
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taining a. Then C(a) -+ C(a) is an epimorphism from A I e to A I<P which
is called the canonical epimorphism.

1.8. Let {(Gv; Q) I v E I} be a family of Eimilar algebras, and Dthe Carte-
sian product of the sets Gp• Its elements are families of the form {a(v)},
v E J,where a(l)) E Gv' for every v. We define the operations W; E Q on D
by w;{a1(v)} ... {a"l(v)} = {w;a1(v) ... a"Jv)} if 71; :> ° .and w; = {w;(v)}
if 71; = ° and w;( v) is the w; of Gv' The algebra (D; Q) is called the direct
product of the algebras Gv and is denoted by rr(Gv I v E 1), or,for I = [l , 2}
byG1XG2.

The definition of n(Gv Iv El) = D implies that, for fixed fh El, the
mapping {a( v)} -+ a(fh) is an epimorphis m n p from D to Gp being called
the projection of D onto Gp" A sub algebra S of D is called a subdirect
product of the algebras G" if npS = Gp for all fh E I.

1.9. Let J be the set of all ordinals v -< y, y being an arbitrary ordinal.
A family of similar algebras (G v; Q), v E I is called an ascending family
of algebras, if G~ is a subalgebra of G{3' whenever IX -< (3. We set
G = U (Gv Iv E 1) and define the operations W; E Q on G by w; = w; of
Go if 71; = 0, while if 71; :> ° and fh is the least v E I such that

. a1' a2, ..• , an. E Gv (which exists, since I is well ordered), we put
w;a1 ... an, =' w;a1 ... ani of Gp- The algebra (G; Q) is calJed the direct
limit of the ascending family of the (Gv; Q).

It is easy to see that every G; is a subalgebra of G.

2. Varieties

2.1. Let Q = {Wi liE I} be a set of elements Wi' indexed by the set Iof
all. ordinals ~ -e; 0 where 0 is an arbitrary ordinal. Moreover, for all
i E J, let 11; be a non-negative integer, and X = {Xj Ij E J} be a set which
is disjoint from Q. The elements of X will be called "in determinates ".
We define "words in X over Q" as follows: Words of rank °are the W; such
that IJ; = 0, and the Xj E X. A word of rank k+ 1 is either a word of
rank k or an expression of the form W;Wl ... wnl' 71; :> 0, and w, words
of rank k, v = 1, ... , 71;. The smallest rank of a word W is called the
minimal rank of w. Induction on the minimal rank shows that every word
is composed by means of a finite number of elements of QUx. Let W

be a word, then a "subword" of W is w if w is of rank 0, and if w =

-'•..._\.,v \ ;'Leu '4 ,! :.f} W1 ~ IN '\.1 ::. ./( 4· '1-ll.l'l.·Y ( tG~ , A,tlvJc~ {7 tV..I,
{\ "I' V

j

§2 VARIETIES

W;Wl ... W", is a word of minimal rank k+ 1, then the subwords of w
are wand the subwords of wv' v = 1, ... ,11;. Induction on the minimal
rank of w shows that every subword of a subword of w is again a subword
ofw.

Let W be the set of all words in X over Q, and i E 1. Then we can define
an l1(ary operation W; on W by:

W;Wl .•. Wlli is the word W;Wl" . wn" for 11;:> 0,

W; is the word W; , for 11;= 0.
(2.1 )

The algebra (W; Q) = W(Xfis called the word algebra in X over Q.

2.2. Let (A; Q) be an algebra, w = w(xh' ... , xj) a word of W contain-
ing no other indeterrninates than xh' .•• , Xjn' and ah, ••• , aj" elements
of A. By replacing each Xjv in w by ajv' we obtain a well-defined element
w(ah, .. " ajJ E A if we consider the W; occurring in was operation sym-
bols on A, as one readily finds by induction on theminimalrankof w. (2.1)
shows that if {aj I j E J} is any system of elements of A then the mapping
{} : W(X) -+ A defined by w(xj,> ... , xj) -+ w(ah, ... , ajJ is a homo-
morphism of algebras .

2.3. Let (w1(Xh, ... , =» w2(Xh, ... , xj)) be a pair of words in X over Q.
Such a pair is called a law over Q. We say that the law (w1(xh' , xj,,),

w2(xj" , xj)) holds in the algebra (A; Q) if w1(ah, , Gj') =
w2(dh, , -.» for arbitrary elements aN"" ajn E A. For the sake
of convenience, we sometimes write w1(Xh, ... , xjJ = w2(Xh, ... , xj)

instead of (w1(xj" ... , xj,), w2(xj,> ... , xj,)).
Let Jt be a set of laws over Q. The class is(Jt) of all algebras A of the

=same type as Q, such that all laws of Jt hold in A, is called the variety
defined by .0-. One and the same variety can, however, be defined by
different sets of laws: If is = is(Jt) and we adjoin a law to Jt holding in
all algebras of ~, we get a new set of laws which also defines is. Every
variety contains the algebra of order 1 of the type of Q which is unique up
to isomorphism. A variety which contains no other algebra is called
a degenerate variety.

2.4. Most of the well-known classes of algebras are varieties. A few
examples shall illustrate this:

I ~,t!1.

7

•
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a) The class of semigroups is a variety if we consider semigroups as
algebras (A; WI) of type {2}.

b) The class of groups is a variety if we consider groups as. algebras
(A; WI, W2, (3) of type {2, 1, O} where WI is the group operation, W2 the
operation of forming the inverse, and W3 the identity. With the same
operations, the class of abelian groups is a variety.

c) The class of rings is a variety if we consider rings as algebras
(A; WI, W2, W3, (4) of type {2, 1,0, 2} where WI is the addition, W2 the
operation of forming the additive inverse, W3 the zero, and W4 the mul-
tiplication.

d) The class of commutative rings with identity is a variety if we con-
sider these rings as algebras (A ;Wl, W2, W3, W4, (5) of type {2, 1,0,2, O}
where WI, W2, Ca3, W4 are ·defined as in c) and W5 is the identity.

e) The class of lattices is a variety if we consider lattices as algebras
<A; WI, (2) of type {2, 2} where WI is the union and W2 is the intersection.

f) The class of Boolean algebras is a variety if we consider Boolean
algebras as algebras (A; WI, W2, W3, W4, (5) of type {2, 2, 0, 0, 1} where
WI, W2 are the operations of e), W3 is the zero, W4 the identity, and W5 the
operation of forming complements.

From elementary algebra, it is well-known that for each of these
classes there exists a set of laws defining just this class, and' thus these
classes are varieties.

2.5. An important result for varieties is provided by

2.51. Theorem. Let ~ be a variety and A an algebra in ~. Then every sub-
algebra and every homomorphic image of A are also in ~, and if {A.} is a
family of algebras in ~, then the direct product nAv is also in~.

Proof. Suppose ~ = ~(~) and A is in ~. If U is any sub algebra of A,
the laws holding in A also hold in U, thus U is in ~. Let B be a homo-
morphic image of A and tp : A -+ B an epimorphism. If (WI (Xh' ... , =»
W2(Xh> ... , xj)) is a law of ~ and bI> ... , b; are arbitrary elements of B,
then there exist elements aI' , an E A such that b, = g;ai, i = 1, ... , n.
Since wl(ah ... , an) = w2(ai, , an) and g;is a homomorphism, we get
wI(bl, ... , b

ll
) = w2(bl, ... , bn) which means that B is in ~. The last

assertion is a consequence of the definition of nAv'

§3 FREE ALGEBRAS, FREE UNIONS AND FREE PRODUCTS 9

2.52. We have just seen that every variety is closed with respect to forming
subalgebras, homomorphic images and direct products. It is true that the
converse also holds, i.e. a class of algebras closed with respect to these
processes is a variety - which we are not going to prove since this result
will not be required later on.

2.53. Proposition. Let )8 be a variety and {Gvl jJ E I} an ascending family
of algebras in ~. Then the direst limit of this family is also in )8;

Proof. This is a consequence of the fact that every Gv is a sub algebra of
the direct limit.

,

3. Free algebras, free unions, and free products

3.1. Let sr be a class of similar algebras, Q its family of operations. An
~~ebra .f~l.$is called a free algebra of S't' with free generating seT
x = {Xi liE I} if X is a subset of F generating F and if, for any algebra
A of S't" every mapping from X to A can uniquely be extended to a homo-
morphism from F to A.

A free algebra of sr with the free generating set X will be denoted by
F(X, sr). The structure of F(X, sr) depends only on the cardinality of X, i.e.

3.11. Proposition. Let F(X, S't') and F(Y, S't') be free algebras of sr and
IXI = IYI, then F(X, S't') == F(Y,sr).

Proof. Let X = {xiii E I}, then we may write Y as Y = {Yil i E I}. Let
-&: F(X, sr) -+ F(Y, sr) be the unique extension of the mapping Xi -+ Yi
to an algebra homomorphism, and 'Y): F(Y, sr) -+ F(X, sr) the unique
extension of the mapping Yi -+ Xi to an algebra homomorphism. Then
'Y)-&: F(X, sr) -+ F(X, sr) extends Xi -+ Xi to an algebra homomorphism, and
-&'Y): F(Y, sr) -+ F(Y, sr) extends Yi ->- Yi to an algebra homomorphism.
By the uniqueness of extensions, 'Y)1) and 1)'Y) are the identity homomor-
phisms of F(X, $l') and F(Y, S't'), resp. Thus {j is an isomorphism.

3.2. Not every class of algebras has free algebras. The following the-
orem, however, will ensure the existence of free algebras in varieties
and thus is of great importance.
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3.21. Theorem. Any non-degenerate variety j{5has free algebras with free
generating sets of arbitrary cardinality.

Proof. Let j{5= j{5((t), X = {Xj Ij E J} be a set of in determinates of
arbitrary cardinality, and W(X) the word algebra. Let P be the subset of
W(X) X W(X) consisting of all elements a) (w, w), w E W(X), b)
(W1(u1, , Uk)' w2(Up , Uk)) and (W2(U1, ... , u,J, W1(U1, , Uk))' where
w1(Yl, , Yk) = J1I2(Yl' , Y!c) is a law of (t and up , Uk E W(X).
Let e be the binary relation on W(X) defined by vew if and only if there
is a finite chain v = ZO, zl' ... , Z,. = w of elements of W(X) such that,
for t = 1, ... , r, one can obtain z/ from Z/_1 by replacing a subword
of Z/_1 which is the left-hand term of an element of P by the right-hand
term of the same element-such a chain will be called, in short, a "chain
from v to w". e is, of course, an equivalence relation on W(X). Moreover,
since any set of chains from Vv to w," v = 1,2, ... , nj, gives rise to a chain
from WjVl ... vni to wiWI ... wni' e is also a congruence. We claim that
W(X) Ie is a free algebra of j{5with the free generating set {C(x) Ii E J} = X
and IX I == IJ I. In order to prove the latter assertion we have to show that
C(xm) 7'" C(xn), for any pair of distinct indices m, n in J. Suppose, by
way of contradiction, that xmexn for m 7'" n. This means that there
exists a chain from Xmto x.: If B is an arbitrary algebra in j{5and {bj Ii E J}
a family of elements of B, then from this chain we get a chain of elements
of B consisting of equal links by replacing each Xj by bj, j E 1. Hence
bm = b; for all b; b; E B, i.e. I B I = 1, and Q5 would be degenerate,
a contradiction. Since X generates W(X), X is a generating set for
W(X) Ie of cardinality If/. Let W1(Yl' ... , Y!c) = WZ(Yl' ... , Y!c) be a law
of (t, and u1' ... , Uk E W(X), then W1(C(U1), ... , C(uk)) = C(w1(up ... ,

Uk)) = C(W2(U1, .:.,uk)) = W2(C(U1), ... ,C(uk)),hence W(X)le is an al-
gebra of Q5. Suppose now that A is an algebra of Q5, and 1f!:X ->- A an ar-
bitrary mapping. We define a mapping sp : W(X) Ie -+ A by cpC(w(xj"
... , xjJ) = w(1f!C(Xj), ... , 1f!C(xj)). cp is well-defined since w(xh"'"
xj) ew1(xj,1 ... , xjJ implies W(1PC(Xj), ... , 1f!C(xj,)) = w1(1f!C(Xh), ... ,
1f!C(xjJ), by replacing every Xj by 1PC(X) in a chain from w to
WI' . Clearly cp extends 1f!, and cpw;C(w1) ..• C(wn) = cpC(WjWl ... w

lI
)

= wjcpC(w1) ... cpC(wn). Therefore cpis a homomorphism and is clearly
uniquely determined by being an extension of 1f1.

§ 3 FREE ALGEBRAS, FREE UNIONS AND FREE PRODUCTS

3.3. Let sr again be a class of similar algebras, Q its family of operations,
and {A,II E L} a family of algebras of sr. A pair A, {cp,11E L} (A being an
algebra of sr and cp,: A, -+ A, l E L, an algebra homomorphism) is called
a free union of the algebras A, in sr if, for any algebra B of sr and any

.family of algebra homomorphisms 1f!,: Al ->- "}j, IE L, there exists a uni-
q~~-homomorphism e: A ->- B such that 1f!1= ecp,for alII EL.

The free 'union of the algebras AI in sr, so far as it exists at all, is uni-
que up to isomorphism, which is a consequence of

3.31. Proposition. Let A, {cp,} and A, {<M be free unions of the algebras Al
in sr, then there is an isomorphism e: A ->- A such that fPI = e~" for all
IEL.

Proof. By definition of free unions, there exist homomorphisms
e : A -+ A and e: A -+ A such that fP, = ecp,and CPt= efP" for all IE L.
By substituting these equations into one another, we get CPt= eeCPIand
fPI = eefP,· But the uniqueness part of the definition of a free union
forces ee and ee to be the identity mapping of A and A, resp. Hence e
is an isomorphism.

3.32. Remark. A straightforward argument shows that if A, {cpt} is a
free union of the algebras Al in sr and rY[ : A[ -+ A[ are isomorphisms, for
alII E L, then A, {CPlrY/}is a free union of the algebras Al in sr.

3.33. If sr is a variety, then there exists a free union, for any family of
algebras in se. A proof can be found in COHN [1].

3.4. Let {AIll EL} be a family of algebras of sr. A free union A, {CPIIIEL}
of the algebras A, in sr is called a free product of the Al in se if every CPI
is a monomorphism and U(CP,AIIIEL) is a generating set of A. This
definition together with Prop. 3.31 implies that if the family {Alii EL}
has a free product in se, then every free union of this family in sr is a free
product. If there is no danger of confusion we will call the algebra A a
free product of the A,.

There exist varieties se and families of algebras of se such that the free
union of these families in se is not a free product. Conditions for the
existence of the free product in se of a family of algebras in se are provided
by GRATZER [3].

11
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.4. Polynomial algebras

4.1. Let A be an algebra of the variety ~ = ~(~) with Q as its set of
operations. To each element aj E A, we will assign a symbol aj and A
will denote the set of these symbols. Clearly, A and Q are disjoint. Let
X = {Xi liE I} be a set of in determinates disjoint from QUA, and
W(.1UX) the word algebra over Q. Then W(X) is a sub algebra of
W(.1UX). As in the proof of Th. 3.21, we consider a subset P of
W(.1U X) X W(.1U X) which again will give rise to a congruence e.
Let P be the set of all elements:

a) (w, w), wE W(.1UX),
b) (WI(UI, , Uk)' wlul, ... , Uk») and (w2(ul' ... , Uk)' wI(Ul' ... , Uk»)

where WI(YI' , Yk) = W2(YI' ... , Yk) is a law of ~, and ul . " Uk E
E W(.1UX)

c) (Wi' a) and (a, Wi) where Wi is a O-ary operation and Wi= a in A,
and (wial ., . an;' a) and (a, wial ... an) where Wi is an ni-ary operation,
ni :> 0, and wial .... an, = a in the algebra A.

The corresponding congruence e yields an algebra W(.1U X) Ie of
~, as in the proof of Th. 3.21. By c), the mapping rp : A -+- W(.1UX) Ie
defined by spa = C(a) is a homomorphism. rp is even a monomorphism,
for let amean, then there is a chain from am to aw By replacing each
Xi in this chain by some arbitrarily chosen ai EA and each aj by aj,

we get a chain of equal elements of A, hence am = aw By way of
embedding we may thus identify A with tpA, and if we write Xi in-
stead of C(x;)-and admit the possibility Xi = Xj for i ~ j (see the sub-
sequent subsection)-we obtain an algebra A(X, ~), with a generating
set AU{xiliEl}, isomorphic to W(.1UX)le which we will call the ~-
polynomial algebra over A in the set of indeterrninates X, and its elem-
ents will be called ~-polynomials in X over A, or just "polynomials".
In § 4.3 we will show that A(X, ~) does not depend on the particular
choice of ~. We summarize these considerations in

Xm = X"' for m ~ n. If this is the case, then in W(.1U X) Ie, we have
C(al) = C(x,,) or C(xm) = C(xJ, whence a/exit or XmeX'1" In a chain
~ from af to x" or from x.; to XII' we replace each Xi by an arbitrarily
chosen ai E A and each aj by aj, which shows that necessarily I A I = 1,
so suppose A = {a}. If B is an algebra cif.~ containing a subalgebra of
order 1, then we can embed A into B and thus obtain an algebra Bl ~ B
having A as a subalgebra, By replacing each aj by aj, Xm by a and x" by
bE Bl in the chain ~, and taking arbitrary elements of B, for all the ot-
her indeterminates, we obtain 'a chain of equal links. Thus b = a and
I BII = I B I = 1. This means that ~ is a variety such that no algebra A of
~ of order IA I :F 1 contains a subalgebra of order 1. Such a variety will
be called semidegenerate.

Conversely, let A be an algebra of order 1 of the semidegenerate vari-
ety ~. Then, since A is a subalgebra of A(X, ~), we have IA(X,~) I = 1,
and in particular all the elements of A U {XiliE I} coincide. We state this
result as

4.21. Proposition. If IA I = 1 and ~ is'a semidegenerate variety, then all
the elements of A U{xi Ii El} ~ A(X, ~) coincide. Otherwise all the ele-
ments of A U{xili E I} are distinct, and in particular, we may identify
X with {Xi I i El}.

4.2. The problem arises under what conditions it may happen that two
elements of the generating set A U {XiliE I} are equal, i.e. a/ = Xn, or

4.22. There do exist semidegenerate varieties which are not degenerate.
We give two examples:

a) The variety of rings with left identity e considered as algebras of type
{2, 1, 0, 2, O} as in § 2.4. Indeed, if an algebra B of this variety has a sub-
algebra of order I, then € = ° and hence IB I = 1.

b) The variety of lattices with zero and identity considered as algebras
of type {2, 2, 0, O},by the same argument as in a).

4.3. Let A(X, ~) be a polynomial algebra, then A(X, ~) is in ~, and A is
a sub algebra of A(X, ~). Hence rpl : A -+- A(X, ~) defined by rpla= a is a
monomorphism. Let FfX, ~) be the free algebra of ~ with free generating
set X, if ~ is not degenerate, otherwise 'the algebra of order 1 of~. Let
ifJ2:X -+- A(X, ~) be the mapping defined by ifJ2Xi= Xi' then ifJ2can be
uniquely extended to a homomorphisrne, : F(X, ~) -+- A(X, ~).

4.31. Theorem. A(X, ~), {rpl, rp2}is a free union of the algebras A and
F(X,~) in~.

4.11. Proposition. The polynomial algebra A(X, ~) is an algebra of ~,
and A is a subalgebra of A(X, ~). The set A U{XiIi El} is a generating
set of A(X, ~).
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Proof. Let B be an algebra of j{5,and "PI : A ~ B, "P2: F(X, j{5)~ B algebra
homomorphisms. Let e: A(X, j{5)-~ B be the mapping defined by
ew(ai1, ... , a;k' xh' ... , xjz) = w(1jJIa;1' ... , "Plaik' 1P2Xh' ... , "P2Xj')' Since
A UX is a generating set of A (X, j{5), e is actually defined on the
whole of A (X, j{5).eis also well-defined, for let wl(a, ..... , a

l
· ,xJ' , ••• , xJ.) =

1 ' k 1 l

w2(a;1' ... , ai., Xh' ... , x) in A(X, j{5). Then w/9w2in W(AUX),
by construction of A(X, j{5),hence there is a chain from WI to W2. By
replacing each OJ by 'lj)laj and each Xj by "P2Xjin this chain, we get a chain
of elements of B whose links coincide since B is in j{5and "PI is a homo-
morphism. Thus eWI = eW2 . e is, of course, a homomorphism, by defi-
nition. Moreover, erp1a;= "PIa;, for all ajEA, and, if fEF(X, j{5),
f = w(xN ... , xh), then erp2f = W('lj)2Xh,... , "P2Xj) = "P2.f. i.e. erpl = "PI'
Finally, let a : A(X, j{5)-+ B be any homomorphism such that "PI= arpl'
1= 1,2. Since arplaj = "Plaj = erpla;, we have aaj = ea.. for all aj E A,
and arp2xj = "P2Xj =erp2Xj implies aXj = exj' for all Xj E X Thus a and e
coincide on the generating set A U X of A(X, j{5),hence a = e.

4.32. Corollary. The polynomial algebra A(X,j{5) is independent of the set
e of laws defining j{5.

Proof. Let e, e: be two sets of laws, each defining j{5,and A(X, j{5),
A(X, j{5)* the polynomial algebras constructed as in 4.1. Since both
A(X, j{5), {rpl, rp2} and A(X, j{5)*,{rp~, rp;} are free unions of A and
F(X, j{5)in j{5,there is an isomorphism e : A(X, j{5)-+ A(X, j{5)*such that
rp7 = erpj' i = 1,2 by Prop. 3.31. In particular, e fixes AUX elementwise,
hence A(X, j{5)= A(X,~)*.

4.33. Remark. Since rpl is a monomorphism and rplA U rp2F(X, j{5);2
A U{x; I i El} which generates A(X, j{5), the free union A(X, j{5),
{rpl, rp2} is a free product if and only if rp2 is a monomorphism. But, by
no means, is this always the case: Let A be an algebra of order 1 in a
semidegenerate, non-degenerate variety j{5, and let IXI >- 1. Then
IA(X, j{5)1= 1, but IF(X, j{5)1>- 1.

4.4. Let B be an algebra, Q the family of its operations, A a subalgebra
and U a subset of B. We will write A(U) for the subalgebra [AU U] of B.

4.41. Lemma. If A is a subalgebra and U, V are subsets of the algebra B,
then A(U U V) = A(U) (V).

§4 15POLYNOMIAL ALGEBRAS

Proof. A( UU V) is a subalgebra of B containing AU U and V, hence
A(UU V) ;2 A(U) (V). Also A(U) (V) is a subalgebra of B containing A
and UUV, hence A(U) (V) ;2 A(UUV).

4.42. Let A be an algebra of the varietyj{5. An algebra B of j{5containing
A as a sub algebra is called a j{5-extension of A. In particular, every
j{5-pblynomial algebra over A is a j{5-extension of A. The role of j{5-poly-
nomial algebras over A for j{5-extensions of A can be seen from

4.43. Lemma. If A(U) is a j{5-extension of A and X = {xu Iu E U} is a set
of indeterminates, Xu r" Xv for.u ~ v, then there is an epimorphism Q:
A(X, j{5)~ A(U) such that ea= a, for all a E A, and exu = u, for all Xu EX.

Proof. The mapping "PI: A -+ A(U), IjJIa = a, is a homomorphism.
Moreover, the mapping Xu -+ U from X to A(U) extends to a homo-
morphism "P2:F(X, j{5)-+ A(U). By Th. 4.31, A(X, j{5), {rpl, rp2} is a free
union of the algebras A and F(X, j{5)in j{5,hence there is a homomorphism
e : A(X; j{5)-+ A(U) such that 1j!1= Qrpl, and 1jJ2 = erp2. By definition of
rplo rp2, we have oa = a, for all a E A, and exu = u, for all Xu E X. Since
AU U generates A(U), and AU U ~ QA(X, ~), e is an epimorphism.

4.5. Proposition. Let A be an algebra of the variety j{5and 1) : A -+ B an
epimorphism. Then there exists exactly one extension of 1) to an epimorph-
ism e : A(X, j{5)-->- B(X, j{5)fixing X. If, in particular, 1) is an isomorphism,
then e is an isomorphism.

Proof. B(X, j{5)is an algebra of j{5,and B is a subalgebra of B(X, j{5),
hence "PI = 1) : A -+ B(X, j{5)is a homomorphism. Let "P2be the extension
of the ma~p~pg Xi -+ Xi from X to B(X, j{5) to a homomorphism from
F(X, j{5)to (~, j{5).Since A(X, j{5),{rpl' rp2}is a free union of A and F(X, j{5),
there is a homomorphism e: A(X, j{5)-+ B(X, j{5)such that 'fJJv = erpv,
jJ = 1,2. Hence oa = 1)a, for all a EA, and eXi = Xi' for all Xi EX. e is
an epimorphism siri~e B(X, j{5)= [BUX], A(X, j{5)= [A UX] implies that
e is unique. If 1) is an isomorphism, then 1)-1 : B -+ A is an epimorphism
and thus extends to an epimorphism a: B(X, j{5)-+ A(X, j{5).Thus ae
and ea are the identity mappings, implying that e is an isomorphism.

4.51. Remark. The unique epimorphism e so constructed will also be de-
noted by 1)(X, j{5),1)[X] or 1)(X) if it is necessary to indicate the depen-
dence of e on #.

{l,uX

"'-". .-
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4.6. Theorem. Let Y, Z be disjoint sets of indeterminates and X = YUz.
Then there exists an isomorphism cp: A(X, Q5) -+ A(Y,Q5) (Z, Q5)such that
cpu= a.for all uEAUX.

?
\

Proof. Clearly A(X, Q5),;, A(X). By Lemma 4.41, A(X, Q5)= A(Y) (Z).
By Lemma 4.43, there is an epimorphism e :A(Y)(Z, Q5)-+ A(Y)(Z) fixing
A(Y) and Z elernentwise, and also an epimorphism .• : A(Y, Q5)-+ A(Y)
fixing A and Y elementwise. By Prop. 4.5, r can be extended to an
epimorphism a: A(Y, Q5)(Z, Q5)-+ A(Y) (Z, Q5), fixing Z elementwise.
Therefore X = ea: A(Y, Q5)(Z, Q5)-+- A(Y) (Z) is an epimorphism fixing
Z, Y, and A elementwise. Conversely, A(Y,Q5) (Z, Q5)= A(Y, Q5)(Z) =
A(Y) (Z) = A(X). By Lemma 4.43, there is an epimorphism cp:A(X, Q5)-+

A(Y, Q5)(Z, Q5)fixing A, Y, Z elementwise. Hence XCP : A(X; Q5)-+ A(X, Q5)
fixes A UX elementwise, thus is the identity mapping. Similarly CfX is
the identity mapping of A(Y, Q5)(Z, Q5). Hence cp is an isomorphism
fixing A UX eIementwise.

4.61. Corollary. Let Xl' ... , XII be pairwise disjoint sets of indeterminates
and X = Xl UX2 U ... UX

Il
. Then there exists an isomorphism cp:A(X, Q5)-+

A(X1, Q5)... (XII' Q5)fixing A UX elementwise.

Proof. By induction on n, using Prop. 4.5.

4.62. Corollary. IfY is a subset of a set X of indeterminates, then there is a
monomorphism from A(Y, Q5)to A (X, Q5),fixing A UY elementwise.

Proof. This is a consequence of Th. 4.6., putting Z = X ~ Y and restrict-
ing cp-1 to A(Y, Q5).

5. The lattice of polynomial algebras over an algebra

5.1.Let A be an algebra, Q the set of its operations, and X a set of in deter-
minates. The polynomial algebra A(X, Q5) depends, of course, on the
variety Q5,and this dependence is now to be further investigated.

The Q5-polynomial algebra A(X, Q5)is defined for every variety Q5con-
taining A. Therefore let M be the set of all varieties containing A (M is a
set, indeed, since every law over Q involves just a finite number of indeter-
minates; thus taking a countable set Y of indeterminates, we can find every

I
I

i
'1
i
I
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law over Q in W(Y) X W(Y), and thus every variety with the set Q of
operations is determined by a subset of W(Y) X W(Y)). We define a
partial order ~ on M by: Q51~ Q52if and only if every algebra of Q51

is an algebra of Q52.

5.11. Proposition. The partially ordered set M = (M; ~ > of all varieties
containing A is a complete lattice, the so-called lattice of A-varieties.

Proof. Let {Q5.Iv El} be a set of varieties of M, and for each v, {i. the
set of all laws which hold in e-very algebra of Q5v' Then Q5.= Q5((i.).
Q5(U(.~. Iv E 1)) and Q5(n({i.Iv E 1)) are both varieties of M, and these
are the greatest lower bound and the least upper bound, resp., for the
given set of varieties. As usual n(Q5.I v E 1) will denote the greatest lower
bound and U(Q5. I v E 1) the least upper bound .for {Q5.I vEl}.

5.2. Let P = {A(X, Q5)I Q5EM} be the set of all polynomial algebras in
X over A, and =<;;; be the partial order on P defined by: 1(X,~~l~~Jx-,~ht f
lLgnd. only jf there is an epimorphism 11!:A(X', Q52)-:-;--A(X, Q51)fixing !
AlJX~lel1lentwis~, Indeed, reflexivity and transitivity of =<;;; are immedi-
ate. The antisymmetry of =<;;; follows from

5.21. Lemma. Let A(X, Q51)and A(X, Q52)be polynomial algebras in X
over A, and 191, 192 those congruences on W(AUX) which are used for
constructing A(X, Q51) and A(X, Q52), resp., according to 4.1. Then
A (X, Q51)=<;;; A(X, ~2) if and only if 191 :;2 192.

Proof. Let A (X, ~h) =<;;; A(X, Q52)and 1P:A(X,Q52) -+ A(X, Q51)an epi-
morphism fixing AUX elementwise. Then 1pw(a;,x) = w(a;, x). Hence
w(a;, xj) e2v(a;, xj) in W(AU X) implies w(a;, x) e1V(ai, x), thus 192 ~ 191.

Conversely, suppose that 192 ~ 191, Since w(ai, xj) = v(ai, xj) in A(X, Q52)
implies w(ai, x)e2V(ai, xj) in W(AU X) and hence w(ai, x) e1V(ai, x),
we conclude that w(ai, x) = v(ai, x) in A(X, Q51)' and 1pw(a;,x)=
w(ai, x) is a well-defined epimorphism 1P: A (X, Q5z) --+' A (X, Q51)
fixing AUX elementwise. Hence A(X, Q51)=<;;; A(X, Q52).

5.22. Theorem. The mapping Q5-+- A(X, Q5) is an order epimorphism
tp : (M; ~ > -+ (P; =<;;;).
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Proof. Let ei' i = 1, 2, be the set of all laws holding in Q5j,thus
Q5i = Q5(eJ Let Q51<:; Q52'then. e, ;2 e2' If Pi <:; W(AU X) X W(AU X),
i = 1,2, is the set of elements being used for defining ej as in §4.l, then
P2 <:; PI, and hence ez <:; e1• Lemma 5.21 implies A(X, Q5I)~ A(X, Q52).

5.23. Remark. In general, cp is not an isomorphism. If, for example,
IA I =1 and Q52is a semidegenerate variety, then A(X, Q5l) = A(X, Q5z),
for any Q5I<:;. Q5z.Another, not so trivial, example we will give in § 9.4.
That cp is not, in general, an isomorpliism is, to a large extent, due to

5.24. Lemma. If)81 <:; Q52, then A(X, Q51) = A(X, Q5z) if and only if
A(X, Q52) is an algebra of Q51.

Proof. The "only if" part is obvious. Suppose now that A(X, Q52)is in Q5l.
Since A(X, Q52)is a )81-extension of A, by Lemma 4.43 there is a unique
epimorphism z: A(X, Q5l) --+ A(X, Q52) fixing AUX elementwise. By
Th. 5.22, there is also an epimorphism 'I/!: A(X, Q52) --+ A(X, Q5I) fixing
AUX elementwise. Then vx: A (X, Q51)--+ A (X, Q51) and X'I/!: A(X, Q52)
--+A(X, Q52) are epimorphisms fixing AUX elementwise, and hence
are the identity mappings. Thus '1/) is an isomorphism, and A(X,Q5I)

= A(X, Q52).

5.3. Proposition. In the partially ordered set (P; ~), every non-empty subset
has a greatest lower bound. If n (Bv I'VE/) denotes the greatest lower bound
for the subset {Bp I'VE I} of P, and cp the order epimorphism of Th. 5.22,
then

cp(n (Q5vI'VE1)) = n (cpQ5pIv E 1). (5.3)

This is the consequence of

5.31. Lemma; Let {Q5vIv E I} be a set of varieties of M, and ev the con-
gruence on W(AU X) corresponding to Q5v' 'V E 1. If e is the congruence
corresponding to n (Q5p111 E 1) on W(AU X), then e = U (e v I v E 1), the
least upper bound in the lattice of congruences on W(AUX).

Proof. Let ev be the set of all laws in Q5p, 11 E I. By Prop. 5.11,
n (Q5p Iv E /) = Q5(U ~.(jp Iv E 1)). vew holds if and only if there is a chain
from v to w. If Pv' P are the sets being used for defining ev,e as in 4.1,
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then P = U (P, Iv E1). Hence vew if and only if there are elements
WI' .•• , wr_I E W(AUX) and congruences ei" ... , eir, i, E I, such that
vei,W1, W1ei,W2, ... , Wr_1ei,W. By § 1.62, this holds if and only if
v(U(epl11Ef»)W. Hence e = U(evlv E 1).

The proof of Prop. 5.3 can now be established. Let {A(X, Q5JI11 E I}
be a subset of (P; ~). Since n(Q5vlvE/) <:; Q5v,by Th. 5.22,
A(X, n (Q5vIv E /)) ~ A(X, Q5J, v E 1.Let A(X, Q5)E P such that A(X, Q5)
~ A(X, Q5J, for all 'V E I, and e be the congruence corresponding to Q5.
Then, by Lemma 5.21, e > e; for all 11 E I, thus e> U (ep Iv E /).
Again, by Lemma 5.21, and Lemma 5.31, A(X, Q5)~ A(X, II (Q5plv E1)).
Hence A (X, n (Q5vIv E 1)) = n (A(%, Q5p)Iv E 1). '0:( B

5.32. Theorem. The partially ordered set (P; ~) of all polynomial algebras
in X over A is a complete lattice.

Proof. By a well-known theorem oflattice theory, a partially ordered set
is a complete lattice if it has a greatest element, and every non-empty
subset has a greatest lower bound. By Prop. 5.3, the second condition
holds for (P; ",,). Moreover, if D = Q5(¢) is the variety defined by the
empty set ¢ of laws - A E D obviously - then A(X, D) is a greatest ele-
ment of (P; ~).

5.4. Remark. So far we have been interested in what happens to the poly-
nomial algebra A(X, Q5)if the variety Q5varies. But we may also vary the
family Q of operations and ask what happens to A(X, Q5). Let D = (D; Q)
be an arbitrary algebra with Q as its family of operations, and<P a subfamily
of Q. We set o, = (D; <P), and if e is a set of laws over Q, e.p shall
denote the subset of e consisting of the laws where only operations of<P
are involved. Then Q5(ecp) is a variety over<P,and if A is in Q5(e), then A.p
is in Q5(e.p). A (X, Q5(e»)<t>contains A<t>as a subalgebra, hence A",(X)
is a subalgebra of A(X, Q5(.(j»),p belonging to Q5(e<t»· By Lemma 4.43,
there is an epimorphism from A<t>(X,Q5(e<p») to A>/l(X), or, as we may
put it, a homomorphism from A>/l(X, Q5(e<t») to A(X, Q5(e»)>/lfixing
AUX.
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6. Functions and polynomial functions on algebras

6.1. Let A be an algebra, Q its family of operations, and k a positive
integer. By Ak we will denote the Cartesian product of k copies of A.
A Ie-place function on A is a mapping from Ak to A. The set of all Ie-place
functioris on A will be denoted by Fk(A). On F,JA) we now define the
operations W; E Q by

()
\

W/PI ... rpn,(al, ... ,ak) = w;rpl(al' ... ,a,J ... rpl1i(al, ... ,ak),
I)

for every(al, ... , ak) E Ak, if n; :> 0, and w/ap ... , ak) ::!o Wi' for every
(aI' ... , ak) E Ak, if n; = 0. We call (Fk(A); Q) = Fk(A) the full lecplace
function algebra over A. Clearly, Fk(A) ==' rr(A I v E Ak), the direct pro-
duct of IAkl copies of A. Hence Th. 2.51 implies

6.11. Proposition. If A is an algebra of the variety ~, so is Fk(A).

6.12. The function rpE Fk(A) .defined by rp(al, ... , ak) = c, for all
(aI' ... , ak) E Ale, is called the constant function with value c, denoted
by XC' c -+- Xc is a monomorphism (X: A -+- Fk(A). Thus the set C k(A) of all
constant functions of Fk(A) is a subalgebra of Fk(A), and A can be
embedded into Fk(A). Henceforth Fk(A) will always be understood as the
algebra obtained from this embedding.

6.2. Let ~; E Fk(A), i = 1,2, , k be the functions defined by
~lal' ... , ak) = a., for all (ap , ak) E Ak. ~; is called the z-th projection
of Fk(A). A(~p ... , ~k) is a sub algebra of Fk(A), called the algebra of
Ie-place polynomial functions on A. We will write Pk(A) for A(~l' ... , ~k)'
By Prop. 6.11 and Th. 2.51, we get

6.21. Proposition. If A is an algebra of the variety ~, so is Pk(A).

6.22. Remark. It follows from the definition of Fk(A) that Fk(A<jj)=Fk(A)<jj'
Since Pk(A<jj) is the subalgebra of Fk(Aq,) which is generated by A", and
the projections and P,lA)q, is a subalgebra of Fk(A)<jj = Fk(Aq,) which
contains A<jj and the projections, Pk(A<jj) is a subalgebra of Pk(A)<jj'

6.3. Let A be an algebra of the variety ~, X = {Xl' ... , Xk} a set of in-
determinates, and A(X, ~) = A(xp ... , xk' ~) the ~-polynomial algebra
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in X over A. Let B be a ~-extension of A and (bl, ••. , bk) a Ie-tuple of
elements ofB. Let "PI: A ->- B, "PIa = a, and 1jJ2: F(X, ~) ->- B be the exten-
sion of the mapping Xu ->- bu, from X to B, to a homomorphism. Using
the same argument as in the proof of Lemma 4.43, we see that there is a
g2~9m9rpJ.1ism .e: A(X, 18) ->- B such that oa = a, a E A, and exu = b.,
u = 1, ... , k: We summarize this in

6.31. Proposition (Substitution principle). Let A be an algebra of the variety
~, {Xl' ... , Xk} a set of indeterminates, and (bl, ... , bk) a fixed k-tuple
of elements of the ~-extension B of A. For every polynomial
p E A(xp ... , xk, ~), define epE B as: ep = wed;, bl, ... , bk) where
p = wed;, Xl' ... , xk) is any representation of p as a word in elements
d, E A and X;. Then op Is well-defined and the mapping p -+- ep is a
homomorphism from A(xl, ... , Xk'~) to B.

6.32. If P E A(xl, ... , Xk, ~), then ep E B is called the value of the poly-
nomial p at the place (bl, ... , bk)' and is denoted by p(bp ... , bk)'

6.4. In Prop. 6.31, let B = Pk(A) and (bp ... , bk) = (~l' ... , ~k)' then
we obtain a homomorphism a: A(xl, ... , Xk' ~) ->- Pk(A) such that
aa = a, a E A, and ax; = ~;, i = 1; ... , k: Since Pk(A) is generated by
AU gl' ... , ~k}' a is an epimorphism. Let p = wed;, Xl' ... , xk) be a
representation of p as a word, then, by Prop. 6.31, and the definition of Q

on Fk(A), we have (ap)(al, ... ,ak) = w(d;'~l' ""~k)(al' ... ,ak) =
wed;, ap ... , ak) = peal' ... , ak)' Hence we have proved

6.41. Proposition. The mapping a: A(xl,.·., xk' ~) ->- Pk(A) defined b~..<o:-.\,un«q.
/. ...\~'',1'. '~./

(a a ) E Ak " ..::; .~o.~:'Y\111l' ... , k ~ ~"'~''''';'~'.r-. -,-(ap) (aI' ... , ak) = peal' ... , ak)' .•..
':J ~.

is an epimorphism, the so-called canonical epimorphism. \ ~ /"i.
~

6.42. One may raise the question: Can it happen that a is an isomorphis~
Since A(X, ~) is defined for every variety ~ containing A, we have to
consider the lattice M of these varieties. Let (ll be the set of all laws in
the countable set Y of indeterminates holding in A, then clearly ~(aois
the least element in M.
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6.43. Lemma. If, for some Q3EM, the canonical epimorphism
0"1:A(xl, ... , Xk, Q3)-+ Pk(A) is an isomorphism, then the canonical epi-
morphism 0"2:A(xl, ... , Xk, Q3(aL») -+ Pk(A) is an isomorphism, too.

Proof. By Th. 5.22, there exists an epimorphism 1jJ: A(X, Q3)-+

A(X, Q3(aL») which fixes AUX elementwise. Then 0"21pa1l:Pk(A) -+

Pk (A) is an epimorphism which fixes AU{~l' ... , ~k} elernentwise. Hence
0"21jJall is the identity mapping. Thus a2 is a monomorphism, hence an
isomorphism.

6.44. Proposition. If the set ofO-ary operations on A generates A, then the
canonical epimorphism 0": A(xl, ... , xk, Q3(aL») -+ Pk(A) is an isomor-
phism.

Proof. Let p = w(a;, Xl' ... , xk) and PI = wl(a;, Xl' ... , xk) be poly-
nomials of A(X, Q3(aL») such that ap = ap-: By definition of a,
w(a;, ;1' ... , ;k) = wl(a;, ;1' ... , ;k)· By assumption, the elements a;
can be represented as words in the O-ary operations of A. Performing this
substitution, we obtain an equation v(~p ... , ;,) = Vl(;l' ... , ~k) where
v, VI are words over Q in;p ... , ;k. We evaluate this polynomial function
for (al, ... , ak) E Ak. Then v(al, ... , ak) = vl(ap ... , ak)' for all
(ap ... , ak) E A", i.e. v(Yp .. ·, Yk) = Vl(Yl' ... ,y,) is a law of A and
thus is in aL. Since A(X, Q3(aL») is an algebra of Q3(aL), V(Xl' ... , xk)=
Vl(Xl, ... , xk) in A (X, Q3(aL»), and since A is a subalgebra of
A(X, Q3(aL»), we have w(a;, Xl' ... , xk) = wl(a;, Xl' ... , xk). Hence a is
an isomorphism.

7. Normal forms of polynomials

7.1. Let A be an algebra of the variety Q3,and A(X; Q3)the Q3-polynomial
algebra in X over A. By Prop. 4.11, A(X, Q3)= [AUX], so every poly-
nomial p EA(X, Q3) has a representation p = w(a;, xj) as a word in
elements a; EA and Xj EX. In general, p will have various different
representations of this kind. For practical reasons, in order to control
the computations in A (X, Q3)completely, one wants a set 91 of words
w(a;, x) where each element of A(X, Q3)is represented exactly once. But
this would still be too little for computations since one also wants to
find, in a finite number of steps, the representation of the element
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W;Wl ... w'" EA(X, 1B) by a word in 9C,for all operations Wi' and all
words WI' ... , Wn, E 91. Thus we define:

A set 91 of words in W(A UX) is called a normal form system for
A(X, Q3)if

a} every p E A(X, 1B)is represented by exactly one word in m,
b) for any n;-ary operation W; E Q and every nctuple of words

WI' , w
ll
. E 91, it is possible to find tl1!< word in 91 representing

W;Wl w:,. E A(X, 1B),in finitely many st~ps·:.
If p is a polynomial of A (X, Q3),the word w(a;,x) in ~crepresenting

p is called the normal form of the- polynomial p (with respect to 91).

Having a normal form system of A(X, Q3)at hand, we can master the
computation in A(X, Q3)completely. If we know even the normal forms
of the polynomials a; and xj, we can find the normal form of jJE A(X, Q3)
in a finite number of steps, for any presentation p = w(a;, x) as a word
in a; and xj. Thus we can always decide in a finite number of steps
whether or not two, words of W(A UX) represent the same element
of A(X, Q3), and .so have solved the "word problem" in A(X, Q3).

The subsequent sections will list some normal form systems for
various important polynomial algebras A(X, Q3) by use of

7.11. Lemma. A set 91 of words in W(AUX) is a normal form system
of A(X, Q3)provided

a) for every representation p = w(a;, x) of an element p E A(X, Q3)
as a word in certain elements of AUX, one can find a word in 91representing
p, in a finite number of steps;

b) any two different words of 91 represent different elements of A(X, Q3).

The proof of this lemma is clear, and follows straight from the definition
of a normal form system.

8. Polynomials over commutative rings with identity

8.1. Let Q be the family of operations {WI. CO2,W3, W4, ws} of type
{2, 1,0,2, O}, and Q3 the variety of commutative rings with identity,
these rings being considered as algebras (A; Q) as in § 2.4. Thus WI is the
addition, W2 the operation of forming the additive inverse, W3 the zero,
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W4 the multiplication, and Ws the identity. As usual, we write +, -,0, .,
and 1 fOJ these operations, and use infix notation for + and '. Let R
be an arbitrary commutative ring with identity, and X = {x} a one-
element set of indeterminates. The polynomial algebra R(X, Q3)will be
denoted by R[x], Q3being kept fixed. Our objective is to obtain a normal
form system for R[x]. For the sake of notational simplicity we define
inductively: If (for any X) WI' W2' ... , w" are words in W(RUX), then
wI+ ... +wn means (wI+ ... +wn_l)+w", and wI w" means
(WI' .. wn_l)wn· If WI = = WI!= W, we write WI W" = w", and
set Wo = 1. Then (a"xn) + + (alx) +ao' a" ER, v = 0, , n, is a well-
defined word of W(RUX) which we will write as a~Jx"+ +alx+aO'

8.11. Theorem. Let m be the set of all words anxn+ ... +alx+aO where
n "'" 0, at ER, for t = 0, ... , n, and a" ;;cO. Then mU{O} is a normal
form system of R[x].

Proof. We will show that m satisfies the conditions of Lemma 7.11.
a) We have to show that, for every representation p = w(aj, x) of an

element p E R[x], we can find a word in m representing p, in a finite num-
ber of steps. We proceed by induction on the minimal rank r of w(aj, x).
The words of minimal rank Dare 0, 1, a, and x, a ER, and since
x = l x-l-O in R[x], our assertion is true for r = O. Suppose, that the
assertion has been proved for words of minimal rank ,. .,,;;m. Every word
of minimal rank m+ 1 is of one of the types WI + W2, -WI, WIW2 where
WI, W2 are words of minimal rank less or equal to m. By induction hypo-
thesis, we can find, in a finite number of steps, words Vb V2 in m represent-
ing the same elements of R[x] as WI, W2, and applying the laws of Q3,we can
find, in a finite number of steps, words in m representing the same ele-
ments of R[x] as VI +V2, -VI' and VIV2·

b) We have to show that any two different words of m represent
different elements of R[x]. For this purpose, let S be the set of all infinite
sequences (ao, aI, ... ) of elements in R where a" ;;c° just for finitely
many indices v. In S we define an operation + by

(aO,al,a2, ... )+(bo,bl,b2, ... ) = (aO+bO,al+bba2+b2, ... ).

+ is a binary operation on S. Furthermore, we define an operation. on S

. is really a binary operation on S since c, = 0, for v >- r+ s, if a" = 0,
for v >- r, and b, = 0, for v >- s. With respect to +, " S is a commutative
ring with identity: Clearly (S; +) is an abeIian group, and· is associative,
commutative and distributive with respect to +; (1, 0,0, ... ) is the
identity. Thus S is an algebra (S; Q) of Q3.

The mapping 1J: R -+ S, 1}a'= (a, 0, 0, ... ) is a monomorphism of
algebras, hence we can perform the embedding of R into S and obtain a

. ring SI Jf S which contains R as a subalgebra. Letr~ = (0, 1,0,0, ... ) E(,"
/$1. Induction on n shows thatf~n = (0,0, ... , 0, 1, 0, ... ), the sequence
with 1 at the place with index nand 0 elsewhere, Then

. W \
(ao, al; a2, , .. ,·a", 0, 0, .,.) =±'aO+al~+a2e+ , .. +a,,~",

i.e. Sl = R(~). By Lemma 4.43, there is an epimorphism e : R[x] -+ S:
such that ex = ~ and oa = a, a E R. Hence

e(a"xn+a"_lx"-1+ ... +a1x+aO) = all~"+a"_1~"-1+ ... +a1~+aO" Jl2"-:~
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by
(ao, a], a2, ... )(bo,b1,b2, ... ) = (CO,C1,C2, , .. )

where

C" = aOb,,+alb,,_I+a2b,,_2+ ... +a"bo' v = 0,1,2, ' ..

Let e : S -+ S: be the embedding isomorphism. Then

c-Ie(a"x" + a,,_lxll
-
l + ... +alx+ ao) = (ao' al> ... , a", 0, 0, ... ).

We conclude that different words in mU{O} represent different elements
of R[x].

8.2. Let R again be a commutative ring with identity, considered as an
algebra of Q3and suppose that X = {Xl' ... , xd.R(X, j8) will be denoted
by R[xl, ... , xk]. We want to find a normal form system for R[xl, . , ., xd,
but first of all simplify our notation.

Let N be the additive semigroup of non-negative integers equipped with
its natural total order .,,;;,and Nk the direct product of k copies of N, lexico-
graphically ordered by «. Then it is well known that through .,,;;,Nk also
becomes a totally ordered semigroup. If t = (iI' . , ., ik) E N'\ we will
set aCt) = i.+ i2 + ... + ik, and if (xl> ... , xk) = t is a k-tuple of arbit-
rary elements for which X~lX~2 x~ is well-defined, we will write
X~lX~ , , . x~ = t. Thus, if xl' , Xk are elements of a commutative
semigroup with identity and c, A EN'\ then t'l' = t'+A,

25
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8.21. Theorem. The set 'fRof all words I(a.i·I A EP) where P is an arbitrary
finite subset of u-,»; E R, a;, oF 0, for all A E P, the summands written
with decreasing order of A, is a normal form system for R[xl, Xz, ... , x,cl
where I(a;,t" I A E ¢) = 0 is additionally defined.

8.22. Remark. For k: = 1, this normal form system is different from the
system of Th. 8.U in so far as the words ax", where a; = 0, of 8.11 do not
appear in 'fRwhile ao of Th. 8.11 is replaced by ao1.

8.23. Proof of Th. 8.21. We are going to show that the conditions a), b)
of 7.1 are satisfied for 'fR.That b) holds is a consequence of the laws in ){S.
We will prove by induction on k, that every p E R[xl' ... , x,,] is represent-
ed by exactly one element of 'fR.Th. 8.11 implies that our assertion holds
fork = 1. Suppose the theorem is true for k: -1. Since our theorem is
true for one. indeterminate, one can find a normal form system for
R[xl, ... , X"_l] [x,J of the form I(aikx;;Ii" E Q) where Q is a finite subset
of N, aik E R[xl, ... , X"_l], aik oF 0, and the summands are written
down with decreasing order of ik. By induction, R[xl, ... , X"_l] has a
normal form system of the kind the theorem asserts. Hence if we replace
each aik by that word of this normal form system which represents the
same element, we see that every element of R[xl, ... , X"_l] [x,,] can be
represented by exactly one word of 'fR. But, by Th. 4.6, 'fR is also a normal
form system for R[xl' ... , xk].

8.3 .. The normal form system of Th, 8.21 allows us to introduce some
frequently-used concepts:

a) A polynomial f E R[xl, ... , xd is called monic in Xl if, in its normal
form LCa;,t;'IAEP), the first summand is lx?xg ... x2.

b) A polynomial f E R[xl, ... , xd is called a form of degree m if, in
its normal form I(a;,t}'IAEP), a(A) = m, for all AEP.

The polynornial.O is a form of arbitrary degree. One can easily verify
that the product of two forms of degree m and n resp. is a form of degree
m+ n, Forms of degree 1, 2, 3 resp. are called linear, quadratic and cubic
forms.

Every polynomial f oF 0 of R[xl, ... , x,,] can be represented uniquely
as a sum of forms qi r" 0 of different degrees i. This is immediate from
comparing the normal form for f and the forms qi'

.j
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C) Let fE R[xl, ... , x,,]' and I(a;,t.ll A E P) its normal form. We
define the degree [f]of fby [f] = max (a(A) I AE P). [f] is a well-defined
non-negative integer; for all f oF O. As a consequence of this definition
when regarding the laws of ~, we get that f r" 0, g oF 0, and 1+g oF 0,
Ig oF 0 resp. implies [/+ g] ~ max ([f], [g]), [fg] ~ [f]+ [g] resp. A poly-
nomial of degree 1 is called linear.

8.31. Proposition. If R is an integral domain, so is R[xl, .•• , xJ, and then,
for any two polynomials f oF 0, i oF 0, [fg] = [f]+ [g].

Proof. Using Th. 8.21 and the laws of ~, R[XI] is an integral domain,
hence, by induction, R[xl, ... , X"_l] [x,,] is an integral domain, and so is
R[xl, , x,,], by Th. 4.6. Let [f] = m, [g] = n, so that f = qm+
qm-i, + , g = iin+iin-h + ... represent f and g as sums offorms
qv r" 0 and ii" oF 0 of different degrees v. Since qrn oF 0, iin oF 0, and
qrniin is a form of degree m+ n, fg can be written as fg = qmiin+
iirn+n-h,+ ... , i.e. as a sum of non-zero forms of different degrees, for
R[xl, ... , x,,] is an integral domain. Hence [f8"] = [I] + [g].

9. Polynomials over groups

9.1. Let Q be the family of operations {WI, (Oz, (O3} of type {2, 1, O}, and
){S the variety defined by the laws for groups as in 2.4, the groups being
regarded as algebras (A; Q). Thus (01 is the group multiplication, (oz the
operation of forming the inverse, and W3 the identity. As usual, we will
write ., -1, 1 for these operations and use infix notation for ., and a-,l
for -lea). Let Gbe a group and X = {x} a set of indeterminates consisting
of one element x.

As in § 8 we will write G[x] for G(X, ~), and, for words WI' ... , Wn

in anyindeterminates, give WI'" wn' and w", n~O, the same meaning
as in § 8. Moreover, if n -< 0, then we will write w" = (W-1)-I1.

9.11. Theorem. The set 'fRof all words aOx"1a1x'" ... ar_Ix"rar where r is a
non-negative integer, each nj a non-zero integer, at E G, t = 0, 1, ... , r, and
at oF 1, t = 1,2, ... , r-l, is a normal form system ofG[x].

Proof. We will prove the theorem by means of Lemma 7.11.
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a) We show by induction on the minimal rank of the word w(aj, x)
that, for every representation P = w(aj, x) of an element P E G[x], we
can find a word in 91representing P, in a finite number of steps. If r = 0,
by x = Ix 1 this is certainly true. Suppose the assertion holds for r "'" m.
Every word of minimal rank m+ 1 has the form li\w2 or wII where WI,

W2 are words of minimal rank -c m. Using the induction hypothesis and
the laws of m, we can find words in 9C representing WIW2 and wI\ in
finitely many steps.

b) We have to show that no two different words in 9C represent the same
element ofG[x]. For this purpose, let S be the set of all sequences
(ao' 111' aI' 112, ... , ar_I, I1r' ar) where r s» 0, every I1j is a 'non-zero
integer, at E G, t = 0, ... , r, at oF 1 for t= 1, ... , r-1. We define a binary
operation on S: (ao' 111' aI> ... , ar_I, I1r' ar) (bo, PI' bI> ... , bs_I, Ps' bi) is
that element of S we get from "reducing" the sequence (ao' 111, al' ... ,
ar_I> I1r, a., bo, PI' bI> ... , bs-I, P» bs)' Here "reducing" means that we
apply the following rewriting process: If. (ao' 111' ••• , I1r, arbo' PI' ... ,
bS_1' Ps' bs) is an element ofS, then this is the reduced sequence. Other-
wise, arbo = 1 and we rewrite this sequence as (ao' 111, ... , I1r+ PI'
bI, ... , bs)' Either this is an element of S, then this is the reduced sequ-
ence, or I1r+PI = O. Then we rewrite the latter sequence as (ao,I1I, ... ,
ar_1bI, ••. , bs), and continue this process which has to terminate after a
finite number of (rewriting) steps. We obtain then a well-defined element
of S.

Clearly, the sequence (1) is the identity with respect to ., and (a;l,
- I1r' a;_\, ... , -111, aoI) is an inverse of (ao' 111' •.. , ar_I, I1r, ar). S
will be a group as soon as the following lemma is established:

Suppose the lemma is established for s = a-I, then (b«, PI, b-, ...
Po' bo) = (bo, PI' ... , Po-I' bo_I)(I, Po' ba) and the preceding arguments
prove the case s = a.

Let U2 = (bo), then (UIU2)U3 ->- (ao, 111'al' ... , arbOcO' ql' ... , cJ '<-

UI(U2U3) where the arrows denote the rewriting process. Hence
(UIU2)U3 = UI(U2U3). Let U2 = (1, PI, 1). Four cases are to be distinguished:

a) a, oF 1, Co oF 1. Then (UIU2)U3 = (ao,111' ... , ar,PI' co' ql' ... , ct) =
UI(U2U3).

b) a, = 1, Co oF 1. Then UIU2 = (ao, 111, •.. , I1r+PI' 1), for 71r oF -PI'
and U1U2 = (ao,I1I, ... , I1r_I, a,._I)' for I1r = -Pl' Thus (U1U2)U3-

(ao, 111' ... , n., ar,pl' Co' ... , c;Y +- UI(U2U3) since U2U3 = (1, PI' co'
... ,cJ

c) a, oF 1, Co = 1. We apply a similar argument as in b) .
.d) a, = 1, Co = 1. Then UIU2 = (ao, 111'aI' ... , I1r+ PI' 1), for I1r oF -PI'

and UIU2 = (ao, 111, aI' ... , I1r~1' ar_I), for I1r = =P» Furthermore U2U3 =
(1,PI+qI'c1, ..• ,q,,·ct) if qI oF -PI' and U2U3 = (CI,q2'c2, ... ,ct)

if qI =-PI' Thus (UIU2)U3 is obtained from (ao,I1I, ···,17r+PI' l,qI'
... , q" ct) by reduction, for nr oF -PI' and from (ao,I1I, ... , ar_1, qI'
cI' ... , ql' c.), for 17r = -Pl' Ul(U2U3) is obtained from (ao,111, ... , I1r,

1,Pl+qI'cI, ... ,q"c,) by reduction, for qI oF -PI' and from (ao,I1I,
... , ar_I,17r, cI' ... , q/, c.), for ql = =Ps-

Comparing (UIU2)U3 with UI(U2U3) in all the four possible cases, our
equation holds, and Lemma 9.12 is proved.

9.12. Lemma. The operation . on S is associative.

9.13. We complete the proof of Th. 9.11. Let us regard the group S as an
algebra (S; Q) of ~. a - (a) is a monomorphism from G to S, thus
we can embed G into S, and obtain a group SI ==' S containing G as a
subalgebra. Let (1, 1, 1) = (' Then clearly (ao, 171' aI' 112' ... , ar_I, ~r'

ar) = aO~I'aI~"2 ... ~"rar' Hence SI = G(~). By Lemma 4.43, there is an
epimorphism e: G[x] ~ SI such that ex = ~ and oa = a, a E G.
. Then e(aox"l ... x"'ar) = ao~nl ~n'ar whence, if s :S ~ S 1 is the

embedding isomorphism, e-Ie(aoxn, xn'ar) = (ao, 111, ... , I1r, ar). This
establishes the theorem.

(
" .('I\..

-1, "h.-,'I J ~ <-. .-'

Proof. We have to show that (UIU2)U3 = UI(U2U3), for arbitrary elements
ul = (ao' 111,aI' 112' ... , ar_l, I1r' ar), U2 = (bo' PI' b., P2' ... , bs_l, PS' b.),
and u3 = (co' qI' cI' q2' ... , ct_I' q" ct) of S. Suppose the lemma holds
for U2 = IX, U2 = (3, and all UI, U3. Then [UI(IX(3)]U3 = [(UIIX)P]U3 =
(UIIX) «(3us) = UI[IX«(3U3)] = UI[(IX(3)U3], i.e. the lemma holds for U2 = 1X{3
and all UI, U3. Suppose now that the lemma is true for all U2 = (bo), all
U2 = (1, PI' 1), and all UI, U3. We claim that the lemma holds for all
U1, U2, U3· For s = 0, the lemma holds by hypothesis. Since (bo, Ill, bI) =
[(bo)(l, PI, l)](bI), the preceding argument proves the case s = 1.

9.2. Let G be a group we will regard as an algebra of ~ and suppose
X = {Xl' . ; ., xk}. We write G(X, m) = G[x1, ... , xk] and want to find
a normal form system for this algebra. Again we first simplify our nota-
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tion. Let M be the additive group of integers and Mk the direct product
of k copies of M. (0, 0, ... , 0) EMk will be denoted by o. An ordered
pair (iI' ... , ik), (l1' ... , lk) of elements of Mk is called reducible if, for
some index v, i, 7'" 0, iv+l = iv+2 = = t, = II = 12 = ... = (-1 = 0.
If t. = (i1, ... , ik) EMk and (Xl' x2' , X,,) = t; is a k-tuple of arbitrary
elements such that xiI ... X1k is well-defined, then we write xi' ... X1k = t·

9.21. Theorem. Let fJ( be the set of all words aofA'alt/' ... ar_ltArar
where r is a non-negative integer, A" EM", A" 7'" 0, v = 1, 2, ... , r,
a; EG, v = 1, ... , r, and a; = 1, for 0 < v < r only if Av' AV+l is not
reducible. Then fJ( is a normalform systemfor G[x1, •.• , xd.

The proof is along the same lines as that of Th. 8.21.
Condition b) in the definition of a normal form system is satisfied for

fJ( as a consequence of the laws of >E. By induction on k, we prove that
every p E G[x1, ... , xk] is represented by exactly one word of fJ(. Th. 9.11
implies that the assertion holds for k: = 1. Suppose this assertion is true
for k -1. Then we can find a system fJ(1 of words representing each ele-
ment of G[xl, ... , Xk_l] [xk] exactly once, namely fJ(1 is given by the set
of all words aOxZIalxZ' ... ar_IxZrar where r is a non-negative integer, n;
are non-zero integers and every at runs over the normal form system for
G[xl, .,., Xk-l] of our theorem which exists by induction, but at 7'" 1·
for t = 1, ... r-l. By inserting factors x~ at suitable places in these
words we obtain, for each element of G[xl, ... , Xk_l] [xd, a word in fJ(
representing this element. Let us assume that different words WI, W2 in
fJ( represent the same element of G[xl, ... , Xk_l] [xd, Omitting all fac-
tors xZ and x~x~ ... xLI and inserting a factor at = 1 in front of every
factor xk where v 7'" ° in these words, we get words VI, V2 of 1)(1 represen-
ting the same elements as WI, W2. Hence VI = V2 which is a coritradiction
since WI 7'" W2 implies VI 7'" V2. fJ( is therefore a normal form system for
G[xl, .. " X"_l] [xd and, by Th. 4.6, also one for G[x1, .. " xd·

'c( 9.22. Corollary. Let X = {Xl' ... , Xk} and CPI'CP2be the homomorphisms as
defined in §4.3. Then G(X, >E), {CPl, CP2}is a free product of the group G
and the free group F(X, )E) in the varietyP; of groups .

'\
.(, \

Proof. As stated in 4.33 we have just to prove that CP2is a monomorph-
ism. Let VI, V2 EF(X, )E), Since F(X, >E) is generated byX; we have VI =
X;>?2' ... x7;· Thus we can write VI = If)''lfA' ... f)"l where Av EMk,
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A, 7'" 0, v = 1, ... , s, and no pair Av' AV+l is reducible. Similarly, v2 =
If,ut!t;,u, . , . t;,u,1. By Th. 9.21, CP2Vl= CP2V2implies VI = v2·

9.3. Let Q bethe family of operations of§ 9.1, jill the variety of abelian
groups regarded as algebras (A; Q), and X = {Xl' ... , Xk}' The problem
of finding a normal form system for A(X, jill), A E jill, is solved by

9.31. Proposition. The set 9c of all words at;", A E Mk, a E A, is a normal
form system for A(X, jill).

Proof. That, in a finite numberof steps, every representation p = w(a;, x)
of an element p E A(X, jill) leads to a word of I)( representing p, is a
consequence of the laws of jill. That different words of fJ( represent
different elements of A(X, jill) follows from an argument similar to that
in the proof of Th. 9,11 by considering the abelian group of all pairs
(a, A), a E A, A EM", with respect to componentwise composition,
i.e. the direct product A X Mk.

9.4. We are nowin the position to give another example-as announced
in § 5.23-that theepimorphism of Th. 5.22 need not be an isomorphism.
Let A be the group of order 1, then A belongs to jill and also to )E,
and jill c >E. A normal form system for A(x, )E) is given by the set of
all words lxnt!, by Th. 9.11, ns 7'" 0 integral. Hence A(x, )E) is also in jill,
and Lemma 5.24 implies A(x, )E) = A(x, illS)·

10. Polynomials over lattices and Boolean algebras

10.1. Let Q be the family of operations {WI, W2, W3, W4} of type {2, 2, 0, O},
and ~~ XlJ.JiQ~of distributi~0.flttig,e?,.with zero and identity considered
as algebras'<A;'.Q)"; here ~;i~the unl;:;~,W2 the intersection, W3 the zero,
and W4 the identity. As usual, we use infix notation and write U, n, 0, 1
for these operations, while ~ shall mean the partial order relation on
these lattices resulting from these operations. Let D be a lattice of )E,
X = {x}, and set D(X, )E) = D[x].

10.11. Theorem. The set fJ( of all words (anx)Ub, a, bED, a ~ b, is a
normal form system for D[x]. If WI = (a1nx)Ubr and W2 = (a2nx)Ub2

are the representations of WI, W2 E D[x] in fJ(, then WI ~ W2 if and only if
al ~ a« and b, ~ b2.
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Proof. We will use Lemma 7.11 to prove the theorem.
a) We show by induction on the minimal rank of w(ai, x) that, in a

finite number of steps, for every representation p = w(ai, x) of an element
t.Y .j!"' pED[x], we can find a word of 9c representing p. Let dED, then

i) /; d = (dnx)Ud, and x = (Inx)UO, and thus the assertion holds for
minimal rank 0. Suppose the assertion is true for words of minimal
rank ~ m. Every word of minimal rank m + 1 has the form WIU W2 or
WIn W2 where WI, W2 are words of minimal rank ~ m. By induction, in a
finite number of steps, we can find words (alnx)Ubl and (a2nx)Ub2
of 9Crepresenting the same elements as WIand W2, resp. Using the laws
of ?{S, we have [(a1nx)Ub1]U[(a2nx)Ub2] = [(a1Ua2)nX]U(b1Ub2)
and al Ua2 ~ b iU bs since al ~ bs, a2 ~ b2. Furthermore

[(a1nx)Ubl]n [(a2nx)Ub2] =
~ [[(alna2)U(hna2)U(alnb2)]nX]U(blnb2) ;,

~ [[(alUbl)n(a2Ub2)]nX]U(blnb2)
" 11 , .} '1 ",~=:, [(alna2)nX]U(b1nb2) d.~. a '" ~,. b~ I IJ.; ,""

and
alna2 ~ blnb2.

b) We have to show that no two different words of 9Crepresent the
same element of D[x]. Let a :D[x] -+ PleD) be the canonical epimorphism.
By § 6.4, ax = ~, the identity mapping of D and ad = d, dE D. Let
(alnx)Ubl = (a2nx)Ub2 in D[x]. Then (aln~)Ubl = (a2nOUbz,
for all ~ E D. By substituting ~ = 0, we get b, = bz, and, for ~ = 1,
a1UbI = a2Ubz, but b, ~ a.; i = 1,2, and hence al = az.

c) Let WI = (alnx)Ubl and W2 = (aznx)Ubz be two elements of
D[x] represented by words in 9C.Then WlUW2 = [(a1Ua2)nX]U(blUbz),
by a), which is also the normal form for WIU Wz. Since WI~ Wz if and
only if WIU Wz = Wz, the second assertion of the theorem is true.

10.12. Remark. a: D[x] -+ PleD) is, in fact, an isomorphism. This is an
immediate consequence of Th. 10.11 and part b) of its proof. Since the
O-ary operations are, in general, far from being a generating set for D,
we see that the condition of Prop. 6'.44 is not necessary for a being an
isomorphism.

10.2.· Let D again be a distributive lattice with zero and identity, regarded
as an algebra of ?{S, and let us write D(x1, ... , xk, ?{S) = D[xl' ... , xk].
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We want to find a normal form system for D[x1, •.. , xk]. For this pur-
pose, we first introduce some new notations: As before, we define
W1UW2U ... Uw

Il
andw1nw2n ... nwninductively. Let Pbe the power

set of the set {1, 2, ... , k} and ~ the set theoretical inclusion. Let Q(r)
be the subset of P consisting of all subsets of {1, 2, ... , k} of cardinality
r, ° ~ r ~ k. Each set of Q(r) is ordered by the natural order of its
numbers, This yields a total order ~ on Q(r) when injecting Q(r) into the
totally ordered direct product fir of r copies of the semigroup of non-
negative integers. Let s, = {II' ... , lr} E Q(r), and IT(Sr) = n (Xi I iff'Sr)'
the Xi written down according to the natural order of the numbtrs i.
Here n (Xiii E <p) means the element 1. With this notation we state

10.21. Theorem. A normal form system of D[x1, ... , xkl is given by the
set 9Cof all words of the form U~=oU(aN,nIT(NJINrEQ(r)) where the
N,E Q(r) are written' down according to the total order relation ~ on

')

Q(r), and aN ~ aN , for N ~ Nr+1· If v, wE D[xl' ... , xd arer r+t r
represented by the words of 9C with coefficients aN, and bN" resp., then
v ~ W if and only if aN, ~ bN" for all N; E P.

?,

Proof, By induction on k. By Th. 10.11, all assertions are true for k = 1.
Suppose that all the assertions are true for k -1.

a) Let p = w(ai, xj) be any representation of p E D[x1, ... , xd· We
have to find, in a finite number of steps, a word of 9C representing p.
By Th. 4.6, there is an isomorphism ip : D[x1, ... , xk] -+ D[x1, ... ,
Xk_1] [xk] fixing DU {Xl' ... , xk}elementwise. By Th. 10.11, we can find
arepresentationp = (a1nxk)Ubl where aI' bl ED[x1, ... , Xk_l], a1 ~ b.,
in a finite number of steps. By induction, in a finite number of steps, we
can find representations of aI' b1 in the 9Cbelonging to D[x1, ... , Xk_l]'
By substituting these representations into p = (a1n xk)U b1 and applying
the laws of ~, we get a representation of pby a word of 9C.

b) No two different words of 9C represent the same element of
D[xl, ... , xk],forletp = U;=o U (aN,n IT(Nr)INr,E Q(r)) be the represen-
tation of pby a word in 9Cand let b, = 0, for i ~ N" b, = 1, for ((N, , r?

then p(b1, b2, ... , bk) = aN, Thus any two different words of 9Crepre-
sent different polynomials.

c) The proof of the second statement runs along the same lines as
part c) of the proof of Th. 10.11.
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10.3. Let Q = {WI, W2, W3, W4, ws} be the family of operations of type
{2, 2, 0, 0, I}, and ~ the variety of Boolean algebras regarded as algebras
<A; Q) as in § 2.4. Thus WI is the union, W2 the intersection, wi the
zero, W4 the identity, and Ws the operation of forming the complement.
We write U for WI, and n for W2, and use infix notation, ° for W3,

1 for W4, and a-I for wsa. Moreover, we set al = a, thus (d)j = aU,
for every pair. i, j = ± 1. As before, we define WIU W2 U ... U wn and
wlnw2n ... nWIl inductively. LetM be the set{ -1, I} with total order
-1 =s;; 1, and Mk the lexicographically ordered Cartesian product of
k copies of M. For A = (11' ... , Ik)EM\ set t' = x~n ... nx~. Let
X = {Xl' ... , xd be a set of indeterminates and B(X, )8) = B[xl' ... , xd
the polynomial algebra in X over an arbitrary Boolean algebra B. Then

10.31: Theorem. The set m of all words U(a,nt'l AEMk), a,EB,
and the elements under the union symbol arranged according to the order
relation on the index set M", is a normal form system for B[xl, ... , xd.

Proof. a) We first show for k = 1 that, in a finite number of steps, we
can find a word of m representing p E B[xl, ... , x,,], for every repre-
sentationp = w(a;,x} Since a = (anx-l)U(anx)andx = (Onx-I)U
(1n x), we can use induction on the minimal rank of w. By the laws
of~, we have

v
[(an x-l)U (bn x)]U [(cnx-l)U (dn x)] = [(aU c)n x-l]U [(bU d)n x],,.
[(an x-l)U (bn x)] n [(en x-l)U (dn x)] = [(an c)n x-l]U [(bn d)n x],

v' [(anx-1)U(bnx)]-1 ~ (a-1Ux)n(b-IUx-1)
= (a-In b-1)U (a-lnx-1)U (b-ln x)
i. (C£.-~Qx-l)U (b~-:-lnx)U (q:::lnb-ln£DU (a-lnb-':':D~J
.'::! ( -In -l)U(b-"':ln) 0 '-, '+';, .--.- a x x . ........-1.: ",...c··'1 ...·'1. ...•• "\.

As in the proof of Th. 10.21, we now proceed by induction on k.
b) Different words of m represent different elements of B[xl, ... , x,,] :

For let p = U(aAntIAEM") be a representation of p bya
word of m, A = (11' ... , lk)' and b, = 11" i = 1,2, ... , k, then
p(bl, ... , bn) = aA·
10.32. Remark. Th. 10.31 and part b) of its proof again show that the
canonical epimorphism a: B[xl, ... , xk] -+ Pk (B) is an isomorphism.

11. Polynomially complete algebras
11.1. Definition. An algebra A is called z-polynomially complete if
P; (A) = F; (A), i.e, every n-place function on A is a polynomial function.
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11.11. Proposition. If A is n-polynomially complete, then A is also m-poly-
nomially complete for all m =s;; n,

Proof. Let m =s;; n, and rpE Fin (A). Let lp E fll (A) such that lp(al, ... , all) =
rp(al, ... , am), (al, ... , an) E A". Since, by hypothesis, lp E P; (A); there
exists a word w(g;, Xl' ... , xn) such that If! = w(g;, ~p , ~,,). Let
b",+p , b; be arbitrary fixed elements of A, then rp(al, , am) =
lp(al, , am' bm+l, ... , bn) = w(g;, aI' ... , am' bm+p ... , bll) =
w(g;, ~l' ... , ~m' bm+l, , bll) (aI' ... , am)' for all (al,.··, allJ E Am.

Hence rp = w(g;, ~l' , ~,n' b,n+l' , .. , bll), i.e, rpE Pm (A).

11.2. Theorem. If an algebra A is 2-polynomially complete, then A is
n-polynomially complete, for n = 1, 2, 3, ....

Proof. We have to show that A is n-polynomially complete for n >- 2,
by Prop. 11.11. We distinguish two cases:

a) IAI is finite. SInce IAI = 1 implies IF,,(A)I = 1, we may assume
IA I >- 1. To tackle this case, we need two lemmas, which hold under the
hypothesis of Th. 11.2.

11.21. Lemma. Let n ~ 2, a ~ bE A, and rpEF; (A) such that

_ J a, for (gl"'" g,) ~ (ul' ... , u,,)
rp(gl' ... , gn) - t

b, for (gl"'" gll) = (up, .. , u,,)

where (ul, ... , un) E An arbitrary, then rpE P; (A) .

Proof. By induction on n. For n = 2, this is our hypothesis. Suppose the
lemma holds for n-l instead of n. Let 1f! EF

II
_l (A) be the function

defined by _I a, for (gl"'" gn-l) ~ (ul, ... , ull_I)

1f!(gp ... , gn-I) -
b, for (gl"'" gll-l) = (uI> ... , Un_I)'

Then, by induction, If! EPn-l (A), hence lp(gl"'" gll-l) =
wl(a;,gI' ... ,gll-I) where wl(a;,xI, ... ,xn_l) is some word. Let
X EF 2 (A) be defined by

l
a, for (u, v) ~ (b, un)

X(u, v) =
b, for Cu, v) = (b, un)'
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By hypothesis, X EP2 (A), hence X(u, v) = w2(bj, u, v) where w2(bj, Xl' x2)

is some word. Then

q;(gl' ... , gll) = X(1p(gl> ... , gn-l)' gJ, for all (gl' ... , gll) E A".

Hence
q;(gl' ... , g,) = w2( bj, 1f!(gl' ... , gn-l)' gn)

= w2(bj, wl(a;, gl' ... , gll-l)' gll)'
i.e,

tp = W2( bj, wl(a;, ~l>... , ~Il-l)' ~,,)= w3(a;, bj, ~l' ... , ~n)'

for some word w3. Thus q; E P" (A).

11.22. Lemma. Let n~2, eEP,,(A), and 1fJEF,,(A) such that

1f!(gl' , gn) = e(gl' , gn), for (gl"'" gJ "" (ul, ... , un),

1fJ(g], , g,) ~ e(gl' , gn)' for (gl"'" g,,) = (ul,· .. , un),

for some (uI, ... , ull) E An, then 1pE P" (A).

Proof. Suppose that 1fJ(Ul, ... , un) = c, and let a "" bE A. Let q;EFIl (A)
be defined as in the hypothesis of Lemma 11.21. Then q; EP; (A), thus
q;(gl'" ·,gll) = vl(a;,gl'" ·,gll)' for some word VI' Let XEF2(A) be
defined by

x(U, v) = I' v, for U ~ b
c, for U = b.

Then, by hypothesis ofTh. 11.2, x EP2(A), i.e. X(u, v) = v2(bj>u, v), for
some word v2• Then 1fJ(gl' ... , gJ = X(q;(gl' ... , gll)' e(gl' ... , gn»), for
an (gl' .. ·,gn)EAn. Thus 1f!(gl'" ·,gn) = vz(bj, v1(a;,gl'" ·,gn),
ViCk' gl' , gn») if e(gl' ... , gn) = V3(Ck, gl' , gll)' for some word
v3(ck> Xl' , xn)· Hence 1fJis a word in ~l' , ~n and some elements
of A.

11.23. We complete the proof of the theorem for case a). By defini-
tion of P; (A), every element of A is in P; (A). By Lemma 11.22, every
function of Fn(A) which differs from a constant function only for one
(gl' ... , gn) EAn is in P" (A). By repeating this argument, every func-
tion of F; (A) which differs from a constant function only for finitely
many (gl' ... , gn) E A" is in PII (A). Since A is finite, A" is also finite,
hence F; (A) = Pn(A).
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11.24. b) Let I A I be infinite. Then we use induction on n. For n = 2, the
assertion holds by hypothesis. Suppose A is (n -1)-polynomially complete,
for some n :> 2, and rp EF; (A). Since n is a finite cardinal, IA"-II =
IA 1,,-1 = IA I, hence there is a bijective mapping 1f!: A,,-l - A, and
1jJ-l: A ~ An-l is also a bijection. Let X E F2 (A) be defined by
X(u, v) = q;(1f!-1u, v). Then rp(g], ... , gn) = X(1p(gl' ... , gll-l)' gn), for all
(gl' ... , gn) E An. Since 1fJ E FII-'-l (A), by induction, we have 1f!E Pn-l (A),
thus 1p(gl' ... , g"-l) = wl(a;, gl' " .. , gn-l)' for some word WI' Also
X EP2 (A) by hypothesis, thus x(u, v) = w2(bj, u, v), for some
word w2· Hence q;(gl"'" gll) = w2( b., wl(a;, gl' ... , g,,-l)' gll)' i.e.
rp = w2(bj> wl(a;, ~1' ... , ~"-l)' ~n) is in PIl'(A). This completes the proof
of the theorem.

11.3. Proposition. Let A be i-polynomially complete, then A is simple.
S. '-f

Proof. By way of contradiction, suppose that A is not simple. Then there
is a non-trivial congruence e on A. Thus e has a congruence class C1
such that ICll :> 1, moreover there is another congruence class C2 ~ Cl.
Let a,bECl, a »e b, cEC2, and 1jJEFl(A) such that 1f!(a) = a,
1fJ(b)= c. Since aeb implies rp(a)erp(b )-by induction on the least minimal
rank of the words representing q;-for all rp E PI (A), we conclude that
1fJ~ PI (A), i.e. A is not l-polynornially complete.

11.31. Proposition. Let the algebra (A; Q) be Y-polynomially complete,
and Q finite or countable. Then A is finite.

Proof. This is an immediate consequence of

11.32. Lemma. Any algebra (A; Q)such that IA I is infinite and IQI ~ IAI
is not s-poiynomialty complete.

Proof. We have !Fl(A) I = IAIIAI :> IAI. It suffices to show that IPI (A) I ~
IAI. Let W = W(AU{x}) be the word algebra over Q, and wE W.
The number of elements of QU A U {x} involved in w, each element coun-
ted with the multiplicity it appears in w, will be called the length of w.
Being of the same length is an equivalence relation on W. Let CII be the
class consisting of all words of length n. C; is a subset of (QU AU {x})",
hence Iell I ~ I(QUAU{x})"1 = IQUAU{xW = IQUAU{x}1 = IQI+



38 POLYNOMIALS AND POLYNOMIAL FUNCTIONS CH. 1

+IAI+ 1 = IAI· Since W = U(Cnln;;., 1), we have IWI = I (ICnlln;;., 1)
~ I(IAlln;;., 1) = IAI. As every element of PI(A) can be represented
as a word of W, there is an injection from PI(A) to W, hence IPI(A)I
~IWI~IAI·

12. Some examples of polynomially complete algebras

12.1. Let A be an arbitrary algebra. Then the results of § 11 show that
the following three cases are possible:

a) A is n-polynomially complete for all n.
b) A is n-polynomially complete for n = 1, but for no n >- 1.
c) A is n-polynomially complete for no n.

In case a) we say A is polynomially complete, in case b) A is poly-
nomially semicomplete, and in case c) A is polynomially incomplete.
For some important varieties, we are going to investigate now in what
way the algebras of these varieties distribute over these three cases: We
will consider just algebras A such that IA I .,c 1, for IA I = 1implies that A
is polynomially complete for all varieties. These algebras will be called
non-trivial algebras.

12.2. Let )8 be the variety of commutative rings with identity as conside-
red in § 2.4. By § 11.3, every l-polynomially complete non-trivial algebra
of)8 is simple and finite, i.e., as we know, a finite field.

Conversely, let Q be a finite field of order q. Then the number of dis-
tinct polynomial functions of the form

aq_l~i-l+aq_2~r2+ ... +al~l+aO' a"EQ, v = 0, ... , q-l,

is qq. For, if any two such functions are equal, we get a polynomial func-
tion uq_l~i-l+ ... +UI~1 +uo, by taking their difference which is the
constant function with value 0. This is only possible if ue == ui = ... =
uq_1 = 0, else the polynomial uq_IXq-1+ ... +ulx+UO would have
at most q-1 different roots, a contradiction. Hence IPI(Q)I ;;.,qq =
IF1(Q)I, i.e. Q is l-polynornially complete.

The functions Pq_I(~IHg-I+pq_2(;IHi-2+ ... +P1(~IH2+PO(;1)'
P,,(;l) EP1(Q), v = 0, ... , q -1, are functions of P2(Q). These functions
are pairwise distinct, for assume

o °I pJ;I);; = I 1',,(;1);;'
"=q-1 v=q-l
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o °
Let a E Q be arbitrary, then I p,(aH~ = I l)aH;, and by the

v=q-1 ,,=q-l
argument from above we conclude p,,(a) = r,,(a), v = 0, ... , q -1, for
all a E Q, i.e. pJ~l) = rv(~l)' v = 0, ... , q -1. Hence we have IP2(Q) I ;;.,
e" = IF2(Q) I, i.e. Q is 2-polynomially complete. Hence

12.21. Theorem. The finite fields are the polynomially complete algebras
in the variety of commutative rings with identity. All the other algebras
of this variety are polynomially incomplete.

12.3. Lemma. Let L be a lattice and rpEPI(L). Then rp is an order endo-
morphism of L, i.e. a ~ b in L implies rp(a) ~ rp(b).

Proof. By induction on the least minimal rank k of the words representing
rp. The lemma obviously holds for k = 0. Suppose the lemma is proved
for k e: m -1, and let rpbe a polynomial function ofleast minimal rank
m. Then rp = 1j!lU1P2 or rp = 1p1n1j!2 where 1j!1,1j!2EP1(L) are of least
minimal rank ~ m -1. By induction, for a ~ b in L, rp(a) = 1Pl(a)U
U'ljJ2(a)".;;'ljJ1(b)U'ljJ2(b)= rp(b) or rp(a) = 1j!1(a)n1f!2(a) ~ 'ljJI(b)n1f!2(b) =

rp(b), respectively.

12.31. Let L be l-polynornially complete, then, by § 11.31, L is finite, thus
L has a least element ° and a greatest element 1. If X EP1(L) is a function
such that x(l) = 0 .and X(o) = 1, then, by Lemma 12.3, 1 = X(o) ~
XCI) = 0, i.e. ILl = 1. Therefore we get

12.32. Theorem. In the variety of lattices, every algebra is polynomi-
ally incomplete.

12.4. Let )8 be the variety of Boolean algebras as considered in § 2.4.
If B is an n-polynomially complete algebra of )8, then, by Prop. 11.11
and Prop. 11.31, B is finite. Let IBI = r. By 10.32 and Th. 10.31,
IPIl(B) I = IB[xl' ... , xn] I = r2". Since IFn(B) I = r'", we conclude r ".;;2.
If, on the other hand, r ~ 2, then Fn(B) = PIl(B). Thus we have proved

12.41. Theorem. In the variety of Boolean algebras, the algebra of order
2 is polynomially complete, while all the other algebras are polynomi-
ally incomplete.
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12.5. Proposition. Let G be afinite group, N a non-abelian minimal normal
subgroup of G, A a non-empty finite set, and F the group of all functions
from A to N where the multiplication in F is defined by (cp1p)(a) = rp(a)1p(a),
a E A. Let H be a subgroup of F which satisfies

a) every constant function of F belongs to H;
b) for every pair x, yEA, x ,c y, there exists e E H such that ex ,c ey;
c)forallcpEHandallrEG, the function a ~ I·-Icp(a)r from A to N

belongs to H.
Then H = F.

'j ~.1

,J

Proof. Let j >- 0 be an integer such that j ~ 1A I· A j-tuple (gl' ... , g),
g; E N, i = 1, ... ,j, shall be called accessible if, for every j-tuple
(aI' ... , a) of pairwise distinct elements of A, there exists cpE H such
that cp(a) = g;, i = 1,2, ... ,j. By induction on j, we will show that
every j-tuple is accessible. By a), this is true for j = 1. Suppose the
assertion is true for k-tuples, k -< j. It suffices to show that all j-tuples
(g, 1, 1, ... ,1), gEN, are accessible. For, let cp;EH, i = 1, ... ,j, such
that cp;(a) = g;, cp;(ah) = 1, for h ,c i, 1 ~ h -c j, then rp = CPlrp2 ... Cpj
satisfies cp(a) = g;, i = 1,2, ... ,j. Thus let a = (aI' ... , aj) be a
j-tuple of pairwise distinct elements of A, and No the set of all g EN
such that cp(al) = g, cp(a;) = 1, i = 2,3, ... ,j, for some cpE H. Since
1 E No, No is not empty. Since H is a group, No is a subgroup and by c),
No is a normal subgroup of G. Hence we have only to show that No ,c {I},
then the minimality of N implies No = N. First of all; let j = 2. By b),
we can choose e E H such that e(al) ,c e(a2)' Let y be the constant func-
tion with value e(a2)-1. and set X = ey. Then X E Hand X(al) ,c 1,
x(a2) = I, hence No ,c {I}. Suppose now j >- 2. Since N is non-abelian,
we can find gl, g2 EN such that glg2 ,c g2g1. By induction, every
(j -I)-tuple is accessible, hence there exist 1Pl, "P2E H such that 1Pl(al) = gl,
"PI(a2) = "PI(a4) = "PI(aS) = ... = '1f!t(aj)= 1, "P2(a1) = g2' "P2(a3)= 1P2(a4) =

'lfJ2(a5)= ... = 1pzCa)::::::1. Then 1P3= "Pl1"P:;lV\1P2 E Hand "P3(a1) =

g11g:;lglg2,c 1, 1P3(a) = 1, i = 2, ... ,j. Hence No,c {l} and the
proposition is proved.

I

.t! .• ""I

12.51. Corollary. Every finite non-abelian simple group G is 2-polynomially
complete.

Proof. We apply Prop. 12.5 to the case where N= G and A = GXG.
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Then F = F2(G). Conditions a) and c) are trivially satisfied for H = P2(G).
Let x, yEA, x ¥ y, then x = (gl, g2), y = (hI, h2) where either gl ¥ b,
or g2 ¥ h«. Thus ex ¥ ey is satisfied either by e = ~l or e = ~2, and
condition b) is satisfied. Hence P2(G) = F2(G).

12.52. By Prop. 11.3 and Prop. 11.31, every I-polynomially complete
group must be a finite, simple group. Thus it remains to consider finite
simple abelian groups G. Then IGI = p, a prime, and 1Fl(G)1 = p".
The set S = {a~~ 1 a E G, 0.,,;; r' -< p}. is a subgroup of P1(G) containing
~1 and the constant functions. Hence S = P1(G), but every element of S
is represented by exactly one' a~~, a E G, 0.,,;; r -< p, thus IP1(G) 1 = p2.
We conclude that G is I-polynomially complete if and only if p == 2.
Conversely.iif IGI = 2, then, as before, PzCG) = {a~~'~;'laEG, 0 ~ 1';<2,
i = 1,2}, jP2(G)I= 23. But IF2(G)1 = 24, hence G is not 2-polynomially
complete.

Summarizing these results we state

12.53. Theorem. In the variety of groups, the finite non-abelian simple
groups are polynomially complete, the group of order 2 is polynomially
semicomplete, and all the other groups are polynomially incomplete.

Remarks and comments

§§ 1-3. Universal algebra, the study of sets with arbitrary operations,
was started off by G. BIRKHOFFabout 1935 and since has advanced to
an extensive theory. There are two excellent monographs on this subject,
one by COHN [I] and one by GRATZER[3]. Moreover KUROS [2] also
includes a transparent introduction into the fundamentals of universal
algebra which, in particular, served us as model for some parts of Ch. 1.

§ 4. Up to 1950 the notion of a polynomial was used almost exclusively
in connection with rings. Subsequently papers appeared sporadically
which introduced polynomials over algebras other than rings, e.g. over
groups, lattices, and Boolean algebras, especially being tied up with
systems of algebraic equations (see, for example, Scr'IUFF[1], [2], SHAFAAT
[1]). A few papers (e.g. SCHUFF[3], SWMINSKI [1]) consider polynomials
even over arbitrary algebras. The first time, however, that the concept
of a polynomial was used in universal algebra, was in GRATZER [3].
There the "polynomial symbols" are nothing else than the elements of
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our word algebra W(X) in § 2.1, and "k-ary polynomials over A" are,
in our terminology, the elements of the subalgebra Gk(A) of the algebra
Fk(A) in § 6 which is generated by the projections ~l' ~2' ... , ~k and the
O-ary operations Wi of A. Thus Gk(A) is asubalgebra of Pk(A), and we
call the elements of Gk(A) "Gratzer's polynomial functions" while our
polynomial functions are called "algebraic functions" in GRATZER'Sbook.
The definition of polynomials as it is used in our book is due to HULE
[1], [2], and is-as we show in § 8-a straightforward generalization
of the classical concept of a polynomial over a commutative ring with
identity. Our presentation of §§ 4-6 follows partly HULE'S work.

In all examples forsemidegenerate varieties we know, semidegeneracy
is due to O-ary operations. We do not know whether or not the existence
of O-ary operations is a necessary condition for semidegeneracy.

In some sense dual to our Prop. 4.5 is the following statement: Let A
be an algebra of the variety )8 and u: B -+ A a monomorphism. Then fA.

can uniquely be extended to a monomorphism from B(X,QS) to A(X,)8)
that fixes X. In general, however, this is not true, as the following coun-
terexample by L. G. Koy AcSshows: Let )8 be the variety of all nilpotent
groups of class ~ 2, A = F(yl, Y2, ?E) the free algebra of )8 with free
generating set {yl, Y2}, B = A' the commutator group of A. By H.
NEUMANN [1], B is a free abelian group. Let g be any element of a free
generating set of Band g-lx-1gx E B(x, )8). Since B is free abelian, there
exists a homomorphism from B to the dihedral group D4 that maps g
onto some element gl E D4 where D4 = [gl, g2]. Since D4 belongs to ?E,
there is a homomorphism from B(x, )8) to D4 that maps {g, x} onto
{gl, g2} whenceg-1x-1gx 7'" 1 in B(x, 18) as D4 is non-abelian. In A(x, )8),
however, we have gE A(x, 18)" and since A(x, 18) is nilpotent of class
~2, we have g-lx-1gx = l.

If we replace "monomorphism" by "homomorphism", however, then
the statement just considered is true. Moreover, there are varieties, e.g. the
varieties of commutative rings with identity and groups, where this stat-
ement is true as it stands (the proof can be given by aid of the normal
forms in §§ 8,9). Thus it would be interesting to characterize all these
varieties.

The problem of determining all those homomorphisms (isomorphisms)
from A(X, 18) to B(X, )8) which extend a given epimorphism (isomor-
phism) {}: A .,...B without necessarily fixing X has been studied just for
special cases (see e.g. GILMER [1]).

I

I
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§ 5. The lattice of polynomial algebras over a given algebra was studied
the first time by HULE [2]. Among the open questions concerning this.
lattice, there is the problem of characterising all those algebras for which
the epimorphism rp ofTh. 5.22 is an isomorphism and the question whe-
ther or not the equation (5.3) remains valid if n is replaced by U.

§ 6~ For rings and 'fields, polynomial functions have been investigated
long before the concept of a polynomial was introduced. In connection
with the canonical epimorphism.c of Prop. 6.41, one can raise the ques-
tion +which is closely related to the problem referred to in § 6.42- how to
characterize all those algebras-of a variety )8 for which the canonical
epimorphism a: A(x1, ... , xk, 18) -+ Pk(A) is an isomorphism. For the
variety of rings with identity there exist a few results (ACZEL [1], Hosszu
[1]). Recently a characterization of those noetherian rings for which (J (in
the case k = 1) is an isomorphism, could be achieved by CAHEN and
CHABERT[1]. In § 10 we show that a is always an isomorphism for the
variety of distributive lattices with zero and identity and for the variety of
Boolean algebras.

A central problem in the theory of polynomial functions is the "prob-
lem of interpolation" which can be stated as follows: How can one re-
cognize a function cp E Fk(A) to be a polynomial function and if cp is a
polynomial function, how can one construct a corresponding polyno-
mial? A closely related problem is that of "local interpolation": Let B
be any finite subset of Ak and 1p: B -+ A a function. Is there a way to see
whether or not 1pcan be extended to a polynomial function on Ak and if 1p is
extensible, how can one construct a corresponding polynomial? Both
problems have been attacked mainly for k = 1 where, as is well-
known (see VANDERWAERDEN[1]), for A being a field, a characterization of
polynomial functions can be achieved by certain difference equations
and the construction of the corresponding polynomials is possible by
means of the interpolation formulae of NEWTONor LAGRANGE.For other
algebras than fields, however, there are just scattered results (for rings
see CARLITZ [8], DUEBALL[1], REDEl and SZELE [1], [2], SPIRA [1], for
groups see SCHUMACHER[1], and for Boolean algebras SCOGNAMI-
GLIO[1]).

§ 8. Whereas polynomial functions over commutative rings with iden-
tity, and even more in the case of fields, have been 'considered in algebra
and analysis from time immemorial, the concept of a polynomial has
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not become relevant until the rise of modern algebra. In modern algebra
texts, polynomials are usually defined by the procedure as in § 8.11,
that means by using certain sequences. It should be mentioned that a
similar construction performed with all sequences (Go' al' ... ) of ele-
ments of a commutative ring R with identity, again leads to some exten-
sion ring of R being called the ring of formal power series in x over R
which is frequently denoted by R[[xl] (see e.g. KERTESZ[1]). Some of our
definitions for polynomials over commutative rings with identity make
sense also for formal. power series, and also some of our results have
their counterparts for formal power series. Since, however, a generaliz-
ation of formal power series to arbitrary algebras seems to be almost
impossible, we have abstained from including formal power series in our
book. For the same reason, the elements of the total quotient ring of
R[x] (see ZARISKIand SAMUEL[1]), the so-called rational functions in x
over R, have been used here only as a handy tool for some proofs. But
there are possibilities of generalizing some definitions and results of
this book about polynomials to rational functions (see NOBAUER[15],
[16], LIDL [3]).

§ 9. Polynomials over groups have so far been dealt with only implicit-
ely in connection with systems of equations over groups (see the remarks
and comments at the end of ch. 2.).

§ 10. For polynomial algebras over arbitrary lattices, a normal form
system has been found by SCHUFF [2] which is defined recursively and
looks rather complicated, but it seems hopeless at the moment to find a
handy normal form system, and this makes the investigation of this
polynomial algebra rather tedious (some results can be found in MITSCH
[1], SCHWEIGERT[1], SHAFAAT[1]). For the varieties of distributive lattices
and Boolean algebras, however, there are quite a few results (e.g. MITSCH
[2], RUDEANU[4] and ANDREOLI[1], RUDEANU[2], resp.). Polynomials
and polynomial functions over Boolean algebras have important applica-
tions to several branches of mathematics, we mention probability theory,
propositional calculus, and the theory of switching circuits.

§ 11. Several authors have defined concepts that are related to our notion
of polynomially complete algebras, for arbitrary algebras as well as for
certain varieties (for a survey on these concepts, see KAISER [1]). The
general idea behind all these concepts is:

.i
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Let sr be an arbitrary class of algebras and, for any integer k ~ 1
and any A in sr, S,,(A) and T,,(A) a pair of subsets of P,,(A) such that
Sk(A) ~ Tk(A). An algebra A of sr is called k-(S, T)-complete if
Sk(A) = Tk(A), and A is called (S, T)-complete if A is k-(S, T)-comp-
lete for any k. Moreover, A is called locally k- (S, T)-complete if, for any
cpE Tk(A) and any finite subset B of A", there exists some "p ESk(A) such
that "p(al' ... , Gk) = cp(a1, ... , ak), for all (01) ... , ak) EB, and conse-
quently A is called locally (S, T)-complete if A is locally k-(S, T)-
complete for any k. KAISER[llhas also introduced a measure for the
degree of incompleteness of an algebra A: If A E sr, then the least amongst
the cardinals of all subsets Vof Tk (A) such that [Sk(A)U V] ;;;;! Tk (A) is
called the k - (S, T)-completeness defect of A. If sr is the class of all
algebras, Sk(A) = P; (A) and Tk (A) = Pk(A), then we obtain just our
concept of polynomial completeness. Other concepts of completeness
were studied by FOSTERand his school in a long series of papers (see
FOSTER[1]-[9], FOSTERand PIXLEY[1], KNOEBEL[1], PIXLEY[1], QUAK-
KENBUSH[1], WERNER[1]). Thel~ee.g. the following special cases of (S, T)-
completeness were introduced:

a) Sk(A) = GIc(A), the algebra of GRATZER'S polynomial functions,
Tk (A) = Pic(A); the (S, T)-complete algebras are called primal.

b) Sk (A) = Gk(A), Tic(A) the set of all "conservative" functions of
Pk(A), i.e. the set of all those functions cpEPk(A) such that, for any sub-
algebra V of A, (a1; ... , ak) E:. ir implies cp(a1, ... , ak) E U; the (S, T)-
complete algebras are called semiprimal.

c)Sk(A) = Gk(A) tr, (A)), Tk (A) the set of all "compatible" functions of
Pk (A), i.e. the set of all those functions rp of Pk (A) such that, for any con-
gruence fJ on A, ai fJbi, i = 1, ... , k, implies rp(a1, ... , ak) fJcp(b1, ... , bk);
the (S, T)-complete algebras are called hemiprimal (polynomially hem i-
complete).

Th. 11.2 and its proof are due to SlERpn~sKI[1].

§ 12. Th. 12.21 has been proved by REDEl and SZELE[1~.In REDEland
SZELE[1], [2] and NOBAUER[21], some more concepts of completeness
are investigated for commutative rings with identity. HEISLER[1] gene-
ralizes Th. 12.21 to non-commutative rings. For the variety of lattices,
SCHWEIGERT[1] has introduced the concept of l-order-polynornial com-
pleteness which is a special case of 1-(S, T)-completeness when setting
S1 = PI, T1 = 01 where OleA) is the set of all order endomorphisms of
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A, and the same author has given examples for l-order-polynornially
complete lattices. GRATZER[1], [2] has studied polynomial hemicornple-
teness for the varieties of Boolean algebras and distributive lattices.

Our proof of Prop. 12.5 is due to MAURERand RHODES[1] who use
this proposition to show that every finite simple nonabelian group is
polynomially complete. By using different methods, FROHLICH[1] has
proved earlier that these groups are l-polynomially complete. These
methods were also used by LAUSCH [4] to investigate l-polynomially
complete multioperator groups. ROUSSEAU[1] has studied polynomial
completeness for algebras with a single operation.

CHAPTER2

ALGEBRAIC EQUATIONS

1. Systems .of algebraic equations

1.1. Let Q5be any variety, A ap algebra of Q5and X = {Xl' ... , xk} a
finite set of indeterrninates. An algebraic equation over (A, Q5)in the
indete:minates Xl' ... , Xk is a formal expression of the form

p=q

where p, q E A(X, Q5).A system of algebraic equations over (A, Q5)-in
short, an algebraic system-in the indeterminates Xl' ... , Xk is a family
of algebraic equations over (A, Q5)in xl' ... , xk; indexed by an arbitrary
(possibly infinite) set 1:

Pi = qi' i E 1. (1.1)

In particular, we may regard a single algebraic equation as an algebraic
system.

Let B be an arbitrary Q5-extension of A, then, by ch. 1, Prop. 6.31,
p(b1, ... , bk) is a well-defined element of B, for every (bl, •.. , bk) E Bk
and every p E A(X, Q5).This allows us to make the following definition:

The element (bl' ... , bk) E Bk is called a solution of the algebraic sys-
tem (1.1) if Pi(b1, ••. , bk) = qi(b1, ••. , bk), for all i c I.

An algebraic system over (A, Q5)is called solvable if there exists a
Q5-extension B of A such that the system has a solution in B. I

1.2.We want to obtain a criterion for the solvability of an algebraic system.
First we prove

1.21. Lemma. Let X be an arbitrary set of indeterminates, P =
{(Pi' q;) I i E/} a subset of A(X, Q5) X A(X, Q5), and e the congruence on
A(X, Q5)generated by P. Then feg holds if and only if there is a chain
f ~ zo' Zl' ... , z, = g of polynomials of A (X, Q5) such that any two
polynomials Zj' Zj+l are either equal or Zj+l is obtained from Zj by replacing
a sub word equal toPi of a representation of Zj as a word by the corresponding
qi or by replacing a subword equal to qi of a representation of Zj as a word
by the corresponding Pi-

47
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Proof. We setfelg if and only if there is a chain fromf to g as described
in the lemma. Then el is a congruence on A(X, )B) as one can easily see.
Certainly el contains P. Also every congruence on A(X, )B) containing
P contains el. This proves the lemma.

1.22. We define: A congruence eon A(X, )B) is called separating if, for
any two elements a, bE A, aeb implies a = b. With this definition we can
now state

1.23. Theorem. The algebraic system Pi = qi' i E 1, over (A,)B) in
X = {Xl' ... , xd is solvable !f and only if the congruence e on A(X, )B)
generated by the subset {(Pi' qJ liE I} of A(X, )B) X A(X, )B) is separating.

Proof. Suppose the hypothesis of the theorem is satisfied. We can then
perform the embedding of A into A(X, )B) Ie, this yields some )B-extension
B of A. Let Xi' i = 1, , k, be the congruence class of Xi under e, then
Piegi implies p;(xl' , xk) = qi(XI' ... , Xk)· Hence (xl' ... , xk) is a
solution of the algebraic system in B. Conversely, suppose that the system
is solvable, and let (bl' ... , b,) be a solution of the system in some )B-ex-
tension B of A. Then feg implies, by Lemma 1.21, that f(bl, ... , bk) =
g(bl' ... , bk)' hence, for a, bE A, aeb implies a = b. Thus e is
separating.

1.3. Theorem. Let Pi = qi' i E 1, be any algebraic system over (A, )B) in
X = {Xl' ... , Xk}· Then one of the following statements is true:

a) The system has at most one solution in every )B-extension of A.
b) For every cardinal u, there exists some )B-extension C of A such that

the set of all solutions of the system in Chas cardinality greater than u.

Proof. Suppose that alternative a) is not true. Then there exists some
)B-extension B of A such that the system has at least two different solu-
tions in B, say (bl, ..• , bk) and (cl, ... , ck). Let u be an arbitrary cardinal,
L any set of cardinality 211, Y = {XIIII EL, 1 ~ t ~ k} a set of inde-
terminates, and A that congruence on A(Y, )B) which is generated by
{(Pi(XIl, ... , Xlk), qi(XIl, ... , X,k)) liE J, IE L}. A is separating since,
for a, bE A, aAb yields a polynomial chain in A(Y, )B) from a to b
according to Lemma 1.21 which, by replacing each XII by XI>yields a
polynomial chain in A (X, )B) from a to b showing that aeb, again by
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Lemma 1.21. But e is separating, by Th. 1.23, whence a = b. Hence A
can be embedded into C = A(Y, )B)IA, a )B-extension of A. If XII is
the congruence class of XIIunder A, then (XII' ... , X,k) EC" is a solution
of the given system, for all IE L. We have to show that m ~ n implies
(xml' ... , xmlJ ~ (XII!' ... , xllk)· Assume the contrary, then xm,!lxn°l'
t = 1,2, ... , k. Lemma 1.21 yields a polynomial chain in A(Y, )B) from
Xm, to Xn,. If we replace each Xm, by b, and each Xr, by c., for r ¢ m,
in this chain, this chain turns into a sequence of equal elements of B
whence b, = c" t = 1, ... , k, This is a contradiction. Hence there are
at least IL I = 2tl > u solutionsin c.

1.31. Remark. Unless )Bis semi degenerate and I A I = 1, either alternative
of Th. 1.3. can occur, for arbitrary k. Indeed, let ai EA, then the
system Xi = ai' i = 1,2, ... , k is an example for alternative a) while
ai = a., i E J, represent~ alternative b).

1.4. Let (S) be any solvable algebraic system over (A,)B) in X =
{Xl' ... , x/c},and (bl, ,bk) a solution of (S) in some )B-extension B of A.
The subalgebra A(b!, , b/c) of B is called an (S)-root extension of A.
A pair A(bl, ... , b/c), A(cl, ... , ck) of (S)-root extensions of A is called
equivalent if there exists an isomorphism from A(bl' ' bk) to
A(c!, ... , ck) fixing A elernentwise and mapping bi to c.; i = 1, , k. A
greatest (S)-root extension of A is an (S)-root extension A(c!, , ck)
of A such that, for any (S)-root extension A(bl, ... , b,J of A, there
exists a homomorphism from A(cl, ... , ck) to A(bl' ... , b/c) fixing A
elementwise and mapping c, to b., i = 1, ... , k~ Clearly such a homo-
morphism isthe only one with this. property and is an epimorphism.

1.41. Lemma. Every solvable algebraic system (S) over (A, )B) in X =
{Xl' ... , xd has a greatest (S)-root extension, and any two greatest
(S)-root extensions of A are equivalent.

Proof. The second statement is an immediate consequence of the defini-
tion of a greatest (S)-root extension. We claim that, if e is the congruence
on A(X, )B)generated by the equations of(S), C the algebra resulting from
embedding A into A(X, )B)Ie, and Xi' i = 1, ... , k, the congruence class
of Xi in C, then C = A(x!, ... , xk) is a greatest (S)-root extension. For let
A(bl, ... , bk) be an arbitrary (S)-root extension of A.If w(ai, Xl' ... , xk) =
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\Y
v(aj, Xl' ... , xk), for two words w, v, then w(a;,Xl' ... , Xk)8v(a;, Xl' ... , xk)
whence, by Lemma 1.21, w(a;, bI> ... , bk) = v(a;, bl, ... , blJ Let
fE A(xl, ... , xk) and f = w(a;, Xl' ... , xk) be any representation of f
as a word, then rpf = w(aj, bI> ... , bk) yields a well-defined mapping rp
from A(xl' ... , Xk) to A(bl, ... , bk). Clearly rp fixes A elementwise, maps
x; onto b, and is a homomorphism. Thus C is a greatest (S)-root exten-
sion.

1.5. Let A be any algebra of ~, X = {xl' ... , Xk}' and 2(A(X, ~)) the
congruence lattice of A(X, ~). One can easily verify that the subset ;t
of 2(A(X, ~)) consisting of all separating congruences is a subsemilattice
with respect to n, i.e. the intersection of any two separating congruences
is again separating.

Now let A be any congruence on A(X, ~). A Ie-tuple (ul' ... , Uk) of
elements of a ~-extension U of A is called a general root of A whenever
pAq holds if and only if p(ul, ... , Uk) = q(ul, ... , Uk).

1.51. Proposition. A congruence .11 on A(X, ~) has a general root if and
only if .11E ;t. If U is an arbitrary ~-extension of A and (u1, ... , Uk)E tr,
then there is one 'and only one congruence A on A(X,~) such that
(u1, ... , Uk) is a general root of zl,

Proof. If .11~;t, then there exist a, b EA such that a r' b but a/ib,
thus A cannot have a general root in this case. If ./1E;t, let U be the
~-extension of A obtained from embedding A into A(X, ~) IA. If s, is
the congruence class of Xi in U, then (Xl' ... , xk) is a general root of A.
Let (up ... , Uk)E Uk where U is now an arbitrary ~-extension of A,
and A be the binary relation on A(X, ~) defined by: p Aq if and only if
p(ul' ... , Uk) = q(u1, ... , Uk)· Clearly A is a congruence on A(X, ~)
with (ul, . ~., Uk) as a general root. By definition of a general root, A is
uniquely determined by (ul' ... , Uk)·

1.6. Let (Sl)' (S2) be two solvable algebraic systems in X = {Xl' ... , xk}

over (A, ~). We define: (S'i) 2 (S2) means that every solution of (Sl) is a
solution of (S2). (S 1) and (S 2) will be called equivalent if (S 1) 2 (S2) and
(S2) 2 (Sl).

1.61. Lemma. Let (Sl)' (S2) be solvable algebraic systems in Xl' ... , Xk
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over (A, ~) and 8j, i = 1,2, the congruences on A(X, ~) generated by the
equations of (S;). Then (Sl) 2 (S2) if and only if 81 2 82.

Proof. Suppose that (Sl) 2 (S2), and let B be the algebra we get from
embedding A into A(X, ~) I81. By the proof of Th. 1.23, the k-tuple
(Xl' ... , xk) of congruence classes of the Xi under 81 is a solution of
(Sl) and therefore a solution of (S2). Thus, for every equation Pi = qj
of (S2) we have Pi(Xl, ... , xk) = qj(x1, ... , xk) whence Pi8lqi' thus
81 2 82. Conversely, if 81 :2 82 and Pi = qj is an equation of (S2)' we
have Pi81qi. Hence, by Lemm~).21, every solution of (Sl) is a solution
of (S2)' thus (Sl) 2 (S2).

1.62. Corollary. Two solvable algebraic systems (Sl) and (S2) are equiva-
lent if and only if01 ,,;,82 where 8j is the congruence on A(X, ~) corre-
sponding to (S;), i = 1, 2.

Proof. Obvious.

1.7. Let again ~ be any variety, A an algebra of~, and X = {xl' ... , x,,}
a finite set of indeterminates. An algebraic inequality over (A, ~) in the
in determinates Xl' ... , Xk is a formal expression of the form

fr'g

where f, g E A(X, ~). A mixed algebraic system over (A, ~) in the inde-
terminates Xl' ... , Xk is a family consisting of algebraic equations and
inequalities where the equations are indexed by some set I and the inequa-
lities by some set J disjoint from 1. Thus a mixed algebraic system has the
form

Pi = qj' i El, Jj r' gj' j E1. (1.7)

In particular, we may regard any algebraic system as a mixed algebraic
system.

Now let B be any ~-extension of A. The element (bl' ... , bk) E Bk is
called a solution of (1.7) if p;(bl, ... , bk) = qj(bl' ... , bk)' for all i El,
and Jj(b1, ... , bk) r' gib1' ... , bk), for all j E 1. The mixed algebraic
system (1.7) is called solvable if it has a solution in some suitable ~-ex-
tension of A.

Th. 1.23 can now be easily generalized to the case of mixed algebraic
systems:



52 ALGEBRAIC EQUATIONS CH. 2

1.71. Theorem. The mixed algebraic system Pi = qi' i E I, 1; ~ gj' j EJ,
over (A, Q5)in X = {Xl' ... , xk} is solvable if and only if the congruence 0
on' A(X, Q5)generated by the subset {(Pi' q) liE I} of A(X, Q5)X A (X, Q5)
is a separating congruence such that J;0gj holds for no index j E J.

Proof. Suppose the hypothesis of the theorem holds. Then we can embed
A into A(X, Q5)I 0 in order to obtain a Q5-extension B of A where the
k-tuple (Xl' ... , xk) consisting of the congruence classes of the Xi under
o isa solution of the given mixed algebraic system.

Conversely suppose the system is solvable, and let (bI' ... , bk) be a
solution of this system in some Q5-extension B of A. Since f0g implies
f(b1, .•. , bk) = g(b1, ••• ,bk), by Lemma 1.21, we see that 0 is separating,
butJ;0gj never holds.

1.72. Again we will call two solvable mixed algebraic systems equivalent
if they have the same solutions.

2. Maximal systems of algebraic equations

2.1. Let Q5be any variety, A an algebra of Q5, and X = {Xl' ... ,xk}

a finite set of indeterminates. An algebraic system (S) over (A, Q5)in X is
called maximal if the congruence 0 on A(X, Q5)generated by the equa-
tions of (S) is a maximal element of the partially ordered set <%, .,,;;) of
separating congruences, where .« is the set-theoretical inclusion of con-
gruences.

2.11. Theorem. Let (S) be a solvable algebraic system. Then the following
conditions are equivalent:

a) (S) is maximal.
b) rip = q is any equation over (A, Q5)in X and (Sl) = (S)U{p = q},

then either (S1) is equivalent to (S) or (S1) is not solvable.
c) Any two (S)-root extensions of A are equivalent.
d) Every solution of (S) is a general root of one and the same congruence

A on A(X, Q5).
e) Every (S)-root extension of A is a greatest (S)-root extension.
f) If(SI) is any algebraic system over (A, Q5)in X, and (S) and (Sl) have

one solution in common, then (S) ;2 (S1)'
g) Every solvable algebraic system (S 1) is either equivalent to (S) or (S 1)

has a solution which is not a solution of (S).
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Proof. a) ~ b). Let (S) be maximal, 0 be the congruence generated by
the equations of (S), (Sl) as in the hypothesis of b), and 01ihe congruence
generated by the equations of (S 1)' Then 01 ;20 whence 01 = 0 or
01 ~ :.t. In the first case, (Sl) is equivalent to (S), by Cor. 1.62 while in
the second case, (Sl) is not solvable, by Th. 1.23.

b) ~ c). Suppose (S) satisfies b), but not c). Then Lemma 1.41 implies
that A has a greatest (S)-root extension A(c1, ••. , ck) and some other
inequivalent (S)-root extension A(b1, ••. , bk). The epimorphism from
A(c1, •.. , ck) to A(b1, ••• , bk) fixing A elementwise and mapping ci to bi

is therefore not an isomorphism whence, for some polynomials P, q E
A (X, Q5), we have p(c1, •.. , c~) ~ q(cl' ... , ck), but p(b1, ... , bk) =
q(bl' .. ·,A)· Let (Sl) = (S)U{p = q}. Then (Sl) is not equivalent to
(S) and is solvable, contradicting b).

c) ~ d). Let (uI>... , Uk)' (VI' ... , vk) be solutions of (S) and AI' A2
the congruences accordingto Prop. 1.51corresponding to these solutions,
respectively. Then pAjq holds if and only if p(u1, ... , .uk) = q(u1, .•. , Uk)

which holds if and only if p( VI' ... , vk) = q(VI' ... , v,J which is equivalent
to pAzq. Thus Al = A2.

d) ~ e). Let A(e1, ... , ck) and A(b1, •.. , bk) be two (S)-root extensions
of A. Then (cl' ... , ck) and (b1, ... , bk) are both general roots of A.
Let B-: ACcl' ... , Ck) ->- A(b1, .•. , bk) be the mapping defined by:
1Jp(c1, •.• , ck) = p(b1, •.. ,bk), for all pEA(X, Q5). This is a well-de-
fined mapping since p(c1' .•• , ck) = q(c1, ••• , ck) implies p Aq whence
p(bl' ... , bk) = q(b1, ... , bk)· Clearly B- is a homomorphism fixing A
elementwise and mapping c, to b.. ThusA(c1, ... , ck) is a greatest (S)-
root extension.

e) ~ f). Let (c1, .•. , Ck) be a common solution of (S) and (Sl)' Then
Pi(C1, ..• , ck) = qKc1, .•. , ck), for every equation Pi = qi of (Sl)' Let
(b1, •.• , bk) be any solution of (S). Then, by Lemma 1.41, there is an
isomorphism-s : A(c1, ... , ck) -> A(b1, ..• , bk)fixing A elementwise and
mapping ci to b.; i = 1, ... , k. Hence p;Cb1, ••• , bk) = q;(b1, .•. , bk)

and thus (bI, ... , bk) is also a solution of (Sl)'
f) ~ g). Suppose every solution of (S1) is also a solution of (S) i.e.

(S) and (Sl) have sortie solution in common. Hence (S) ;2 (Sl) ;2 (S),
i.e. (S) and (S1) are equivalent.

g) ~ a). Let e be the congruence on A(X, Q5)generated by the equa-
tions of (S) and e1 E % such that e1 ;2 0. The algebraic system (Sl)
consisting of all equations p = q such that pe1q has 81 as its correspond-
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ing congruence. By Lemma 1.61, (SI) ;2 (S), whence (SI) has just solu-
tions which are also solutions of (S). Thus (Sl) and (S) are equivalent.
By Cor. 1.62, e1 = e showing that e is maximal in sr. Therefore (S) is
maximal.

2.2. Proposition. An algebraic system in X = {Xl' ... , x;J over (A, ~)
which has a solution (aI' ... , ak) E 4" is maximal if and only if it is
equivalent to the system x, = a., i = 1, ... , k.

Proof. Let (S) be a system equivalent to the system Xj = aj' i = 1, ... , k,
then (S) has the unique solution (aI' ... , ak) in every ~-extension of A.
Thus every solvable algebraic system (SI) has either a solution which is
not a solution of (S) or is equivalent to (S). Hence, by Th. 2.11 g), (S) is
maximal. Conversely, let (S) be a system with thesolution (aI' ... , ak) EAk
which is maximal. Then, by Th. 2.11 d), every solution of (S) is a
general root of the same congruence .Ii on A(X, ~). Hence xjAai,

i = 1, ... , k: Let (b1, •.• , bk) be an arbitrary solution of (S), then
b, = a., i = 1, ... , k, Thus (S) is equivalent to the system Xi = a.,
i = 1, ... , k.

2.21. Proposition. Let (S) be any solvable algebraic system in X over
(A, ~). Then there exists at least one maximal algebraic system (Sl) ;2 (S).

Proof. Let e be the congruence on A(X, ~) generated by the equations of
(S), ® the subset of sr consisting of all congruences of sr containing e,
partially ordered by the partial order of sr, and {ej liE I} any chain of ®.
Then Z = U {ei liE I} is a congruence on A (X, ~) such that if aZb,
then aeib, for some i E I, thus a = b. Hence Z E sr and even more,
Z E ®. By Zorn's Lemma, ® has a maximal elernent zl which is, of course,
maximal in sr. If (Sl) is the algebraic system consisting of all equations
p = q such that pAq, then(Sl) ;2 (S) and (Sl) is maximal.

2.3. Lemma. Let '!5J?ea.sq11J4eK!,lerate~.a!ie.!.Y, .4.~qny..si!Jlp.leJI!g~jJrqof
~, X = {Xl' ... , xk}, e any congruence on A(X, ~) whi~h i~ maximal in_
~ .and P the congruence on A(X, ~) which has only one congruence class.
Then there is no congruence Z on A(X, ~) such that e c Z c P.

Proof. Let Zbe a congruence on A (X, ~) such that Z :J e. Since Z ~ sr,
the congruence zn (A X A) on A cannot be the congruence where every
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congruence class contains only one element. Hence zn (A X A) = A X A
since A is simple. Under the canonical epimorphism from A(X, iB) to
A(X, ~) I Z, the sub algebra A of A(X, ~) is therefore mapped onto an
algebra of order 1. Since ~ is semidegenerate, this means that
iA(X, ~)IZi = 1, thus Z = P.

2.31. Proposition. Let ~ be semidegenerate and A any simple algebra
of~. If (ul' ... , Uk) is a k-tuple of a ~-extensionof A which is a solution
of a maximal algebraic system (S) over (A, ~), then the algebra A(ul' ... , Uk)
is simple.

Proof. Let e be the congruence on A(X, ~) generated by the equations
of (S). By the proof of Th. 1.23, A (X, ~) Ie yields an (S)-root extension
A(xl, .. " xk) of A which, by Th. 2.11 c), is isomorphic to A(ul, ... , Uk)'
Hence A(X, ~) Ie == A(ul' ... , Uk)' Since e is maximal in sr, there is no
congruence on A(X, ~) between e and P, by Lemma 2.3. Hence the
algebra A(X, ~) Ie is simple, by ch. I, Th. 1.71., which proves the pro-
position.

2.32. Proposition. Let ~ be an arbitrary variety, A an algebra of iB with
I A I >- 1, and A(ul, ... , Uk) any ~-extension of A which is simple. Then
there exists a maximal algebraic system (S) over (A, ~) which has
(ul, ... , Uk)as a solution.

Proof. Let .Ii be the congruence on A(X, ~) which has (ul, , Uk) as a
general root, thus pAq if and only if p(ul' ... , Uk) = q(u}, , Uk)' Let
(S) be the algebraic system consisting of all equations p = q such that
pAq. (S) has (u}, ... , Uk) as a solution. By the proof of Lemma 1.41,
embedding of A into A(X,~) IA yields a greatest (S)-root extension
A(xl, , xk) of A. Clearly, the homomorphism from A(xl, ... , xk) to
A(u1, , Uk) fixing A eIementwise and mapping Xi to u.; i = 1, ... , k,
is an isomorphism, hence A(ul , ... ,Uk) is a greatest (S)-root extension. If
(S) were not maximal, then, by Th. 2.11 e), there would exist an (S)-root
extension A(bl, .•. , bk) which is not a greatest (S)-root extension, and the
epimorphism from A(ul, ... , Uk) to A(bl, ... , bk) fixing A elementwise
and mapping u, to b, would not be an isomorphism. Since A(ul, ... , Uk)
is simple, we conclude that IA(bl, ... , bk) I = 1 whence IA I = 1, a contra-
diction. Hence (S) is maximal.
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2.33. Theorem. Let ~ be a semidegenerate variety and A a simple algebra
of ~ with I A I >- 1. Then the k-tuple (uI' ... , Uk) oj a ~-extension of A is a
solution of a maximal algebraic system over (A,~) if and only if
A(ul, ... , Uk) is a simple algebra.

Proof. This is immediate from Prop. 2.31 and Prop. 2.32.

3. Algebraically closed algebras

3.1. An algebraic system (S) over (A, ~) in xl' ... , x" is called finite if it
consists of a finite number of equations. Similarly a mixed algebraic
system is called finite jf it consists of a finite number of equations and
inequalities.

Now let ~ be any variety. An algebra A of ~ is called (mixed) algebrai-
cally closed if, for every k ;;..1, every solvable (mixed) algebraic system
over (A,~) in the in determinates Xl' ... , x" has a solution in A. The
algebra A of ~ is called weakly (mixed) algebraically closed if, for every
k i» 1, every solvable finite (mixed) algebraic system over (A, ~) in
xl' ... , x" has a solution in A. Thus every mixed algebraically closed
algebra is algebraically closed and every weakly mixed algebraically
closed algebra is weakly algebraically closed.

(Of course all these definitions depend on the variety ~. Thus, in fact,
we should call A "algebraically closed in ~", but since ~, throughout
this section, is being kept fixed, there is no danger of confusion).

3.2. Theorem. Let A be any algebra of~. Then there always exists some
~-extension e of A which is weakly mixed algebraically closed and there-
fore weakly algebraically closed.

The proof of this theorem will depend on

3.21. Lemma. Let A be an algebra of~. Then there exists some ~-extension
teA) = B of A such that, for every k ;;..1, every solvable mixed algebraic
system over (B, ~) in the indeterminates Xl' ... , xk, where the polynomials
occurring in the equations and inequalities can be represented by words
over A, has a solution in B.

proof. We may regard every family of equations and inequalities in
Xl' ... , xk, k = 1, 2, . , ., as a set by neglecting the index sets for the

/1
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equations and inequalities. Then any two systems, which regarded as
sets are equal, have the same solutions. But there is an injective mapping
from the class of sets of equations and inequalities to the Cartesian pro-
duct of two copies of the power set of A(X, ~) X A(X, ~), X =
{Xl' x2, x3' ••• }. Hence the class of sets of equations and inequalities
over (A,~) in xl" .. , x", k = 1,2, , is a set M which can be well-
ordered, say M = {(SJ 10:: = 1,2, }, 0:: running through the ordinals
e:':: 0,0 being a fixed ordinal. We put Ao = A. Suppose that 0:: >- 0 is an
ordinal such that, for every ord'ina] y -< 0::, a ~-extension Ay of A has
been defined such that AI' is ,a subalgebra of Av, for fJ, -< v. Then we
define A" by A" = U {Ay Iy -< 0:: }-which is a ~-extension of A--if (S,,),
regarded as a mixed algebraic system over U {Ay Iy -< o::},is not solvable,
A" = (U{Ayly -< o::})(uI' ... , u,,) where (up ... , uk) is a solution of (S,,)
in some ~-extension of U{Ayly -< a} if (S,,) is solvable. Then,for every
fJ, -< 0::, Ail is a sub algebra of A", thus A" is a ~cextension of A. By trans-
finite induction, A" is then defined to be a ~-extension of A, for all 0:: -< 0,

and AI' is a subalgebra of Av, for fJ, -< v. We put B = U{A"lo:: -< o}
which is again a~-extension of A. Now let (S) be any solvable mixed
algebraic system over (B, ~) which satisfies the hypothesis of the lemma.
If we represent the equations and inequalities of(S) by words over A and
take the mixed algebraic system over (A, ~) represented by this represen-
tations and regarded as a set, we obtain some set (SJ EM which has the
same solutions as (S). Since (S) is solvable in some ~-extension of B,
(S,,)-regarded as a system over U (A) Y -< 0::)- is solvable and therefore
has a solution in A" ~ B. Hence (S) has a solution in B.

We are now ready to prove the theorem.

3.22. Proof of Th. 3.2. Let A(O) = A and define A(n), n t» 1, recursively
by A(II) = t(A(n-l»). This yields a chain A(O), A(1), A(21, ... of algebras
of ~, every member of which is a sub algebra of the subsequent one.
Hence every member is a ~-extension of A. We set e = U (A(n)1n ;;..0),
then e is also a lB-extension of A. Let (T) be any solvable finite mixed
algebraic system over (C, ~) in the in determinates Xl' ... , X". Then the
polynomials of the equations and inequalities of (T) can be represented
by words of W( eUX) where just finitely many elements of e occur in this
representation. Hence these words are words of W(A(n)ux), for some
n ;;..O. We consider the system (T1) over (A(I/H), ~), represented by these
words; it is solvable since it has a solution in some ~-extension of C. But
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A(n+l) = t,(A(n)), hence, by Lemma 3.21, (T1) has a solution in A(n+l)
which is also a solution in C. Thus (T) has a solution in C, and the theo-
rem is proved.

33. Proposition. Let C be any mixed algebraically closed algebra of the
variety m containing a subalgebra {e} of order 1. Then every finite algebra
of m which contains a subalgebra of order 1 can be embedded into C.
If C isjust weakly mixed algebraically closed, m has just a finite family of
operations and C contains a subalgebra {e} of order 1, then also everyfinite
algebra of m with a subalgebra oj order 1 can be embedded into C.

Proof. Let E = {ul, ... , ur} be any finite algebra of m, X = {Xl' ... , xr}

a set of indeterminates, and X: E -+ X a bijection. We construct a mixed
algebraic system over (C, m) in X as follows: As equations we take
Wi = XWi if Wi is a O-ary operation of m, wixuj' Xu)' ... Xu,' = xwiu,' u,' ... U,.

1 2 ni 1 2 ni

if co, is an n;-ary operation of m, nj >- 0, and uh running independently
over all elements of E; as inequalities we take Xu. ¢ xuI' for all pairs
us' u, of different elements of E. This mixed algebraic system has a so-
lution in the m-extension of C obtained from embedding C into C XE,
namely XUS = (e(u;), s = 1, ... , r. Both hypotheses of the proposition
imply that thissystem has a solution in C, say XUi = v(u), i = 1, ... , r. .

h 'I , ".' , , , .-.,~ c( AT en ~ I,.>v-~ •. ·<" _ \,0 "',t ..\,/ \. '" 1. ~

v(w;) = Wi' ctJMA;~---J-
v(wiu). ... u)' ) = WiV(Uj) •.• v(u). ),

1 1I..i 1 1}i

V(Us) ¢ v(uJ
Hence v:E -+ C is a monomorphism. This completes the proof.

4. Algebraic independence

4.1. Let A be any algebra, B an extension of A, and U = {ul, ... , un}
a finite subset of B. If m is a variety and BE m, then U is called m-
algebraically dependent over A if there exist polynomials f, g E A(xl,
... , Xn, m) such that f ¢ g and f(ul, ... , ull) = g(ul, ... , u,J while
U is called q5-algebraically dependent over A if there exist polynomial
functions tp, 1p in the subalgebra A(~l' ... , ~n) of PIl(B) such that q; ¢ "P
and q;(ul, ... , un) = "p(ul, ... , U,.). Clearly this definition does not depend
on the order in which the elements of U are written down but just on
the set U.

i
I
I
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Subsequently "dependent" shall always mean "algebraically depend-
ent" and C£will mean either q5 or a variety m such that BE m. An
infinite subset U of B will be called C£-dependent over A if U contains
some finite subset, which is C£cdependent over A. A subset which is not
C£-dependent over A is called C£-irtdependent over A. In particular, the
empty subset of B isC£cindependent.

4.11. Lemma. Let A be any algebra, B an extension of A, and U = {ui liE I}
a subset of B. Then the following four conditions are equivalent:

a) U is C£-independent.
b) Every finite subset of U is C£-independent.
c) If f, g E A(xl' , Xn, m) (q;, 1p E A(~l' ... , ~n)) such that

f(ul, ... , un) = g(ul, , Un) (q;(ul,···, Un) = 1p(U1'... , un)), for a cer-
tain subset {u1, ... , un} of U, then f = g (q; = 'Ip).

d) If C£= m, then, for all m-extensions C of A, every mapping
IX: U -+ C can be extended to a homomorphism from A(U) to C fixing
every=element of A. If C£= q5, then every mapping IX: U -+ B can be
extended to a homomorphism from A(U) to B fixing A elementwise.

Proof. a) =>- b). If some finite subset Vof U were C£-dependent, then U
would be finite, say U = {u1, ... , u,J Then V = {U

i"
.•• , ui,}, 1 .,,;;;ij.,,;;;n,

and there would exist f, g E A(xl, ... , Xs' m) (q;, 1p E A(~I' , ~s)) such
that f ~ g (q; ¢ "I)) andf(ui , ... , ui) = g(ui , ... , ui) (q;(ui, , ui) =

1 , 1 , 1 ,

'Ip(ui], ... , «» By ch. 1, Cor. 4.62 (by the fact that A(~I' ... , ~s) can
be embedded into A(~I' ... , ~n) such thatthe embedding fixes AU gl' ... ,
~s} elementwise), U would be C£-dependent, contradiction. Thus a)
implies b).

b) =>- c). Obvious.
c) =>- d). Let p EA(U), and p = w(ai, u) a representation of p as a

word. We set ep = w(ai, IXU)' Then e is a well-defined mapping from
A(U) to C, or B, resp., b~cause of the assumption of c). Clearly e is then
a homomorphism extending IX and fixing A elementwise.

d) =} a). Suppose U is not C£-independent. Then there exists a C£-depend-
ent finite subset {up ... , un} of U, i.e., there exist f, g EA(xl, ... , xn' m)
(cp, 'IPEA(~l' ... , ~II)) such thatf ¢ g (q; ~ 1p),f(uI, ... , ulI) = g(ul, ... , un)
(q;(ul, ... , UII)= 'Ip(u1, ... , Un))·

If C£= m, let C = A(xp ... , XII' m) and 'IXUi = Xi' i = 1, ... , n.
Then IX cannot be extended to a homomorphism fixing A elementwise,

.t '> {+ ( ", "IJ <, ....:. '~...
~/

1', ~: tJ '" ""
cJ
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contradiction. If ~ =~, then there exist b., ... , b; E B such that
cp(b1, ... , bn) 7'=-1jJ(b1,••• , bn). Let IX : U -+ B be the mapping taking Uj

to b.; i = 1, ... , n, then again IX cannot be extended to a homomorphism
fixing A elernentwise, contradiction.

pairwise different i. i!, ... , i; we have Xj = w(ai, Xi.' ... , Xi). By
hypothesis, there exists a )E-extension B of A such that IB I >- 1. Let
X: X -+ B be a mapping such that XXi = b., S = 1, ... , r, where
bi., ... , bi, are arbitrary elements of B s and 'xxj 7'=- w(ai, bi" ... , b.],
and 1jJ2: F(X, )E) -+ B the extension of X to a homomorphism.

Bych, 1,Th. 4.31, there exists a homomorphism e: A(X, )E) -+ B such
that eXi = ljJ2X;,i E I, and oa = a, a E A. Then eXj = ew(ai, Xi" ... , Xi)
and hence XXj = w(ai, bi" ... ,bi), contradiction.

4.2. If B is an extension of A, then every variety )E such that B is an
algebra of){Syields some notion of )E-independence over A in B. Moreover
there is also a notion of ~-independence over A in B. The relationship
between these different notions of independence is described by

4.21. Proposition. Let B be any extension of A. If ){S2;:2 )E1 and U is
)E2-independent, thenU is also )Erindependent, and if U is )E-independent
for some variety ){S, then U is ~-independent.

4.32. Lemma. Let B be any e~Jension of A and W = {Wi liE I} an infinite
minimal A-generating set of B. Then all minimal A-generating sets of B
are infinite and of one and the same cardinality.

...

Proof. Let ){S1~ )E2 arid U be )Erdependent. Then there exist poly-
nomials f, g E A(x1, ... , x"' )El) such that f 7'=- g and feu!, ... , UTI) =
g(u1, ... , un), for some finite subset {u1' ... , un} of U. Let 1jJ: A(x1, ... , x",
)E2) -+ A(x1, ... ,x", )E1) be the epimorphism fixing AU{x1,···, xn}
elementwise, according to ch. 1, Th. 5.22., and f1' gl E A(x1, ... , xn' )E2)
such that 1jJf1= f, 1jJgl= g. Then f1 7'=- gl' and f1(u1, ... , un) = gl(U1,
... , Un) whence U is )E2-dependent. Suppose now that U is ~-dependent.
Then there are tp, 1jJ E A(;l' ... , ;n) such that cp 7'=- 1jJ and cp(u1, ... , un)
= 1p(U1, ... , Un), for some finite subset {Up ... , un} of U. Let cp= w(a;,
;1' ... , ;n), 1jJ = v(ai, ;1' ... , ;n) be any representation of cpand 1j!, resp.,
as words and h, gl E A(x1, ..• , x.; )E) such that fl = w(a;, xl' , xn),
gl = v(ai, Xl' ... , xn)· Then fl 7'=- gl' and f1(u1, ... , un) = gl(U1, , Un),
thus U is )E-dependent.

Proof. Let V = {vjlJE J} be any minimal A-generating set of B. Then,
for every Vj' there exists some finite subset Vj of W such that Vj E A(Vj).
Hence W = U (V/jE J) is an A-generatifug set of B. This implies W = W
and finiteness of J would imply finiteness of W. Hence V is infinite.
Moreover, IWI = I U(VjIJE1)1 ~ LClVj11JE1)~ I(~oIJE1) = III ~o
= III = IVI· Similarly we get IVI ~ IWI, hence IVI = IWI·

4.4. Let Bbe any extension of the algebra A and IB I :> 1. ~ shall have
the same meaning as before, i.e. ~ = ~ or )E, where B is an algebra of )E.
An A-generating set U of B is called a ~-basis of B over A if U is [-in-
dependent over A.

4.41. Proposition. Every [-basis of B over A is a minimal A-generating
set of B.

4.3. Let B be any extension of the algebra A. A subset U of B such that
B = A(U) is called an A-generating set of B. An A-generating set U of B
is called minimal if no proper subset of U is an A-generating set.

Proof. Let U = {uj liE I} be a [-basis of B over A which is not a minimal
A-generating set of B. Then uj = w(aj, ui" ... , ui), for suitable, pair-
wise distinct indices j, iI' ... , i.. If [ = )E, then, by Lemma 4.11 c),
xr+1 = w(a;, xl' ... , XI') in A(x1, ... , xr+1' )E) which contradicts Lemma
4.31. If [= ~,then again by Lemma 4.11 c), ;1'+1 = w(a;, ;1' ... , ;1')
in A(;I' ... , ;,.+1)' But, if b1, ... , b, E B, there exists bl'+! E B such that
b'+1 7'=- w(a;,b1, ... ,br) since IBI:> 1, contradiction.

4.31. Lemma. Let A be any algebra of the variety )E and X = {x; liE I}
a set of indeterminates. Unless j8 is semidegenerate and I A I = 1" then X is
a minimal A-generating set of A (X, )E).

Proof. By ch. 1, Prop. 4.11,X is an A-generating set of A(X, )E). Suppose
there is a proper subset of X which is also A-generating. Then, for suitable,

4.42. Theorem. If B has some infinite [-basis over A, then all [-bases
of B over A are infinite and of one and the same cardinality.
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Proof. By Prop. 4.41 and Lemma 4.32. exist a:-bases with m-s-Zd, m+Sd, ... elements and if there were a
a:-basis with m +kd + r elements, 0 -< r -< d.. then there would also be a
basis with m + r elements, contradiction. Let therefore {aI, ... , ap},

{bl' . , ., bq}, {cI, ... , cq+r} be a:-bases. By Lemma 4.11 d), there exists
a homomorphism cp : B ...•.B such that cpfixes A elementwise and cpbi = c.,
i = 1, ... , q, which is even a monomorphism, since, by Lemma 4.11 b),
{cl, ... , cq} is a:-independent. Moreover cpB = A(cl, .. ;, cq) implies that
tpa, .,c, cq+j, 1 ~ i ~ p, 1 ~ i,« r. If we can show that {cpaI, ... ,
cpap' cq+l' ... , cq+r} is a a:-basis of B, the proof will be completed. We
have

4.43. Theorem. Let A be any finite algebra and suppose that, for a: = )8,
there is some finite )8-extension C of A with IC I :> 1 while, for a: = 1,l3,
there is some finite extension C of A with IC I :> 1 being a subalgebra of
B. Then all the a:-bases of 13 over A are of one and the same cardinality.

Proof. By Th. 4.42, we can assume that B has just finite a:-bases over A.
Let U = {uI' ... , urn}, V = {VI' ... , VII} be such a:-bases. If a: = )8,
then )8-independence of U over A implies that the epiinorphism
e: A(xl, ... , Xn" )8) ...•.A(U) as defined in ch. 1, Lemma 4.43, is an iso-
morphism. Hence, if CPI, CP2are the homomorphisms from ch. 1, §4.3, we see
that B, {eCPI' etp2} is a free union of the algebras A and F(xl, ... , Xm, )8)
in Q3. If 1Pl: A - C is the inclusion map, i.e. "PIa = a, for all
G E A, and 1P2: F(xI, .•. , xm' )8) ...•.C the homomorphism defined
uniquely by "P2Xi = C;, i = 1, ... , m, where (cI' ... , cm) is an' arbitrary
m-tuple of elements of C, then there is a unique homomorphism .-r: : B ...•.C
such that 1PI = -r:eCPIand "P2 = -r:eCP2.Clearly xa = G, for all a E A while
xu, = Ci, i = 1, ... , rn. Since B = A(U), there is only one such homo-
morphism from B to C satisfying these conditions. Hence the number
of all homomorphisms from B to C fixing A elementwise is IC [". Similarly
we obtain IGin for this number. Sin~tlCI :> 1, we conclude that m = n.
Now let a: = 1,l3.Let ui ...•. ci' i = 1, ... , m, be an arbitrary mapping
from U to C. Since U is l,l3-independent and C is a subalgebra of B, the
mapping w(aj, ui) ...•. w(aj, c;) is a well-defined mapping -r: from B to C.
Moreover -r: is a homomorphism which extends u, - c, and fixes A
elementwise, and there is just one homomorphism of this kind. Thus the
number of all homomorphisms from 13 to C fixing A elementwise is
again IGltn. By the same argument, this number is also IC In. Hence
again m = n.

A(cpaI'" .,cpap,cq+I'" .,cq+r) = A(cpaI, ... ,cpap)(cq+I'·· .,cq+r)
= [(pA(aI,···, ap)] (cq+1, , cq+r) = (cpB)(cq+l' ... , cq+r)
= [cpA(bl, , bq)] (cq+l' , Cq+I')

= A (cpbl , , cpbq)(Cq+I' , cq+r) = A(cI, ... , Cq)(Cq+I' ... , cq+r)
= A(cI' , cq+r) ~ B.

Hence {cpal, ... , rpap' CHI' ... , cq+r} is an A-generating set of B. Let
L be an arbitrary Q3-extension of A, fora: = Q3,and L = B if a: = 1,l3,
and IX an arbitrary mapping from {cpaI, ... , cpap' cq+I' ... , cq+r} to L,
e.g. capa, = d.; i = 1, ... ,p, (Xc; = ai' i = q+ 1, ... , q+r. The mono-
morphism cp induces an isomorphism cp: B - cpB = A(cI, ... , cq).

Also, by Lemma 4.11 d), there exists a homomorphism X : B - L fixing
A elementwise such that Xai = d., i = 1, ... ,p. We put e = Xcp-I which
is a homomorphism from ACcI' ... , cq) to L. Again by Lemma 4.11 d),
there is a homomorphism b: B ...•.L fixing A elementwise such that
bCi = eCi' i = 1, ... , q, bCi = (l;, i = q+l, ... , q+r. Since e fixes A
elementwise, we see that bc = oc, for all C E A(cI, ... , cq); in particular,
bcpai = erpai = Xai = di, i = 1, ... , p. Hence b is a homomorphism
extending IX whence, by Lemma 4.11 d), {cpaI, ... , cpap' cq+l"'" cq+r} is
a:-independent.

4.5. Theorem. Let B be any extension of A with IB I :> 1 which has a:-bases
over A of different cardinalities. Then every a:-basis of B is finite, and
the numbers of elements of all a:-bases constitute an arithmetic progression.

4.51. Proposition. Let B be any extension of A which h(IS a a:-basis over A
of n elements. Then B has a a:-basis over A of m elements if and only if there
are words gI(aJ.' Xl' ... , x,J, .. ·,gm(aj, Xl'" .,Xn); hl(aj,XI, ... ,Xm), ... ,

hnCaj, Xl' ... , Xm) such that, for a: = Q3,Proof. Th. 4.42 implies that every a:-basis of B is finite. Suppose we have
already shown that, if {al' ... , ap}' {bI"'" beJ, . {cl' ... , cq+r} are
a:-bases, then there exists also a a:-basis consisting of p + r elements. Let
111 and 111 +d be the smallest numbers of elements of a:-bases, then there

gi( a., h1(aj> xl' ... , xm), ... , hn(aj, Xl' ... , Xm)) = Xi' i 1, ... , rn,

(4.51)
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holds in A(xl' ... , Xm, )8) and

hi(aj,gl(aj,xl, ... ,.xn), ... , gl1l(aj,xl,···,xn)) = xi' i .l, ... , n,
(4.52)

holds in A(xl, ... , xn,)8) while, for (£ = ~, the same equations hold in
A(~I' ... ,;m) and A(~I' ... , ~,.) with ~i instead of Xi'

Proof. Suppose {uI' ... , un} and {VI' ... , Vn,} are (£-bases of A. Then
Vi = gi(aj, uI' ... , Un), i = 1, ... , m, and Ui = hi(aj,vl, ... , vm), (= 1,
... , n, where g;(aj,xl' ... , xn), h;(aj, Xl' , Xm) aresome words. Hence
Vi = gi(aj, hl(aj, VI"'" Vm), ... , hn(aj>VI' , vm»)· By Lemma 4.11,
we obtain (4.51), similarly (4.52). Conversely, suppose that {ul' ... , un}
is a (£-basis of B over A and the conditions of the proposition are satis-
fied. We set Vi = g;(aj, UI, ..• , .un), i = 1, ... , m. Now let c, EL,
i = 1, ... , m, where L is an arbitrary )8-extension of A if (£ =)8 and
L = B if (£ = ~. Set b, = hi(aj, cI' ... , cm)EL, i = 1, ... , n, and let
rp: B -+ L be the homomorphism fixing A elementwise such that rpui= b.,
i = 1, ... , n. Then rpVi= gi(aj, rpul, ... , rpUII)= g;(aj, bl' ... , bll) =
g;(a., hl(aj, CI' ••. , Cm), •.. , hn(aj, CI' .•. , Cm») = Ci' i = 1, ... , m. Hence
{VI' ... , Vn,} is (£cindependent. Moreover, {VI' ... , vnJ is A-generating
by (4.52). I.t": :::.\?" (C''il'' V/f - -. v""" )

4.52. Corollary. If an extension B of A has a (£-basis over A consisting of
one element and a (£-basis of n elements, n :> 1, then B has an A-generating
set consisting of one (£-dependent element.

Proof. Let {ul, , u,,} and {v} be two (£-bases of B, and g(aj, Xl' ... , XII)'

h;(aj, Xl)' i = 1, , n, words satisfying (4.51) and (4.52). By (4.52),
hi(aj, g(aj, v, ... , v») = v, i = 1, ... , n, hence {g(aj, v, ... , v)} is A-gen-
erating. But h;(aj, Xl) = hk(aj, Xl) in A(xl')8) would imply Xi = Xk
in A(xl' ... , x., Q3), hence g(aj, v, ... , v) is (£-dependent if (£ = )8.
A similar argument works for (£ = ~.

5. Systems of algebraic equations over groups. Algebraically closed groups

5.1. In this section we will specialize some of the results of this chapter
to the variety of groups. Throughout this section, )8 will meanthe variety
of groups while G stands for a group. We will also write, as in ch. 1,
G[X] for G(X, )8).

CH.2
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We easily see that every algebraic system over (G, )8) is equivalent to
an algebraic system

Pi = 1, iE/,

while every mixed algebraic system over (G, Q3) is equivalent to a mixed
algebraic system of the form

I

I

Pi = 1, i E/, Jj 7'" 1, j E J.

Thus it suffices to consider just systems of this special form.
We can now restate Th. 1.71 which will also comprise Th. 1.23:

5.11. Theorem. The mixed algebraic system Pi = 1, i E I, Jj 7'" 1, j EJ
over (G, )8) in X = {Xl' ... , xk} is solvable if and only if the normal
subgroup N of G[X] generated by the subset {Pi liE I} of G[X] is such that
NOG = {1} and contains no jj.

Proof. Let e be the congruence on G[X] generated by the subset
{(Pi' 1) Ii E/} of G[XJx G[X]. If A is any congruence on G[X], then
(Pi' 1) EA if and only if Pi Eker A, and, by ch. 6, Th. 3.24, we easily see that
ker e = N. Thus e is separating if and only if NO G = {1}, and jje1
if and only if jj EN. Now the theorem follows from Th. 1.71.

5.12. Remark. One sees immediately that all the statements of this sub-
section are true for any arbitrary variety of Q-multioperator groups if we
replace 1 by ° and "normal subgroup" by "ideal".

5.2. Not every algebraic system over (G, )8), not even every system
consisting of one equation is solvable, e.g. xr+ax = 1 has no solution
for a 7'" 1. There is, however, a large class of solvable algebraic systems
consisting of one equation over (G, )8) as the next theorem will show.

5.21. Proposition. Let p = xboxbl ... xbn_l = 1, n ~ 1, be any equation
over G[x], biEG, i = 0, ... , n-1. Thenp = 1 is solvable.

Proof. Let C be a cyclic group of order n, and G wr C the regular wreath
product of G by C. By ch. 6, § 6.61, this is the set of all pairs (h, rp)
such that hE C and tp : C -+ G is a mapping, together with the group
operation (hl' rpl) (h2' rp2)= (hlh2' 'IfJ) where 'lfJh = (rplh) rp2(hhl). If x(g)
denotes the constant function with value g, then g -+ (1, x(g)) is clearly
a monomorphism from G to G wr C, thus embedding G along this mo-
nomorphism yields an extension group H of G. Let C = [c] and tp : C '+ G
be defined by ep(ci)= b;;!l-i' i =0,1, ... , n-1. We claim that (c, rp)EH



66 CH.2ALGEBRAIC EQUATIONS

is a solution of our equation. Indeed,

(c,cp)(l,u(bo))(c,cp) (1,u(bl)) ... (c,cp) (l,%(bn_l)) = (cn,'ljJ)

where, for hE C, 1ph = (cph)bocp(hc) blCP(hc2) ... cp(hcn-l)bn_l. Hence

1p(Ci)= (b;;!.i~lbob;;!.i_2bl ... b;;lbn_H) (b;;!.lbn_ib;;!.2 ... b;;!.ibn-l) = 1.

This completes the proof

5.22. Theorem. Let X = {Xl' ... , xk} and pE G[X] be a polynomial such
that, in the normal form p = aol'lal~J" ... ar_l~)"ar of p, we have
r >- 0, and moreover, if Aj = (IIi' ... , lkj)' there is t with ltj ~ 0 for all j
or ltj ~ °for all j and ltj >- ° or llj <:.0, resp., for one j. Then the
algebraic system p = 1 is solvable.

Proof. Since p = 1 and p=! = 1 are equivalent equations, we may assume
that ltj ~ ° and.Z, >- ° for one j. Then j5 = aOx7Jalx;12 ... ar_lx;trar = 1
is equivalent to some p = xtboxtbl xtbn_l = 1, and hence solvable
by Prop. 5.21. But then, Xl = 1, , xt_l = 1, XI = C, xt+l = 1, ... ,
Xk = 1, where c is a solution of j5 = 1, is a solution of p = 1.

5.23. Corollary. If G is finite, then every algebraic system of Th. 5.22
has a solution in some finite extension group of G.

Proof. By Th. 5.22 and the proof of Prop. 5.21.

5.24. Corollary. Every equation x" = g over (G, ~), where g EG and
n 7'" 0, is solvable and, if G is finite, has a solution in some finite extension

group ofG.

5.25. A very interesting result on the (S)-root extensions of G where (S)
is any finite algebraic system over (G, .~) has been obtained which,
similarly to field theory, ensures the existence of a "primitive element":

Let (S) be any solvable finite algebraic system over (G,~) in
{Xl' ... , Xk} and I G I 7'" 1. Then every (S)-root extension G(al' ... , ak)
of G can be embedded into some extension group G(a) of G.

5.3. As remarked in § 3.1, every weakly mixed algebraically closed algebra
is weakly algebraically closed. For groups, we will show the converse.

5.31. Theorem. Every weakly algebraically closed group G with I G I 7'" 1
is weakly mixed algebraically closed.

I

I'
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Proof. The proof of this theorem depends on two lemmas we are going
to prove first.

5.32. Lemma. Let G be any group and H an extension group of G such
that the finite mixed algebraic system over (G, ~) in Xl' ... , xk,

ui = 1, i E 1, Vj 7'" 1, jEJ, (5.31)

has a solution in H. Moreover, let 1 7'" g E G. Then there exists some
extension group K of H such that the finite mixed algebraic system over
(G,~) in the indeterminates x)., ... , Xb y, Z, Sj' jEJ, Ij' jEJ, which we
obtain from (5.31) by adding the equations

y2 = 1, g-lz2 = 1, (YZ)2= 1,

sJ = 1, (Sjv)3= 1,

t-l t -1 1jSjjy =,

jEJ,

jEJ;
has a solution in K.

(5.32)

(5.33)

(5.34)

Proof. Let m be the order of g, and D the dihedral group of order 4m,
for m >- 0 , and the infinite dihedral group, for m infinite. Then D = [a, b],
a2 = b2m = (ab)2 = 1. LetL be the free product of Hand D with amalga-
mation b2 = g. Then, in L, the equations (5.32) have a solution y = a,
z = b. Let (hI' ... , hk) be a solution of (5.31) in H, and therefore in L,
vihl' ... , hk) = fj E H, j E J, m(j) the order of fj, and Cj, j E J, the
group generated by {cj' d;} defined by the relations cJ = (CA)3 =
djU) = 1. We claim that cj is of order 2 and dj is of order m(j).
Indeed, if U is the group of unimodular 2 X 2-matrices over the integers
mod m(j), Z is the normal subgroup of U consisting of the matrices

(1 0) (-1 0)° 1 and ° -1 ,and V the subgroup of U I Z generated by the

( ° 1) (1 -1)elements cj = -1 ° Z and dj = ° 1 Z, then an easy com-

putation shows that cj, d, satisfy the relations above, cj is of order 2,
and d, of order m(j). Let M 1be the free product of Land C 1with amalga-
mation dl = Jl' M 2 the free product of M 1 and C 2 with amalgamation
dz == f2' etc., then we eventually get some extension group M of L.
In M, the equations (5.33) have a solution Xl = hI' ... , Xk = hk' Sj = cj'

and a and cj are elements of order 2. By ch. 6, Cor. 6.81, there is an ex-
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tension group K of M where every cj is conjugate to a whence there exist
elements tjin K solving (5.34). This completes the proof.

v ; t: d!l

5.33. Lemma. Let g ~ 1 be an element of G such that the algebraic system
(T) consisting of the equations of (5.31), (5.32), (5.33),(5.34) is solvable.
Then every solution of the algebraic system (T) is also a solution of the
mixed algebraic system (5.31).

Proof. Let (hI' ... , hk' y, Z, Sj' tj) be a solution of the algebraic system (T)
.such that one of the inequalities of (5.31) fails to hold, i.e. vzChl, •.• , hk) =
1, for some IE J. Then (5.33) implies s, = 1 whence, by (5.34), y = L
Thus, by (5.32), g = 1, contradiction.

5.34. Proof of Th. 5.31. Let IGI r=:1, with G weakly algebraically closed.
Suppose (5;31) has a solution in some extension group H of G. For an
arbitrary 1 r=:g EG, there exists,by Lemma 5.32, an extension group
K of H such that the finite algebraic system (T) of Lemma 5.33 has a
solution in K. Since G is algebraically closed, (T) has a solution in G
which, by Lemma 5.33, is also a solution of (5.31). This completes the
proof.

5.35. Proposition. Every weakly algebraically closed group is simple.

Proof. Since the group of order 1 is simple, we can assume that IG Ir=:1.
Let N be any non-trivial normal subgroup of G and 1 r=:gl EN. Then
the mixed system (5.31) consisting of gl r=:1 is solvable, hence, if
1 r=:g EG, the corresponding system (T) of Lemma 5.33 is solvable and
has therefore a solution inG. Hence with this solution

g = Z2 = yz-lyz = (tLlsltl) (z-ltllsltIZ)

= (t1\Slgl)3 sltl) (Z-lt11(Slglf SltlZ)

= (tllsllglsltl) (tllgltl) (tllsllglsltl)]

. (Z-ltllSllglshz) (Z-ltllgltIZ) (Z-ltllsllglSltlz)].

Hence g EN and therefore N= G.

5.36. Corollary. Every group can be embedded into a simple group.

Proof. This is a consequence ofTh. 3.2 and Prop. 5.35.
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5.4. Remark. We have defined algebraic systems Pi = qi over (A, iE)
where Pi' qi are polynomials of A(X, iE) and X is a finite set of indeter-
minates. One could also drop the finiteness assumption on X, and it
would still be possible to save a considerable part of the theory since
the proof of ch. 1, Prop. 6.31 remains valid and thus the value of a
polynomial on a place of a iE-extension of A is well defined. Thus it
makes sense to define solutions and solvability of such "unrestricted
algebraic systems" as in § 1. An algebra A such that every solvable un-
restricted algebraic system over (A, iE) has a solution in A is called "ab-
solutely algebraically closed". .

Unrestricted algebraic systems have been considered by various auth-
ors and our results on algebraic systems are, to SOme extent, generaliz-
able to unrestricted algebraic systems.

A remarkable result on the existence of absolutely algebraically closed
algebras in the variety of groups is the following.

"I
I

5.41. Theorem. There is only one absolutely algebraically closed group,
namely the group of order 1.

Proof. The theorem will be a consequence of

5.42. Lemma. Let G be a group and A any subgroup ofG. Any unrestricted
algebraic system over A which has some solution in G, has also a solution
in A if and only if A is a semidirect factor (retract) of G.

Proof. Let A be a semidirect factor of G. Then G = AN where N <I G
and AnN = (l}.Let.t;(x/) = 1, i EJ, be an arbitrary unrestricted system
over A in the indeterminates {x/II EJ} which has a solution {g/Il EJ} in
G. Then g/ = aA, a/ EA, d, EN, thus g/9a/ where e is the congruence
corresponding to N. Hence J;(a/) e 1, thus J;(a/) EAnN = {1} whence
{alii EJ} is a solution of the system in A.

Conversely suppose that the hypothesis of the lemma is satisfied for
G and A. Let M = {g/Il EJ} be any set of elements of G with G = A(M),
and {f;(x{) liE I} the set of all polynomials over A in the indeterminates
{x/II EJ} such that J;(g/) = L Then the unrestricted system .t; = 1,
i EJ, has a solution in G whence it has also a solution {a/lIE J} in A.
Let B = {a,lg/Il EJ} and N the least normal subgroup of G containing
B. Then AN = G. Suppose that a EA nN. Then a = hll(ai;lg/lyl hI ...
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.hi/(a~lg,Xk hk where hiE G, ei = ± 1. But since G = A(M), we have
hi = w;(br, gs), b, EA, thus a-1w1(br, gs)-l(al~lglll w1(b,.,gs) ... = l.
This is an equation over A of the form J;(gz) = 1. Hence we can replace
every gz by a, and obtain a true relation. This shows that a = 1 whence
A is a semi direct factor of G.

5.43. Proof of Th. 5.41. Let A be an absolutely algebraically closed group,
and H any extension group of A such that JIiJ >- JAJ, e.g. F1(A) for JAJ -F 1.
By Cor. 5.36, there exists a simple group G containing H as a subgroup.
Every unrestricted algebraic system over A which has a solution in G,
has also a solution in A, thus, by Lemma 5.42, A is a semi direct factor
of G. Hence G has a normal subgroup N such that G = AN and
AnN = {l}. Since G is simple, N = {l} or G. In the first case we would
get JGJ =JAJ whence JIiJ "':' JAJ, contradiction. Hence A = {l}.

Remarks and comments

§§ 1.2. Systems of algebraic equations have so far been studied mainly
for special classes of algebras (see the comments on §5). Algebraic inequa-
lities in the sense of our definition have been introduced by W. R. SCOTT
[1] for the class of groups. Systems of algebraic equations over arbitrary
algebras have been considered by DORGE[1], [2], DORGEand SCHUFF[1],
SLOMINSKI[1], HULE [3], and under certain restrictions for the algebras,
by SHODA[1], [2]. Our presentation partly follows HULE'S paper, partly
we have tried to generalize some fundamental concepts from the classical
theory of algebraic manifolds (see e.g. VANDBRW AERDEN[2]) from fields
to more general classes of algebras. Indeed, some of the results of § 2
seem to indicate that simple algebras in arbitrary semi degenerate vari-
eties behave similarly as fields do in the variety of commutative rings
with identity with respect to systems of algebraic equations.

Th. 1.23· is, we believe, due to DORGEwho has proved the result for
arbitrary algebras even for the case of infinitely many indeterminates
and Th. 1.3 has been proved by HULE. Amongst the unsolved problems
of this section, we mention:

a) Let(S) be a solvable algebraic system over (A, Q5), B a Q5-extension of
A, -8: A(X, Q5)~ B(X, Q5)that homomorphism which extends the inclu-
sion monomorphism from A to B, and (-8S) the algebraic system over
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(B, Q5)which is obtained from applying {} to each equation of (S). Is
(-8S) also solvable?

b) Has every solvable algebraic system over (A, Q5) which satisfies the.
first alternative of Th. 1.3 a solution in A?

§ 3. Various concepts of being algebraically closed have been used, and
most of them are special cases of the general notion of being (m,n)-
algebraically closed which is defined as follows:

Let ~ be any variety and 111, n arbitrary cardinals. An algebra A of Q5
is called (m, n)-algebraically closed in ~. if every (possibly unrestricted,
see § 5.4) solvable algebraic system over (A, Q5)consisting of less than m
equations in less than n indetenninates has a solution in A. For example,
being weakly algebraically closed in our book means being (~o, ~o)-
algebraically closed. (By slightly modifying the definition of being
(m, n)-algebraically closed, one could also cover the classical concept of
being algebraically closed for fields, this we leave to the reader). The
relationship between the different concepts of being algebraically closed
is fat from being known completely.

Just occasionally there have been investigations on algebraic closedness
in its general meaning (e.g. SHODA [3], FUJIWARA[1], BOKUT'[1]). Special
results refer to the variety of groups or sometimes semigroups (see W. R.
SCOTT[1], B. H. NEUMANN[1], [2], [3], ERDELYI[lD. Our proof ofTh. 3.2
is a generalization of SCOTT'Sproof for groups, and Prop. 3.3 is due to
B. H. NEUMANNfor the special case of groups.

In this context we also refer to the concept of an equationally compact
algebra which has recently been studied in several papers (see MYCIELSKY
and RYLL-NARDZEWSKI[1], WEGLORZ[1], [2], WENZEL [ID. An algebra
A of the variety ~.is called equationally compact if every (unrestricted)
algebraic system (S) over (A, ~) has a solution in A provided that every
finite subsystem of (S) has a solution in A (it is easy to see that this con-
cept is independent of the variety ~).

§ 4. There are several concepts of independence in classes of algebras
(a general discussion of dependence relations in algebras can be found in
COHN [1], for groups see LYNDON[ID. One of the most natural and, as we
think, also most useful concepts has been introduced and thoroughly
investigated by MARCZEWSKIand his school (there is an exposition of
this work in GRATZER [3D. This is MARCZEWSKI'Sdefinition of inde-
pendence:
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Let B be an algebra and S = {uiliEI} a subset of B. Then S is called
independent if and only if, for any k """1, any two functions p, q E Gk(B)
(the algebra of GRATZER'S polynomial functions), and any subset
{ul, .•. , Uk} of S, p(ul, •.. , Uk) = q(l/l' ... , Uk) implies p = q.

If B is an extension of A, then Lemma 4.11 shows that this definition
of independence in B is closely related to our definition of l.13-independence
over A. Indeed, if the subalgebra of A generated by the Ovary operations
coincides with A, then l.13-independence over A in our sense coincides with
independence in B in the sense of MARCZEWSKI. Therefore all our
results of § 4 correspond to results on MARCZEWSKI'Sindependence.
Hence the presentation of our § 4 resembles strongly that in GRATZER
[3], § 31.

§ 5. As mentioned, there exists quite a large number of papers on systems
of algebraic equations oyer certain special classes of algebras. Apart from
systems of equations over commutative rings, and fields in particular
(which are the subject of the classical theory of elimination, and funda-
mental in algebraic geometry, and have been treated in abundance),
there exists also a remarkable literature on algebraic systems over Boolean
algebras (e.g. ABIAN [1], ANDREOLI[2], RUDEANU[1], [3], [5]) and over
groups (e.g. ALLENBY[1], ERDELYI[1], GERSTENHABERand ROTHAUS[1],
HOANGKI [1], ISAACS[1], LEVIN[1], [2], SCHIEK[1], SCHUFF[1], SOLOMON
[1]). For algebraic equations over other special classes of algebras, see
GOODSTEIN[3~, LEYIN [3], RUDEANU[4].

Th. 5.11 (for algebraic systems) is also contained in ERDELYI [1],
Th. 5.22 and its proof is due to LEVIN[1], who has also proved (see [2])

. the result whichis mentioned in § 5.25. The results and proofs of § 5.3 are
due to B. H. NEUMANN[1], Lemma 5.42 is a result of ERDELYI[1].

CHAPTER3

COMPOSITION OF POLYNOMIALS AND
POLYNOMIAL FUNCTIONS

1. Composition algebras

1.1. Let M be a non-empty set, k a positive integer, x a (k+ l)-ary oper-
ation on M, Wi an ni-ary operation on M, and xj, Yl,j, 1= 0, 1,2, ... ,
indeterminates. We define:

a) The operation x is called superassociative if x satisfies the law

XXXOXl .•. XkYIY2 ... Yk = xXoxXIYI ..• YkxX2YI •.. Yk ••. XXkYl .•. Yk'

b) The operation x is called right-superdistributive with respect to Wi

if x satisfies the law

XWiYI '.' . Yk = Wi' for ni = 0,

XWiXI ... Xn;YI .•. Yk = wixXIYI ... YkxX2YI ... Yk ... XXn,YI' .. Yk'

for ni >- 0.

c) The family {Sl' ... , Sk} of elements of M is called a selector system
for the operation x, if Sl' ... , Sk regarded as O-ary operations on M satisfy
the laws

USiYI Yk = Yi'

XXI Sl Sk = Xl'

i = 1,2, ... , k, (l.l.a)

(l.l.b)

1.11. Lemma. There exists at most one selector system for x.

Proof. Let {t1' ... , td be also a selector system for x. Then ti =
XS;!I'" tk = s., i = 1, ... , k, by (1.1.a) and (l.1.b).

1.12. Remark. Let k = 1 and ni = 2. Then superassociativity reduces to
ordinary associativity, right-superdistributivity to ordinary right-distri-
butivity, and a selector system for x to an identity for x,

1.2. Let ~ be a class of algebras of type T = {n.l ~<: 0}and Q = {w.I ~<: o}
the family of operation symbols of the algebras in ~ where 0 is a fixed

73
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ordinal. Let A be any algebra of type T with Q as its family of operations,
and % a (k+ l)-ary operation on A, k >- 0 an integer. If we put Wo = %,

then Ql = {W,ll <: 0+ I} is a family of operations on A.
The algebra A = (A; Ql) is called a k-dimensional ~-composition

algebra if
a) (A; Q) is an algebra of)8,
b) % is superassociative,
c) % is right-superdistributive with respect to w, EQ, for all l <: o.

The algebra A = (A; Ql) is called a k-dimensional~-composition
algebra with selector system if there is a selector system for % in A.
Every k-dimensional ~-composition algebra (A; Ql) with selector sys-
tem can be regarded as an algebra with the family Q2 = {W,Il <: 0 +k + I}
of operations where waH' ... , wa+k is the selector system for % regarded
as a family of O-ary operations.

1.21. Proposition. If the class )8 is a variety with respect to Q, then,
. for any k, the class of k-dimensional ~-composition algebras is a variety

with respect to Ql, and the class of k-dimensional composition algebras
with selector system is a variety with respect to Q2.

This is a straightforward consequence of the definitions of super-
associativity, right-superdistributivity, and selector systems since all
these concepts are defined by laws.

1.3. A few examples will illustrate the concept of composition algebras:
Let )8 be the variety of sets, i.e. Q = 4>, then the k-dimensional ~-

composition algebras are the so-called k-dimensional superassociative
systems. In particular, the l-dimensional superassociative systems are
exactly the semigroups.

Let )8 be the variety of groups as considered in ch. 1, § 2.4. Then the
k-dimensional )8-composition algebras are called k-dimensional composi-
tion groups. In particular, the l-dirnensional composition groups are
better known under the name "near-rings".

If)8 is the variety of rings as considered in ch. I,§ 2.4, then thek-dimen-
sional )8-composition algebras are called k-dimensional composition
rings. I-dimensional composition rings are also known as composition
rings or tri-operational (TO-) algebras.

,

§ 1 COMPOSITION ALGEBRAS 75

In case of ~ being the variety oflattices as in ch. 1, § 2.4, the k-dimen-
sional )8-composition algebras· are called k-dimensional composition
lattices. For k: = 1, we simply speak of composition lattices.

1.4. Let A be any algebra, Q its family of operations, k, I, positive integers,
Fk(A) and Fz(A) the full function algebras, cpEFk(A), and (1J!1' ... , 1J!k)E
Fz(Al· We define the "composition" cpo (1J!1' , 1/Jk)E FI(A) by

(cpo("Pl"'" 1Pk»)(aI' ... , a[) ;= cp('If)l(al, ••. , a[); , 'If)k(al,· .. , at»),

(aI' ... , az) E AI.

1.41. Lemma. For any ("Pl' "',1J!k)EFz(A)\ the mapping cp ....•.
cpo('If)l' ... , 1/Jk)is a homomorphism from Fk(A) to Fl(A).

Proof. We have to show that Wi 0 ("PI' , 1J!k)= Wi' for ni = 0, and
(W;CPl... CPn)0 (;p!, ... , 1Pk)= wJq\O (1Pl' , 1Pk)] ... [CPlli0 ('If)l' ... , 'If'k)]'
for ni >- 0. This is done by showing that these equations hold "point-
wise" for any (al, •.. , at) E AZ.

. . k)1.42. Lemma. Let cpEFk(A), (1J!1' .. ·,1J!k)EFz(A), and (Xl' ,,,,Xl E
Fm (AY. Then [cp0 (1J!1' •.. , 1J!k)]0 (Xl' ... , Xl) = tp 0 (1J!10 (Xl' ... , Xl), ... ,
1J!kO(Xl' ... , Xl»)'

Proof. Again, by showing "pointwise" equality.

1.43. Proposition. Let A be an algebra of the variety )8, Q its family of
operations, and k ~ 1 an integer. On (Fk(A); Q), we define a (k+ l)-ary
operation sc by %CPOCPl... CPk= CPo0 (CPl' ... , CPk)' If Ql = {Q, %}, then
(Fk (A); Ql) is a k-dimensional )8-composition algebra with selector system.

Proof. By ch, 1, Prop. 6.11,(Fk(A); Q)isanalgebra of)8. Fori = m = k,
Lemma 1.42 yields superassociativity for % while Lemma 1.41 shows the
right-superdistributivity with respect to any Wi E Q. Moreover, the
family ~l' ... , ~k of the projections of Fk (A) is a selector system for %.

1.5. In the preceding proposition, we have shown that every full function
algebra Fk (A) over an algebra A of the variety ~ is a k-dimensional
)8-composition algebra if the composition of functions is added to the
operations on Fk (A). Since the class of k-dimensional )8-composition
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algebras is a variety, every subalgebra of this composition algebra is also
a k-dimensional Q3-composition algebra. The subsequent theorem will
show that, up to isomorphism, there are no further k-dimensional
Q3-composition algebras, this means that for every Q3-composition algebra
there exists an isomorphic algebra consisting of functions on an algebra
of Q3where the composition operation is just the composition of functi-
ons or, as we say, that every Q3-composition algebra can be faithfully
represented by such an algebra of functions.

J .51. Theorem. Let A = (A; Q, ir,) be a k-dimensional Q3-composition
algebra. Then there exists an algebra D of Q3such that A is isomorphic
to some subalgebra of the k-dimensional Q3-composition algebra
(Fk (D); Q, %) where % is the composition of functions.

..1'",4(. /I,lf ts: :}r)

Proof. The theorem holds for IA I = 1since then Ir,(A) I = 1 and we may
take D. = (A; Q). Assume now that I A I ~ 1. Let D be any Q3-extension
of (A; Q) different from (A; Q) such as (Fl (A); Q). Let 1J: A ~ Fk (D)
be defined by

. _ J «ad, ... dk, for d; E A,
(1Ja)(dl, ... , dk) - 1

a,

i=I, ... ,k

otherwise.

# is certainly injective since there exists (dl, ... , dk) E Dk - Ak, hence
(#a)(dl, ... , dk) = a, and (#b)(dl, ... ,dk) = b, a, bE A. We have to
show that 1Jis a homomorphism, i.e.

#W; = Wi' for n; = 0,

#w;al an, = w;#al ... =; for n; >- °
#%ao ak = x#ao .. ; #ak

That these equations hold, can be easily verified, by substituting any
(dl, •.. , dk) E Dk into either side of the equations, and using right super-
distributivity and superassociativity of % for (A; Q, x).

1.52. The examples of 1.3 yield some remarkable special cases ofTh. 1.51 :
a) Every k-dimensional superassociative system can be faithfully

represented by some superassociative system of Ie-place functions on a
set. Every semigroup can be faithfully represented by some semigroup
of l-place functions on a set.
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b) Every k-dimensional composition group can be faithfully represent-
ed by a composition group of Ie-place functions on a group. Every near-
ring can be faithfully represented by some near-ring of I-place functions
on a group.

c) Every Ie-dimensional composition ring can be faithfully represented
by some composition ring of k-place functions on a ring.

d) Every k-dimensional composition lattice can be faithfully represented
by some composition lattice of k-place functions on a lattice.

2. Composition algebras of polynomials and polynomial functions

2.1. (Pk (A); Q) is, by definition, a subalgebra of (Fk (A); Q).
Let no, ,nkEPk(A). Since Pk(A)=A(~l' ""~k),we have n;=
w;(ap ~l' , ~k)' i = 0, 1, ... , k. If % denotes the composition of
functions, then %no..:...:_·3!k=' nOo.cnl,.,.:·,nk)~oCgj>-wl(aj"~l'· "'~k)'
... , wk(aj, ~l"" ,Jk)) for this equations holds "pointwise" for all
elements'of Ak. Thus uno ... nk E Pk (A). Hence we obtain from Prop.
1.43 and Prop. 1.21

2.11. Proposition. Let A be an algebra of the variety Q3.The subset Pk(A)
of the composition algebra (F" (A); Q, %) is a subalgebra, i.e. (Pk(A); Q, %)
is a k-dimensional Q3-composition algebra with selector.system ~1' ~2' ... , ~k'

:>. (. . .;{)/ d,> '.
2.12. Remark. In ch. 1, § 6.2, we have shown that, for any subfamily
(fJ of Q, the algebra (Pk(Ag,);ct»is a sub algebra of (Pk(A);(fJ). Since
Pk (Aq;) is, by Prop. 2.11, a subalgebra of (Fk (A); ct>, x), we conclude that
Pk (Aq;) is closed with respect to the composition of functions, thus
(Pk (Aq;); ct>, %) is also a sub algebra of (Pk (A); (fJ,x).

2.2. Let A be an algebra of the variety Q3,Q its family of operations,
X = {Xl' ... , xk}, Y = {Yr, ... ,Yt}, Z = {Zl' ... , zm} (not necessarily
disjoint) sets of indeterminates, and p = P(Xl' ... , xk) E A(X, Q3),
(ql' ... , qk) E A(Y, Q3)k. We define a "composition" po (ql' ... , qk) by
po (ql' ... , qk) = p(ql' ... , qk) which is, by ch. 1, Prop. 6.31, a well-
defined element of A(Y, Q3).Restating this proposition for this particular
situation, we get

2.21. Lemma. If (ql' , qk) is aoy fixed element of A(Y, Q3)k,then the
mapping p ...•.po (ql' , qtJ is a homomorphism from A(X, Q3) to
A(Y, Q3).
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2.22. By the definition of P(ql' ... , qk) (see ch. 1, Prop. 6.31), a
representation of pO (q1' ... , q,J as a word can be obtained if we
take any representation p = w(aj, Xl' ... , Xk) for p .and representa-
tions qj = vj(aj, Yr, ... , YI) for qi' i = 1, ... , k, as words. Then
p c (ql' ... , qk) = w( aj, vl(aj, Yl' ... , YI)' ... , vk(aj, Yl' ... , YI))' Hence

2.23. Lemma. Let p EA(X, Q5), (ql' , qk) EA(Y, Q5t, and (rl, ... ; rl) E
A(Z, Q5Y·Then [p ° (ql' ... , qk)] ° (rl, , rl) = po (ql ° (rl, ... , rl), ..• ,

qko(rl, ... , rl))·

2.24. Proposition. Let A be an algebra of the variety Q5and Q its family
of operations. For any integer k ;;.,1, define a (k+ l)-ary operation" on
(A(xl,· .. , xk' Q5);Q) by "POPI .. :h= Po 0 (PI" .. , hl ~,po(p.lJ ..· :.: , Ek1_
'Imd let a, = {Q, :)t} Then the algebra (A(x~:.':., Xk, Q5);Ql) is a
k-dimensional Q5-composition algebra with selector system.

Proof. (A(Xl' ... , Xk, Q5); Q) is an algebra of Q5.Lemma 2.23 applied to
X = Y = Z shows the superassociativity of x, Lemma 2.21 the right-
superdistributivity of x with respect to any Wi E Q. It is easy to see that
the family Xl' ... , Xk is a selector system for x.

3. Composition homomorphisms

3.1. Let (C; Q, x) and (D;Q, x) be k-dimensional Q5-composition
algebras. A homomorphism from (C; Q) to (D; Q) is called a composition
homomorphism ifitis also a homomorphism from (C; Q, x) to (D; Q, ,,),
If a composition homomorphism is a monomorphism (epimorphism,
isomorphism), then it is called a composition monomorphism (epi-
morphism, isomorphism).

LetC = (C; Q,,,) be a k-dimensional Q5-composition algebra. An element
c E C is called a constant of C if "ccl ... Ck = c, for all (cl, ... , ck) E c-.
Examples for constants are the elements of A in the Q5-composition
algebras (A(X, Q5); Q, ,,), (Fk(A); Q, ,,), and (Pk(A); Q, ,,),

3.11. Lemma. Let -&: (C; Q, ,,) = C -+ (D; Q, x) = D be an epimorphism
of composition algebras. Then -& maps any constant of C onto a constant
of D, and a selector system ofC onto a selector system of D.
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Proof. Straightforward.

3.2. We know from § 2 that, for any algebra A in Q5,the Q5-polynomial
algebra A(x1, ••• , Xk, Q5)together with the composition" of polynomials
is a k-dimensional Q5-composition algebra. We are now going to deter-
mine all composition epimorphisms of A(xl, ... , Xk, Q5).

3.21. Theorem. Let A(xl, ... , 'Xk' Q5)= A(X, Q5) be any Q5-polynomial
algebra, and (C; Q, ,,) a k-dimensional Q5-composition algebra such that

a) C has a selector system Sl~'S2' ... , Sk,
b) (C; Q) has a subalgebra B consisting of constants of (C; Q, ,,)

such that (C; Q) = B(Sl' ... , Sk)'
Then every epimorphism 'Y}: A -+ B can be uniquely extended to a composi-
tion epimorphism e : A(X, Q5)-+ (C; Q). (! maps Xi onto s., i = 1, ... , k,
and is called the composition extension ofn. Every composition epimor-
phism of A(X, Q5)can be obtained in this way.

Proof. Let 1]: A -+ B be an epimorphism, then 1] can be considered as a
homomorphism from A to (C; Q). Let 1p : F(X, Q5) -+ (C; Q) be the ex-
tension of the mapping Xi -+ s, to a homomorphism of the free algebra
F(X, Q5). Since A(X, Q5), {!PI, !P2} is, by ch. 1, § 4.3, a free union of the al- Cp.,,, : A.''') /-t !t ~;,
gebras A and F(X, Q5)in Q5,there exists a homomorphism e : A(X, Q5)-+
(C; Q) such that 17 = (!!Pl and 71) == e!P2· By definition of !PI, !P2, oa ='Y) a,
aEA,and(!xi=si,i= 1, ... .k: Since (C;Q)= B(Sl' ... ,Sk)' eisan
epimorphism. Next we show that (! is even a composition epimorphism. . .. I(j " • I,v r..

Let wo, ... , Wk E A(X, Q5)and Wo= wo(aj, xl> . , ., xk) be a representation.; ,t l\~'j', \

of Woas a word. Then "wo .. , wk = wo(aj, WI' ... , Wk) and hence e"wo wk '( k.["~/"'" 1« .•-.r
= wo('Y}aj, (!Wl' ... , (!Wk)· On the other hand, (!Wo= wo('Y}aj,sl> , Sk)'
Since " is right-superdistributive, 'Y}ajE B, i.e, 'Y}aj is a constant of
(C; Q, ,,), and Sl' ... , Sk is a selector system of (C; Q, ,,), we conclude

'X. 'h .(..i(l, :~J\;;l.

xewOewl' .. eWk .~ wo("('Y}a)eWl' .. eWk, "slewl' .. (!Wk' ... , "skewl: .. (!Wk)

= wo('Y}aj, eWl' ... , eWk)'::::-_'" X Wo" . wtt ..
.1\ , .)

(0 -11. ' 1- (;( 01,'\

--) ;~,( ;<, ,:oj'

'~/_Il .' ~ t t".tj't., ,.:,111.. ':' I

Thus e is a composition epimorphism,
• ~>f •• .&'<!.-~L.t;h-, I 'k~!.t·-r:
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j'i.,

Let a be any composition epimorphism from A (X, )8) to (C; Q)
extending n. By Lemma 3.11,axl, ... , axkis a selector system of(C; Q, x)
and hence, by Lemma 1.11, aXi = s., i = 1, ... , k. Thus 0' and e co-
incide on AUk which generates A(X, )8). This implies 0' = e.

Finally let a: A(X, )8) ..• C be any composition epimorphism of
A(X, )8). By Lemma 3.11, the k-dimensional )8-composition algebra
(C; Q, x) has the selector system axl, ... , axk, and the algebra (C; Q)
has cA as a subalgebra consisting of constants of (C; Q, x). Since
A(X,)8) = [AUX], we conclude that(C; Q) = (aA)(ax1, ••. , axk). If '/'}
is the restriction of 0' to A, then 0' is just the unique extension of'/'} to a
composition epimorphism from A(X, )8) to (C; Q).

3.22. Three important special cases of Th. 3.21 deserve to be mentioned.
Here X = {Xl' ... , xd.

a) Let A be an algebra of the variety )8 and » : A ->- B an epimorphism.
Then '/'}can be uniquely extended to a composition epimorphism
12: A(X, )8) ..• B(X, )8) which will be denoted by '/'}(X,)8), 1][X] or ?'}(X). We
have eXi = Xi' and hence e is just the homomorphism of ch. 1, Prop.
4.5. Thus the notation e = ?'}(X,)8) = '/'}(X) is compatible with ch, 1,
Remark 4.51.

b) Let )81 <;; )82 be two varieties and A an algebra of )81. Then there
is a unique composition epimorphism from A(X, )82) to A(X, )81) fixing
AUX elementwise (see also ch. 1, Th. 5.22).

c) Let A be an algebra of the variety )8. Then there exists a unique
composition epimorphism from A (X, )8) to Pk(A) fixing A elementwise
and mapping Xi to ~i' i = 1, ... , k. This is, by ch. 1, Prop. 6Al, just the
canonical epimorphism 0'. The dependence of 0' on A, k, and )8 will, if
necessary, be expressed by 0' = a(A) = a(A, k) = a(A, k, )8) = a(X, )8) =
a(A, X, )8).

3.3. We are now going to consider the algebras of k-place polynomial
functions as k-dimensional composition algebras, in the sense of § 2.
In particular, we shall obtain a result analogous to § 3.22, a).

3:31. Proposition. Let k :> 0 be an integer, A an algebra, and?'} : A ..• B
an epimorphism. Then 17 can be uniquely extended to a composition epi-
morphism e: Pk (A) -+ Pk(B). e fixes every ~i and is called the composition
extension of?'}. If n is an isomorphism, so is Q.

I
1-
j.
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Proof. Let p EPk (A) and p = w(aj, ~l' , ~k) a representation
of p as a word. We define ep = w(?'}aj,~l' , ~k) then ep is a well de-
fined element of Pk(B). For, if p = v(aj, ~l' , ~k) is another representa-
tion of p as a word, then w(aj, c1' ... , ck) = v(aj, c1' , ck), for all
(cl, ... , ck) EA". Then w('/'}aj,'/'}cl' ... , ?'}ck)= v(?'}aj,'/'}c1' , ?'}ck)whence
w(?'}aj'~l' ''''~k) = v('/'}aj'~l' ... ,~,,) as?'} is surjective. e is obviously
surjective and extends '/'}.Straightforward computation exhibits e as a
composition homomorphism. In order to establish the uniqueness of e,
we take any composition epimorphism a: Pk(A) ..• P,,(B) extending n.
Under a, the selector system ~l' ... , ~~of Pk (A)is mapped onto a selector
system of Pk (B) whence, bY' Lemma 1.11, a~i = ~i' i = 1, ... , k.
Since Pk(A) = [AU gl' ... , ~k}]' 0' coincides with e. Suppose now that
'/'}is an isomorphism. Then '/'}-l: B -+ A is an isomorphism, in particular,...•
n:1is an epimorphism and thus can be extended to a composition epirnor-
phism r : Pk (B) ...,.Pk (A). Hence 'te and eO' are extensions of identity
mappings and, by uniqueness, are identity mappings themselves.

3.32. Remark. Let?'} : A ..• B be an epimorphism and X = {xl' ... , xd.
The unique extension e of 17 to a composition epimorphism from Pk(A)
to Pk(B) will be denoted by Pk('/'}).The.diagram fig. 3J is commutative.

1] (X,)8)
A (X,Q3) - B(X,)8)lA)

Pk('/'})

j "(B)

h(A) _h(B)

FIG. 3.1

3.4. Let R, S be algebras of the variety )8 such that there is an additional
operation x on R, S making k-dimensional )8-composition algebras of
R, S. The direct product R X S by adding x then also becomes a k-di-
mensional )8-composition algebra, by Prop. 1.21 and ch. 1, Th. 2.51.
In particular, if A, B are algebras of )8 and X = {xl' ... , Xk}' then
A(X, )8»~B(X,)8) and Pk(A) XPk (B) are k-dimensional)8-composition
algebras.
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3.41. Proposition. Let X = {Xl' ... , xd, A, B algebras of 18 and
V = AXB. Then there exists a unique composition homomorphism
-c:: VeX, 18) -+- A(X, 18) XB(X, 18) such that -c:V(X, 18) is a subdirect prod-
uct of A(X, 18) and B(X, 18) and -c:fixes V elementwise. Similarly, there
exists a unique composition homomorphism -c::Pk(V) -+ Pk (A) XPk(B)
such that -C:Pk(V) is a subdirect product of Pk (A) and Pk (B) and -c:fixes V
elementwise. In either case, -c:p== ((ltP, (hP) where fli = niX) or fli = Pk(nJ,
respectively, i = 1,2, and-n; are the projections of U.

-c:will be called the decomposition homomorphism of VeX, 18)or Pk (V),
respectively.

Proof. We will prove just the first assertion, the second assertion can be
shown by exactly the same argument. By straight forward calculation we
see that ras defined above has all the required properties. Therefore let
IY be another composition homomorphism with these properties, and
f~i' i = 1, 2, the projections of the composition algebra A(X, 18) X B(X, 18).
Then {h;iY, i = 1,2, is a composition extension of ni, and hence, by Th.
3.21, {hilY = nj{X), i = 1,2. Since IYp = (f.iIIYP, f.i2IYP), we conclude IY = -C:.

.:: (e)fr. -c . I ")

3.42. Remark. Let -C:1 be the decomposition homomorphism of VeX, 18), -C:2

the decomposition homomorphism of Pk(V), and a(A) Xa(B): A(X, 18) X
B(X, 18) -+ Pk (A) XPk(B) the epimorphism defined by (a(A)X
a(B») (p, q) = (a(A)p, a(B)q). Then diagram fig. 3.2 is commutative.
This is an immediate consequence of the commutativity of diagram
fig. 3.1.

T1
., A (X, 18) X B (X,){3)U( X,18)

a(V) jUIAJXU(BJ

<2
Pk(V) • Pk(A)XPdB)

FIG. 3.2

3.5. We want to know under what circumstances the decomposition
homomorphisms -c:of VeX, 18)and Pk (V) are epimorphisms or mono mOT-

phisms. We start with the following
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3.51. Proposition. Let X = {Xl' ... , xk}, and V = AXB, The decomposi-
tion homomorphism -c:of Ui X, 18) is an epimorphism if and only if, for any
(p, q) E A(X, 18) XB(X, 18), there exists a word w(h, ... , y" Xl' , Xk)
in the indeterminates Yl' ... , Yr and elements aI' ... , a, E A, bl, , b, E B
such that w(al, , a., Xl' ... , Xk) . is a representation of p and
w(bl, ... , b., Xl' , xk) is a representation of q. The decomposition
homomorphism .• of. Pk(V) is an epimorphism if and only if, for any

(p,q)EPk(A)XPk(B), there exists a word w(h, ... ,Yr'~l' ""~k) and
elements aI' ... , a, EA, bl, .. .",b, EB with analogous properties.

Proof. We prove the first assertion, the second one can be shown using
exactly the same argument. Let -c: be an epimorphism, then, for any
(p,q)EA(X, 18)XB(X, ~), there exists an element uEV(X,~) such
that tu = (p, q). Let u = w(uI' ... , u., Xl' ... , Xk) be any representation
of u as a word. By Prop. 3.41, TU = (nl(X)u, n2(X)u), ni being the z-th
projection of V, i = 1,2. Hence p = w(nlul, , nlu" Xl' ... , Xk) and
q = w(n2ul, ... , n2ur, Xl' ... , x,J, i.e. W(YI' , Yr, xl> ... , Xk) . is just
a word we were looking for. Conversely, if (p,q)EA(X,~)XB(X, 18)
and w(y}' ... , Yr, Xl' ... , Xk) is a word such that w(al, ... , a.;
Xl' , Xk) = P and web"~ ... , b., Xl' , Xk) = q, for some aI' .... , a; E A,
bl, , b, EB, then u = w((al, bI)' , (a" br), Xl' ... , xk) is a poly-
nomial in U(X, 18) such that tu = (p, q), thus -c: is an epimorphism.

3.52. Remark. Diagram fig. 3.2 shows that the decomposition homo-
morphism -C:2 of Pk (V) is an epimorphism if the decomposition homo-
morphism Tl of VeX, 18) is an epimorphism.

3.53 .. Proposition. For any algebra V = A XB, the decomposition homo-
morphism T of Pk(V) is a monomorphism.

Proof. Let g EPk (U) and ((aI' bl), ... , (ak, bk») E ir. Then g( (aI' bl)' ... ,
(ak,bk») = ((Pk(nl)g) (aI' ... ,ak),(Pk(n2)g)(bl, ... ,bJ). This is estab-
lished by taking any representation of g as a word in elements
of V and the projections ~i' i = 1, ... , k, or by applying r. Suppose
-c:p= Tq, for some p, qEPk(U). Then Pk(n)p = Pk(n)q, i = 1,2,
whence p( (aI' bl)' ... , (ak, bk» = q( (aI' bl)' ... , (ak, bk»), for all
((aI' bl)' ... , (ak, bk») E u: Therefore p = q.
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3.54. Remark. It is not known under what conditions the decomposition
homomorphism T of U(X, )8) is a monomorphism.

3.6. As an application of the preceding results we prove:

3.61. Theorem. Let X = {Xl' ... , xd, )8 the variety of commuta-
tive rings with identity, and U = AXB an algebra of )8. Then the
decomposition homomorphisms TI: U(X, )8) ->- A(X, )8)XB(X,)8) and
T2: Pk(U) -+ P,,(A)XP,,(B) are isomorphisms.

Proof. Let (p, q)EA(X, )8)XB(X, )8). By ch. 1, Th. 8.21, there are
representations of p, q as words of the form

p = I(a,16,1lkEPI), q = LCb,16AI),EP2)

Thus ICY,16A IA EPI UP2) is a word in the indeterminates Y,1satisfying
the conditions of Prop. 3.51. Hence TI is an epimorphism, and so is "2,

by Remark 3.52. It remains to show thatr, is a monomorphism. Let
f, g E U(X, )8) such that T1/ = "lg. By ch. 1, Th. 8.21, there are represen-
tations off, g as words of the form

f= I(u,1fIAEP), g = I(vAr'IAEP)

We obtain normal forms for ni(X)f and n;(X)g, i = 1, 2, if we remove
those summands in the words I( (niu,1)6AI A EP) and I( (niV,1)6A I A EP)
for which niu,1 = ° and niv,1 = 0, respectively. Since cf = Tg implies
niCX)f=n;(X)g, i = 1,2, we have niu,1 =nivA, for al! AEP, hence
u,1 = vA' for all A EP. Therefore f = g.

In ch. 5, we will show that, if)8 is the variety of groups, the decomposi-
tion homomorphisms TI, "2 are, by no means, always isomorphisms.

4. Full congruences

4.1. Let (A; Q, u) be a k-dimensional )8-composition algebra. The con-
gruence cP of (A; Q) is called a full congruence if cP is also a congruence
of (A; Q, u). Thus <l> is a full congruence if and only if PiCPqi'
i = 0, 1, ... , k, implies uPOPI ... PkCPuqOql ... q".

Ch. 1, § 1.4 and Prop. 1.21 imply that, for any full congruence cP on
(A; Q), the factor algebra (A; Q, u) IcP is a k-dimensional )8-composition
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algebra, and the canonical epimorphism from A to A IcP is a composition
epimorphism. Conversely, by ch. 1, Th. 1.51, for any composition epi-
morphism rp : (A; Q) ->- (B; Q), .the kernel Ker rp = cP is a full congruence
on (A; Q), and there is a composition isomorphism ip : B ->- AICP such
that 1prp is the canonical epimorphism from A to A ICP.Thus we obtain,
up to isomorphism, every homomorphic image of the composition
algebra (A; Q, u) as a factor algebra of (A; Q, u) with respect to a suit-
able full congruence of (A; Q).

4.2. The definition of a full congruence applies, in particular, to the
k-dimensional composition algebras F,,(A), Pk(A), and A(X, )8) where ,:",.
X = {Xl' ... , x,J It has' been shown that, for k :> 1 and any A, the .
algebra Fk (A) has just the trivial full congruences. This is also true for
a large class of algebras if k = 1, but does not hold with full generality.
By § 3.22 c), the canonical epimorphism (J : A(X, )8) ->- Pk (A) is a compo-
sition epimorphism. The kernel cP= Ker (J is a full congruence on A(X, )8).
If 1p : P" (A) ->- A(X, )8) IcP is the corresponding composition isomorphism,
then 1p-1 yields a bijection from the set of full congruences on A(X, )8) IcP
to the set of those on Pk (A). Thus the full congruences on P" (A) are
completely determined by the full congruences on A(X,~) I cP which,
in turn, are determined by the full congruences on A(X, )8) containing
CP, by ch. 1, Th. 1.71. Therefore we restrict ourselves to the investiga-
tion of the full congruences on A(X, )8).

4.3. Let X = {Xl' ... , xk} and A an algebra of )8. First we give some
characterization of the full congruences on A(X, )8).

4.31. Lemma. The congruence cP on A(X, ~) is a full congruence if and
only ifPoCPqo implies (UPOPI ... p,,) CPCuqOPI... p,,),Jor any (PI' ... , Pk) E
A(X, )8)".

Proof. The "only if" statement is obvious. Suppose now that cP is a
congruence satisfying the hypothesis, and PiCPqi' i = 0, 1, ... , k. By
induction on the least minimal rank of the words representing po,
(UPOPI' .. Pk)CP(uPoql' .. qk)' and by hypothesis, (uPoql' . ·qk)CP(uqOql· . ·qk)·
Thus (UPOPI ... Pk)CP(uqoql ... qk)'

4.32. Now let (9 be a congruence on A and «(9) the congruence on
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A(X, Q'S)generated bye, i.e. (e) is the set-theoretical intersection of all
congruences on A(X, Q'S)containing e.

4.33. Proposition. For any congruence e on A, the congruence (e) is a
full congruence on A(X, Q'S).

This proposition will be established if we prove the following

4.34. Lemma. p(e)q holds if and only (( there is a finite chain
P = ro' rl, ... , r( = q of polynomials of A(X, Q'S)such that, for any two
adjacent polynomials ri, ri+l' we have r; = wlal, ... , am' Xl' ... , xk),
r;+l = w;(bl, ... , bm, Xl' ... , xk), where W;(Yl' ... ,Ym' Xl' ... , xk) is some
word in indeterminates Yj' j = 1, ... , m, and where aj' bj E A, ajebj,
j=l,oo.,m.

Proof. The existence of such chains between P and q is an equiva-
lence relation if) on A(X, Q'S). Let w be any nj-aryoperation and
P/Pqk' k = 1, ... , nj. For k = 1, ... , ni, we take chains Pi. = rkO' rkl' ... ,
rk(k = qk as described in the lemma. Then WPl'" P"j = wrlO ... 1'",0'
wrnr20. ·,·1'",0' wr12r20 ... rn•o, ... , wqlr20'" rn,o, wqlr21 ···1'",0' ... ,
wQlq2 ... qnj is again a chain of the type occurring in the lemma. Hence
if) is a congruence on A(X, Q'S),and aeb implies atJ>b,thus if) ;2 e whence
if) ;2 (e). Conversely, if P is a congruence on A(X, Q'S)and P;2 e,
then, for any two adjacent polynomials ri, ri+l of a chain as in the
lemma, riPri+l' thus P;2 tJ>.Therefore (e) ;2 if).

4.35. Proof of Proposition 4.33. We have to show that (e) satisfies the
condition of Lemma 4.31. Let po(e)qo and (PI"'" Pk) EA(X, Q'S)k.
Then there exists a chain Po = 1'o, 1'1' ... ,1'( = qo satisfying the condi-
tions of Lemma 4.34. Moreover, Pi = vi(ail, ... , ain, Xl' ... , xk),
i = 1, ... , k, for some words V;(Yil' ... , Yill' Xl' ... , Xk) in the indeter-
minates YU' and ri = w;(al, ... , am' Xl' , xk), i = 0, , t, for some
words Wi as in Lemma 4.34. Then Wj(Yl' , Ym' vl(Yw , Ylll' Xl' ... ,
Xk)' ) is a word such that ri(Pl' ... ,Pk) = Wi( aI' , am' vl(aW , alII'
Xl' , Xk), ) and ri+l(Pl'" "Pk) = wi(bl, , bill' vI(an, , aln,

Xl' , Xk), ). Hence PO(Pl' ... , Pk) = rO(Pl' , Pk), rl(Pl' , Pk),
... , qO(Pl' , Pk) is a chain satisfying the condition of Lemma 4.34,
thus PO(Pl' , Pk) (e)qO(Pl' ... , Pk), i.e. (e) satisfies the condition of
Lemma 4.31, and the proposition is proved.
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4.36. Proposition. Let e be a congruence on A. Then the binary relation
{e} on A(X, Q'S)defined by: p{e}q if and only if peal' ... , ak) eq(al, ... , ak)
for all (aI' ... , ak) E AI<, is a full congruence on A(X, Q'S).

'!J&~); A ( XI --;, A,~ (X: O.S)

Proof. Let 17; A -+ A Ie be the canonical epimorphism, and
a(A Ie) ; (A Ie) (X, Q'S)-+ r,(A Ie) the canonical epimorphism. Then, by
§ 3.22 a) and c), a(A Ie) 17(X) is a composition epimorphism. We have
Ker a(A I~) ~(X! = {e}, hence ~e} is a ful~ c~ngrue~S~'1 ) ,;,'("1 b _, 6' (Aid! "'1(v: j

(i8r-\,? ~-:>-, 1,,(4;<,.- ,a!t\B~('j,.·- 1(.' ~~ o,~~;f) ,)~\ I - V 1.1

fJ J

4.37. Remark. If {e v I v E I} is a-set of congruences on A and n denotes
the set-theoretical-intersection, then

(n(evlvEl)) ~ n((eJlvEl) and {n(evlvEl)} = n({ev}lvEl).

Proof. Since n (e.) ;2 n e v' the first formula holds. The second formula
follows from the definition of {ne.}.

4.4. Theorem. Let if) be any full congruence on A(X, Q'S).Then there exists
exactly one congruence e on A such that (e) ~ tJ>~ {e}.

e will be called the enclosing congruence of tJ>.
d: €) If,','\' ;I I.
, \,- . ,"

, (f\
I~ /
;; 'r·,'.;

Proof. We pute' = tJ>n(AXA). Since A is a subalgebra of A(X, Q'S),
e is a congruence on A. if);2 e implies tJ>;2 (e), If pif)q, then,
for any (aI' ... , ak) E Ak, upal ... akif)uqal ak whence peal' , .. , ak)
if)q(a}> ... , ak)' Hence peal' : .. , ak) eq(aI, , ak), for all (aI' ... , ak) EAk,
thus p{e}q. Therefore if)' ~ {e}. "A-'-\. -,4' ¢) r (A '\! -e 0

LeL1 be an arbitrary congruence on A, then obviously {Jl}n[A x4J = Jl.
Since {Jl};2 .11, we conclude {Jl} ;2 (Jl) whence Jl = {Jl}nG1xAl;2
(Jl)n[AxAl;2 A. So we also have (Jl)n[A XAJ = Jl. Ifel is a congru-
ence on As{;ch that (el) ~ tJ>~ tel}, then (el)nIAXAJ ~ tJ>n &X~ ~
{el}nlAXA] which implies el ~ e ~ el, i.e. e = el, and the uni-
queness assertion is proved.

.: .~.~)'r (

4.5. Theorem. The set ~ of all full congruences on A(X, Q'S)is a complete
sublattice of the congruence lattice 2(A(X, Q'S)).If 2(A) is the congruence
lattice of A, then a ; ~ -+ 2(A) defined by atJ>= tJ>n (A X A) is a complete
lattice epimorphism.
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Proof. The set u: of all full congruences on A(X, Q5)coincides with the set
of all congruences on the algebra (A(X, lE); Q, %). If M is any non-
empty set of full congruences on A(X, Q5), then the greatest lower bound
and the least upper bound of M in the congruence lattice of (A(X, Q5); Q)

'I,., and of (4(X,Q5); Q, u) coincide, by construction (see ch. 1, § 1.6). Hence
'10,"" \ -- U:1s a complete sublattice of D(A(X, Q5)).

Let AE D(A), then ~A)) = (.,1)n (A X A) = A, hence a is .§JJrj~~l!.Y.~.:
If {<t\ / i El} is a subset ofU: and W its greatest lower, P its least upper

- bound, then
aW = Wn(AXA) = n(W;/iEl)n(AXA)

=n(W;n(AXA)/iEl) = n(aW;/iEI).

Let 8 be the least upper bound of the set {aW; / i El} in D(A), and
a(a1J')b. Since a1J'r;;. 1J', we have a1J'b, therefore there are congruences
W;" W;" ... , W;, and elements a = PO' PI' ... , P, = b of A(X, Q5) such
that PV-IW;vPv' V = 1,2, ... , r. Let (al, •.. , ak) be an arbitrary element
of Ak, then

pv_l(al, ... , ak)W;vpv(al, ... , ak)·

Hence pv-l(al, ... , ak)(aW;)p.(a1, ... , ak), j) = 1, , r, whence aeb.
Conversely, if aeb, then there are congruences aW; , , aW; and elements

1 r

a = Co' cl' ... , c, = b of A such that cv_l(aW;)cv' v = 1, ... ,r, hence
cv_lW;vcv, and thus a1J'b. Therefore a(a1J')b, and we conclude a1J' = e.

4.6. Let e be any congruence on A. Then, by definition of the enclosing
congruence, the set of all full congruences on A(X, Q5)with e as their
enclosing congruence constitutes a complete sublattice U:(A(X, Q5), e)
of the lattice of all full congruences on A(X, lE). We will now investigate
this lattice more closely.

4.61. Proposition. Let e be any congruence on A and D: A -+ A/ e the
canonical epimorphism. Then D(X) induces a lattice isomorphism from
U:(A(X, lE), e) toU:((A/8)(X, Q5),0) where 0 denotes the congruence whose
classes consist of a single element.

Proof. By ch. 1, Th. l.71, the canonical epimorphism C: (A(X, Q5); Q, %) ->-

(A(X, lE); Q, u) /(e) induces a lattice isomorphism from D((8))-the
lattice of all full congruences W on A(X, lE) containing (e)-to the
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congruence lattice of (A(X, Q5); Q, u) /(e). For any WE D((e)), we have
',\ C(Wn(AXA)) r;;. CWn(CAXCA), and conversely let cHWn(CAXCA).

Then c = (Ca, Cb), a, s« A, and there exist elements p, q E A(X, Q5)
such that pWq and CP = Ca, Cq = Cb, whence p(e)a and q(e)b. Let
(al, ... , ak) E Ak, then, since both (e) and Ware full congruences, we
have peal' ... , ak)(e)a, q(al, ... , ak)(e)b, and peal' ... , ak)Wq(al, ... , ak)·
Thus Ca = Cp(al, ... , ak), Cb = Cq(al, ... , ak), and (p(al, ... , ak),q(al,
... , ak)) EWn(AXA). Hence CWn(CAXCA) r;;. C(Wn(AXA)) and thus
CWn(CAXCA) = C(Wn(AXA)). Thus CWn(CAXCA) = 0 if and only if
Wn (A X A) = e. We conclude that C induces a lattice isomorphism
from U:(A(X, Q5), 8) to the"lattice D of all congruences P on
(A(X, Q5); Q, u) / (e) satisfying pn (CA X CA) = o.

By Lemma 3.11, the k-dimensional Q5-composition algebra
(A (X, Q5); Q, u)l(e) has the selector system CXI= Sl' ... , CXk = Sk' and
CA is a subalgebra of (A(X, Q5);Q) /(e) consisting of constants such that
(A(X, Q5); Q) / (e) = (CA) (Sl' ... , Sk)' Let C(a) be the congruence class
of _~_.1!p.\leL..e--,. then (e) n (A X A) = 8 implies that the mapping
C(a) -+ Ca is an isomorphism tt from A I e to CA. Let a be the composi-
tion extension of 'rj, according to Th. 3.21, then a: (A /e) (X, Q5) -+

(A(X, Q5); Q) I (e) is a composition epimorphism. Let p, q E (A I e)(X, Q5),
and ap = aq. Then there are representations P = w(C(aJ, Xl' , Xk)'
q = v( C(aJ, Xl' ... , Xk) of p, q as words, and w(Ca;, Sl' , Sk) =
v(Ca;, Sl' ... , Sk)' Thus w(a;, Xl' ... , Xk) (e) v(a;, Xl' ... , Xk)' By Lemma
4.34, there exists a finite chain ro, rl, ... , rt of polynomials of A(X, Q5)
such that w(a;, Xl' ... , Xk) = ro, v(a;, Xl' ... , Xk) = f, and (}r; = er;+l
where e = 1J-(X). Hence P = ero = ert = q and a is an isomorphism. The
composition isomorphism a-I: (A(X, Q5); Q) /(8) ->- (A 18)(X, Q5) indu-
ces a lattice isomorphism from the congruence lattice of (A(X, Q5);
Q, u) /(8) to the lattice of full congruences of (A /e) (X, Q5) mapping
D onto U:((A I 8)(X, Q5), 0). Since a-lC is a composition epimorphism
from A(X, Q5)to (A 18)(X, Q5)extending 1J-, we have a-IC = e and the
proposition is proved. -1 _~(p \ " r ,6 5a~6 )~;F=-I..""_

0·1S' A-->
5. Full ideals over multioperator groups

5.1. Let G = (G; +, -,0, Q) be an Q-multioperator group. Since, by
ch. 6, § 3, the class of Q-multioperator groups is a variety, the algebras
Fk(G) and Pk(G) are also Q-multioperator groups. If G is an algebra of
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the variety ~ which is contained in the variety of Q-multioperator groups,
then G(X, ~) is also an Q-multioperator group.

5.11. Proposition. Let ~ be the variety of Q-multioperator groups and
G = (G; +, -,0, Q, 'K,) a k-dimensional ~-composition algebra. Then G
is an {Q, 'X}-multioperator group.

Proof. We have only to show that 'XOO... 0 = O. But 'XOgl ... gk =
'X(O+O)gl ... gk = 'XOgl gk+'XOgl ... gk, by the right-superdistribut-
ivity of 'X,hence 'XOgl gk = 0, for any (gl' ... , gk) Ecr. This proves
the proposition and moreover shows, that 0 is a constant of G.

5.12. As a special case of Prop. 5.11, we get that, if G is any Q-multi-
operator group, then Fk(G) and PiG) are {Q, 'X}-multioperator groups,
and if X = {Xl' ... , Xk}, G E~, and ~ is a variety of Q-muitioperator
groups, then the composition algebra G(X, ~) is an {Q, 'X}-multioperator
group.

5.2. Let ~ be the variety of Q-multioperator groups and (G; +, -,0, Q, 'X)
any k-dimensional ~-composition algebra. Then G = (G; +, -,0, Q)
is an Q-multioperator group and GI = (G; +, -,0, Q, 'X)is an {Q, 'X}-
multi operator group. An ideal A of G is called a full ideal if A is also an
ideal of Gl-. Thus, by ch. 6, § 3, an ideal A of G is a full ideal if and only if
'XgOgI· .. gv-l(gv+a)gv+l ... gk-'XgOgl gv ... gk E A, for all a EA, and
for all (go, gl' ... , gk)E Gk+l, 'V = 0, 1, , k.

Let <Pbe a congruence on G and ker <Pthe kernel of <P.As shown in
ch. 6, § 3, ker is a lattice isomorphism from the congruence lattice
2(G) to the ideal lattice S'r(G). By definition, ker maps the set of all full
congruences on G onto the set of all full ideals of G. Thus the ideal A of G
is a full ideal if and only if ker : I A is a fuil congruence. This correspond-
ence enables us to derive a theorem on full ideals from every theorem
on full congruences. Hence the results of§ 4 can be stated in terms offull
ideals of G(X, ~).

5.3. Let X = {Xl' ... , xk}, G any algebra of ~, a variety of Q-multi-
operator groups. The full ideals of G(X, ~) will be investigated.

5.31. Lemma. An ideal A of G(X, ~) is a full ideal if and only if a EA
implies 'Xapi ... Pk E A, for any (PI' ... , Pk) E G(X, ~)k.

I ",-,A; (~ ")
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Proof. Put <P = keel A, then a E Ais equivalent to saying a<PO. Let A
be a full ideal, then <Pis a full congruence, hence, by Lemma 4.31, a EA
implies 'XaPt Pk<P')(,OPl... Pk = 0 since 0 is a constant of G(X, ~).
Hence ')(,api PIcEA. Conversely, let a E A imply ')(,aPt··. Pk E A, for
any (PI' ... , Pk) EG(X, ~)k. Let Po<Pqo, then (Po -qo)<PO. We conclude
'X(Po-qo) PI ... Pk EA, and right-superdistributivity of ')(, implies
'XPOPI ... PIc<P'XqoPI... Pk' Hence <P is, by Lemma 4.31, a full congru-
ence and. A is a full ideal.

5.32. Let D be any ideal of G, and (D) the ideal of G(X, ~) generated by
D, i.e. (D) is the set-theoretical intersection of all ideals A of G(X, ~) .
containing D.

5.33. Proposition. (D) = ker (ker=? D), thus (D) is a full ideal.
., •• ,. yo\

4/vJ] K <1""'.0, ,.. ,'x ,'"
U 0

Proof. SeLB = ker(keelD). If aED, then a(keeID)O, i.e. aEB.
Hence (D) <;; B. Let A be any ideal of G(X, ~) such that D <;; A. If
a keel D b, then a keel A b whence keel A is a congruence on G(X,~)
containing keel D. Therefore keel A ::2 (keel D), and we conclude
A ::2 B and so (D) ::2B. By Prop ..433, (keel D) is a full congruence on
G(X, ~).

5.34. Let D be any ideal of G. Then {D} will denote the set of all
pEG(X,~) such thatp(gl'" .,gk)ED, for all (gl'" .,gk)EGk.

5.35. Proposition. {D} = keriker:> D}, in particular, {D} is a full ideal.

Proof. Since 0 is a constant of G(X, ~), we have p Eker {keel D} if
and only if p(gl> ... , gk) ED, for all (gl' ... , gk) E c-, and, by Prop.
436, {keel D} is a full congruence.

5.36. The full ideal {D} is called the residue polynomial ideal of G(X, ~)
generated by D.

By Remark 4.37, Prop. 533, and Prop. 535, we get

(n(Dvl'VEl)) 'fn((DJI'VEl), and {n(D"I'VEl)} =n({Dv}I'VEI),

for any set {D" Iv El} of ideals of G.
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5.4. Theorem. Let A be any full ideal of G(X, ).8). Then there exists
a 1:!!!igJ:!! ideal D of G, the so-called enclosing ideal of A, such that
(D) ~ A ~ {D}. We have D = AnG.

6. Full ideals over commutative riugs with identity

6.1. Let ).8be the variety of commutative rings with identity regarded as
algebras with the family {+, -, 0, " 1} of operations. )8 is a variety of
Q-multioperator groups where Q = {', I}. Thus, for any R E )8, we may
consider the full ideals of the Q-multioperator group R(xl, . ; ., Xk' )8) =
R[xl, ... , Xk], and we are ready to apply the results of §§5.3 to 5.6
to this particular case. So the intersection and the sum of ideals of
R[xv ... , xk] which are full ideals are again full ideals, and the mapping
-r: which assigns to each full ideal its enclosing ideal is an epimorphism
with respect to intersection and sum.

There is a third operation on the ideals of a ring, namely the product
of two ideals for which we prove the following

li-'')

Proof. Let e be the enclosing congruence of keel A and D = ker 8.
Then (8) ~ kee1A ~ {e}, hence ker (keel D) ~ A ~ ker {keel D}.
This implies (D) ~ A ~ {D}. Let C be any ideal of G such that (C) ~
A ~ {C}, then ker'-l (C) ~ keel A ~ keel {C} whence (ker :" C) ~
keelA ~ {ker=v C}. By Th. 4.4, ker=l C = keelD, thus C = D.
Moreover, e = (keel A)n(GXG) implies D = ker e = AnG .:. ( ~U..•\- .:

. - (it.. "
5.5. Theorem. The set of all full ideals of G(X, ).8) constitutes a complete
sub lattice Q; of the ideal lattice S'r(G(X, )8») of G(X, ).8). The mapping -r:
which assigns to each full ideal its enclosing ideal is a complete lattice
epimorphism from 0; to the ideal lattice S'r(G) of G.

Proof. This boils down to rewriting Th. 4.5 in terms of ideals, in the sense
of§5.2. '

6.11. Theorem. Let V, V be full ideals of R[xl, ... , xd. Then the ideal
product VV is also a full ideal, and the mapping i under which every full
ideal is mapped onto its enclosing ideal, is an epimorphism with respect to
forming ideal products.

5.51. Corollary. The intersection and the sum of any set of ideals of
S'r(G(X, ).8») where each ideal is a full ideal is again a full ideal.

S;, ?/rg
5.6. Next we are going to .state Prop. 4.61 in terms of ideals. We remark
that, by definition of enclosing ideals, the set of all full ideals of G(X, )8)
with the enclosing ideal D constitutes a complete sublattice 0;(G(X, ).8), D)
of the lattice 0; of all full ideals of G(X, )8).

n

Proof. Let wE VV, then w = I UjVj' ujE U, vjE v, i = 1, ... , n,
j=1

for some n. Right-superdistributivity of x and Lemma 5.31 imply, that,
n

for PI"'" Pk ER[x1, ... , xd, XWP1'" Pk = I UjVj, Uj E U, v; E v,
;=1

i = 1, ... , n. Hence XWPI ... Pk E VV whence, by Lemma 5.31, VV is a
full ideal. Since -u ~ V, -eV ~ V, we have (-r:V) (-eV) ~ VV and there-

5.61. Proposition. Let D be any ideal of G and 1J: G -+ G ID the canonical
epimorphism. Then the composition extension 1J(X) of f} induces a lattice
isomorphism from 0;( G(X, ).8), D) to 0;( (G ID) (X, ).8), 0), ° meaning the
zero-ideal of G ID.

n

fore ((-r:V) (-r:V»)~ ov. If wE VV, then w = I U;V;, ujE o; viE v,
;=1

i = 1, ... , n. Hence w(r], ... , rk) E(-r:V)(-r:V), for all (rl' ... , rk) ERk
implying that VV ~ {(-r:V)(-r:V)}. Therefore -r:(VV) = (-eV)(-r:V).

~. , b- - > G. 'i:
iV e ' i( <h: ~) 6.12. Remark. If A, B are ideals of R, then (AB) = (A) (B) and {AB} :;>

{A} {B}. This will follow fromProof. It suffices to prove that, for every A E Q;( G(X, ).8), D), 1J(X)A =
(ker) 1J(X) (keel)A. Then Prop. 4.61 will yield the proposition. But
bE (ker) 1J(X) (keel)A implies (b, 0) E1J(X) (kee1)A, hence there exist
elements c, dE G(X, ).8) such that 1J(X)c = b,1J(X)d = 0, and c(kee1 A)d.
Therefore c=d c A, and we have b = 1J(X)(c-d)E1J(X)A. Conversely,
if bE 1J(X)A, then we easily get b E (ker)1J(X) (ker-I)A.

6.13. Lemma. If C is any ideal of R, then the ideal (C) of R[xl, ... , xkl
consists of all polynomials of R[x1, ... , xk] which have a normal form
I(a"t'l A EP) as in ch. 1, Th. 8.21, such that a. E Cc for all A EP.

rr: ;.,~." r '
Tr~"~ Y:~!J£~' -. (:(\r)

~/{< r; y:, -_l
I /e, . I"':> - d·

'\J
i..-,'(, ..•, ..•.. ", (c

,
~.(/ I'

'·'1 , i 0- )\ '; ,r""!,' f- (\ n':.
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Proof. LetC1 = {l)a.lt'IAEP)la.lEC,forallAEP}. Certainly C, <; (C).
Conversely, since C <; C1 and C1 is an ideal of R[x1, •.• , Xk], we also
have (C) <; C1.

6.14. Lemma 6.13 implies that (A) (B) <; (AB), moreover AB <; (A) (B),
hence (AB) <; (A) (B). By definition of {A}, {B}, and the ideal product,
we get immediately {A}{B} <; {AB}, and Remark 6.12 is proved.

A partial converse of Th. 6.11 can be proved:

6.15. Proposition. Let W be any full ideal of R[xv ... , xkl such that the
enclosing ideal C of W is the ideal product of some comaximal ideals
A and B, i.e. A + B = R. Then W = UV where U is a full ideal with en-
closing ideal A and V is a full ideal with enclosing ideal B.

'J

Proof. We put U = W+(A) and V = W+(B). Then, by Cor. 5.51,
U and V are full ideals, and, by Th. 5.5, U has the enclosing ideal
AB+A == A whereas V has the enclosing ideal AB+B = B. Moreover,
UV = WW+ W(A)+ W(B) + (A)(B) <; W+(A)(B) = W+(C) = W, by
Remark 6.12. On the other hand, U+ V ;2 A +B = R whence U+ V =

R[x1, ... , xkl. Hence UV ~ un V;2 W (see ch. 6, § 4.3).

6.2. Rings of polynomials over a commutative ring with identity possess
some further operations which crop up in a fairly natural way, namely
the partial derivations a/ax; = ai' i = 1, ... , k, of R[xl, ... , xkl. They
can be used for constructing new full ideals from given full ideals.

6.21. Theorem. Let V be any full ideal of R[X1' ... , xd and A its enclosing
ideal. Then V' = {jER[xl, ... , xdlfE V, oJE V, i = 1, ... , k} is also
a full ideal of R[x1, ... , xk], A its enclosing ideal, and V' <; V.

V'is called the derivative of V.

Proof. V'is not empty since a E V'. Let f, g E V', then f, g E V and
oJ,cigEV, i=l, ... ,k. Hence f-gEV, 0i(f-g)=CJ-OigEV
irn.plying that f-g E V'. If hE R[x1, ... , Xk], then fh E V and o/fh) =
(oJ)h +f(cih) E V whence f h EV'. Thus V'is an ideal of R[x1, •.• , xkl·
Let Pj ER[x1, ... , xkl, j = 1, ... , k, then, by Lemma 5.31, 'Xfp1 Pk E V.
Applying the chain rule for partial derivations, we get 0i'Xfp1 P« =

k

I [%(OJ)P1 ... Pkl o;PvE v, by Lemma 5.31. Thus 'Xfp1'" Pk E V'
tl=1

/(1\ r ,
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so that, again by Lemma 5.31, V'is a full ideal. Clearly V' <; V, in par-
ticular, V' <; {A}. Also A <; V', hence (A)<; V' since V'is an ideal.
This proves the proposition.

6.22. Lemma. Let U, V be full ideals ofR[x1, ... , xd such that U <; V.
Then U' <; V'. If {VVI v E I} is a set of full ideals and D = n(VV I v E 1),
then D' = n (V: I vEl).

Proof. The first assertion is obvious. Asa consequence, D' <; n (V,: I v E1).
Conversely, let fEn (V: I vEIl" then f E V" and oJ E Vv' v E I. There-
fore fE D, oJE D whence t« D'.

6.23. For any full ideal V of R[x1, ... , xkl, we can now define V(O)= V,
V(n) = (V(n-1))', n = 1, 2, .... By Th. 6.21, every V(Il) is a full ideal.

6.24. Proposition. V(Il) consists of all polynomials fE R[x1, ... , xkl such
that the partial derivatives of the orders k = a, 1, ... , n off are contained
in V where a partial derivative off of order a means f itself.

Proof. By induction on n, using the definition of v(n).

6.25. Corollary. Let V" be the ideal product of n copies of V where V is
a full ideal and n ~ 1 an integer. Then Vn <; v(n-l).

Proof. LetfE V". Thenf is a sum of elements v1 v2 ••. vn' v"E V. Applying
sum and product rule for partial derivatives, we find that the partial
derivatives of the orders k-« n-1 oif are contained in V. Thus VI! <;
v(n-1).

I
I

!. 6.3. Definition. A full ideal V of R[xl, ... , xd is called a D-full ideal if
v, . - (=V. VeV.{2i1'-'>Oj'.v

. ,J J I

6.31. We want to characterize the D-full ideals of R[x1, ... , xk] = s.
For this purpose, we consider the algebra S = (S; +, -,0, " 1, x,
01, ... , Ok)' Setting Q1 = {', 1, x, 01' ... , Ck}' S becomes an Ql-multi-
operator group. Because of § 5.12, this is a consequence of Cia = a,
i= 1, ... , k.
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6.32. Theorem. The ideals of the Ql-multioperator group S coincide with
the Drfull ideals of R[x1, ... , xkl

Proof. By ch. 6, Lemma 3.4, a subset V of S is an ideal of S if and only
if it is a full ideal of R[x1, ... , xkI and Glg+ a) -Gig E V, for all a E V,
g ER[xl, ... , Xk], 1 ~ i ~ k. This is equivalent to saying that V is a
full ideal and Gia E V, for all a E V, i.e. Vis a D-fullideal of R[x1, ... , xd.

6.33. Corollary. The intersection and the sum of a set of ideals. of
R[xl' ... , xk] which are Ii-full ideals are also Ir-full ideals. The ideal
product of any two Ir-full ideals is also a Ir-full ideal.

Proof. The first assertion follows from Th. 6.32, and ch. 6, § 3.2. If U, V
n

are D-full ideals and p E UV, then p = I u.v,. u, E U, VV E V. Hence
v=l

fI

GiP = I ((GP,,)v,,+uv Gjv.) E UV,thus (UV)' = uv.
•=1

6.34. Corollary. Let W be a D-full ideal of R[xl' ... , xk] such that the
enclosing ideal C ofW is the ideal product of two comaximal ideals A and B.
Then W can be represented as the ideal product of a Ir-full ideal U and a
D-full ideal V having A and B, resp., as their enclosing ideal.

The corollary will follow from

6.35. Lemma. For any ideal C of R, the ideal (C) of R[x1, ••• , xd is a
D-full ideal.

Proof. By Lemma 6.13, and the elementary properties of partial deriva-
tions.

6.36. Proof of Corollary 6.34. As the proof of Prop. 6.15 and by taking
in account Cor. 6.33 and Lemma 6.35.

6.4. For any full ideal' V of R[x1, •.. , xk], we define the D-eere oVof
V as the sum of all D-full ideals of R[x1, ... , xd contained in V. By
Cor. 6.33, oV itself is a D-full ideal .contained in V.
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6.41. Proposition. oV = n (vcn) In;;.. 0), and the enclosing ideals of V and
oV coincide.

Proof. We set U = n (Ven) In ;;.. 0), then U is a full ideal of R[x1, ... , xd.
By Lemma 6.22, U' = n(Vcl!+l)1 n t» 0) = n(V(n)ln;;..l)whence Ur:;;, U'.
Thus U is a D-full ideal and U r:;;, V. We conclude U r:;;, oV. Conversely,
let W be any D-full ideal such that W r:;;, V, then W r:;;, V(II), n ;;.. 0, again
by Lemma 6.22, thus W r:;;, V In particular, oV r:;;,. U showing that
oV = U. Th. 6.21 and Th. 5.5 imply that Vand oV have one and the
same enclosing ideal.

. 6.42. Corollary. If {V. I v EI} is a set of full ideals and D = n (V. I v 0),
then oD =n(oVvlvEI).

Proof. By Prop. 6.41 and Lemma 6.22,

oD =n(D(II)ln;;.. 0) =n(n(V~n)lvEI)ln;;.. 0) =n(oV.lvEI) .

7. Full ideals over fields

7.1. Let Q be any field, then Q is in the variety 18 of commutative rings
with identity and we may apply all our results of § 6 toQ[x1 ••.. , Xk]'

The information that Q is a field yields, however, some more specific
results on full ideals.

7.11. Theorem. If Q is any infinite field, then Q[x1, .•• , xk] has no full
ideals apart from the trivial ones.

Proof. Let U be a full ideal of Q[xl, ... , xd. Since Q has just the trivial
ideals, the enclosing ideal of U is either Q or the zero ideal 0 of Q. The
first case yields U ;2 (Q) = Q[XI, ... , xn], and the second case U r:;;, {O}.
But then fE U implies f(rl, ... , rk) = 0, for all (1'1' ... , l'k) Eo:whence
f = O. For k = 1, this follows from a well-known theorem on polynomi-
als over fields, and induction on k proves the result. Therefore U = 0.

7.2. If Q is a finite field, then Th. 7.11 does not hold. For xiQI_Xl E{O}
as we know from a well-known theorem on finite fields, but" 11{O}.
Thus {O}is a non-trivial full ideal of Q[xl, ... , xkL A complete classi-



98 CH.3COMPOSITION OF POLYNOMIALS AND POLYNOMIAL FUNCTIONS

fication of the full ideals of Q[x1, ... ,xd, Q finite, is known just for
k = 1. This is achieved by

7.21. Theorem. Let Q be a finite field of characteristic p and order q.
Then every non-trivial full ideal Vof Q[xI can be uniquely represented as
V = (xqcl-xt'n(xqe'-xt'n n(xqe'-xt' where r :» 0, e1:> e2:>
. .. :> er :> 0, a, :> 0, V = 1, , r, and aj:> ai if ej is a proper divisor
of ei. Any such V is a non-trivial full ideal.

Proof. Clearly, any such V is a non-trivial ideal. The principal ideal
(xq• -x) consists of those polynomials of Q[x] which vanish for all
elements of the extension field of order qe of Q, hence, by Lemma 5.31,
(xqc-x) is afull ideal of Q[x]. By Th. 6.11 and Cor. 5.51, Vis a full ideal.
Next we show that every non-trivial full ideal V can be written as in the
theorem. Since Q[x] is a principal ideal domain, V = (I), for some monic
non-constant polynomial fE Q[x]. Let C be the algebraic closure of
Q and Ci E C any root of f If g (Q[x], then xfg = fog E V whence
fog = If, for some rEQ[x]. Hence f(g(c1)) = r(c1)f(C1) = 0. This
implies that everyelement of the subfield Q(C1) of C is a root of f Let
c1 ~ c2 E Q(c1), and a., i = 1,2, be the multiplicities of Ci as roots of f
Then we have the factorization in C[x]

f =: (x-c1)a1 (x-c2Y' ... (x-cst' (7.21)

where s :> 1, ci ~ cj, for i ~ j, a" :> 0, v = 1, ... , s. Let g E Q[x] such
that C2 = g(C1) and set

Ig,
h= g+ (xqC,_x),

for g'(C1) ~ °
for g'(C1) = °

where e1 is the degree of Q(C1) over Q. Then h(C1) = C2,and h'(C1) ~ 0.
By (7.2n we have )

foh = (h-c1)a1 (h-c2t' .. , (h-cs)a,.

C1 is then a root of fa h with multiplicity a;: But fa h c V and thus is a
multiple, of f, hence a2 "'"a1. Since C2 was chosen arbitrarily in Q(C1), we<'(1.~"Y;J

conclude that (xqc'_x)a1/f But C1 was an arbitrary root of'jin C, hence
we can use any ci for this argument. Thus

(f) £ n~=l (xqci-xti (7.22)

c'}) £V .. (J ({, \
r:0,'1 v (:

~t"
X L

I {, j"", I.( -),
":_'J\ 7'. ' "f,l/IJ"/'

"vV' 1"./ J.,;J l'/vk(I"~'l.v.

l1-l"v-1' .!;-.. ,le,,'
<, 1(, Ic"
i ('\ - x

.1', rl
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where ei denotes the degree of Q(c) over Q. If this inclusion were not
an equality, then f = gv where v is the monic least common multiple
of the polynomials (xq'i_XYi and g is a non-constant polynomial of
Q[x]. Then ghas a root in C which is also a root c.; say, off But X-Ci

divides xqei- x whence (x - CiYi+1 divides f, a contradiction. We may
order the right-hand side of (7.22) by decreasing ei. Of all those ideals
with the same e., we need just that one with the greatest al. In the repre-
sentation of V thus obtained there may be an ideal (xq'J -x)"j such that ej

is a proper divisor of ei and aj ~ ai' But then (xq'J-x)"J divides?
(xqci_XYi, and we may drop"(xqcJ-xYJ in our representation, After
completing this procedure whenever possible, we get a representation
of V as in the theorem.

It remains to establish uniqueness. Suppose there are two representa-
tions of V as in the theorem, e.g.

'/

V= (h) = n~=l(xqcv-x)av= n!=1(Xq1v-x)bv

where h is a monic, non-constant polynomial of Q[x]. Without loss of
generality, we may assume ° -< r ~ s. Every root of the polynomial
xqev_ x is also a root of h, and conversely every root of h is a root of some
xq'v- x since h divides the product of the (xq•v- xYv. Thus the sets of roots
of h and of roots of all xq'" -x coincide. From the theory of finite fields

• '0we know that e. isthe greatest degree over Q occurring amongst all the
roots of xq'v-x. Hence e1 =IIsince both equal the greatest degree over
Q ocurring amongst the roots of If:r.If C is a root of h of degree e1 over « Q A "> I 1 .., , .

Q, then x-c divides Xq'l_X, but (x-:cl2 does not, nor does x-c divide t, > {,) ,
]1..,'"'-,

any other xq<· - X. But (xq
'
l_ x)a1 divides h which divides the product ,i '7' e.: "

of all (xq'· - xt·. Thus a1 is the multiplicity of c as a root of h, and ,"'~ (,.--/:' ,,' ,
arguing in the same manner for the second representation, we concludeP / '"~, x . "

a1 = b-: Suppose how that e. = iv, a. = b; for 1 ~ v ~ t, and

n:'=l (xq
'· -xrv = n~=1(xql·_X)bv = (g) ({ \ {

where g is a monicpolynomial of Q[x]. Then h = gk, for some k E Q[x].
Let

.,' \

n:=t+1 (xqe•- xtv= (I) -: ~~ ~.

~' ix: "
"rL
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for some monic IE Q[x], then (h) = (g)n (I). If d is the monic greatest
common divisor of g and I, then h = glld whence k = lld. Thus every
root of k is a root of I, and hence a root of xq'v-x, for some v>- t.
Therefore the maximal possible degree over Qo[<l.l1Y root of k is t?1+1'

and if c is a root of Xq"+l_X of degree el+1 over Q then arguing as
before we see that c, as a root of I, has the multiplicity al+1' By a well-
known theorem on finite fields, x-c divides xq'v-x where 11 ~ t if and
only if e'+l divides e; Since g is a least common multiple of the poly-
nomials (xq'V _x)av, 11 ~ t, the multiplicity of c, as a root of g, equals
a = max a; where 11 runs through those indices which satisfy ~!I~ t and

1,·, >,1 t et+1/ev' By hypothesis, a <: at+1 whence c, as a rootof d has j~st multip-
L..\ \. '" licity a thus, as aroot of k, chaarnultiplicity v. ==(l1+1-a >- 0: There-

\ . ,'w' fore el+1 is characterized by being the greatest of al(deire~s over Q of
, ,c, /~':.2-. the roots of k, and so is fl+1' by the same argument. If c is a root of
{', i'< L"''. k of the greatest possible degree, then c has multiplicity at+1-max a,
. . where 11 runs through all indices such that 11 ~ t and et+1/ev' and, for the

same reason c has multiplicity bt+1-max b, where 11 "'" t andh+l!fv. We
summarize and obtain el+1 = h+l and, by induction, a'+l = bt+l' Hence
ev = L. a, = b.. for 1 ~ 11 ~ r. If s >- r, then we could use the same ar-
gument as before. But now k = 1 while, on the other hand, k would
have roots, a contradiction. Hence r = s, and the uniqueness is estab-
lished.

7.3. Again let Q be a finite field of characteristic p and order q. With the
information of Th. 7.21, it is now easy to determine all the D-full ideals
of Q[x]. All to be done is to compute the Ir-cote of every non-trivial full
ideal of Q[x]. We db this first for the full ideal W = (xq' _x)a. If t« W,
then f = (xqe -xt g, for some g EQ[x], thus

ad = l' = (x" - x)" g' -a(xq
• - xt-l g.

Hence l' E W if and only if a(xq• - xt-l g E W. Therefore W' = W
if p]a while W' = (xq• -xt+1 if pia. By Prop. 6.41, bW = (xq

• -x)"
where a is the least integer m ~ a being divisible by p, By Cor. 6.42, if
V = n:=l (x?" -xtv according to Th. 7.21, we have bV = n:=l (x?" -x)"v
where av is the least integer m ~ av being divisible by p. Cancelling
redundant ideals in this representation of bV, we get a representation as
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in Th. 7.21. Here all the a; are divisible by p. Conversely, any ideal having
such representation is a D-full ideal of Q[x]. We may state our results as

7.31. Theorem. Let Qbe a finite field of characteristic p and order q, and V
a full ideal of Q[x] represented as in Th. 7.21. Then V is a Ir-full ideal
if and only if every exponent a, is divisible by p.

8. Residue polynomial ideals of Dedekind domains

8.1. Let'Q5 be a variety of Q-n:ultioperator groups, A any algebra of Q5,
X = {Xl' ... , xk}, and D any Ideal of A. Then by§ 5.34, the residue poly-
nomial ideal {D} of A(X, Q5) consists of all p E A(X, Q5) such that
P(gl' ... , gk) ED, for all (gl' ... , gk) EAk. By Prop. 5.35, {D} is a full
ideal of A(X, Q5).The elements of {D} will be called "residue polynomials
modD".

What is the significance of considering residue polynomial ideals?
Let r;: A -+ B by any epimorphism of Q5-algebras. The diagram fig. /.
3.1 shows that ~ = Pk(r;) a(A) = a(B) r;(X) is a composition epimor-
phism from A(X, Q5) to Pk(B) , and p(Ker~) q if and only if
P(gl' ... ,gk)(Ker r;) q(gl' ... ,gk)' for all (gl' ... ,gk) EAk. Thus Ker ~ =
[Ker r;}. Using the notation of ch. 6, § 3.2 an~q'§ 5.3, we get ker ~ =
ker Ker ~ = ker {Ker r;} = ker {keel kerKer r;} oS {ker Ker r;} = {kerr;},
Thus the residue polynomial ideals of A(X, Q5)are just the kernels of
the composition epimorphisms ~.

Now let Q5be the variety of commutative rings with identity and R a
ring of Q5.Again R[xl, ... , xk] will stand for R(X, Q5)and will be called
the ring of polynomials in Xl' ... , Xk (over R). For any ideal D of R,
we wish to get more information about {D}. If R is noetherian, then
R[x1, ••. , xk] is also noetherian, thus {D} could be characterized in this
case by writing down some ideal basis for {D}. This will actually be done
for the case where R is a Dedekind domain, and RID is finite. In parti-
cular, we may take R to be the ring of rational integers and D ~ O.

Let S be any ring andB any ideal of S. keel B is then the correspond-
ingcongruence on S. As usual we will write a == b mod B for a(kee1 B)b.

\

){. S 9. ...1

11-

8.2. Having spelled out our next aim, we start by taking a Dedekind
domain R and an ideal D of R such that RID is finite. We are looking
for an ideal basis of {D}. If D = R then {D} = R[xl, ... , Xk] = (1),
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and if D = 0, then R == RIO is finite and hence a field. In this case
IRI = q, for some prime power q, and certainly {a} 2 (xi-xl' ... ,
X'k-Xk) as follows from a well-known theorem on finite fields. On the
other hand, we also know that, for k = 1, {a} ~ (xi-Xl)' LetfE{O},
then, by ch. 1, Th. 8.21,1 = (x'k-xk)g+h where g ER[xl, ... , xk] and

q-l

h = I P;(XI' ... , Xk_I)X~, Clearly s : {O}. Therefore, for any (r1' ... ,
;= 0 q-l

rk_1) E Rk-\ we have I p;(rl' ... , rk_l)x~ E {a} whence p;(Xl,···,
;=0

Xk_l)E{O}, O~i~q-l. By induction, hE(x'f.-xl, ... ,Xk-l-Xk_l)'
hence fE(x'J.-xl' ... ,X'k-Xk)' We conclude that {a} = (x'J.-xl, ... ,
x'k-xk)·

Now let D be any non-trivial ideal of Rsuch that RID is finite. Since R

7.'

r

is Dedekind, D has, up to ordering, a unique factorization D = IT Pf'
;=1

where the P; are pairwise distinct non trivial prime ideals of Rand
e, >- 0, i = 1, ... , r. It is also known that the ideals Pf' are pairwise
comaximal. Since Pf' ~ {P;'}, we see that also the ideals {Pf'} are pair-
wise comaximal. The product. of comaximal ideals coincides with their
intersection, thus by 5.36,

{

r } >\'. r
{D} = n P;' = {n~=lP:'}= n~=l{Pf'} = IT {pr'}·

1=1 1=1

Hence it suffices to determine ideal bases for the {pr'}. Since D ~ pr' ~ Pi'
all the prime ideals P; have finite factor rings RIP;.

8.3. Let P be a non trivial prime ideal of R such that RIP is finite. Then
RIP is a finite field of order q where q = p", for some prime p. We in-
troduce a number-theoretical function Sp which depends on P. Let A be
the function from the set of positive integers to the set of non-negative in-
tegers defined by A(k) = max (A IqA divides k). Then Sp shall be the func-
tion from the set of non-negative integers into itself defined by

k

sp(O) = 0, sp(k) = I A(i), for k>- 0.
;=1

(8.31)

A well-known number-theoretical formula (see ch. 6, § 9.3) tells us that

sp(k) = k - sq(k)
q-l

(8.32)
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where sik) is the sum of the digits in the q-adic expansion of k.
Sp actually depends just on IRIPI, not on P itself. Whenever we keep P
fixed, we will write S for Sp. For every integer n ~ ° and every integer
1 ~ a ~ q-l, we define elements s(aq") as follows: S(q") , S(2q"), ... ,
s( (q _l)q") is an arbitrarily chosen full set of coset representatives for
the non-zero elements in P" IplI+1_ by ch. 6, Lemma 4.52, pili pll+1 con"
sists, indeed, of q elements. Additionally we put s(O) = 0. If k is any
non-negative integer and k = amq"'+ ... +alq+aO is the q-adic ex-
pansion of k, we define .

rk = s(amq"')+ ... +s(alq) +s(ao)'

In particular, rtqn = S(tq") EP", for °~ t <:: q.

8.31. Lemma. Let n ~ ° be an integer. Then r; = rk mod P" if and only
if i == k mod «:

Proof. The lemma holds obviously for n = 0, hence we may assume
n >- 0. Let i = LPlqt, k = Iblqt be the q-adic expansion of i and
k, resp., then r; = Is(alqt), rk = Is(btqt). If i = k mod q", then, for°~ t <:: n, we have at = b., hence s(alql) = S(b,q'), °~ t <::' n. As a
consequence, r; == I sCad) = I S(b,q') == rk mod P". Conversely, if

t-e n t -c n

r; == rk mod P", then I s(alql) = I S(b,q') mod P" whence s(aol) ==
t<1I t-« n

s(boqO) mod P. Therefore s(aoqO) = s(boqO). By induction, s(a(qt) =
S(b/ql),° ~ t <:: n, hence alql = b.q', for °~ t <:: n. We conclude
that i == I a.q' == I blqt= k mod q".

t<n «n

8.4. We define a sequence of polynomials tn E R[x], n = 0, 1, 2, ... by

n-l
to = 1, tn = IT (x-r;), for n >- 0.

;=0

8.41. Lemma. For every n ~ 0, we have tllE {P«II)}, but tn(rn) Q pe(n)+1.
In particular, tn Q {r(n)+l}.

Proof. We first show that tn E{r(n)}. For s(n) = 0, this is obviously true.
So we may assume that s(n) = m c- 0. Let r ER be arbitrarily chosen.
Then there exist integers d., °~d; <: q, i = 0, 1, ... , m-l, such
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m-2'

that r == s(do) mod P, r-s(do) == s(dlq) mod p2, ... , r- I s(diqi) ==
m-l i=O m-I

s(dm_lqm-l) mod r-, i.e. r == I s(d1q') mod i=. Then, for I = I d.q',
1=0 1=0

we have r == r/ mod P'" and hence t/l(r) == t/l(r/) mod P'", For 1< n,
obviously tl/(r/) = O. If I ~ n, then, by Lemma 8.31, if we set S =
1/-1 1/-1

I AU-i), we get tl/(r/) = TI (r/-r;) EpS, but tl/(r/) ~ pS+l. By (8.31) and
i=O i=O

(8.32), S = e(l)-e(l-n) = (l-s,//))/(q-l)-[(l-n)-Sq(l-n)]/(q-l).
But, since sq(a+b).,,;; sq(a)+ sq(b), we have Sq(l)-sq(l~n).,,;; sq(n). Hence
s~ (n-sin»)!(q-l) = e(n) = m whence tn(r) == tn(r/) == 0 mod P".
Similarly we show that tn(rn) ~ p'(/lHl. For tn(r,,) ~ pHI, where S =
e(n) - 10(0) = e(n). This completes the proof. A. 'A

8.5. Lemma. Let e ~ 0 be an arbitrary integer. Every polynomial IER[x]
m

such that IE {P'} and [f].,,;; m can be written as I = I a;fi where
i=O

ai E j>e~E(jl if e(i) < e, and ai E R if IOU) ~ e. Every such polynomial
belongs to {pe}.

Proof. The latter statement is a consequence of Lemma 8.41. Suppose
m

IE {pe}, [f] .,,;;m, Then clearly I= I a/i, for some a, ER. We have
i=0

1(0) = ao whence ao Epe-E(Ol. By induction and Lemma 8.41, we con-
In

elude that aft, E {pel, for 1< i. hence g = I a/i E {P'}.
i=j

g(r) = a/ir) EP", hence aj Epe-E(j), again by Lemma 8.41.

Therefore

8.51. Theorem. Let 0 ~ pEP, bi ER, i = 0, 1, ... , such that pi =
(p', b), s the least integer such that e(qs)~ e, and Tl = {tqs}, T2 =
{pe-E(qi)tqiIO ~ i < s}, Ta = {be-e(qi/qiIO ~ i -< s}. Then Tl UT2UT3 is a
basis for the ideal {P'}. If, inparticu/~r, Pe==,(?~' then TlUT2 is a basis
lor {pe}. .-!..e.-tqn " p .. (t .

:; I") t r~, ' "
-(~" (,. 1. f .

Proof. By Lemma 8.5, TlUT2UT3 ~ {P'}. Let/E {P'}, then, by Lemma
m

8.5, f = I a/i, ai EP'-E(il, for e(i) < e, and ai ER, for 8(i) ~ e.
i=O

Obviously, for n ~ 0, t,,/lnH, and e(k+ 1) = e(k) if q l' k s- 1. Hence,

,I
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for 1< s, there exist elements ci, d, ER such that

~+~-~ ~+~-~I a;1i = tq, L (cipe-E(ql)+djbe_£(ql») (tJtq,)
j=ql i-e ql

e-E(qllt +b t h= P qlg e-e(qll ql ,

for some g, hE R[x]. This proves the first assertion. If P = (p), we
way set b, = 0, for all i. This completes the proof.

8.6. We want to generalize Lemma 8.5 and Th. 8.51 to R[Xl' ... , Xk]'
For this purpose, we introduce.some new notations. LetNbe the additive
semigroup of non-negative integers and Mk the direct product of k
copies of N. For any r EN, and exEMk' rex shall mean the element of Mk
whose components are r-times the corresponding component of ex.A partial
order ~ on M k will be defined by (ml' ... , mk) ~ (nl' ... , nk) if and only
if m, ~ nj, i = 1, ... , k. Let epk : Mk -+ N be defined by cPk(ml, ... , mk) =

k .

I 8p(mJ, In particular, we have cP1 = cp and again we abbreviate
j=l

cPk by writing 10kinstead. Finally, for all t = (iI' ... , ik) EMk' we define
t, E R[x1, " ., xk] by t, = tj, (Xl) ... tj/Xk)'

8.61. Lemma. Let e ~ ° be an arbitrary integer, p, = (ml' ... , mk) EMk'
and I ER[xl, , xd such that IE {pel and, regarded as a polynomial in
Xj over R[xl' , xj_1' XH1' ... , xk], has degree ~ m., j = 1, ... , k.
Then 1= L(a/, II .,,;;p,) where a, E pe-Ek(,l, lor Ck(t) <:: e, and a, E R, lor
ck(t) ~ e. Any such polynomial belongs to {pel and has degree ve mj as a
polynomial in xj' j = 1, ... , k.

Proof. Let I be a polynomial as in the hypothesis of the lemma. By
Lemma 8.41, tj(x)E{PE(ij)}, j=l, ... ,k, hence t,E{PEk('l} whence

j .

IE {pel· Since [ti/X)] = ij, we see that, for t = (iI' ... , ik), t, is of
degree ij in xj' and thus I is of degree « mj in xj. Conversely, let/E {pel
be of degree .,,;;mj in xj, j = 1, ... , k. For k = 1, Lemma 8.5 yields the

mk

result. Let k >- 1, then I = L gik(X1, ••. , Xk_l) tj,(Xk)' which is obtained
ik=O

from the normal form for I as in ch. 1, Th. 8.21, by collecting all those
summands containing equal powers of Xk and applying the division algo-
rithm using tmk(Xk), tmk-l(Xk)' ... , to(Xk)' We observe then that every
gj/xl, .. _, xk-l) is of degreeje mj in xj, j = 1, ... , k-1. For any
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(r1' ... , 1"k-1) E R"-\
mk

f(r1, .•• , rk_1> Xk) = I gik(r l' ... , rk~l) ti.(x,,) E {P"}
i,=O

and, by the same argument as in the proof of Lemma 8.5,
we conclude that gik(X1, ... , Xk-l) E {pe-c(ik)} if cUk) -< e. By induc-
tion, gik(Xl" .. , Xk-l) = Ia(ilo ... , ik_" iJil (Xl) ... tik_1 (Xk_l) where
a . . . E {pe-c(ik)-(c(il)+ ... +c(ik-ll)} = {pe-,ck(')} if e (t) -< e and the

(11.···' 'k_], 'k) k ,

sum extends over all (iI' ... , ik_l) ,,;;;(ml' ... , mk-l). Substitution of
this expression for the gi

k
into our expression for f completes the proof

of the lemma.

8.62. Theorem. Let p, b.; s be defined as in Th. 8.51, (X = (s, s, ... , s) EM",
and Tl = {tq,1 t,,;;; (X, ck(qt);a.o e}, T2 = {pe-Ek(q')tq,1 t,,;;; (X, ck(qt) -< e},
T3 = {be-ck(q,/q'/ t,,;;; (x, ck(qt) -< e}. Then Tl UT2UT3 is a basis for the
ideal {pe} of R[xl, ... , Xk]' In particular, if P = (p), then TlUT2 is a
basis for {pe}.

Proof. Using Lemma 8.61, the proof runs along the same lines as that
of Th. 8.51 and is thus left to the reader.

8.63. Remark. If R is the ring of rational integers, then P = (p), for some
prime p. Moreover q = p and we can take s(lqi) = /qi, hence 1'[ = I, for
1= 0, 1,2, ...

9. Residue polynomial ideals over groups
9.1. In the preceding section, a description of the residue polynomial
ideals of some special types of polynomial rings could be achieved
comparatively easily. We know much less in the case of groups, however,
the Kurosh subgroup theorem will at least tell us a lot about the group
structure of the residue polynomial ideals of G(X, m) = G[XI where m
is the variety of groups, G any group with group operation >, and
X = {Xl' ... , xk} a set of indeterminates. First we prove a qualitative
result :

9.11. Theorem. Let N be any normal subgroup of G, and {N} the residue
polynomial ideal of G[X] generated by N. Then the group V = ({N}, "
-1, 1> is isomorphic to a free product F *K of a free group F and a group K'
which is the free product of some copies of N.

Proof. According toch, L'Cor 9.22, G[X], {<Ph <P2} is a free product of
G and the free group F(X, m) = F(X). By a well-known group-theoretical
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result, there exist monomorphisms 1Pi:F(x;) -+ F(X) , i = 1, ... , k, such
that F(X) , {1Pl' , 1J!k} is a free product of the groups F(xJ Thus
G[X] = F(xl) * * F(xk) * G where * denotes the free product of
groups as usual. Let 'Y): G -+ G IN be the canonical epimorphism, then, ~)(~'!,

by § 5.3, we have V = {N} = {p Ip E G[X] and P(gl' ... , gk) EN, for all Gc vi-···-r

(gl' ... , gk) EGk}, and it is easy to see that V = ker a(GIN)'Y)(X). Since idt)
V is a subgroup of a free product, we are ready for applying the Kurosh V

subgroup theorem (see ch. 6, § 6.7) to V and obtain since V is normal I~( &\
in G[X]) .'

V ~ F, * [*( * (VnF(x)I i'E~) II,,;;;},,;;; k)] * [*(VnGliE/o)] (9.1)

r
where F: is a free group and ~,} = 0, 1, ... , k)\.fre suitable index sets.
Since vn F(xj) is free as a subgroup of a free group, the free product
of the first and second factor in (9.1) is a free group F. Moreover,
VnG = {N}nG = N, by Th. 5.4, whence the third factor in (9.1) is a
free product of some copies of N and the theorem is proved.

r

(1

ki
(-,:;

r r(~'
I ~~; ,

9.2. The Kurosh subgroup theorem also yields some quantitative infor-
mation which, for finite G, enables us to determine the rank of F in
V ~ F*K as well as the number of free factors isomorphic to N in K.
In the following, we keep the notation of Th. 9.11.

9.21. Proposition. If G is a finite group, then K is the free product of
Ipk(GIN)IINIIIGI copies ofN while the rank of F equals

l+lpk(GIN)1 (k-INIIIGJ).

Proof. By the Kurosh subgroup theorem, 110 I is the number of cosets of
G[X] modulo Gv. Since V = ker a(GIN)'Y)(X), we see that G[X] IV ~
Pk(GIN) while GV/V ~ GI VnG = GIN. Hence 1/01 = Ipk(GIN)IINIIIGI
which proves the first statement of the proposition. Similarly I~ I is the
number of cosets of G[X] modulo F(x)V,} = 1, ... , k. But F(x)V/V ~
F(xj)/VnF(xj) and VnF(x) = {xj'1 gkEN, for all gEG} = [xj]
where e is the exponent of GIN. Thus F(x)V/V ~ ee' the cyclic group
of order e which shows that I~I = Ip,cCGIN)I/e. If reF) and r(Fl) are the
rank of F and Fl,respectively, then reF) = r(Fl)+ klpk(GIN)I/e, by defi-
nition of F since r(VnF(x)) = 1. But, again by the Kurosh subgroup
theorem, r(Fl) =, k Ipk(GIN)I-lp,JGIN)1 /NIII GI-k Ipk(GJf)I/e+ 1.
Hence reF) = l+lpk(GIN)I(k-INIIIGJ) which proves the proposition. <,

\' '.', \" (cl",\\\\-l/:)
(

'-1- 'V. \.'" ,\.2. I r.•.(<; I" ' "
~ ( ,I" \"- \.(,~"I\\~I,(th\i-t(t'· In...
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9.22. Corollary. (ker a(G); " -1, I) is a free group. JfG isjinite, then this
free group has rank 1+IPk(G)1 (k-l/IGI).

substituting gl' ... , gk for xl' ... , Xk into the normal form of f as in
ch. 1, § 8.2, and if we apply (10.11) and (10.12) to this representation,
we obtain from a straightforward computation

Proof. By Th. 9.11 and Prop. 9.21 if we putN = {I}.
k

8{nfg1 ... gk = I [n(aJ)gl ... gk] 8{gj'
i=l

(10.211)
9.23. Remark. The actual description of the residue polynomials of {N}
is, in general, unknown, but a few results into this direction have been
obtained. The reader is referred to ch. 5, § 1.

But nfx1 ... Xle = 1, hence
Ie

bJ =' I (8{x) (aJ),
;=1

(10.212)

10. Derivation families with chain rule -
and tying (10.13) and (10.211) together and using the right-superdistri-
butivity of n,we end up with10.1. Let R be a commutative ring with identity, R[xI, ... , xk] the poly-

nomial ring over R in tile indeterminates Xl' , xk, and a; = a/axj,

i = 1, ... , k, the partial derivations of R[x1, , xkl. This family
(aI' ... , ak) is a well-known example of a family of mappings (81, ... , Ok)'
OJ:R[x1, , Xk] -+ R[x1, ... , xk], i = 1, ... , k, such that, for any
f, g, gl' ,gk ER[xl' ... , x"l and I = 1, ... , k, the following equations
are valid:

k

I (8,gJ[n(oJ-aJ)gl'" gd = 0, 1= 1, ... ,k. (10.213)
;=1

O{([+ g) = 8,f+ 8{g,

otCfg) = (8J)g+f(8{g), .

. (10.11)

(10.12)

(10.13)

We now introduce a matrix notation where s is used for the row index
while t means the column index: G = (8,gt), P = (asgt), D'= (8sxJ,
E= kXk-identity matrix, °= k.sck-zeio matrix, thus G, P, D, ° and E
are k X k-matrices. Moreover we introduce k X I-matrices c = (8sf-a sf),
b = (asf), 0 = (0), and 1 X k-matrices 9 = (gt) and f = (x.). Then
(10.213) becomesk

0,nfg1 ... gk = I [n(8J)gl ... gd O,g;.
;=1

From (10.212) we get
G(cog) = o.

G = DP .;

(10.214) V

The problem arises of determining all the families (81' ... , 8k) of such
mappings satisfying (10.11), (10.12), (10.13). More generally, for any
ring S, a mapping 8 : S -+ S is called a derivation of S if ° satisfies (10.11),
(10.12) in the place of 0" for allf, g ES. Substituting aj for OJ,i = 1, ... , k,
in (10.13), we can read off the well-known chain rule. Thus we will call
any family (°1, ... , Ok) of mappings OJ:R[xl' ... ,xk] -+ R[x1, ... , xk],
i = 1, ... , k, a derivation family with chain rule, or, in brief, a "C-
derivation family" if this family satisfies (10.11), (10.12), (10.13).

It will be useful to adopt the following notation: Let F = Ust) be any
matrix with entries ist E R[xl' ... , xd and 9 = (gl' , gk) a k-tuple
of elements of R[xl' ... , x,,], then the matrix (nfstg1 gk) shall be
denoted by Fog.

(10.215)
and

c = Db-b = (D-E)b.
Ii

(10.216) and right-superdistributivity of n imply

(10.216)

Co 9 = (D 0 9 -E)(b 0 g),
v' 10', 7. -1/

and using (10.214) and (10.215), we get

DP(D 0 g-E)(b 0 g) = o.

(10.217)

(10.218)

10.2. Let (81, ... , 8,,) be an arbitrary C-derivation family and f, gl' ... , g"
arbitrary elements of R[x1, ... , x,,]. If nfg1 ... g" is represented by

Since (10.218) holds for all f and g, we may take, in particular f = xj,

j = 1, ... , k, whence

DP(D 0 9 -E) = 0, for all 9 ER[x1, ... , X,,]k. (10.219)
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On the other hand, if D = (osxt) is any k X k-matrix over R[x1, ... , xk]
satisfying (10.219), an easy computation shows that the mappings a"
1 = 1, 2, ... , k, defined by

k

oJ = I (o,x) (oJ), for all t:R[x1, ... , xk],
i=l

are derivations of R[X1, ... , xk], i.e. (10.11) and (10.12) is satisfied (one
could have taken any matrix D for this purpose). Thus (10.211), (10.212),
(10.215), (10.216), and (10.217) hold, while the condition (10.219) yields
(10.214) and also (10.213). The right-superdistributivity of x and (10.211)
yield (10.13), hence (01' ... , Ok) is a C-derivation family.
Thus our problem boils down to determining the matrices D satisfying
(10.219). If Jj is such a matrix, let

D= Ar+Ar_l + ... +A1 +Ao (10.220)

be the representation of D according to ch. 1, § 8.3, that means
Ai' i = 0,1, ... , r, is a k X k-matrix whose entries are forms of degree
i. We first show that Ao is a scalar matrix, i.e.

Ao = dE, for some dE R. (10.221)

For k: = 1, pO.221) is obvio~s, hence assume that k: >- 1. Choose g
such that g, ~ Xl ... xk and gj = 0, for j 7"-/, then P = (osgt) = Pk-1 is a
matrix whose entries are forms of degree k -1. Right-superdistributivity
of u and (10.220) imply

Dog = (Arog)+(Ar_1og)+ ... +(Alog)+Ao'

If qi is a form of degree i, and qj, a form of degree j, 1 = 1, ... , k, then
uqjqjl ... qjk is a form of degree ij. Hence substituting our particularly
chosen g into (10.219) yields

(Ar+Ar_1 + ... +A1 +Ao) Pk-l(Brk +BCr-l)k+ ... +Bk+(Ao-':"'E)) = 0

(10.222)

where Bjk' i = 1, ... , r, is a kXk-matrix whose entries are forms of
degree ik. After performing the matrix multiplication, we obtain a sum
where the only summand with entries of degree k-1 is AOPk_l(Ao-E),
hence

AOPk_/Ao-E) = O. (10.223)

.J,
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Let Ao = (ast), (Xl'" Xk)/Xt = Up t = 1, ... , k, and E = (ost), then
k

AOPk_l(Ao-E) = (cst) where Cst= (a't-olt) I asjUj'Hence, by (10.223),
;=1

(a/t-0/t)Ao = 0, t,l = 1, ... , k. (10.224)

F or I 7"- t, we get afta" = ° and (a" -1)au = ° whence aft = 0. Further-
more, (a" -1)all = (att -1)all = ° whence att = a". Thus att = d,
t = 1, ... , k, for some dE R, and (10.221) is proved.

Now we substitute (xl' ... ,xk) for g in (10.219), then P = E and

.' D2 = D. (10.225)

Substituting (10.221) into (10.220) and (10.220) into (10.225) and con-
sidering the terms of degree ° of the entries, we see that d2 = d. Suppose
that

D = A,+Ar_l + ... +A,+dE, A, 7"- 0, 1>- 0. (10.226)

Then, again substitution into (10.225) and comparison of the terms of
degree I in the entries, gives

2 d.A, = A,. "-0 ..z. d. "ite' CI i" (10.227)

Since d2 = d, we have dA, = 0 and therefore A, = 0, a contradiction.
Thus D = dE where dE Rand d2 = d.

Conversely, if D = dE where d c Rand d2 = d, then, for all g,
DP(Dog-E) = (dE)P(dE-E) = (d2-d)P = O.

We summarize our results as

10.21. Theorem. The Cvderivation families of R[xp ... , xk] are exactly the
families (d 01, ... , do k) where dE R is an idempotent. 8 = :J) r

10.3. It is well-known that for idempotents d of commutative rings R with
identity, dR is a direct summand of R, and r -+ dr is the projection from
R to dR. Conversely, every projection of R onto a direct summand of R
is a mapping r -+- dr where d is an idempotent. Thus we may state The-
orem 10.21 also as

10.31. Proposition. The C-derivation families of R[x1, ... , xd are
exactly the families (01' ... , Ok) of mappings from Rixs, ... , xk] into itself
such that OJ = n(X) c\ where in: is a projection from R to a direct summand

o:.-'y\.'

of R. -,

?
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10.32. Corollary. R is directly indecomposable if and only if the only C-
derivation families of R[xl, ... , xd are the family of the partial deriva-
tions and the family consisting of a k-tuple of zero mappings.

10.4. Remark. The investigations of § 10.2 also show that any family
(°1, ... , Ok) of mappings from R[x1' ... , xk] into itself satisfying (10.11)
and (10.12) also satisfies (10.13) if and only if IRI = l. Generally, we
may ask for what rings R two of these three conditions ensure that the
third condition is satisfied. This problem is by no means trivial and no
complete answer is known as yet.

W. MULLER [1] could prove:
a) If the additive group of R is torsionfree, then (10.11) and (10.13)

imply (10.12). That torsionfreeness cannot be dropped, is shown by
taking the field of order 2 for R as a counterexample.

b) If k ~ 2, then (10.12) and (10.13) imply (10.11). If k = 1 and R IS

an integral domain, then also (10.12) and (10.13) imply (10.11).

11. Polynomial vectors and polynomial function vectors

11.1. Let iE be any variety, Q its system of operations, k ~ 1 an integer,
1llik the variety of k-dimensional iE-composition algebras, A = (A; Q, 'X)
an algebra of 1llik, and Ak = (Ak; Q) the direct product of k copies of the
algebra (A; Q). We define a binary operation 0, written by means of
infix notation, in Ak by

(aI' ... , ak) 0 (bl, ... , bk) = ('Xalbl ... bk, 'Xa2bl ... bk, ... , 'Xakbl ... bk),

and consider the algebra 01(A) = (A\ Q, 0).
Let 12:A -->- B be any homomorphism of algebras of 1llik. Then we

define the mapping 01(12):01(A) -->- 01(B) by 01(12)(aI' ... , ak) =
(Qal, ... , eak)'

11.11. Theorem. For any A E1llik, the algebra 01(A) is an algebra of the
variety 1llil of Y-dimensional iE-composition algebras. 01(A) has a selector
system if and only if A has. For any homomorphism 12: A -->- B the mapping
01(12):01(A) -->- q(B) is a homomorphism. If 8 : A ...•.A is the identity
automorphism of A, then 01(8): 01(A) ...•.01(A) is the identity automorph-
ism of01(A). Moreover, if 12:A ...•.B, and a: B -->- C are homomorphisms,
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then 01(ae) = 01(a) q(e). 01(12) is a monomorphism (epimorphism, iso-
morphism) if and only if 12is a monomorphismiepimorphism, isomorphism).

Proof. As a direct product of k: copies of (A; Q), the algebra (01(A); Q)
belongs to iE. Superassociativity of 'X implies associativity of o . Similarly,
the right-superdistributivity of 0 follows from the right-superdistributivity
of 'X .. A selector system for 0 means an identity, and (s1' ... , s,J actually
is an identity if and only if {Sl' : .. , Sk} is a selector system for 'X. Straight-
forward computation shows that 01(12)is a homomorphism and all the
remaining statements of the theorem are obvious.

11.12. Remark. In the language of category theory, Theorem 11.11 tells
us that q is a covariant functor from the category of k-dimensional
iE-composition algebras to the category of I-dimensional iE-composition
algebras.

11.13. Lemma. Let A be any algebra of 1llik and B a subalgebra of A,
then (f(B) is a subalgebra of 01(A). If A, B are algebras of 1llik, then the
mapping 1fJ : q(A X B) ...•.01(A) X 01(B) defined by

'7 1p,(al, bl)' ... , (ak, biJ)\= (aI' ... , ak)' (bl, ... , bk))

is' an isomorphism.
'/

Proof. The first statement is obvious, the second one follows from
straightforward computation.

11.2. Let iE be any variety, Q its system of operations, k: ~ 1 an integer,
and X = {Xl, ... , Xk}' Since A(X, iE), Fk(A), and Pk(A) are k-dimensional
iE-composition algebras, we can apply the functor 01 to these algebras:

a) The elements of 01(A(X; iE)) are the k-tuples (PI' ... , Pk) of poly-
nomials of A(X, iE), being called polynomial vectors and denoted by
small Gothic letters.

b) The elements of 01(Fk(A)) are the k-tuples (1fJl, ... , 1fJk)of functions
from Ak to A.

11.21. Lemma. The mapping tp:q(Fk(A)) ...•.F1(A
k) defined by

rp(1f!l' , 1f!k)(a1' ... , ak) = (1fJl(a1'... , ak), ... , 1Pk(al, ... , ak)), for all
(a1' , ak) E Ak, is a composition isomorphism.
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Proof. Obvious.

c) The elements of 01(Pk(A)) are the k-tuples (1jJ1'... , 1/Jk) of polynomial
. functions from Ak to A. These elements will be called polynomial

function vectors and denoted by small Gothic letters. By Lemma 11.13,
01(Pk(A)) is a subalgebra of 01(Fk(A)), hence cp01(Pk(A)) is a subalgebra
of F1(Ak).

11.22. Remark. P1(Ak) is a subalgebra of cp01(PkCA)) since fl(Pk(A))
is a subalgebra of F1(Ak) containing all constant functions of F1(Ak

) and
the projection ;1 EF1(Ak); but, in general, P1(Ak) c cp(](Pk(A)). For
example, let A be polynomially complete, k >- 1, and jAj >- 1. Then
Pk(A) = Fk(A), hence cp01(Pk(A)) = F1(Ak). Since Ak is not simple, Ak
cannot be I-polynomially complete, thus P1(Ak) c cp01(Pk(A)).

11.3. Let a: A(X, )E) -+ PkCA) be the canonical epimorphism. a is, as we
know, a composition epimorphism. Hence (](a): (](A(X, )E)) -+ 01(Pk(A))
is an epimorphism and therefore fJ = cp(](a): (](A(X, )E)) -+ F1(Ak)
is a homomorphism such that

fJ(P1' .. ·,Pk)(a1, ... , ak) = (Pl(aI' ... ,ak), .. ·,h(a1,···, ak))'

Ca1,... , ak) E Ak.

By Th. 11.11, 01(a) and fJare monomorphisms if and only if a is. Clearly,
fJ is an epimorphism if and only if A is k-polynomially complete.

Let A, B be algebras of )E and 1]: A -+ B an epimorphism. Then
(](1](X, )E)): 01(A(X, )E)) -+ (](B(X, )E)) and 01(Pk(1])): (](Pk(A)) -+

01(Pk(B)) are epimorphisms. If 1] is an isomorphism, so are 1](X, )E)
and Pk(1]), hence (](1](X, )E)) and 01(Pk(1])) are isomorphisms too.
The diagram fig. 3.1 remains commutative when 01 is applied to all
the algebras and all the mappings there.

Let U = A XB, 't1 the decomposition homomorphism of U(X, ~)
and 't2 the decomposition homomorphism of PkCU), Then

(](r1):01(U(X, )E)) -+ 01(A(X, )E)XB(X, )E)),

01(r2):01(Pk(U)) -+ (l(Pk(A)XPk(B))

.are composition homomorphisms. By Lemma 11.13, there are isomor-
phisms

1J!l:izf(A(X, )E)XB(X, ~)) -+ 01(ACX, )E))X01(B(X, )E)),

1/)2:01(Pk(A) XPk(B)) -+ 01(PkCA)) X (](Pk(B)),
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hence
1J!1(]('t1):(](U(X, ~)) -+ (](A(X, ~))X(](B(X, )E)),

1J!2(]('t2) : (](Pk(U)) -+ 01(Pk(A))X01(PiB))

are homomorphisms.v-j'Zf 't1)and 1jJ2(]('t2)are monoinorphisms (epimor-
phisms, isomorphisms) if and only if 't1 and 't2, resp., are monomor-
phisms (epimorphisms, isomorphisms). Thus Prop. 3.53 and Th. 3.61 imply

11.31. Proposition. The homomorphism 1/)201('t2):01(Pk(AXB)) -+

01(Pk(A))X01(Pk(B)) is always' a monomorphism. If)E is the variety
of commutative rings with identity, then both the homomorphism

1J!101('t1):(](AXB)(X,)E)) -+ 01(A(X, )E)) X (l(B(X, ~))

and 1P201('t2): 01(Pk(A XB)) -+ 01(Pk(A)) X (](Pk(B)) are isomorphisms.

11.32. The diagram in fig. 3.2 yields another commutative diagram
(fig. 3.3) if we apply(] and define (](a(A)) X (](a(B)) in the same way
as a(A) X a(B) in § 3.42.

01[U(X,)E)) 1jJl(](T1) ~ (][A(X,)E)]x01[B(X,~))

(][a(U)) (][a( A)] x01[a( B)]

1jJlzf(T2)
(if[Pk(U)) ~ (if[Pk( A)) X (if[Pk(B)]

FIG. 3.3

11.4. Let H = (H; 0> be a semigroup with identity, c,(H) the subsemi-
group of H consisting ofthe units of H -which is a group- and (Q(H)
the subsemigroup of H consisting of the regular elements of H. Then
c,(H) s; (Q(H) while c,(H) = (Q(H) if and only if (Q(H) is a group.
This is, in particular, the case if H is finite.

Let A be an algebra of ~ andX = {Xl' ... , xk}. If 0 is the operation
introduced in § 11.1""weobserve that (01(Fk(A)); 0 ), (01(Pk(A)); 0 ), and
(01(A(X, )E)); 0) are semigroups. Since Fk(A), Pk(A), and A(X, )E) have
a selector system each, these semigroups have identities, by Th. ll.ll.
In order to simplify our notation, we will write c,( ... ) for c,((]( ... ))
and (Q(... ) for (Q((]( ... )).

-t ~s-u.
-t .'::
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11.41. Lemma. Let cp be the isomorphism of Lemma 11.21. Then
cp(;(Fk(A)) = cprt2(Fk(A)) = Sym (Ak), the symmetric group over the ele-
ments of Ak. In particular, (;(FkCA)) = rt2(FkCA)).

Proof. Every element of Sym CAk} has an inverse in F ICAk). Furthermore,
every element of CPrt2(FkCA))is a regular element of FICAk) and thus a
permutation of A". Hence Sym (Ak) <;; cp(;(Fk(A)) <;; CPrt2(FkCA))<;;
Sym CAk) which proves the lemma.

11.42. We set !1f(PkCA)) n cp-l Sym CAk) = J(PkCA)). This is a subsemi-
group of01(Pk(A)) as follows from .. .

!1t'1./,-,'v'}: v.',, i'

11.43. Lemma. (;(Pk(A)) <;; J(Pk(A)) <;; rt2(Pk(A)). If A is finite, then
equality holds.

Proof. We have (;(Pk(A)) <;; 01(Pk(A)) and (;(Pk(A)) <;; (;(FkCA)) =
cp-1 Sym (Ak). Furthermore, J(PkCA)) = cp-l Sym CAk)n 01(Pk(A)) =
rt2(FkCA)) n 01(PkCA)) <;; rt2(PkCA)). If A is finite, then also 01(PkCA))
is finite, thus (;(Pk(A)) = rt2(Pk(A)).

11.44. Remark. In general, the inclusions in Lemma 11.43 are proper.
We give examples. Let k = 1, and A the field of real numbers regarded as
a commutative ring with identity. Then the element ~iE PI(A) is not in
(;(PI(A)) but certainly in J(PI(A)). For the second proper inclusion we
get an example by taking k = 1 and, for A, the infinite cyclic group.
Then ~i~J(P1(A)), yet ~iE rt2(P1CA)).

11.45. Let 0'; A(X, Q5)---Pk(A) be the canonical epimorphism and M a sub-
set of01(Pk(A)). As usual (](O')-I M denotes the set of all 9 E 01(A (X, Q5))
such that 01(0')9 E M. Lemma 11.43 implies

(;(A(X, Q5)) <;; 01(0')-1 c5(Pk(A)) <;; 01(0')-1 J(Pk(A)) <;; (if(a)-l rt2(Pk(A)).

If A is finite, then both the second and third inclusion becomes an
equality.

By definition, J(Pk(A)) consists of all polynomial function vectors
f E 01(Pk(A)) such that cpf is a permutation of A", These vectors will
therefore be called polynomial permutations while the elements of
(if(a)-l J(Pk(A)) are named permutation polynomial vectors. For the
sake of convenience, we abbreviate (01(Pk(A)); 0,> = Vk(A) and
(J(Pk(A)); 0) = Uk(A). . .

)
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11.5. Let A, B be algebras of Q5and 17 : A -+ B an epimorphism. As stated
in § 11.3, (if(Pk(17)): Vk(A) -+ Vk(B) is an epimorphism which we will
also denote by Vk(17). The question arises whether, for '0 = (;, J, rt2,
there is any relation between the subsemigroups Vk(17) '0( Pk(A)) and
'0(Pk(B)) of Vk(B). A preliminary answer is given by

11.51. Proposition. Vk(17)(;(Pk(A)) <;; (;(Pk(B)). If B is finite, then
Vk(17)Uk(A) <;; Uk(B). If 17 is an isomorphism, then Vk(17)maps '0(Pk(A))
isomorphically onto '0( Pk(B) ),/or '0 = s. J, rt2.

Proof. The first assertion is evident. Also, ifr] is an isomorphism, then
the third assertion is true for '0 = (; and rt2. Let f E J(Pk(A)) = Uk(A),
then cpf E Sym (Ak). Thus, for any (Ul"'" Uk)E A\ there exists
(Zl' ... , Zk) E Ak such that f 0 (Zl' , zk) = (u1' , Uk)' Hence, by defi-
nition of Vk(17), (VkC17)f)0 (17Z1' ,17zk)= (17U1' , 17uk)whence cpVk(17)f:
Bk -+ B" is surjective and is also injective if B is finite or 17 is an isomor-
phism. This proves the second assertion as well as the third assertion
for '7] = J.

11.52. Remark. We shall see later on that, for various classes of algebras,
Vk(17)Uk(A) = Uk(B) always holds, if A is a finite algebra of such a
class.

11.53. Remark. We have already seen that diagram fig. 3.1 remains
commutative after applying (if to it. As a consequence, we get that,
for '7] = (;, J, rt2, the inclusion (if( 17CX,Q5))(if (a(A) )-1'0(Pk(A)) <;;
01(a(B)tI '7](P,iB)) holds if and only if Vk(r])'0(Pk(A)) <;;
'0(PkCB)). Hence if 17 is an isomorphism, then (if(r](X, Q5)) maps
(if(O'(A))-l'7](Pk(A}) isomorphically onto 01(a(B))-l'0(PkCB)). More-
over, (if(r](X, Q5))(if(a(A))-I'7](Pk(A)) = 01(a(B))-l'7](Pk(B)) implies
V

k
(r])'0(Pk(A)) = '0(Pk(B))-however, the converse does not hold in

general.

11.6. Let A, B be algebras of Q5,U = A X B, and r-, the decomposition
homomorphism of PkCU), Then, by Prop. 11.31, ljJ2(if("tZ): Vk(U) -+

ViA) X Vk(B) is a monomorphism. Again we may ask how '0(Pk(U)) ,
'7] = (;, J, rt2, behaves under 'lfJz(]("t2)·
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11.61. Proposition. For ru = 6, J and arbitrary U, the monomorphism
'1jJ[j(r:2)maps ru(Pk(U)) into ru(Pk(A)) Xru(Pk(B)).

Proof. Since '1jJli{r:2)(~I"'" ~k) = '1jJkC2~I'... , T2~k)= (~I' ... , ~k)'
(~I' ... , ~k))' i.e. '1jJ[j(T2) maps the identity of Vk( U) onto the identity
of Vk(A) X Vk(B), the assertion is proved for ru = 6. For ru = J, we
require the following

11.62. Lemma. For any fE Vk(U) and any (aI' bI)' ... , (ak, bk)) E i»,
we have f ° (aI' bI)' ... , (ak, bk)) = (uI, VI)' ... , (Uk>Vk)) if and only if
Vk(nI)f ° (aI' ... , ak) = (uI, ... , Uk)and Vk(n2)f ° (bI, ... , bk) = (VI' ... , Vk)
where nI, n2 are the projections from U to A and B, resp.

Proof. Let f == (CPI' ... , CPk)'then

fO((lI' bI)' ... , (ak, bk)) =
= [(Pk(n1)CPlo(aI, ,ak)'Pk(n2)CPlo(bI' ... ,bk)), .•. ,

(Pk(n1)CPko(aI, , ak), Pk(n2)CPko(b1,·· .,bk))]
which proves the lemma.

By definition, for any algebra C, we have f E J(Pk(C)) if and only if,
for any (WI' ... ,Wk)EC\ the equation fo(c!, ... ,ck) = (WI' ... ,wk)
has exactly one solution (cI' ... , ck). By Lemma 11.62, f E J(Pk(U))
if and only if Vk(nI)f E J(Pk(A)) and Vk(n2)f E J(Pk(B)). Since
'1jJ2(f(T2)f= (Vk(nI)f, Vk(n2)f), the proof of the proposition is completed.

11.63. Corollary. The monomorphism '1jJ2(f(T2) maps Uk(U) onto
(Uk(A) X Uk(B)) n 1P2(f(T2)Vk(U),

Proof. This is an immediate consequence of the preceding proof.

11.64. Proposition. If the monomorphism 1{J2(fCt2)is an isomorphism, then
'1jJ2(f(T2)maps ru(Pk(U)) onto ru(Pk(A))Xru(Pk(B)), for 'U = 6, J, (Q.

Proof. For ru = J, this follows from Cor. 11.63. If 'U = 6 or (Q,
then we use the general fact that for a direct product of semigroups
with identity H = LXM we always have 6(H) = 6(L)X6(M) and
(Q(H) = (Q(L)X (Q(M).

11.65. Remark. Proposition 11.61 and diagram fig. 3.3 show that, for
ru = 6, J, the homomorphism '1jJI(f(TI)maps (f(a(U))-I'U(Pk(U)) into
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(f(a(A))-l'U(Pk(A)) X (f(a(B))-l ru(Pk(B)). Together with Prop. 11.64,
diagram fig. 3.3 also shows that.if '1jJI(f(TI) is an epimorphism, then, for
'U = 6, J, (Q, it maps (f(a(U))"':l 'U(Pk(U)) onto (f(a(A))-l'U(Pj{(A)) X
(f(a(B))-l'U(Pk(B)). Prop. 11.31 and Prop. 11.64 then imply

11.66. Proposition. If ~ is the variety of commutative .rings with
identity, then for 'U = 6, J, (Q, the homomorphism '1jJI(f(TI) maps
(f(a(U))-l'U(Pk(U)) isomorphically onto (f(a(A))-l'U(Pk(A))X
(f(a(B))-l'U(Pk(B)) and '1jJ2(f(T2) maps 'U(Pk(U)) isomorphically onto
'U(P,,(A)) X'U( Pk(B)). .

12. Permutation polynomials and polynomial permutations

12.1. Let C be any algebra of the variety lill" of k-dimensional ~ccompo-
sition algebras and S. a subsernigroup of the semigroup <(f(C); 0).
An element f EC is called a "part of S" if there is an element
(f1' ... J,,) ES such that f = 1;, for some i = 1, ... , k. The set of all
parts of S will be denoted by 1)(S). Thus 1)(S) is a subset of C.

12.11. Lemma. 1) has the following properties:
a) If S S T, then 1)(S) S 1)(T).
b) If e: C ->- D is any homomorphism, then (1)(S) = 1)((f(e)S).
c) If e: B ....•.C is any epimorphism, then e-I1)(S) = 1)((f(e)-l S).

Proof. a) is obvious. Let fE (21)(S), then there exists an element
(f1' ... , tk) ES such that f = eti' for some i= 1, ... , k, hence
fE 1)((f(e)S). This argument also works vice versa. Let fE e-11)(S),
i.e. ef E1)(S), hence there exists an element of the form
(tI' ... , o], ... , tk) ES and thus some (u!, ... , I, ... , uk) E(f(e)-I S
whence fE 1)((f(e)-l S). Again the argument can be reversed.

'>

12.12. Lemma. IfC contains a selector system {Sl' ... , Sk} and if, for every
permutation st: of (SI' ... , Sk)' the k-tuple (nsI, ... ,nsk) is in S, then f is a
part of S if and only if there exist elements J;, ... ,fk E C such that
(1,1;, .. ·,jk)ES.

Proof. Straightforward.
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12.2. We are going to apply the results of the preceding subsections to
the case where C = Fk(A), Pk(A), and A(X, )8), X = {Xl' ... , Xk}'

First of all let C = Fk(A). The subset 0(~(F,JA))) of Fk(A) is called
the set of permutation functions. Since, in this case, the hypothesis of
Lemma 12.12 is satisfied, we conclude that e EFk(A) is a permutation
function if and only if there exist functions e2' ... ,ek E Fk(A) such that,
for f = (e, e2' ... , ek), the mapping cpf is a permutation of Ak. There is
also another characterization of permutation functions, namely

12.21. Proposition. A function e E Fk(A) is a permutation function if and
only if, for any U E A, the set of all solutions in A of the equation
e(xl, ... , Xk) = u has cardinality IA Ik-l.

Proof. Let e E 0(~(FiA))). Then there exist functions e2' ... , ek E Fk(A)
.such that, for any (u, b2, .•. , bk) E A", the system of equations
e(xl, ... , xk) = u, e2(xI, ... , xk) = b2, •.. , flk(XI, ... , xk) = bk has one
and only one solution. Hence we can map the set of solutions of
fI(X!, ... , xk) = u bijectively onto the set of all elements (u, b2, ... ,bk)E Ak
which has cardinality I A Ik-l. Conversely let M(u) be the set of all
solutions of e(xl, ... , xk) = u, for any u E A and suppose that IM(u) I =
IA Ik-l. Then we can choose bijections 1Pu : M(u) -+ Ak-I, for each u E A,
e.g. 'lfJJal, ... , ak) = (e2(al, ... , ak)' ... , ek(al, ... , ak)), where ei E Fk(A),
i = 2, ... , k. Taking f = (e, e2' ... , ek), we find that cpf is a permuta-
tion of Ak whence e is a permutation function.

12.22. The elements of Sk(A) = Pk(A)n0(~(Fk(A))), i.e. the set of
polynomial functions which are also permutation functions, will be called
permutation polynomial functions while, if a: A(X, )8) -+ Pk(A) is the
canonical epimorphism, the elements of a-1Sk(A) are called permutation
polynomials. In other words, a permutation polynomial is a polynomial
which "induces" a permutation function.

The next case we consider is where C = Pk(A). Applying 0 to t(Pk(A)),
J.(Pk(A)), and r72(Pk(A)), we can again use Lemma 12.12 for testing
elements of Pk(A) whether or not they belong to one ofthese semigroups. As
a consequence of Lemma 12.11, we obtain 0(~(Pk(A))) ~ 0(J(Pk(A))) ~
0(r72(Pk(A))). The elements of 0(J.(Pk(A))) = SSk(A) will be called
strict permutation polynomial functions while the elements of a-1SSk(A)
will be called strict permutation polynomials. This means that a poly-

:).fl { A \ <;. 5 ~f.. ( t-;\
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nomial function 'IfJ is a strict permutation polynomial function if and only
if there exist functions 'lfJ2'... , 'IfJ/c E Pk(A) such that, for f = ('IfJ,'lfJ2'... , 'lfJk)'
the mapping cpf is a permutation of Ak while a strict permutation poly-
nomial is a polynomial which "induces" a strict permutation polyno-
mial function.

12.23. Proposition. Any strict permutation polynomial function is also a
permutation polynomial function and any strict permutation polynomial
is also a permutation polynomial. Jf k = 1 or the algebra A is polynomially
complete, then also the converse holds.

Proof. Evident.

12.3. Proposition. Let A, B be algebras of)8 and '17 : A -+ B an epimorphism.
Then PkIVfJ(~(Pk(A))) ~ 0(~(Pk(B)))· If Vk(n) Uk(A) ~ Uk(B), then
Pk(n)SSk(A) ~ SSk(B}, and if Vk(n) Uk(A) = Uk(B), thenPk(n) SSk(A) =
SSk(B). ti » is an isomorphism, then Pk(n) maps SSk(A) bijectively onto
SSk(B).

Proof. This is a straightforward consequence of Prop. 11.51 in connec-
tion with Lemma 12.11.

12.31. Proposition. Let A, B, '17 be as in Prop. 12.3. If A is finite and
every congruence class of Ker '17 has one and the same order, then
Pk(n) Sk(A) ~ Sk(B).If '17 is an isomorphism, then Pk(n) maps, in any case,
Sk(A) bijectively onto Sk(B) ,

Proof. If '17 is an isomorphism, then, by Prop. 3.31, Pk(n) is also
an isomorphism. e E Sk(A) means that e EPk(A) and the equation
e(x!, ... , Xk) = u has a solution set of cardinality I A Ik-\ for all u E A,
by Prop. 12.21. Hence the equation Pk(n) e(xl, ... , Xk) = nu has a
solution set of cardinality I A Ik-l = IB Ik-l whence Pk(n)e E Sk(B), by
Prop. 12.21 and the second assertion is proved.

Assume now that the hypothesis of the first assertion holds. Let
e E Sk(A), then again e E Pk(A) and e(xl, ... , xk) = u has a solution
set in A of cardinality IAlk-I, for all u E A: Let v E Band M the solution
set for this equation where u runs through all elements of A such
that rtu = v. Let N be the set of solutions in B of the equation
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,'. \1:\,;•.
I. ~i

(Pk( 1])e) (Xl' ... , xk) = v, then the mapping 1]k: Ak -.. B\ 1]k(zl' , zk) =
(Wl' ... , 1]Zk) maps M onto N. For any two elements (Z1' , Zk),

(tl'····, tk) E A\ we have (1]z1' ... , 1]zk) = (17t1, ... , 1]tk) if and only if
Zi (Ker 1]) ti, i = 1, ... , k. By hypothesis, every congruence class of Ker 1]
has cardinality IAlii B I, hence every element of N is the image of exactly
(I A IliB I)k elements of Ak under 1]k, and all these elements are in M. But
IMI ~ (IAllIB 1)1A Ik-\ hence. INI (I A 1/113 Il = IA IkIIBI. Therefore
INI = IBlk-land, by Prop. 12.21,Pk(1])eESk(B).

t.£. '""." A

Ii I
12.32. Remark. Proposition 12.31 applies, in particular, to finite multi-
operator groups and hence to finite rings and finite groups.

12.33. Remark. Let A, B, tt be as in Prop. 12.3. Diagram fig. 3.1 shows
that, for T = SSk and T = Sk' we have1](X, Q3)a(A)-lT(A) ~ a(B)-l T(B)
if and only if Pk(1]) T(A) ~ T(B), and that, for 1] being an isomorphism,
1](X, Q3)maps a(A)-l T(A) bijectively onto a(B)-l T(B).

12.4. Proposition. Let A, B be algebras of Q3,U = A XB, and t-. the decom-
position homomorphism of Pk(U). Then "20(t(Pk(U»)) ~ 0(t(Pk(A»)) X
0(t(Pk(B»)) and "2SSk(U) ~ SSk(A)XSSk(B). If "2 is em isomor-
phism, then "2 maps 0(t(Pk(U»)) bijectively onto 0(t(Pk(A»))X
0(t(Pk(B»)) and also SSk(U) bijectively onto SS,JA)XSSk(B).

Proof. Let '7] = t or J.. In Lemma 12.11 b), put e = "2' C = Pk(U),
andD = Pk(A)XPk(B). Then, by Lemma 12.11 a) and Prop. 11.61, we get

"20('7](Pk(U»)) = 0((j("2) '7](Pk(U»))~ 0(1fJ21('7](Pk(A») X'7](Pk(B») )).

In the case that "2 is an isomorphism, by Prop. 11.64, equality holds. But

0(1!)21('7](Pk(A») X'7](Pk(B»))) = 0('7](Pk(A»)) X 0('7](Pk(B»),

by definition of 1fJ2 and the applicability of Lemma 12.12 to '7](Pk(A»)
and '7](P,/B»).

12.41. Proposition. Let A, B be finite and U = A XB. Then "2Sk(U) ~
Sk(A) X S,,(B); and if "2is an isomorphism, then "2 maps Sk(U) bijectively
onto Sk(A)XS,,(B).

Proof. Let ni, i = 1, 2,be the projections of U. Then "2e =
(Pk(nl)e, P,,(n2k), eEPk(U). Both U and ni, i= 1,2, satisfy the

t
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hypothesis of Prop. 12.31, hence "2Sk(U) ~ Sk(A)XSk(B). If "2 is
an isomorphism and (e, 1!)E S,,(A)XSk(B), then there exists an
element X EPk(U) such that "2X = (e,lp). Let (ai' b) E U, then
x(a1,b1), ... , (ak,bk») = (Pk(n1)x(al> ... ,ak), P,,(n2)x(b1, ... ,bk») =

(e(al' ... , ak)' lp(b1, •.. , bk»)· Hence, for any (u, v) E U, the set of solutions
in U of the equation X(x1' ... , xk) = (u, v) has order IAlk-1IBlk-1 =
I UI"-l whence X E Sk(U), by Prop. 12.21, and the proof is completed.

12.42. Remark. Diagram fig. 3.2 implies that.for T = SS"and T = SIc'
we have "1a(U)-1T(U) ~ a(!1,}-lT(A) xa(B)-1 T(B) if and only if
"2T(U) ~ T(A) X T(B). If the latter condition holds and "1 is an epimor-
phism, then the first inclusion becomes an equality. This consideration
together with Th. 3.61, Prop. 12.4, and Prop. 12.41 yields

12.43. Proposition. If Q3is the variety of commutative rings with identity
and U = A XB in Q3,then "2 maps SS,iU) bijectively onto SSk(A) XSSk(B)
while "1maps a(U)-l SS,iU) bijectively onto a(A)-l SSk(A)Xa(B)-l SSk(B).
Ii, moreover, U is finite, an analogous result holds for Sk instead of SSk'

13. Subsemigroups defined by parametric words

13.1. Let X = {xl' ... , xk} and A an algebra of the variety Q3.Then
«(j(A(X, Q3»); 0) = Ck(A) is a semigroup of polynomial vectors. In
order to stick to consistent notation, we will write C k(1]) for (j( 1](X, Q3»)
where 1]: A -.. B is a homomorphism. In Ck(A) we want to single out
various special types of subsemigroups such as the set of all polynomial
vectors x' in C leA) where A is a group and I runs through the integers,
or the set of all polynomial vectors over a commutative ring A with
identity where all the components are of degree 1. This section is devoted
to the investigation of such subsemigroups. In order to be able to state
our problems we give a few rather general definitions. Let,,2o be a mapping
which assigns, to each algebra A of Q3,a subsemigroup .i2o(A) of Ck(A).
Then .i21 = (j(a) 12.0, a: A(X, Q3) -+ Pk(A) being the canonical epimor-
phism, assigns a subsemigroup .i21(A) of Vk(A) to each A E Q3.We define
.i22(A) = .J2o(A) n (j(a)-l Uk(A) which is either empty or a subsemigroup
of (j(a)-l U,/A), then.i23 = (j(a)12.2 assigns a subsemigroup of Uk(A) or
the empty set to each A of Q3. We get immediately .J23(A) = .i21(A) n Uk(A).
We cannot expect many results under these general conditions. Thus we
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make an assumption. We say that .J20 has property HI if
C k('Y)).J2o(A) = .J2oCB), for any two algebras A, B of 1<3 and any epimorph-
ism 'Y): A -+ B. Methods for the construction of such mappings .J20 with
property HI will be elaborated in §§ 13.2 and 13.3.

13.11. Lemma. If .J20 has property HI, then:
a) Vk('Y)) .J2lA) = .J21(B);
b) Vk('Y)) Uk(A) <;; Uk(B) implies Vk('Y)) .J23(A) <;; .J23(B);
c) Ck('Y)).J22(A) <;; .J22(B) if and only if Vk('Y)).J23(A) <;; .J2

3
(B).

Proof. a) follows from the definitions and diagram fig. 3.1, b) follows
from .J2iA) = .J21(A) n Uk(A) and a). c) The "only if" part follows
from diagram fig. 3.l. Conversely let Vk('Y)) .J2g(A)<;; .J23(B), then
(1(a(B))Ck('Y)).J22(A) <;; .J21(B) n o,(B), by diagram fig. 3.1, hence
Ck('Y)).J22(A) <;; .J2o(B) n (1(a(B))-1 Uk(B) = .J2

2
(B).

13.12. Lemma. Let U = AXB an algebra of 1<3 and T1, T2 the decomposi-
tion homomorphisms of U(X, 1<3) and Pk(U), respectively. If .J20 has pro-
perty HI, then'lj)I(1(T1) maps .J2;(U) into .J2lA)X.J2;CB), for i = 0, 2,
and1fJ2(1(T2) maps .J2i(U) into .J2;(A)X.J2i(B), for i = 1,3.

Proof. Let TCj, i = 1, 2, be the projections of U. Then 1fJl(1(T1)f =
(Ck(TC1)f, Ck(TC2)f) whence the lemma follows for i = 0. Similarly, with
the aid of Lemma 13.11 a), we obtain the result for i = 1. By Prop.
11.61, 1fJ2(1(T2) maps Uk(U) into Uk(A) X Uk(B), hence, by Lemma 13.11 b),
the lemma follows for i = 3, and finally for i = 2, by Lemma 13.11 c).

13.13. We define another property for .J20: We say .J20 has property H2
if 1Pl(1( Tl) maps .J2o(U) onto .J2o(A) X .J2o(B). Again we postpone the
construction of such mappings .J20 to §§ 13.2 and 13.3.

13.14. Lemma. If .J20 has property H 2, then 1fJll( Tl) induces an epimorph-
ism, for i = 0,2, and 1fJ2(1(T2) induces an isomorphism, for i = 1,3,
from .J2;(U) to .J2

j
(A) X .J2;(B). -,

Proof. For i = 0, this is the hypothesis while, for i = 1, the lemmafol-
lows from diagram fig. 3.3 since 1P2(1(T2) is injective, by Prop. l1.3l.
By Prop. 1l.61, 1fJ2(1(T2) maps .J23(U) into .J23(A)X.J23(B) and, by Cor.
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11.63, this mapping is OI~tO.For i = 2, the result is then again a con-
sequence of diagram fig. 3.3.

Ii

13.2. We are now going to construct mappings .J20 with property HI,
or properties HI and H 2. Some definitions will go ahead.

Let Q be the family of operations of the variety 1<3 and r a non-negative
integer. A parametric word vector ~ of order r is a mapping from the
Cartesian product of r copies of the set of non-negative integers to the
set of k-tuples of words over Q. in the indeterminates oW;, 1Wi' ... , kWj,

i = 1,2, ... and Xl' ... , xk, for r >- 0, and a fixed k-tuple of this kind,
for r = 0. A specialization vector of ~ in the algebra A E 1<3 is a k-tuple
of words in A U {xl' ... , xk} we obtain from substituting an arbitrary
word in A U {Xl' ... , Xv} for each vWi occurring in thek-tuple of words
assigned by ~ to each r-tuple of non-negative integers. In particular,
We 'have to substitute an element of A for each OWi' and into a fixed
k-tuple, if r = 0. The specialization ~(A) of ~ in the algebra A is the
set of all polynomial vectors of (1( A(x1, ... , Xk' 1<3)) which are represented
by the specialization vectors of S.j3 in A. Thus ~(A) is a subset of Ck(A),
for any A in 1<3. The parametric word vector ~ is caHed semigroup gene-
rating if S.j3(A) is a subsemigroup of Ck(A), for every A in 1<3.

Three examples will illustrate the concept of semi group generating
parametric word vectors. The first and second vector are of order ° while
the third one is of order k2. It is easy to see that these parametric word
vectors are, indeed, semigroup generating.

a) 1<3 an arbitrary variety, ~ = (1WI' 2Wl' ... , kWl)'

b) 1<3 the variety of commutative rings with identity,

~ = (OW1X1 +OW2' IWIX2+1W2' ... , k_IWIXk+ k-lW2)'

c) 1<3 the variety of commutative rings with identity, and ~ mapping
the k2-tuple of non-negative integers f = (n11>... , n1k, n21, ..• , nkk)
to the k-tuple of words

m(~) = ( W XllIX"12 X"Ik W X"" x"2k W x"klxnk2 __lIkk)1-' t 0 1 1 2 ... k' 0 2 1 ... k,···' 0 k 1 2 ... ""k .

13.3. Theorem. If ~ is a semigroup generating parametric word vector of
arbitrary order, then the mapping .J20 defined by .J20 (A) = ~(A) has
property HI.

Proof. Let » :A -+ B be any epimorphism and f E ~(A), then f is represent-
ed by some specialization vector of ~ in A. We obtain C k('Y))f by replacing
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each a E A in this specialization vector by na E B. Thus Ck(Y/)f is repre-
sented by a specialization vector of ~ in B, i.e. an element of ~(B) whence
Ck(Y/)"£'o(A) ~ ..£.o(B). Conversely, if 9 E ~(B), then 9 is represented by
some specialization vector of ~ in B. If we replace each bE B in this
vector by any inverse image a E A of b under y/, we get a specialization
vector of ~ in A. This vector represents some f E ~(A) and Ck(Y/)f = 9
whence ..£.o(B) ~ Ck(Y/) ..£.o(A). This completes the proof.

13.31. Theorem. Suppose .~ is a semigroup generating parametric word
vector of order O. Let U == A X B be a direct product of algebras of Q3 .
and assume that the decomposition homomorphism 'tl of U(Xl' ... , xv, Q3)
is an epimorphism, for v = 1, ... , k. Then ..£.0 = ~ has property H 2.

Proof, By Th, 13.3 and Lemma 13.12, 1p{iHcl) maps ~(U) into ~(A)X
~(B). Conversely, if (f, 9) E ~(A) X ~(B), then f and 9 are represented by
specialization vectors of ~ in A and B, resp. If "Wi occurs in ~, let
u(aj, Xl' ... , X.), v(bj, Xl' ... , xJ be the words which are substituted for
"Wi in these specialization vectors. We choose fE U(xl' ... , x,,, Q3) such
that 'tdE A(xl, ... , X,,, Q3)XB(Xl' ... , x., Q3) isjust represented by the
pair of these words and take a word "wi(Uj,X1, ... , x,,) in U U {Xl' ... ,x,,}
representing f. If we subject every "Wi in ~ to this procedure, we get a
specialization vector of ~ in U which represents some f) E ~(U) such
that 1Plrf=('tl)f) = (f, 9). This proves the theorem.

13.32. From Th. 3.61 we conclude that ..£.0 = ~ has property H2 in the
example a), b) of § 13.2 for Q3 being the variety of commutative rings with
identity. Hence,in these cases, ..£.;(AXB) = ..£.;(A)X..£.i(B), i = 0, 1,2,3.

13.4. Let Q3 be any variety. We want to construct new parametric word
vectors from given ones. Let ~1' ~2 be parametric word vectors of the
orders rand s, resp. We define a new parametric word vector of order
r + s by means of the following procedure:

Let (ml' ... , m., n1, .•. , ns) be an r+s-tuple of non-negative integers
and suppose that the images under ~l contain the indeterminates OWi'
1Wi' ... , kWi and Xl' ... , Xk while the images under ~2 contain the in-
determinates OVj' IVj, ..• , ,Vj and J\, Y2' ... , y,. Suppose that
~l(mi, ... , Inr) = a and ~2(nl' ... , ns) = b. In b we replace each Yi
by the new indeterminate Xk+i' each OVj by the new indeterminate "w_j>

)\
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and each "Vj' v >- 0, by the new indeterminate "+,,wj (the negative index
in "W _j serves just to distinguish the new indeterminate from "Wj which
occurs in a). Thus we have obtained a new I-tuple 0 from the old I-tuple
b. We define a mapping :\) = ~2 wr ~l by (~2 wr ~l) (ml' ... , m.,
nl, , ns) = (a, D), a k-i- I-tuple of words in the indeterminates ow;,
lW;, , "W;, "+1 Wi' ... , "+,wi, "W _;' Xl' ... , x,,+,. Thus :\) is a parametric
word vector. For r = ° or s = 0, it is clear how we have to modify our
construction. :\) = ~2 wr ~l is called the wreath product of ~2 by ~l'

As a consequence of the definition we get that the wreath product is
associative, i.e. ~3 wr (~2 wr ~l) = (~3 wr ~2) wr ~l' Thus we may omit
brackets.

13.41. Lemma. Let [1 = ~2 wr ~l' Then the specialization :\)(A) of:\) in A
is the set M of all polynomial vectors f = (fl' f2) of C,,+tCA) such that
fl E ~l(A) and f2 E ~2(A(Xl' .. " Xk, Q3)) where ~2 is the parametric word
vector we get from replacing each Yi by Xk+i in the l-tuples of~2'

Proof, Every word in A U {Xl' ... , x,,+,,} is a word in W(A U {Xl' ... ,
X,,}) U {xk+1' ... , x,,+,,} and vice versa. Thus the polynomial vectors
of :\)(A) are exactly the polynomial vectors of M.

13.42. Theorem. 1r the parametric word vectors ~1' ~2 are both semigroup
generating, then the parametric word vector :\) = ~2 WI' ~1 is also semi-
group generating.

Proof. We have to show that :\)(A) is a semigroup of C,,+tCA), for all A in
Q3. Let f == (h, fz), 9 = (91, 92) E :\)(A) and suppose f 0 9 = (r)1, 1)2).
By Lemma 13.41, h, 91 E ~l(A), hence fl contains just Xl' ... , X" and
we have therefore 1)1 = It 0 91 E ~l(A) by hypothesis. Again by Lemma
13.41, f2' g2E~2(A(Xl' ... , xi, Q3)). In order to obtain an expression
for 92, we have to replace each Xi in f2 by the i-th component of g. Since
gl E ~l(A), the elements of A(x1, ... , Xk, Q3) occurring in the components
of f2 are taken into elements of A(xl' ... , x,,, m), and we obtain some
element f2E~2(A(Xl" .. ,X", m)) after replacing Xi' for i = 1, ... ,k.
Continuing by replacing the X"+i' for i = 1, ... , I, we have to substitute
now the z-th component of g2 and finally end up with some vector 92
which belongs to ~2(A(Xl' ... , x", m)) since ~2 is semi group generating.
By Lemma 13.41, fog E :\)CA).
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13.43. It is easy to see that, for any variety ){5 and k = 1, if ~ is the para-
metric word vector lWl of order 0, then the wreath product
~ wr ~ wr ... wr ~ of k copies of ~ is the parametric word vector of
§ 13.2, example a). If ){5 is the variety of commutative rings with identity,
k = 1, and ~ is the parametric word vector OWlXl +OW2 of order 0, then
the wreath product of k copies of ~ is the parametric word vector of
§ 13.2, example b) as one can easily see.
13.5. Let ~1 and ~2 be semigroup generating parametric word vectors of
the orders rand s, resp., and 0 = ~2 wr ~l' Then .J2.0= 0,.J2.~ = ~P

.J2.g=~2 are mappings as dealt with in § 13.1. Let A be any algebra of ){5,
then .J2.l(A), .J2.3(A.) (unless empty) are subsemigroups of Vk+I(A),
.J2.i(A) and .J2~(A) (unless empty) are subsemigroups of Vk(A), and
.J2.i(A) and .J2~(A) (unless empty) are subsemigroups of VI(A). Let
o : A(xl, , Xk+I' ){5) -~ Pk+tCA), al : A(xl, ... , xk, ){5) -+ Pk(A), and
a2 : A(xl, , Xl' ){5) -+ PI(A) be the canonical epimorphisms, and
rp, rpl, rp2 the isomorphisms of Lemma 11.21 for k+ I, k, and I, resp.,
instead of k. Let C: Ak+l -+ Ak X Al be the bijection defined by
C(al, ... , ak' ak+!, ... , al) = (ap ... , ak)' (ak+p ... , al))' Then the
mapping -e : F l(Ak+/) -+ F leAk X AI) (-e : Sym (Ak+I) -+ Sym (Ak X AI)) de-
fined by -ef = UC-l is a semigroup (group) isomorphism.

Suppose now that f E .J2.o(A) = O(A). By Lemma 13.41, f = (h, fz)
where fl E \~l(A) and f2 E m2(A(xl, ... , xi, ~)). Therefore, for any
(a, 0) E AkXAI, we have

C(q;(7(a)f)C-1 (a, 0) = (fl 0 a, Ma) 0 0)
= ((rpl7(al)h)a, (rpllCa2)fz(a))0).

Hence
-lq, (1'(, (: 'j /:iqfl(a)f)C-l(a, 0) = (%a, A(a)o) (13.5)

where % E rpl.J2i(A), A(a) E rp2.J2.i(A). Thus -erp maps .J2.l(A) monomorphic-
ally into the wreath product rp21!i(A) wr rpl.J2i(A), this time the wreath
product is to be understood as the usual wreath product for semigroups.
13.51. Proposition. The mapping -erp maps .J2l(A) monomorphically into
the semigroup wreath product rp2.J2.i(A)wr rpl.J2.i(A). If A is finite, then also
.J2.3(A) is mapped monomorphieally into rp2.J2.;(A)wr rpl.J2.~(A) under tsp,
and .J2.iA) is mapped onto this wreath product if txp maps .J2.1(A) onto
rp2.J2.i(A) wr rpl.1!i(A).

Proof. The first assertion has already been proved. Let g E .J2.3(A), then
g E Uk+/(A),thus rpg E Syrn (Ak+/). Therefore CrpgC-l E Sym (Ak X AI). By
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(13.5), C(rpg) C-l(a, 0) ~ (%a, A(a)o) where % E FI(Ak
) and ACa)E Fl(AI

).

Hence % is \ surjective and A(a) is~injective, for all a E Ak. Since A is
finite, % and A(a) are permutations which proves the second assertion.
The third assertion can be proved by using (13.5) and the fact that if
A(a) and % are permutations, so is the mapping oil the left-hand side.

7

13.6. We ask for conditions under which -ap maps .1!l(A) isomorphically
onto rp2.1!i(A) wr rpl.J2.i(A). We; first prove

13.61. Lemma. The equation trp.J2.l(A) = rp2.J2.i(A) wr rpl.J2.i(A) holds if
and only if, for any mappingB : Ak -~ .J2.i(A), there exists a polynomial
vector fzCxl, , xk' Xk+l' ... , Xk+/) E 1,j52(A(xl, , xk, ~)) such that

D(al, , ak) = (j(a2) f2(al, ... , ak' Xk+l' , Xk+I)'

for all (aI' ... , ak) E A",

Proof . .J2.1(A) consists of all elements (j(a)f such that f E J2o(A). By
Lemma 13.41, .J2.o(A) is the set of all polynomial vectors f = (h, fz)
where fl E ~l(A) and f2 E 1,j52(A(xl, ... , Xk' ~)). In § 13.5 we have seen
that (-erp(j(a)f) (a, 0) = ((rp[f(al)h)a, (rp2(j(a2)fz(a))0). Since trp maps
monomorphically from .J2.1(A) to rp2.J2.i(A) wr rpl.J2.i(A), it maps .J2.l(A) ,.
isomorphically onto this wreath product if and only if, for any % E .J2.i(A) . S Q~~J

;1 Y. and -.!ny &apping D: Ak -+ J2~(A), there exists some fl E ~1(A) and ()r v

Jo_{ C-J~' f2 E ~2(A(XI' ... , xk, ~)) such that (j(a1)fl = % and uyr
&.Ty. ('co,,,,t,,);J: (j(a2) f2(a1, ... , ak, xk+l' ... , Xk+l) = D(al, ••• , ak)'

-f . .: 2 (' ,~"for all (aI' ... , ak) E Ak. -.! (e, \ E ~', -: . ~\ .

13.62. Theorem. Let :0 = ~2 wr ~1' rrp maps .J2.1(A) isomorphically onto
rp2.J2.i(A) wr rpl1!i(A) if ~2 is of order ° and A is polynomially complete.

Proof. We have to show that the hypothesis of Lemma 13.61. is satis-
fied. Let 1,l32 = (gp ... , gl) where gj = g/OVi' lVi' ... , IVi' Yl' ... , YI)'
j = 1,2, , I, and 1}: Ak -+ .J2.iCA)be any mapping. Then, for any
a = (aI' , ak) E A", we have Da = (hI' ... , hi) where hj = gj(ovi(a),
Ivi(a, ';1)' 2Vi(a, ';1' ';2)' ... , IVi(a, ';1' ... , ';/), ';1' ... , ';/), j = 1,2, ... , I.
Since A is polynomially complete, for any rVs occurring in gj there
exists a polynomial rwsCx1' ... , Xk, Xk+1' ... , Xk+r) E A(:i~, ... , xk+r' ~)
such that, for any a E Ak we have

rws(al' ... , ak' ';1' ... , ';r) = rvsCa, ;1' ... , ';r)'
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Substituting these polynomials into "\l32 of Lemma 13.41, we get a
polynomial vector Mx1, ... , Xk+l) E "\l32(A(x1, , Xk, )8)). The j-th
component of (f(a2) Mal> ... ', ak' Xk+1' , x) is hj' thus
(f(a2) f2(al> ... , ak' xk+1' ... , Xl) = ?9(a1, ... , ak) and the hypothesis of
Lemma 13.61 is satisfied.

13.63. Let us now apply Theorem 13.62 to our examples a) and b) of
§ 13.2 which, as stated in § 13.43 are wreath products of parametric
word vectors of order O. Th. 13.62 and Prop. 13.51 show that, if A is
polynomially complete, then, in the case of example a), the semigroup
o£\(A) is isomorphic to the wreath product of k copies of the symmetric

/)

~ semi group of A and J23(A) is isomorphic to the wreath product of k
copies of the symmetric group of A. We also See that, if A is a finite field,
then, in the case of example b), ,j\(A) is isomorphic to the wreath prod-
uct of k copies of the one-dimensional linear inhomogeneous semigroup
of A and J23(A) is isomorphic to the wreath product of k copies' of the
one-dimensional linear inhomogeneous group of A.

Remarks and comments

§ 1. MENGER[3] was the first person who fully realized the significance of
the concept of superassociativity, and it was he who introduced selector
systems. There are also papers by DICKER [1] and SKALA[1] on k-dimen-
sional superassociative systems. MENGER[1] also introduced I-dimension-
al composition rings and thus axiomatized the composition offunctions
from a ring into itself. MENGERand his school have written several papers
on I-dimensional composition rings which then bore the name of tri-
operational algebras; we refer to a survey on this work by MENGER[2],
but also to ADLER [1]. Near-rings were introduced by ZASSENHAUSabout
1935 (for a special case) and have been the subject of quite a lot of papers
ever since whereas composition lattices have hardly been investigated
(see MITSCH [1]). HION [1], [2], [3] considered 58-composition algebras in
general and related algebras for the first time.

Composition of functions on sets has been treated in many papers,
mostly for the needs of formal logic, but sometimes also from a purely
algebraic viewpoint (MENGERand WHITLOCK[1], WHITLOCK[1], SCHWEI-
ZERand SKLAR [1]). The composition algebra F1(R) where R is a com-
mutative ring with identity has been treated by NOBAUER[16]. BERMAN
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and SILVERMAN[2] proved Th. 1.51 for the case that Q contains just 2-ary
operations, NOBAUER[20] gave a proof in the general case.

§ 2. HULE [1], [2], was the first one to study the composition of poly-
nomials and polynomial functions over arbitrary algebras. For commu-
tative rings with identity and fields, in particular, the theory of composi-
tion of polynomials has been a tool for numerous branchesof mathe-
matics ever since the beginnings of algebra, but there was not a system-
atic approach until this century' (a survey of papers on this subject will
be given in our remarks and c?mments on §§ 6, 7 and on Ch. 4).

§ 3. Our definition of a constant was inspired by MENGERwho defined
constants for composition rings. Our condition of Prop. 3.51 is closely
related to a concept of independence for algebras having the same type,
which was introduced by FOSTER[3].

§ 4. The theory of full congruences in arbitrary polynomial algebras has
been developed by HULE [1], [2]. For the results on full congruences of
Fk(A) which are quoted in § 4.2, we refer to BERMANand SILVERMAN[1],
NOBAUERand PHILIPP [1], [2], and PHILIPP [1].

§ 6. MANNOS[1] has studied ideals of composition rings in general while
a systematic theory on full ideals of polynomial rings over commutative
rings with identity was subsequently developed by NOBAUER[1O]-{I4].
A computation and discussion ofthe Jacobson radical (i.e. the intersection
of all maximal full ideals) of an arbitrary polynomial ring R[Xl' ... , xk]
with composition over a commutative ring R with identity is due to
MLITZ [1]. It has been an outstanding problem for a long time to find
all full ideals of the polynomial ring Z[Xl' ... , xd, Z being the ring of
rational integers. This problem has not even been solved for k. = 1.

§ 7. A part of Th. 7.21 is due to MILGRAM[1], in its present form it was
proved by NOBAUER[23], Th. 7.31 has its origin in BURKE[1]. The prob-
lem of determining all full ideals of Q[Xl' ... , x/c]· for a finite field Q
and k :> 1 has not yet been solved. A first attack on this problem for
k = 2 was launched by STUEBEN[1]. Recently CLAYand DOl [1] have
computed the Jacobson radical and all maximal ideals of the near-ring
(K[x]; +,u)whereustandsforthecompositionandKisafield, IKI"o 2.
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§ 8. DICKSON [5] called the polynomials of {D} "residue polynomials
mod D". Papers on residue polynomials over the rational integers are
KEMPNER[1], [2], LITZINGER[1], NOBAUER[2], [4], NIVEN and WARREN
[1]. LEWIS [1] started with the investigation of residue polynomials for
the case of arbitrary Dedekind domains. The approach of our book,
however, has been used by Lxuscn [1] for k =1 and generalized by
AIGNER [1] to k :> 1.

There is a connection between the residue polynomials of the ring
Z of rational integers and the so-called integral-valued polynomials
whose definition is: Let K be the field of rational numbers, then a
polynomial fEK[xl' ... , xk] is called an integral-valued polynomial if
f(al' ... , ak) E Z, for all (aI' ... , ak) E ir. If (n) is an ideal of Z, then
evidently fE Z[xl' ... , xk] is a residue polynomial mod (n) if and only if
the polynomial (1In)f is integral-valued. For details of integral-valued

. polynomials we refer to CARLITZ[2], STRAUS[1], but there are also many
other papers on this subject.

§ 10. The presentation of this section follows NOBAUER[19].

§ 11. It is still an open problem to characterize all those l-dimensional
lE-composition algebras which are isomorphic to some algebra (jf(A),
for a suitable k-dimensional composition algebra A. We refer to SAIN [1]
for the case where lE is the variety of sets: The considerations of this
section were so far treated only for special varieties, mainly for commu-
tative rings with identity (for a survey on relevant papers we refer to the
remarks and comments on eh. 4, § 4).

§ 12. Polynomial permutations, permutation polynomial vectors and
permutation polynomials of A were investigated up to 1950 only for
the case where lE is the variety of commutative rings with identity, A is a
finite field and k = 1, but for this case an extensive literature had piled up
(see remarks and comments on Ch. 4, §§ 8,9). Later on, other commutative
rings with identity were studied in this respect, then also k = 1 was
dropped (see remarks and comments on Ch. 4, § 4). Furthermore in recent
years also the variety of groups was object of investigations in this direc-
tion (see remarks and comments on Ch. 5) and more recently MITSCH[2]
and SCHWEIGERT[1] treated permutation polynomials in the variety of
lattices.

Our Prop. 12.21 is due to P. GRUBER.
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§ 13. Several examples of subsemigroups of the semigroup Ck(A) which
are defined by parametric words are known for the case where lE is the
variety of commutative rings with identity. The best known such example
is the subsemigroup of polynomial vectors with linear forms as their
components. This subsemigroup and the group of its permutation poly-
nomial vectors have been studied in numerous papers. For other examples
we refer to KALOUJNINE[1], NOBAUER[3], [6], [8], [111, [17], [18].



CHAPTER4

COMPOSITION OF POLYNOMIALS AND POLYNOMIAL
FUNCTIONS OVER RINGS AND FIELDS

1. Prime factor decomposition with respect to composition

1.1. Let Q3.be any variety with Q as its family of operations, A an algebra
of Q3,X = {Xl' ... , Xk} a set of indeterminates, and (j(A(X, Q3))=
(A(X, Q3)\ Q, 0) the algebra introduced in ch. 3, § 11. By ch. 3,
Th. 11.11, this is a I-dimensional Q3-composition algebra, thus the algebra
S = (A(X, Q3)k;0) is a semigroup with identity. There is little known
about the structure of S. Only for the case where Q3is the variety of com-
mutative rings with identity and A is afield (or sometimes, more generally,
an integral domain) and k = 1, there exist some satisfactory results.
The most interesting and important results will be derived in this and
the subsequent sections.

1.2. Let Q3be the variety of commutative rings with identity, D any inte-
gral domain of Q3,and X an indeterminate. We consider the semigroup
(D[x]; 0) = S which has X as identity. The degree [f] of any polynomial
f ~0 of D[x] has been defined in ch. 1, § 8.3. It will be useful for our
further considerations to set [0] = 0; then every polynomial will have
some well-defined degree.

1.21. Proposition. For any two polynomials 1,gES, we have 1fog] =

[fJ[g]·

Proof. By ch. 1, Th. 8.11, f, g have normal forms that can be written as
f = a"x"+a"_lxn-l+ ... +alx+aO' g = bmxm+ ... +b1x+bo: Then
fog = f(g) = al1gn+an_lgn-I-t- ... +alg+ (10· If [g] = 0, we have
[fog] = 0 = [f][g], and if g ~ 0, by ch. 1, Prop. 8.31, we have [gi] =j[g]
for j ~ o whence [fog] = n[g] = [f] [g].

1.22. Remark. The proof of Prop. 1.21 also shows that, for an arbitrary
ring D of Q3,we have [fog] "'" [f] [g].
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1.23. Corollary. The mapping f -+ [f] from S into the multiplicative
semigroup of integers is a homomorphism 1).

Proof. This is a restatement of Prop. 1.21.

1.24. Corollary. Iff ES has a right or a left inverse, then [f] = 1.

Proof. By Cor. 1.23, since 1 is the only non-negative integer which has a
multiplicative inverse.

1.25. Proposition. Every fE S with [n ~ 0 is a right-regular element of s.

Proof. Suppose that gof= h o], then the right-superdistributivity ofo
implies (g-h)of= O. We apply 1) of Cor. 1.23 to this equation, then
s=b= aED. Hence 0 = (g-h)of= aof= a and therefore g = h.

1.26. A polynomialfE S is called indecomposable if [fJ >- 1 and there
is no representation of f of the form f = /I 0f2 where [/I] -< [fJ and
[h] -< [fl· E.g., every polynomial of prime degree is indecomposable.

1.27. Proposition. Every f ES such that [n >- 1 has a representation of the
form f = h 0f2 0 ... =I, where every 1; is indecomposable.

Proof. By Prop. 1.21.

1.28. There arises now the question of in how many different ways f can
be decomposed this way. Only for the case where D is a field of cha-
racteristic zero (for partial results for prime characteristic see FRIED and
MACRAE[1]), a complete answer is known which we will elaborate in
the remainder of this section and the subsequent one, leaning heavily on
the definitions and results of ch. 6, § 5.

1.3. Let K be any field of characteristic zero and S the semigroup
(K[x]; 0). Since K is an integral domain, all the results of § 1.2 can be
applied to K. An extension of Cor. 1.24 can be obtained for fields:

1.31. Proposition. f ES has a right (left) inverse if and only if r f J = 1.
In this case f has a unique inverse.
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Proof. "Only if" follows from Cor. 1.24. If f= ax+b, then g = (l(a)
.(x-b) is an inverse off which is unique since 0 is associative.

1.32. A polynomial f EK[x] is called normed if its normal form according
to ch. 1, Th. 8.11, is f = xn+a

ll
_1x"-I+ ... +a1x. Thus every norrned

polynomial is monic. Iff, g are normed, then also fg andf 0 g are normed.

1.33. Lemma. Let U be any intermediate field of K(x) such that U contains
a polynomial of positive degree. Then there exists one and only one normed
polynomial h E K[x] such that U = K(h).

Proof. By ch. 6, Lemma 5.8, U = K(r) where I' EK[x] and [r] :> 0.,
But clearly r = ah +b where a 7'" ° and b are suitable chosen elements
of K and h is a normed polynomial, hence K(r) = K(h). If k is any
normed polynomial of K[x] such that U = K(Ie), then, by ch. 6,
Lemma 5.81, k = loh and h = mole whence [I] = 1. Thus k = ch-i-d,
c, dE K, c 7'" 0. Since h, k are normed, we conclude c = 1, d = 0, hence
k = h.

1.34. Theorem. a) Every polynomial fE S with [f] :> 1 has a "prime
factor decomposition" of the form

f = loj;.o ... oj, (1.31)

where I is a linear polynomial and every 1; is a normed indecomposable
polynomial.

b) If
f= mog10 ... ogs (1.32)

is any other prime factor decomposition of f, then I = m, r = s, and
the degrees [gJ can be paired off with the degrees fjj].

c) The decomposition (1.31) can be transformed into the decomposition
(1.32) by a finite number of steps of the following kind: From a decompo-
sition f = no hI 0 ... 0 h.; select a "partial product" hi 0 hi+1 and replace
it by a partial product k, 0 ki+1 of normed indecomposable polynomials
lei' ki+1 such that hi 0 hi+1 = k, 0 kH1·

d) There is only a finite number of different prime factor decompositions
off
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Proof. Let f = lof1 0 ... oJ, be any prime factor decomposition, and
J,+1 = x. In the chain K(f) = K(h 0f2 0 ... 0J,+l) ~ K(f20 ... 0J,+1)
~ ... ~ K(J,oj~+1) ~ K(fr+1) of subfields of K(x), every inclusion is
proper, by ch. 6, Th. 5.71 ,since [f;] :> 1, for i"'S r. Let U be a field such
that K(fv 0Iv+10 ... 0/"+1) ~ U ~ K(Iv+1 0 ... 0J,+1)' for 1 "'S 'V "'S r.
By ch, 6, Lemma 5.8, U = K(t), t EK[x], and by ch. 6, Lemma 5.81, there
are p, qEK[x] such thatf"o/'+1o ... olr+1=pot, t=q0Iv+10 ...
oj;+l' hencej;.of.'+1 0 ... 0/'+1= poqo/"+1 0 ... oJ,+1' By Prop. 1.25,

/'. = po q, thus fp] = 1 or [q] = C 1 whence the chain above is a maximal
chain. Thus every decomposition (1.31) of/yields some maximal chain
K(f) = So C Sl C ... C S, ;: K(x) from K(f) to K(x) which we will
call the chain belonging to this decomposition. The length of this chain
equals the number of factors in the decomposition while, by ch. 6,
Th. 5.71, [S;: Si-l] = [f;J, i = 1, ... , r.

Clearly, if (1.32) yields the same maximal chain from K(f) to K(x),
then s = rand K(f;olv+1o ... oj,) = K(gvogV+1 0 ... ogr), 1 "'S 'V"'S r.
Since /;, gi' i = I, ... , r, are norrned, Lemma 1.33 implies that
fv olV+10 ... of; = g" °g"+l 0 ... 0 gr' 1 "'S 1J "'S r, whence, by Prop.
1.25, I, = gi' i = r, r -1, ... , 1and I = m. Hence every maximal chain
from K(f) to K(x) belongs to at most one prime factor decomposition. off

Next we will show that every such chain belongs to at least one prime
factor decomposition of f so that we may consider maximal chains in the
place of prime factor decompositions. Thus let K(f) = So C Sl C ...
C S, = K(x) be any maximal chain from K(f) to K(x). By Lemma 1.33,
there are normed polynomials u;, i = 0, 1, ... , r, such that S, = K(u),
in particular, u, = x. By ch. 6, Lemma 5.81, we have 1= louo' [I] = 1,
and ui =1;+loUi+1' [/;+1]:> 1, i = 0,1, ... , r-1. Since ui' ui+1 are
normed, 1;+1 is normed, too. Suppose that 1;+1 is not indecomposable,
say 1;+1 =poqwhere [p] -< [1;+1], [q] -< [J;+I], then ui =po(qoui+1)'
and since [p]:> 1, [q]:> 1, we would have Si c K(qoUi+1) C Si+l'
contradiction. Hence u, = 1;+101;+20 ... 0/" i = r-1, 1'-2, ... ,0,
therefore I = 10/10/20 =I, which is a prime factor decomposition
off, having So c Sl C C S, as its maximal chain.

We need some further property of the correspondence between
maximal chains and prime factor decompositions. Let So c Sl C .
C Tm C C S, be a maximal chain which differs from So c SIC .
C Sm C C S, only by the m-th member. Thenfhas a certain prime
factor decomposition (1.32) corresponding to this maximal chain. Let
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Tm = K(vm) where VrI, is normed, then, as before, we get

:f = 10 uO' Ui =tu, OUi+1' i = 0,1, ... , m-2,

Um_1 = gm 0 Vm, v/ll = gl1l+1°um+1'
ui=I;+10Ui+1, i = m+l, ... ,r-1.

By Prop. 1.25, gmogm+1 =fm0/"n+1' Hence (1.32) becomes in this case

f= /011° ... ofm_logmogm+1ofm+20 ... =t;

wb.eregl/logm+l =fmofm+1'
The proof of the' theorem now consists of translating the relevant

results of ch.6,§ 5, into the language of prime factor decompositions.
Hence a) holds since there exist maximal chains from K(f) to K(x). Since
all 1;, gi' are normed, b) is a consequence of ch, 6, Th. 5.86; c) also fol-
lows from part c) of this theorem while d) results from ch. 6, Remark 5.87.

2. Standard solutions of p 0 q = r 0 s
2.1. Theorem 1.34 shows that, in a finite number of steps, all the different
prime factor decompositions of a polynomial I can be obtained from a
given decomposition as soon as we know all the solutions of the equation

poq = r o s (2.1)

where p, q, r, s are normedindecomposablepolynomials. This type of solu-
tion will be called a standard solution of (2.1). Indeed, let D be the given de-
composition off Then we can determine the set Dl of all decompositions
of f, which are. obtained from D by at most one replacement of two subse-
quent factors. In the same way, we can derive a set Dj, etc. Finally, by Th.
1.34 c), d), we end up with aset Dk of decompositions such that Dk+l = Dk.
Hence Dk consists of all the different prime factor decompositions of f

There seems to exist, so far, no explicit investigation of the problem to
decide, whether or not a polynomial f is indecomposable, and of the
problem, to determine a prime factor decomposition of a given polyno-
mial. As A. SCHINZELhas pointed out, the first problem can be solved
by considering all possibilities for a decomposition off into two factors
and deciding in every case whether the resulting system of equations for
the unknown coefficients of these factors is solvable (which, of course, is
rather tedious). Clearly then the second problem can also be solved.

2.2. We are. now going to reduce the problem of finding the standard
solutions of (2.1) in K[x] where K is any field of characteristic zero.
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2.21. Lemma. Let IE K[x] be indecomposable over K[x] and L any exten-
sion field of K. Th~nfis also indecomposable over L[x].

Proof. Suppose that f = po q, p, q E L[x], then, for any 0 ¥o c E K and
for any linear polynomial I E L[x], we have (l jc)f = ((ljc)p 0 1-1) 0 (lo q)
where 1-1 is the inverse of I under o . For suitably chosen I and c, q* = l o q
is norrned and f* = (l/c)I is monic whence p" = (ljC)po/-1 is also
monic. Let p* = xnJ+C1X

I1l-1+ ... , q* = xn+a1xn-1+ ... +an_1x,
I' = xnm+blx"m-1+ ... , then'j" = p*oq* yields

b, = maj+wj_1(a1,-;· .. , aj_1), j = 1,2, ... , n-l,

where Wo = ° and Wi(XI, ... , x;), i = 1,2, ... , n - 2, is some poly-
nomial over the ring of rational integers. Thus bj E K implies ajE K,
i= 1,2, ... ,n-l, whence q*EK[x]. Assume that p*~K[x], then
p* = U+V where [v] -< [u], u E K[x], v ~ K[x], and the first coefficient
of v is not in K. Hence f* -u 0 q* = v 0 q* and the left-hand side is in
K[x] while the right-hand side is not, contradiction. Thus p* E K[x] and
f = cf* = (cp*) 0 q* whence [cp*] = [f] or [q*] = [fl· Therefore [p] = [f]
or [q] = [fjandfis indecomposable over L[x].

2.22. Corollary. Let L be the algebraic closure of K. Then the standard
solutions p, q, r, s of (2.1)ln K[xl are justthose standard solutions of (2.1)
in L[x] which are polynomials of K[x].

2.23. Remark. Corollary 2.22 shows that we can restrict ourselves to
algebraically closed fields K when solving (2.1).

2.3. A further reduction of the problem of solving (2.1) can be reached
by.classifying the solutions in the following way: Let p, q, r, s be a standard
solution of (2.1) and IE K[x] an arbitrary linear polynomial. Then
po (q 0 I) = ro (s 0 I). There exist unique linearpolynomials mI, mz E K[x]
such that m; 0 q ° I and m« 0 sol are normed. Let g = (p 0 mIl) 0

(m,» q 0 I) = (r °m:;l) 0 (m2 0 sol). Then there exists a unique linear
polynomial U E K[x] such that U0 g is normed, hence u °po m;I, m1 0 q 0 I,
U0 r 0 m:;\ m2 0 sol is also a standard solution of (2.1). Any solution of
that kind will be called conjugate to p, q, r, s. "Being conjugate" is an
equivalence relation on the set S of all standard solutions of (2.1) and
thus yields a partition of S. Our problem will be solved as soon as we
know a full system of representatives of this partition.
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If q = s, for a standard solution p, q, r, s, then, by Prop. 1.25, p = r.
Any solution of the form p, q, p, q will be called atrivial solution. Each
class of pairwise conjugate standard solutions consists either of trivial
solutions or it contains no trivial solution. Of course, only the non-trivial
solutions are of interest to us.

2.4. Our next aim is to derive two special classes of standard solutions
of (2.1).

2.41. Let in:be any prime, e an integer, ° <: e -c n; and tE K[x] monic.
Then x"o(xQt(.x")) = (xQt(x)") ox". Thus if xQt(x'"t) is indecomposable,
then p = x", q = xQt(.x"), r = xet(xt, s = x" is a standard solution of
(2.1)'--the indecomposability of xQt(xt follows from Th. 1.34 b). A stan-
dard solution of this type is called a power solution. For t = 1, we get
the power solution p = x", q = xe, r = x", S = x", in:being a prime.

2.42. Remark. So far no handy method could be developed to decide whet-
her or not a polynomial xQt(x") is indecomposable. Clearly if e+n[t] is a
prime, xQt(x") is indecomposable, and the equation X2((X3)4+(X3)2) =
(x(x6 + x3)) 0 X2 shows that otherwise the polynomial can be decomposable.

2.43. Let m be an integer and rpany real number. Then de Moivre's equa-
tion (cos rp+i sin rpr' = cos mrp+i sin mrp implies, for m ,." 0,

cos mip = (cos rpY'- (;) (cos rp)m-2 (1-cos2 rp)+

+ (~) (cos rp)m-4 (l-cOS2rp)2- ... = t",(cos rp)

where tm is a well-defined polynomial of degree mover ther ational
integers, the so-called Cebyshev polynomial of the first kind of degree
m. We first sum up some well-known results on Cebyshev polynomials
which we will need later on:

2.44. Lemma. (i) If fJ, ,v "'" 0, then tp.v= tu 0 tv'
(ii) If fJ,"'" 0, then tu o(-x) = (-1)'" tj1"

(iii) If fJ,"'" 0, then t f.l satisfies the differential equation p2(l- t~) =
= (I-x2) t~2.

Proof. (i) tp.vCcosrp) = cos fJ,vrp= cos fJ,(vrp)= tp.(cos vrp) = tp.(tv(cos cp)).
Since cos tp ranges over an infinite set, we conclude tp.v(x) = tp.(tv(x)).
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(ii) t/ -cos rp) = tp.(cos (n-rp)) = cos fJ,(n-rp) = (-1)1-' cos fJ,rp=
(-1)1-' t/cos rp). Hence t) -x) = (-1)1' t)x).

(iii) Differentiation of cos fJ,cp= t) cos rp) yields fJ,sin flrp =
t~(cos rp)sin rp. Hence fL2(1-t:(cos rp)) = (l-cos2 rp)t~2(COSrp) whence
fJ,2(I-t~) = (l_X2)t;}.

2.45. Remark. Part (i) of Lemma 2.44 shows that tp. is indecomposablelif
and only if fJ,is a prime. Moreover, tp.c tv = t,o tp' Thus if fJ" v are primes
and lp., lv, u are suitably chosen' linear polynomials, then p = u 0 tp.0 1;;\
q = 1,,0t; r = u 0 tv 01;;\ s = !p 0 tp. is a standard solution of (2.1). Such
solution is called a Cebyshev solution.

2.46. Theorem. Every non-trivial standard solution of the equation p 0 q =
r 0 s is conjugate to some power solution or to some Cebyshev solution.

Proof. Theorem 2.46 will result from a whole bunch of lemmas, the proof
of which will fill the remainder of this section.

.5. Proposition. Let p, q, 1', S be any non-trivial standard solution of(2.I).
Then [q] = [r] = fl, [p] = [s] = v where (fJ" v) = 1.

Proof, By hypothesis, we have po q = I' 0 S = f Hence, by Prop. 1.25,
q ~ s while Lemma 1.33 implies K(q) ~ K(s). Then the proof ofTh. 1.34
shows that K(f) c K(q) c K(x) and Kef) c K(s) c K(x) are maximal
chains of fields from K(f) to K(x). Thus K(f) = K(q) n K(s) and K(x) =
K(q, s). By ch. 6, Th. 5.84, [K(x): K(q)] :;= [K(s): K(f)], hence, by
ch. 6, Th. 5.71, [q] = [r] whence [p] = [s]. Furthermore ch. 6, Th. 5.84 b),
implies ([q], [s]) = 1 since K(q, s) = K(x).

2.51. Lemma. If p o q = r o s = f, then the minimal polynomials in the
indeterminate y of the elements x over K(j), K(q) , K(s), q over K(f),
saver K(f) are the polynomials f(y)-f, q(y)-q, s(y)-s, p(y)-j; and
r(y)-f, respectively. The polynomial p(y)-f remains irreducible over
K(s), and r(y)-j remains irreducible over K(q).

Proof. The statement for the first three polynomials follows from ch. 6,
Th. 5.71, while [K(q): K(f)] = [p], [K(s): K(n] = [r] shows that p(y)~f
and r(y)-fare the minimal polynomials for q and s, respectively. Since
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K(s) (q) = K(x) and [K(x): K(s)J = [s] == [p] by Prop. 2.5, p(y)-f must
be irreducible over K(s). Similarly r(y)-fis irreducible over K(q).

2.52. We define a binary relation ''-'on K(x) by: u ~ v means u = ev
where e = + lor-I. Clearly, ~ is a congruence on the multiplicative
sernigroup of K(x). If K(f) is an extension field of K(g) and h EK(f), then,
as in ch. 6, § 5.88, rJr-J1g(h) will denote the norm of h with respect to this
extension.

2.53. Lemma. If e EK, then

i'llxlf(x-c) ~ f-f(e), i'llxlq(x-e) rv q-q(e), i'llxlsCx-e) rv s-s(e),

(2.51)

(J'lqli(q-e)rv f-:p(e), (J'lslrCs-e) ~ I-r(e), (2.52)

(J'lxls(q-e) rv f-p(e), (J'lxlq(s-e) rv f-r(e). (2.53)

Proof. Since K(x-e) = K(x), we have [K(x-e): K(j)] = [f], hence the
minimal polynomial of x-e over KCf) is f(y+e)-j; and the constant
term of this polynomial is f(e)-f Thus (J'lxlf(x-e) ~ f-.f(e). Similarly
all the other relations of (2.51) and (2.52) are obtained. Since K(s) (q - c) =
K(s) (q), we have [K(s) (q-e): K(s)] = [p], by Prop. 2.5, hence the
minimal polynomial of q-e over K(s) is p(y+e)-f Thus i'llxls(q-e) ~
f-p(e). Similarly the last relation follows.

2.54. Lemma. Let, as before, [q] = [I'] = u, [p] = [s] = v. Then

p'(q)"m..xlh') ~ i'llsIAr'(s»)m..xlis'), (2.54)

r'(sY (J'lxlis') ~ (J'lqIAp'(q») (J'lxls(q'). (2.55)

Proof. Applying the chain rule to f = p(q) = r(s), we get I' = p' (q)q' =
r'(s)s'. Hence (J'lxlq([') = (J'lxlq(P'(q»)m..xlq(q') ~p'(q)"(J'lxlq(q') and
i'llxlq(j') = i'llxI q(r'(s») i'llxlq (s') rv (J'lsIAr'(s») (J'lxlq(s'). The last relation
holds since K is algebraically closed whence we may write r'(s) =
fl.IT(s-e), e; EK. By Lemma 2.53, (J'lxlq(r'(s») rv fl.I'IT(J'lxiis-e) ~
fl.I'ITi'llslrCs-c) rv(J'lsIAr'(s») whence the last relation follows. (2.54) is
then an immediate consequence; (2.55) is obtained in a similar way.

2.55. Lemma. The linear polynomial x-a; divides q-a if and only if
i'llxlix-a) ~ q-a, and x-a; divides s-a if and only if m..x/sCx-ai) ~

I
I,
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s-a. Furthermore q-a; divides f-a E K[q] if and only if (J'lqlrCq-a) ~
f-a, and s-a; divides f-a E K[s] if and only if i'llsli(s-a;) rv f-a.

Proof. If (x-a)/(q-a), then q(a;) = a, therefore q-a = q-q(a) rv

(J'lxlix-a), by Lemma 2.53. Conversely (J'lxlq(x-a;) rv q-a implies
q-q(a) = q-a, by Lemma 2.53, hence (x-a)/(q-a). In all the other
cases, a similar argument can be used.

2.56. By Lemma 2.53 and Lemma 2.55, there is, for each linear factor
q-a; of p'(q), a unique linear polynomial f-k;E K[f] which is divisible
by q - a;. This polynomial f -Jf.; is called the linear factor corresponding
to q-a;.

2.57. Proposition. Let fl. >- v. Then the set of linear factors corresponding
to the linear factors of p'(q) consists of at most two different polynomials.

Proof. Let q-a be any linear factor of p'(q), w its multiplicity in p'(q),
and q' = fl.IT(x-b). Then m..xlq(q') A, fl.I'IT(J'lxlq(x-b). By Lemma2.55,
the multiplicity of q-a in !dLx I q(q') equals the number v of factors x-b;
of q' such that (x -b)/(q -a). Hence the multiplicity of q -a on the left-
hand side of (2.54) equals pw+v. Similarly the multiplicity of q-a in
(J'lxI q(s') equals the number t offactors x-c; of s' such that (x-c)/(q-a).
The unique linear polynomial f - k: EK[f] which is divisible by q - a is
I-p(a). Since (d(dq)(J-p(a»)= p'(q), the multiplicity of q-a in f-p(a)
is w+ 1. If r'(s) = fl.IT(s-d), then (J'lslf(r'(s») ~ fl.I'IT(J'lslrCs-d), hence,
by Lemma 2.55, the multiplicity of f-p(a) in (J'lsIf(r'(s») equals the num-
ber u of factors s-d; of r' such that (s-dJ/(J-p(a»). Therefore the
multiplicity oiq-:o on the right-hand side of (2.54) equals u(w+l)+t.
Hence fl.w+v = u(w+ 1)+ t. Moreover [1"] = fl.-I implies u ~ fl.-I -< fl.,
hence

fl.-2u-t = fl.w+v-fl.(w-l)-2u-v-t

= u(w+ I)-fl.(w-l)-2u-v = (u-fl.)(w:-l)-v ~ 0,

therefore fl. ~ 2u+ t.
Suppose now that (q-aJ/Cf-k), i = 1, 2, 3, where kl ,c k2 ,c

k3,c k1. Then we obtain the inequalities fl.~ 2u;+t;, i = 1,2,3, where
u.; t, stand for u, t if we substitute a; for a. Hence 3fl. ~ 2(u1 +U2+U3)+
+ tl + t2+ t3' But by definition of u;, t;, we have u1 +u2 +u3 ~ fl.-1,
tl+t2+t3 ~ v-I -< fl.-I, thus Jzz -< 3(fl.-I), contradiction. This proves
the proposition.
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2.58. Proposition. If V >- v and the linear factors corresponding to the
linear factors of p'(q) are all equal, then the solution p, q, r, s of (2.1) is
conjugate to some power solution.

Proof. Let f - k be the common linear factor corresponding to the linear
factors of p'(q) and f-:-k = (q-a1Y' ... (q~a,Yv. If Wi ~ ° is the mul-
tiplicity of q-ai in p'(q), then, since f' = p'(q), we have ti= wi+ 1.

v v
Thus v = I ti = v+ I Wi = v+(li-l) hence v = 1, therefore tl = v,

i=l ;=1

and
p(q) =f= (q-a)"+k. (2.56)

If v were not a prime, say v = o-c, thenf = ((q-at),+kwhence KCf) c
K((q~aY) c K(q), contradiction.

K(x) = K(s)(q-a) implies that K(x) is normal over K(s) since, by
(2.56), q - a is a root of yV -(r(s)-k) E K(s)[y] and K contains the r-th
roots of unity whence K(s)(q-a) is a splitting field of yV.-(r(s)-k)
over K(s). Furthermore, by a well-known theorem of Galois theory, the
Galois group of K(s) (q -a) over K(s) is cyclic, thus K(x) is a cyclic exten-
sion of K(s).

By ch. 6, Th. 5.71, the polynomial s(y)-s E K(s) [y] is irreducible over
K(s) and has the root x in K(x), thus s(y)-s splits completely into linear
factors over K(x). Therefore s(y) -r S has v different roots Vi' i = 1,2, ... , v,
inK(x). SinceK(v;) = K(x),i= 1, ... ,v,awell-known theorem on trans-
cendental extensions implies that Vi = (bix+c;)/(dix+ei), b., ci, d., ei EK.
But s(v;)=s(x), hence if we substitute for Vi into this equation and multiply
by a suitable power of dix+ei, then we see that (dix+e;)/(bix+c;)",
and we conclude that Vi is a linear. polynomial of K[x], i = 1, ... , v.

Now let w be a v-th root of unity, a a generator of the Galois group of
K(x) over K(s), and

l = x+w(ax)+w2(a2x)+ ... +w,,-I(av-1x)

the Lagrange resolvent. Since the o'x are just the Vi and since there exists
w such that K(s) (I) = K(x) , we have 1= bx+ c where b, c EK, b .,c.0,
for such w. Furthermore I" E K(s) implies IV = g o s, for some g E K[x],
by ch. 6, Lemma 5.81. Comparing the degrees in the last equation, we
see that [g] = 1. Thus s = m c x' o l where m, lEK[x] are linear, and
(2.56) implies that p = mi 0 XV0 11where mi, 11E K[x] are linear.
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By substituting into (2.1), we obtain m; 0 x" 0 110 q == 1'0 m 0 x" 0 l, hence,
ifO.,c. cEK, then (m110rom)oxV = (xVocx)0((l/c)xo/1oqol-l), thus
((1/cV)xom110rom)ox" = XVo ((l/c)xo 11oqol-l). We choose c in such
a way that the polynomial in the bracket on the right-hand side and there-
fore also the polynomial in the bracket on the left-hand side becomes
monic. Then the last equation becomes

XV0 if = r o XV (2.57)

where if, i E K[x] are monic. Let
ij = xi'+a1xi'-I+ ... , r = xi'+b1Xi'-1+ ... ,

then (xi'+a1xi'-I+ .. .)" = x'" +b1x"v-" + ... , Coefficientwise compari-
son yields a1 = 0, hence a2 = 0, ... , hence av-1 = 0, similarly a"+1 =
= 0, av+2 = 0, ... , a,,+v_l = 0, etc. Thus ij = xi' + a.x":" +a2vx"-2V +
+ ... +ak"x;,-b where 0<:: V-kv -e; v. If we set V-kv = e, then
ij = xQt(XV), t E K[x]. If we substitute into (2.57), then x" 0 xQt(XV) = r 0 x:
whence i o x" = xQt(x)" 0 x", thus r = xQt(x)", by Prop. 1.25.

Going back to the definitions of if, r, we now obtain

s=mox"ol, 1'= (m10cVx)orom-\
q = (l1l0cx)oifol, p = m1 o x'o l; = (m10cVx)oxVo((I/c)xo/l)

and the proposition now follows from § 2.3.

2.6. By Prop. 2.57, we have now to investigate the case where the set of
linear factors corresponding to the linear factors of p'(q) consists of two
different polynomials. We state Hypothesis (H): f=k, f-k1 are the linear
factors corresponding to the linear factors of p'(q).

The assumption V >- v will not be needed.

2.61. Lemma. If every linear factor of f-k E K[q] is a divisor of p'(q),
then f =k : has at least three different linear factors that are not divisors
ofp'(q)·

Proof. By hypothesis,f-k = (q-a1)V,+1 ... (q-am)Vm+l where ai .,c.aj,
for i .,c.j, and Vi >- 0, i = 1, ... , m, since Cf -k)' = p'(q). Thus the great-

m

est common divisor d oif=k and p'(q) is of degree [d] = I Vi' If
i=1

Vi = 1, for i = 1, ... , m, then f - k would be the square of some poly-
nomialg EK[q] whence K(f) = K(f-k) = K(g2), therefore K(f) c K(g) ~
K(q), thus K(g) = K(q) and [g] = m = 1. This would imply that
f-k = (q-al)2, hence [p] = 2, [p'] = 1. But the only linear factor of p'
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m

cannot dividef-k andf~kl simultaneously, by§2.56. Hence I v.> m,
i=1

m m
furthermore m+ I Vi = [p] = v, therefore I Vi :> (l/2)v. Let d1 be

i=l i:::l

the greatest common divisor of I=«. and p'(q). Then d and d: are rela-
tivelyprime sincef-k andf-k1 are, hence (dd1)/p'(q), thus [dd1] ~v~ 1.
This implies [d1] ~ v-l-[d] -< vj2-1.

Let f-k1 = (q-C1)W1+1 •.. (q-cll)'"n+1 where ci 7'" cj' for i =], then
n fl. 1}

[d11 = I Wi' therefore I Wi -< v/2-1. Hence n = v- I Wi :> v/2+ 1.
i=1 i=1 i=l

If I is the number of indices i such that Wi = 0, then v ~ 1+2(n-1)
whence I ~ 2n-v :> 2, Q. E. D.

2.62. Lemma. If the polynomial f-k E K[s] contains at least one linear
factors=b which is not a divisor ofr'(s), and the polynomial f=k-; E K[s]
contains at least one such linear factor s=b, then each of these polyno-
mials. contains exactly one such linear factor, the polynomials satisfy the
equation

f-l2(f-k) (f-k1) = (s-b)(s-b1) r'(s)2,

and every linear factor of r'(s) is either a divisor of f=kor off-k1, but
not all the linear factors of r'(s) divide one and the same of these poly-
nomials.

Proof. By hypothesis (H) we see that, mqIAp'(q)) = mq IAvIT(q-a;))
~ v"(j-k)v(f-kl?' where V+Vl = v-I and VVI 7"'0. Hence, by (2.55),

z'(s)" mxlsCs') ~ v"(f-k)V (f-kl)v! m; Is(q'). (2.61)

Now let g be the product of all linear factors of f-k, and gl be the
product of all linear factors of f-klo which do not divide r'(s), then,
by (2.61), gVgfl/mx1 s(s'). But, by (2.51), mxl/s') is a polynomial in s of
degree v-I whence [g] = [gl] = 1, and the first assertion of the lemma
is proved. Letf-k = (s-b) (S-C1)"' ... (s-cmy", be the decomposition
into linear factors of f-k E K[s], then ei ~ 2, i = 1, ... , m, hence

m m

f-l= 1+ r ei ~ I +2m, thus m ~ (f-l-l)/2. Since I (ei-l)+m = f-l-1,
i=l i=1

In

we have I (ei -1) ~ (f-l-l) /2, therefore the greatest common divisor of
i=l
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r'(s) andf-k is of degree ~ (f-l-1)/2. Similarly, the greatest common
divisor of r'(s) and f-k1 is of degree ~ (f-l-1)/2. But since f-k and
f-k1 are relatively prime, so are those greatest common divisors, thus
their product divides r'(s). But[r'] = f-l-l whence each of these greatest

In

common divisors is of degree (f-l-l)/2. Hence I (ei-1) = (f-l-l)/2,
i=1

implying that m = (f-l-1)/2, ei = 2, i = 1, , m.Thus

f-k = (s-b)(S-Cl)2 (S-Cm)2,

f-k1 = (s-b1!.(s-Cll)2 (S-Cm1)2.
(2.62)

Since (s-c1) ... (s-cm)(s-cll) ... (s-cmrJ isa divisor of r'(s) of degree
f-l-1, we have

r'(s) = f-l(s-c1) ... (s-cm)(s-cll) ... (s-cm1) (2.63)

I,

which proves the second assertion of the lemma. The third assertion is a
straightforward consequence of (2.62) and (2.63).

2.63. Remark. For proving (2.62) and (2.63), we required only the first
statement of Lemma 2.62, but not hypothesis (H).

2.64. Lemma. If f=k, L-«, E K[s] satisfy the hypothesis of Lemma
2.62, then each of the polynomials I=« E K[q] and f-k1 E K[q] contains
at least one linear factor that is not a divisor of p'(q).

Proof. We evaluate ms IAr'(s)), using (2.62), (2.63), and Lemma 2.55, and
then substitute into (2.54):

p'(q)'" mX1q(q') ~ mxl q(s') f-l1-'(f-k)(I-'-I)/2(f-k1)C1-'-1)/2. (2.64)

Suppose that every linear factor of f=k divides p'(q), then, by Lemma
2.61,f-k1 has at least three different linear factors that are not divisors
of p'(q). Let g be the product of these linear factors, then, by (2.64),
gCl-'-I)/2jmxiq(q'). But this is a contradiction since [g] = 3 whereas
[mxl q(q')] = f-l-l. A similar argument works for f-k1.

2.65. Lemma. If the polynomials f-kEK[s], f-k1EK[s] satisfy the
hypothesis of Lemma 2.62, then the polynomial I-« E K[9] contains
exactly one linear factor q-a that does not divide p'(q), and f=k, E K[q]
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contains exactly one linearfactor q -al that does not divide p'(q). Moreover
there are elements d 7"'- d1 E K such that

ft2(q'--a) (q -al) = (x -d)(x -dl) q'(X)2.

Proof. By the last statement of Lemma 2.62 and Lemma 2.64, we see
that hypothesis (H) and the hypothesis of Lemma 2.62 is also satisfied
for the solutionr, s, p, q of equation (2.1), i.e. the statements of Lemma
2.62 hold if r, p and s, q change their places in the hypothesis. Hence
Lemma 2.62 implies thatf-k contains exactly one linear factor q-a that
does not divide p'(q),andf-kl contains exactly one linear factor q-al
that does not divide p'(q). By (2.64), (q_ay,,-1)/2 (q-aly,,-1)/2f(J[xliq')
whence

(J[xlq(q') ~ ,u"(q-a)<,,-1)/2(q-al)(,,-1)/2. (2.65)

If q-a = (X-fl)W,+1 ... (x-tn)'vn+1 is the decomposition of q-a into
linear factors of K[x], ti 7"'- tj, for i 7"'- j, then Lemma 2.55 and Lemma
2.53 imply

f-k ~ (J[qltCq-a) ~ (J[xlsCq-a) ~ (S-S(tl»'",+1 ... (s-sCt,,)'"n+1.

But then (2.62) implies Wi~ 1, i = 1, ... , n. By (2.65), q'(x) has exactly
(ft -1)/2 = m linear factors which divide q -a and Wi~ 1 implies that
all these linear factors are different. Hence Wi = 1, for exactly (ft-1)/2
indices i. Thus

q-a = (x-d) (x-el)2 ... (x-em)2,

q-al = (x-dl)(x-en)2 .,. (x-eml)2.
(2.66)

A similar argument as in Lemma 2.62 completes the proof.

2.7. Proposition. If hypothesis (H) and the hypothesis of Lemma 2.62 are
satisfied, then the solution p, q, r, s of (2.1) is conjugate to some Cebyshev
solution.

Proof. We require two lemmas which will be proved first.

2.71. Lemma. Let a be any positive integer. Then the differential equation

a2(1- Z2) = (1- X2)Z'2 (2.71)

has the solutions z = ± tu(x), and these are the only solutions which are
polynomials over K of degree a.
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Proof. Suppose that z = aOxo+alxo-l+ ... +au is a solution of (2.71).
From substituting z into (2.71), we get for i = 1,2, ... , a,

-a2(2aoai+w(al, ... , ai_I)) = -(2aao(a-i)ai+v(ao, aI' ... , ai_I))

where w(xl' ... , Xi_I) and v(xo, ... , Xi_I) are quadratic forms over the
rational integers. Hence 2aiaoai = f(ao' ... , ai_I) where f(xo' Xl' ... , Xi-I)
is some quadratic form over the integers which is independent of z.
Therefore

2ai(aJao) = f(1, al/aO' ... , ai_l/aO)' i = 1,2, ... , a.

Hence aJao = Ai' i = 1, ... , a, is a rational which does not depend on z.
Thus, if t is any polynomial of degree a which is a solution of (2.71),
then every polynomial z of degree a which is a solution of (2.71) satisfies
z = ctwhere cEK. We substitute z = ct into (2.71) and obtain a2(1-c2t2) =
(l_X2)C2t'2 = c2a2(1-t2), hence c =± 1. Conversely z = ± t is a solution
of (2.71). Moreover, z' = ta(x) is a solution of (2.71) by Lemma 2.44 (iii).

2.72. Lemma. Let a be any positive integer, u, us, V, VI, U 7"'- UI, V 7"'- VI, any
elements of K and y = y(x) a polynomial of degree a over K which satisfies
the differential equation

a2(y-u)(Y-UI) = (x-V)(X-Vl)y'2. (2.72)

Then there exist linear polynomials 1= ax+b, m = cx+d such that
z = l oy o m is a solution of(2.71).

Proof. By (2.72), a2(yo m-u) (y 0 m-ul) = (m -v) (m -VI) (y' 0 m)2.
Since z' = a(y' om)c, we have

a2c2a2(l-10 z-u) (1-10 Z-Ul) = (m-v) (m-Vl)z'2.

Now we choose m, I suitably, namely

m = -t(Vl-V)X+%-CVl +v), I-I = t(Ul -u)X+t(UI +u). (2.73)

Then the last equation becomes

a2[(VI-v)2f(Ul -U)2]. t(Ul -u) (z-} 1).t(Ul -u) (z -1) =
= t(Vl -v) (x-} 1). t(Vl -v) (X-1)Z'2

whence z is a solution of (2.71).



150 COMPOSITION AND POLYNOMIAL FUNCTIONS OVER RINGS AND FIELDS CH. 4

2.73. Proof of Proposition 2.7. By Lemma 2.62 and Lemma 2.65,
fk2(f-k) (f-k1) == (s-b)(s-b1)r'(s)Z,
fk2(q-a)(q-a1) = (x-d)(x-d1)q'(x)Z

The proof of Lemma 2.65 shows that hypothesis (H) and the hypothesis
of Lemma 2.62 are also satisfied for the solution r, s,p, q of (2.1), thus

vZ(f-k) (f-k1) = (q-a)(q-a1)P'(q)2,
vZ(s-b)(s-b1) = (x-d) (x-d1) S'(X)2.

That a, a1 and b, b, actually change their roles in (2.74), (2.75), follows
from Lemma 2.62 and Lemma 2.65. That d, di in (2.74), (2.75) are the
same follows since x-d, x=d, are the only simple linear factors of
q -a and q -aI, resp., by (2.66), and q-a, q -a1 are the only simple
linear factors of f-k,f-k1, resp., by Lemma 2.65 whence, in both cases,
x=d, x-d1 are the only simple linear factors in K[x] of f- k,f- k1, resp.

Now (2.74), (2.75) are differential equations of the type as in (2.72),
hence, by Lemma 2.72 and Lemma 2.71,

res) = Il10B1tj.lomll, q(x) = 1;,10 Bztj.l0 m;,l,

p(q) = 13'10Bstv°m3'l, sex) = 14
10 c/" °m;',

Cj=±I, i = 1, ... ,4.

(2.73) implies m;,l = m4
1 = n, 1;,1 = ma, 141 = mI' Since fao c;X =

= (Bfx) 0 fa by Lemma 2.44 (ii) we obtain

(2.74)

(2.75)

s = m10 c4x 0 tv°n,
1-1' I' t -1r = 1 OC1XOc4XO j.l0c4xom1 '

q = m3 0 cZx° tj.l°n,
p = 13'10c3XO c;x ° tv0 c2XO m3'l,

and the proposition follows.

2.8. The proof of Th. 2.46 has now boiled down to showing that hypo-
thesis (H) implies the hypothesis of Lemma 2.62. Throughout this
subsection, we will assume that fk :> v and hypothesis (H) holds.

2.81. Proposition. Hypothesis (H) and fk :> v imply that the hypothesis
of Lemma 2.62 is satisfied

Proof. We will again require a few lemmas to prove the proposition.

2.82. Lemma. IfCEK, (q-a)I(f-c),(s-b)I(f-c), then the polynomials
q-a, s-b E K[x] have at least one linear factor in common.

Proof. Letf-c = (s-b)"'h where f; is not divisible by s-b. Coprimality
of s-b and fi then implies u(s-b)+vh = 1, for some polynomials

§2 STANDARD SOLUTIONS OF P 0 q = r 0 S 151

u, vEK[s], hence s(x)-b andh(s(x)) are also relatively prime in K[x].
If q-a and s+b were relatively prime, we would have (q-a)lb(s(x)
whence f1(S(X)) = (q(x)-a)h(x), for some hex) EK[x]. Hence
t7Lxls(h(s(x))) = t7Lxls(q(x)-a)t7Lxls(h(x)). Lemma 2.53 and Lemma2.55
imply f1(S)" ~. (f-c)g(s), for some g(s) EK[s] whence (s-b)/f1(S),
contradiction.

m II

2.83. Lemma. Let f-k = fl(q-a;)U, = IT (s-bYJ where the a; and
;=1 j=l

bj, resp., are pairwise distinct elements of K. If u, :> 1, then q-a; and
s'(x) have some divisor x-cj"in common.lfvj:> 1, then s-bj and q'(x)
have some divisor x-cj in common.

Proof. Let X~Cj be a linear factor of q-ai of multiplicity gj, then X-Cj

is a linear factor of f-k of multiplicity gjUi, There is one and only one
indexj such that (x'-c;)/(s-b). If eij is the multiplicity of X-Cj as a
factor of s-bj, then x-ci has the multiplicity eijvj as a factor of f-k.
Suppose that q-a; and s'(x) are relatively prime, then eij = 1, hence
Vj = gjUj. By Lemma 2.82, every s-bj has some linear factor in common
with q-aj whence every Vj is divisible by uj• Therefore f-k = h(st', for
some h(s) EK[s]. This implies K(f) = KW") C K(h) ~ K(s). Hence
K(h) = K(s), [h(s)] = L Therefore ui = [r] = fk. Butf= k+ IT(q-a)U,
and [q] = fk imply fkV = [f] ~ fk2which contradicts fk :> v. Hence q-aj

and s'(x) have some linear factor in common. To prove the second asser-
tion, we proceed in an analogous way to before and getf-k = h(q)Vj,
for some h(q) EK[q]. Again [h(q)] = 1 and Vj = [p] = v, Hence
f = k+ (q-ay, thus p'(q) = v(q -ay-lwhich contradicts hypothesis (H).
Hence s-bj and q'(x) have .sorne linear factor in common if Vj :> 1.

2.84. For the remainder of this subsection, we now assume that every
linear factor of f-k EK[s] is a divisor of r'(s). This will finally lead to a
contradiction and thus will prove Lemma 2.62 so far asf-k is concerned.
But also the statement aboutf-k1 will follow for reasons of symmetry.

2.85. Lemma. Let f-k EK[s] have n different linear factors, then n < fk12.

Proof. By hypothesis, every linear factor of f-k EK[s] is a divisor of
r'(s), thus every such linear factor has multiplicity Vj :> 1 in f -k. Since
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II

I Vj = fk, we have n ~ t-tI2. If n = fk12, then Vj = 2, for.i = 1, ... , n,
j=1

whencef -k = h(s)2 for some h(s) EK[s]. As in the proof of Lemma 2.83,
we would have fk = 2, hence v = 1, contradiction. Hence n -< fk12.

2.86. Lemma. Let m be the number of all linear factors ofr'(s) which divide
f-ki. Then m -< fk14.

Proof. The number of all linear factors of r'(s) dividing f-Ie equals
II

I (vj-1) = fk-n. By Lemma 2.85, fk-n = (fkI2)+.i where .i >- 0.
j=1

Hence, by Lemma 2.55,

msIAr'(s)) ~ (f-ky,.,/2)+j(f-k})1II h(f) (2.81)

where h(f) and (f-k)(f-kl) are relatively prime. By (2.54),

p'(qymx Iq(q') ~(f_k)<"'/2)+j(f -kl)mh(f)mx I q(s'). (2.82)

Hence, if (q-a)I(f-k) but q-:-a does not divide p'(q), then
(q-aYi,/2)+jlmx1q(q'). Since [q'] = fk-1,there is at mostonesuchq-a.

Suppose that e different factorsq -:bi of f-ki are not divisors of p'(q).
By (2.82), each of these factors occurs in mx Iq(q') with multiplicity a- m.
If t is the multiplicity of q-bi in mx1iq'), then exactly t of the linear
factors of q'(x) are divisors of q -bi' If x-c is such a linear factor and v
its multiplicity in q'(x), then (x-c)/(f(x)'-k1). Since (f(x)-kl)' =
p'(q(x))q'(x), we see that x-c has multiplicity v in the greatest common
divisor d off(x)-ki and q(x). Thus d is divisible by some product of
linear factors of q -bi which has degree t;?; m. Hence [d) ;?; em. On the
other hand, (2.81) implies that fk-n+m = (fkI2)+.i+m~ fk-1, thus
n;?; m+ 1. Then, by Lemma 2.83, there are at least m+ 1 different linear
factors of q'(x) which are divisors of f(x)-k. Hence [d) ~ fk-m-2,
thus em ~ fk-m-2. Therefore m(e+ 1) -< fk. By way of contradiction,
assume now that m s» fk14. Then (fk/4)(e+ 1) -< fk whence e ~ 2. Suppose
that f"7"k has no linear factor q"":a which is not a divisor of p'(q), then,
by Lemma 2.61, e;?; 3. Hence there is exactly one q-a dividingf-k
but not dividing p'(q). Then (2.82) implies that (q-ay,.,/2)+j/mx1iq')
whence (fkI2) +.i linear factors of q'(x) divide q -a and therefore also
.r(x) -:-k. Hence [d) ~ fk-l-(fkI2) =l -< fk12. This implies em -< fkf2,
thus e(fk/4) -< fk!2 and e ~ 1. If e = 0, then, by Lemma 2.61,f-k would
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have at least.three different linear factors q -a not dividing p'(q), contra-
diction. Thus e = 1. We summarize: There is exactly one linear factor
q-a of f-k that is not a divisor of p'(q) and exactly one linear factor
q-ii1off-k1 that is not a divisor of p'(q). Remark 2.63 implies that

f-k = (q-a)(q-a1)2 ... (q-a,)2,

f-ki = (q-iil)(q-an)2 ..• (q-all)2, (2.83)

P'(q) = v(q,al) ... (q-a,)(q-all) ••. (q-all)

wherel = (v-1)/2. By Lemma 2.83, each q-ai has some divisor x-ciand
each q-ai1 has some divisor X-Cil, which is also a divisor of s'(x).
Since all these divisors are different we see that s'(x) = V(X-CI) ...

(x-c,)(x-cn) ... (x-cll) and therefore

m xlq(s'(x)) ~ v/.l(q-a1) ..• (q-a,)(q-an) ... (q-all). (2.84)

Substitution of (2.83) and (2.84) into (2.82) yields, after computing the
exponents of q -all on either side of (2.82), the inequality 2m+ I;?; fk
whence m ;»: (f-t-1)f2. On the other hand, (2.81) implies that
(f-tf2)+.i+m ~ fk-1 whence m -< (t-t-l)f2, contradiction. Hence
m -< f-tf4.

2.87. Proof of Proposition 2.81. It remains to lead the assumption made
in § 2.84 to a contradiction. By hypothesis (H), there is at least one linear
factor q -a of f-k which divides p'(q). Therefore q-a has multiplicity
u > 1 inf-k. By Lemma 2.83, there is a linear factor x-c dividing q-a
and s'(x) whence the degree of the greatest common divisor of f-k}
and s'(x) is at most v-2. If v = 2, then [p'] = 1 which contradicts hypo-
thesis (H). Hence 11 >- 2. Thus we can find an integer g which is maximal
with respect to g( v - 2) ~ f-t, and fk >- v implies that g;?; 1. Let d :» I
be the number of different factors q -bi of f -ki which are divisors of
p'(q) and Wi their multiplicities in p'(q). Then (2.82) implies that

f-tWi+Ui = m(wi+1)+ti (2.85)

where ui' ti are suitable non-negative integers. Hence (f-t-m)wi =
m+ti-ui. By Lemma 2.86, (3f4)f-twi -< (f-tf4)+ti-Ui. Since Wi;?; 1,
we have t, >- 0. Suppose that ti >- f-t/gd, for every index i, then I t, >- fkfg.
But t, is just the number of linear factors of s'(x) dividing q -bi' If v
is the multiplicity ofsuchalinearfactor x-c in s'(x), then (x-c)f(f(x)-k})



154 COMPOSITION AND POLYNOMIAL FUNCTIONS OVER RINGS AND FIELDS CI-l. 4

and (f(x)-k1)' = r'(s(x))s'(x) impliesthatx-chas multiplicity v in the
greatest common divisor off(x)-k1 and s'(x). Hence this greatest com-
mon divisor is divisible by the product of these t; linear factors of s'(x),
and thus has degree ~ I t; Therefore

I t, ~ v-2. (2.86)

This implies fL/g -< v-2, contradicting the definition of g. Hence there
is at least one indexjsuch that tj ~ fL/gd. By (2.85), fLwj ~ m(wj+'I)+ tj ~
m(wj+ 1)+ fL!gdwhence by Lemma 2.86, fL/4>-m~(fL/g(Wj+ 1))(wj-l/gd).
Hence wj+ 1 >- 4wj-4!gd, thus 3wj -< 1+4/gd ~ 5. Therefore Wj = L
Thus3 -< 1+ 4/ gd whence gd -< 2. This can only be the case if g = d = 1.
By definition of g, this means that 2(v.-2) >- fL while the definition of d
shows thatf-k1 has exactly one factor q-b'which divides p'(q). Since
Wj = 1, this factor has multiplicity 1 in p'(q), hence multiplicity 21nf -k1.

Hence f - kl has v - 2 linear factors which are not divisors of p' (q). Then,
by (2.82), (J'[xlq(q') is divisible by at least m(v-2) linear factors whence
fL-l ~ m(v-2). Therefore m(v-2) -< u, hence m ~ 1. Substitution
of w; = 1 into (2.85) yields fL+ u; = 2m+ t; ~ 2+ t.. But 2+ t, ~ v by
(2.86). Hence fL ~ v which is the contradiction we needed, and the pro-
position is proved.

2.9. Proof of Theorem 2.46. By Prop. 2.5, every non-trivial standard
solution of (2.1) is either of the form p, q, r, S or of the form r, s, p, q
where p,q, r, S is a standard solution of (2.1) such that [q] = [r] = fL,
[p] = [s] = v, and fL >- v. By Prop. 2.57, Prop. 2.58, Prop. 2.81, and
Prop. 2.7, this solution is conjugate to some power solution or to some
Cebyshev solution.

3. Permutable chains over fields and integral domains

3.1. Let R be any commutative ring with identity and (R[x]; ° > = s.
If IRI >- 1, then S is a non-commutative semigroup, for axo(x+l)r"
(x + 1)°ax if a r" 1. The problem of determining all the commutative
subsemigroups of S seems to be rather difficult. If R is an integral domain
and C any commutative subsemigroup of S, then Cor. 1.23 implies that
the set of the degrees of the polynomials in C constitutes a subsemigroup
of the multiplicative semigroup of non-negative integers. C is called a
permutable chain, or a P-chain (over R) if every polynomial in C is of

I

I
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degree >- 0, and for any k >- 0, there exists a polynomial in C of degree k.
This section is devoted to determining all the P-chains over fields and
various other types of integral domains.

·0

I

3.2. Let K be any field, C = {g;li E I} a P-chain and IE K[x] a linear
polynomial. Evidently C1 = {1-log;olliEI} is a P-chain, too. C1 is
called a conjugate (over K) of C. Also [-1o go [ and g will be called con-
jugate. Clearly conjugacy is an equivalence relation on the set of ali
P-chains over K and therefore' induces some partition of this set. Thus
all the P-chains over K will be known as soon as we are able to pick
one representative for each class of this partition.

3.3. Two special P-chains are already known to us:
a) {x, X2, x3, ... } = S is a P-chain over K being called the P-chain

of powers.
b) By Lemma 2.44·(i), {tl' t2, t3, ... }, t; the i-th Cebyshev polynomial,

is a P-chain over the field of rational rrumbers, thus {gn= (2x) ° tn ° (tx)1
n = 1,2, ... } is also a P-chain over the field of rational numbers. Let
us put SII= e;IllP+e-;Il<P, n = 0, 1,2, ... , thensnsl = (e;"'P+e-in'P)(ei'P +e-i'P) =
SIl+l +S"_I' n = 1,2, .... Hence S"+l = snsl-s,,_l' n = 1,2, ... , there-
fore

I

S2 = si-2, S3 = Si-3s1 (3.3)

and, by induction on n, we easily see that sn = !,,(Sl) where t. is some mo-
nic polynomial of degree n over the rational integers. But the definition
of s" and Euler's formula imply that s; = 2 cos nsp whence 2tn(cos cp) =
2 cos ncp = fn(sl) = f,,(2 cos cp). Thus 2t,,(x) = fn(2x), hence /" = (2x) °
tn ° (f)x = g,p therefore gn is monic.

3.31. Remark. Induction on n shows that the coefficient of xn-1 in the
normal form of /" = gn is zero, for n ;3> 2.

3.32. Let Z be the domain of rational integers, L the prime field of
K, 'Y): Z -+- L the unique ring homomorphism, and 'Y)[x] : Z[x] -+- 'Y)Z[x] the
unique extension of'Y) to a composition epimorphism (see ch. 3, § 3.22).
Then {'Y)[X]gl, 'Y)[X]g2, ... } = T is a P-chain over 'Y)Z. Since, by ch. 1,
§ 8.1, 'Y)Z [x] can be embedded into K[x], we see that T is also a P-chain
over K being called the P-chain of Cebyshev polynomials.



156 COMPOSITION AND POLYNOMIAL FUNCTIONS OVER RINGS AND FIELDS CH. 4 § 3 PERMUTABLE CHAINS OVER FIELDS AND INTEGRAL DOMAINS 157

3.33. Theorem. Every Prchain over K is some conjugate of either the Prchain
of powers or the Prchain of Cebyshev polynomials. Thus there are exactly
two different classes of Pichains over K.

yields some conditions for the coefficients of X311and x311-i,i = 1, ... , /l.

In particular, the coefficients of X311give us aa~ = aoan whence
a~ = a"-1 and since char K = 2, we see that ao is uniquely determined
by a. The coefficients of x"::', i = 1, ... , n-1 yield the equations

a(3a~ai+c(aO' ... ,ai_I») = l(ao, aI' ... ,ai_1)Proof. We require several lemmas which will fill the remainder of the sub-
sequent subsection before we prove the theorem.

3.4. The second statement of the theorem on the non-conjugacy of the
P-chains of powers and of Cebyshev polynomials can easily be seen:
Let 1= ax+b, then 1-loX"ol = (lla) (ax+b)"- (bla) where, for some
n i» 2, the coefficient of xn-1 differs from zero unless b = 0. Thus if
1-10 X" 0 1= g,Z' for all n, then b = ° by Remark 3.31 whence a"-1 = 1,
for all n. Therefore a = 1, but S 7"" T by (3.3), contradiction.
Let us now assume that K is algebraically closed.

where c is a cubic and I is a linear form over K. Similarly,

a(3a~all+c(ao' ... , qn-1») + ba~ = l(ao, aI' ... , all_I)

where c is a cubic and I is a linear form over K. Thus again a.; i = 1, ... , n,
is uniquely determined by aO:a1, ... , ai-I'

3.42. Corollary. If P is any Prchain over K, then P contains exactly one
polynomial of degree n, for every n ;;;..1.

Proof. Obvious.
3.41. Lemma. If char K 7"" 2 and g E K[x] is any polynomial of degree 2,
then, for any n > 1, there exists at most one polynomial of degree n that
is permutable with g. If char K = 2 and g E K[x] is any polynomial of
degree 3, then.for any n ~ 1, there exists at most one polynomial of degree
n that is permutable with g.

3.43. Corollary. If char K 7"" 2 and gl E K[x], [gl] = 2, or if char K = 2
and g2 E K[x], [g2] = 3, then g , and gs, resp., belong to at most one
P-chain.

Proof. Obvious.
II

Proof. Let char K 7"" 2, g = ax2+ bx+ c, a 7"" 0, and f = I aiXn-i of
i=O

degree n and permutable with g, i.e. gof=fog. Then equating the
coefficients of x2n we obtain aa~ = aoa" whence ao = an-I. The coeffic-
ients of X2n-i, i = 1,2, ... , n-l, on either side yield the equations

a(2aOai+q(a1, a2, ... , ai_I») = l(ao, al' ... , ai_I)

3.44. Lemma. If char K 7"" 2, g E K[x], and [g] = 2, then there is one
and only one polynomial. m = X2+ d which is a conjugate of g. If
char K = 2, g E K[x], and [g] = 3, then there is one and only one poly-
nomial m = x3+dx+e which is a conjugate of g.

where again q is a quadratic and I is a linear form over K. Thus all is
uniquely determined by ao, al' ... , all_I'

Proof. Let char K 7"" 2, g = ax2+bx+c, a 7"" 0, 1.= ux+v. Then
1-1 = (llu) (x-v) whence, for any K,

I-logo 1= (l lu) (a(ux+v)2+b(ux+v)+c -v)

= aux2+ (2av+ b)x+ (llu) (g(v) -v).

Hence 1-1 0 go I, is of the form x2+d if and only ifu = a-I, v = -(2a)-1 b.
Thus there is exactly one 1 such that I-log 0 I is of the form as required.
If char K = 2, and g = a1x3+b1X2+C1X+d1, a1 7"" 0, 1= UX+V, then, for
any K,

I-logo 1= (llu) (a1(ux+v)3+b1(ux+v)2+C1(ux+v)+ d1-v) =
= a1u2x3+ (3a1v+ b1)uX2+ (3alV2+2b1v+C1)X+ (lfu) (g(v) -v).

where q is a quadratic and I is a linear form over K. Thus ao' aI' ... , a;_1
determine a, uniquely, for i = 1, ... , n-l. Moreover, the coefficient of
x" on either side yields the equation

a(2aoall+ q(a1, a2, ... , an_I») +bao = l(ao, aI' ... , an_I)

II

If char K = 2, then let g = ax3+bx2+cx+d, a 7"" Oandf= I aix"-i
i=O

a polynomial of degree n which is permutable with g. Again g of = fog
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Hence 1-10 g 01 is of the form x3 + dx+ e if and only if u2 = all,
v = ~(3al)-1 b1. Since char K = 2 and K is algebraically closed, such u,
vEKdo exist and are uniquely determined by al, bs. Thus m = x3+dx+e
is uniqueJy determined by g.

3.45. Corollary. If char K ~ 2, tt.en every Pschain over K is a conjugate
of one and only one P-chain which contains some quaqratic polynomial
x2+a. If char K = 2, then every Prchain over K is a conjugate of one and
only one Prchain which contains some cubic polynomial x3+ ax+ b.

Proof. By Cor. 3.42, Cor. 3.43, and Lemma 3.44.

. 3.46. Proposition. If char K ~ 2, then the only Prchains which contain
some quadratic polynomial X2+ a are the Prchain of powers and the Prchain
of Cebyshev polynomials. These are also the only P-chains containing some
cubic polynomial x3+ax+b if char K = 2.

Proof. The P-chain S has the property as in the proposition and T also
has, by (3.3). We have to show that nb other P-chains have this property.

Let char K ~ 2, and P any P-chain containing some polynomial X2+ a.
Case 1: char K ~ 3. Letf= aox3+alx2+a2x+a3 EP, then f(x2+ a) =

J2+a whence f( -X)2+a = f(x2+a) = f(X)2+a. Thus f( -x) = f(x)
orf( -x) = -f(x). Since ao ~ 0, we can only havef( -x) = -f(x), thus
al = a3 = O. Then ao(x2+a)3+a2(x2+a) = (aOx3+a2x)2+a whence

2 . . 3 dao = ao' i.e. ao = 1. Moreover, 3aoa = 2aOa2, hence a2 = za, an
3aoa2+a2 = a~ whence 3a2+ta = -ta2. Thus a = 0 or a = -2.

Case 2: char K = 3. Let f = bOX5+hx4+b2X3+b3X2+b4X+b5 EP.
As before, we conclude .J = b~X5+b2X3+b4X. Hence bo(x2+a)5+
+b2(x2+a)3+b4(x2+a) = (box5+b2X3+b4x)2+a. We compare the coeffi-
cients on either side of this equation and obtain bo = b~, thus bo = 1;
furthermore Sabo = 2bob2, therefore b2 = a, and lOboa2+b2 = b~+2bob4
implies b« = -a. Finally lOboa3 = 2b2b4 yields a3 = a2 whence a = 0
or a = 1 = -2.

Thus in either case we have a = 0 or a = -2. Since X2 ES while
X2 - 2 ET by (3.3), the P-chain P either is equaJ to S or to T, by Cor.
3.43.

Now let
x3+ax+b,

char K = 2, P any P-chain contarmng some polynomial
and f=boX5+blX4+b2X3+bsx2+b4X+b5EP. Then
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f(x3+ax+b) = .e+af+b. Making abundant use of char K = 2, this-
equation reads as

I
(bO(x3+ ax+ b) + b1)(XI2+ a4x4+ b4)+ (b2(X3+ ax+ b)+b3)(xG+a2x2+b2) +

+ ... = (b~Xl0+bix8+b~X6+b5x4+b!X2+b~)(boX5+blX4 +

+b2X3+b3X2+b4X+b5)+ ...

We compare the coefficients on either side of this equation. Then bo = b~,
thus bo = 1. Furthermore 0 = b~bl whence b, = 0, then boa = bibo+b~b2
whence bz = a. Moreover bob+b1 = bi+b~b3 whence b3 = b, and
o = b~bo+ bib2 +b~b4 whence b4 = a2. Furthermore 0 = b~bl +bib3 + b~b5
whence b5 = O. We continue with comparing the coefficients and obtain
b2 = b~bo+b~+bib4 whence a = b2+ a3. Furthermore 0 = b~bl +b~b3+bib5
whence a2b = O. Thus a2b2 = 0 and therefore a3 = a2b2+a5 = a5, i.e.
a3(a2-1) = O. Hence a = 0 or a = 1 = -1 and a = b2+a3 implies
b = O. Since x3 E S while x3-x E T, by (3.3), again P = S or P = T
follows.

3.47. Cor. 3.45 and Prop. 3.46 imply that Th. 3.33 is true if K is alge-
braically closed.

3.48. Proof of Theorem 3.33. Let K be an arbitrary field, and P any
P-chain over K. By the preceding result, P is conjugate to U = S or T
in the algebraic closure L of K. Let 1 = UX+ v a linear polynomial over
L that transforms Pinto U, then, if P2 is the quadratic polynomial in P,
we have [-lop201 = x2+d while, for the cubic polynomial P3EP, we
have 1-10P30 1= x3+ex where d = 0 or ~2 and e = 0 or -3. Let
P2 = ax2+bx+c, P3 = alx3+b1x2+ClX+d1, then au = 1, 2av+b = 0,
3alV+b1 = O. Thus, whatever the characteristic of K may be, u, vEK,
whence P is a conjugate of U over K which proves Th. 3.33.

3.5. Let J be any integral domain. We obtain all the P-chains over J if we
determine all the P-chains of the quotient field K of J and pick those
which consist of polynomials over 1. By Th. 3.33, the P-chains over K are
just 1-10 Sol, [-10 To [ where S is the P-chain of powers; T the P-chain
of Cebyshev polynomials, and I an arbitrary linear polynomial of K[x].
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Thus we have to check which of these P-chains consist of polynomials
over 1.

3.51. Proposition. Let J be any integrally closed domain, K the quotient
field of J, and 1= UX+v a linear polynomial of K[x]. Then l-loSdl is a
P-chain over J if and only' if u, v E J and v2-v E Ju while 1-10 To I is a
Pschain over J if and only if u, v E J and v - 2 E Ju.

Proof. a) Let 1-10Sol be any P-chain over J, then both l-lox20/

and 1-1.ox301 belong to J[x]. Computing the normal forms of these
polynomials, we see that u E J, 2v E J, (llu) (v2-v) E J, 3v2 E J whence
4v2-3v2 E 1. Since J is integrally closed, we therefore have u, v E J,
v2-v E Ju. Conversely if 1= ux+vand u, v E J, v2-v E Ju, then l-loXio I
E J[x], i = ],2,3, ... which follows from a straightforward computa-
tion.

b) Let l-loTol be any P-chainoverJ,thenboth l-lo(x2-2)oland
1-1o(x3-3x)ol belong to J[x]. Computing the normal forms of these
polynomials, we see that u E J, 2v E J, 3v2-3 E J which, as in a), shows
that u, v E 1. Moreover ,for all gi E T, we havel-I 0 gi 0 I E J[x]. Computing
the constant terms of these polynomials, we obtain g;(v)-v EJu,
i= 1,2,3, ... The case i = 2 yields v2-v-2EJu. By§ 3.3, gn+l =
gnx-gn-l whence gn+1(v) = gll(v)v-gn_l(v). Therefore v2-2v E Ju ana
so v-2 E Ju. Conversely if 1= ux+v satisfies the condition of the
proposition, then g2(V)-V = v2-v-2 E Ju. Suppose gi(V)-V EJu,
for i ~ n. Then gll+1(v)-v = gn(v)v-gn_lCv)-v = (gn(v)-v)v-
(gn_l(V)-v)+(v2-2v) E Ju. Thus g/v)-v E Ju, i = 1,2, ... , and a
straightforward computation shows that 1-10 gi 0 I E J[x], i= 1,2,3, '"

3.52. A similar argument as in the proof of Prop. 1.31 can be used to show
that, in the semigroup(J[x]; 0 ),the elements which have an inverse are
just the polynomials 1 = ux+ v where u is a unit of J. These elements
form a group Lwith respect to the operation o. Two P-chains C and Cl

over J are called conjugate (over J) if there exists IE L such that
C1 = I-IoCe/. Clearly conjugacy is an equivalence relation on the set
of all P-chains over J.

3.53. Theorem. Let J be any integrally closed domain. Then a full system
of representatives for the classes of conjugate P-chains over J is given by
the P-chains (UX+V)-10So(UX+v) and (UX+2)-loTo(ux+2) where u
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runs through a full system U of representatives for the non-zero classes
of associate elements of J and, for each u, the elements v run through afull
system V(u) of representatives for the idempotents of J I Ju.

Proof. By Prop. 3.51, these P-chains are, indeed, P-chains over J. Further-
more, Sand T are not conjugate over the quotient field of J, thus are not
conjugate over J and, by considoring the polynomials of degree 2 or of
degree 3, one can easily check that, in either type of P-chains, any two
distinct P-chains are not conjugate over J. On the other hand, if ul'

VIE J, vi-VI E Jui, then there exists a unit e E J and an element u E U
such that ul = eu. Hence vi-v~ E Ju, therefore we can find an element
v E V(u) such that VI = u+ku. But UIX+Vl = (ux+v) 0 (ex+k) whence
(UlX+Vl)-1 oS 0 (UIX+ VI)is a conjugate over J of(ux+v)-loS 0 (ux+ v).
If UI,VI E J and VI -2 E JUI, then again Ul = eu, u E U, VI = 2+ku
whence UlX+VI = (ux+2) 0 (ex+k) and we can proceed as before.
Hence every P"chain isrepresented by one of the theorem. This completes
the proof.

4. Permutation polynomial vectors and permutation polynomials over rings

4.1. Let R be any commutative ring with identity, D an ideal of R,
1')(D):R -+ RID the canonical epimorphism, 1')(D)(X): R[xl' ... , xd -+

(R ID) [Xl' ... , xk] the unique extension of 1')(D) to a composition epi-
morphism and Ck(1')(D»):Ck(R) -+ Ck(R ID) the corresponding epimor-
phism as described in ch. 3, § 13.1.

4.11. Definition. A polynomial vector f ECk(R) is called a permutation
. polynomial vector mod D if the polynomial vector Ck(1')(D»)f is a per-

mutation polynomial vector over RID. A polynomial p ER[xl, ... , Xk]
is called a (strict) permutation polynomial mod D if the polynomial
1')(D)(X)p isa (strict) permutation polynomial over RID.

4.12. Lemma. a) A polynomial vector f = (PI' ... , Pk) of CkCR) is a
permutation polynomial vector mod D if and only if, for every
(rl' ... , rk) E Rk, the system of congruences

Pi(Xl' ... , xk) == ri mod D, i = 1, ... , k,

has a unique solution mod D.
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b) A polynomial p ER[x1, ... , xk] is a permutation polynomial mod D
if and only if, for every r E R, the set of incongruent solutions of the
congruence

P(X1' ... , Xk) == r mod D

has cardinality I RID Ik-1.

c) The polynomial p E R[x1, ... , xk] is a strict permutation polynomial
mod D if and only if there exist polynomials P2' ... , P« E R[x1, ... , xk]
such that the polynomial vector (p, P2' ... , Pk) is a permutation polynomial
vector mod D.

d) Every strict permutation polynomial mod D is a permutation poly-
nomial mod D.

Proof. a) follows immediately from the definition of a permutation
polynomial vector over RID (see ch. 3, § 11.45), b) is a consequence of
ch. 3, Prop. 12.21 , c) stems from ch. 3, § 12.22, and d) from ch. 3, Prop.
12.23.

4.2. Proposition. Let C, D be ideals of R, D ~ C. If R I C is finite, then
every permutation polynomial vector mod D is also a permutation poly-
nomial vector mod C, and every strict permutation polynomial mod D
is also a strict permutation polynomial mod C. If RID is finite, then every
permutation polynomial mod D is also a permutation polynomial mod C.

Proof. a) Let f be a permutation polynomial vector mod D, then
Ck(1)(D))f is a permutation polynomial vector over RID, thus - with the
notation of ch. 3, § 3.22 - we have (]( a(R I D)) Ck(1)(D)) f E Uk(R I D). Let
fJ :RID ~ R IC be the unique epimorphism such that fJ1)(D)= 1)(C).
SinceR I C is finite, ch. 3, Prop. 11.51 implies (](P,,(fJ) a(R I D) 1)(D)(X))f E
Uk(R IC). But by diagram fig. 3.1 of ch. 3, wehavePk(fJ) a(R ID) 'Y}(D)(X) =
a(RIC)fJ(X)1)(D)(X) = a(RIC)'Y}(C)(X), thus (](a(RIC))Ck(1)(C))fE
Uk(R IC) whence f is a permutation polynomial vector mod C. The
statement on strict permutation polynomials now follows from Lemma
4.11 c).

b) Let p be a permutation polynomial mod D, then 1)(D)(X)p is a per-
mutation polynomial over RID, thus a(RID) 1)(D) (X)p ESk(RID). By ch.
3,Prop.12.31,Pk(fJ)a(RID)1)(D)(X)pESk(RIC). As in part a) of the
proof, we conclude that p is a permutation polynomial mod C.
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4.21. Proposition. Let C, D be comaximal ideals of Rand E = CD. Then
a polynomial vector f E Ck(R) is a permutation polynomial vector mod E
if and only if f is a permutation polynomial vector mod C as well as mod D.
A polynomial p E R[x1, ... , xk] is a strict permutation polynomial mod E
if and only if p is a strict permutation polynomial mod C as well as mod D.
If moreover R IC and RID are finite, then p is a permutation polynomial
mod E if and only ifp is a permutation polynomial mod C as well as mod D.

Proof. y: R IE ~ R IC X R IDdefined by Y'Y}(E)r= (1)(C)r, 1)(D)r) is an
isomorphism, by the Chinese remainder theorem. Thus by ch. 3, Remark
11.53, f is a permutation polynomial vector mod E if and only if
Ck(Y) C k( 1)(E))f is a permutation polynomial vector over R IC XR ID
which is, by ch. 3, Prop. 11.31 and Prop. 11.66, the case if and only if
1J!1(]('t1)Ck(Y) Ck(1)(E))f consists of a permutation polynomial vector over
R IC and a permutation polynomial vector over RID. But by definition
of 1J!land 't1 (see ch. 3, § 11.3), we have 1J!l(]('tly(X)1)(E)(X))f =
(Ck(1)(C))f, Ck('Y}(D))f) whence the first statement follows. Similarly
the other two statements are proved: By ch. 3, Remark 12.33, p is a
(strict) permutation polynomial mod E if and only if y(X) 'Y}(E)(X)p is a
(strict) permutation polynomial over R IC X RID. By ch. 3, Prop. 12.43,
this is the case if and only if 'tlY(X) 'Y}(E)(X)p is a pair consisting of
(strict) permutation polynomials over R IC and RID, respectively. But
't1Y(X) 1)(E)(X)p = (17(C)(X)P, 1)(D)(X)p) which completes the proof.

4.3. Let f = Cfl' ... '/k) be any polynomial vector in xl' .. , xk over R,
and Llf = (oJs) which is a k X k-matrix over R[xl, ... , xk] where oJs is
the entry in the s-th row and z-th column, and at = %x

t
is the t-th

partial derivation. of denotes the determinant of Llf, i.e. the Jacobian off.
Polynomial vectors over R will be regarded as k X l-rnatrices over
R [Xl' ... , xk]· If (uik), (Vik) are both mXn-matrices over a ring Sand
P is an ideal of S, then (uik) == (vik) mod P shall mean that Uik == Vik
mod P, for all pairs (i, k).

4.31. Proposition. Let Q be any primary ideal of R with associated prime
ideal P such that R I Q is finite and Q -¥- P. Then a polynomial vector
f = U;, ... ,fk) in Xl' ... , Xk over R is a permutation polynomial vector
mod Q if and only if

a) f is a permutation polynomial vector mod P, and
b) the congruenc~ of (xl' ... , xk) == 0 mod P has no solution in R.
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Proof. The proposition will follow from the following

CR. 4

4.32. Lemma. Let Q be any primary ideal which is different from its associ-
ated prime ideal P. Then q E {Q} implies aiq E {P}, for any q E R[xl>' .. , xd,
i=1,2, ... ,k.

Proof. We have to show that (aiq)(rl, ... , rk) EP,for all (1'1' ... , rk) E Rk.
It will suffice to prove that p E {Q} implies p' E {P}, for all p E R[x],
since then q(x) = q(r 1> 1'2' .•. , Xi' ... , l'k) E {Q} implies q'(x;) E{P},
i = 1, 2, ... ,k. Let a E P, a ~ Q, then, for any I' E R, Taylor's formula
implies thatp(r+a) = p(r)+p'(r)a+P2a2+ ... +Pnpl/1 wherep2,ps, ,
P'" E R. Since p(r+a) E Q, per) E Q, we have a(p'(r)+P2a+ +
Pma"'-l) E Q. But a ~ Q implies p'(r) E P since Q is primary and Pits
associated prime ideal.

4.33. Proof of Prop. 4.31. Let f be any polynomial vector satisfying the
conditions a) and b). Since there exists someinteger I >- Osuch thatP' S;;; Q,
it suffices to show that f is a permutation polynomial vector mod P",
n = 1,2, ... , by Prop. 4.2. This will be done by induction on n. By a),
f is a permutation polynomial vector mod P, thus let us assume that f is
a permutation polynomial vector mod r:: for some n >- 1, and
that f E Rk is arbitrary. We have to show that

f 0 (xl' ... , Xk) == f mod P" (4.31)

has a unique solution mod P". Then, by Lemma 4.12 a), f is a permutation
polynomial vector mod P". Let U = (ul' ... , Uk) E Rk be any solution
of the system

f 0 (Xl' ... , xk) == f mod P"-l (4.32)

which exists because of Lemma 4.12 a) and the induction hypothesis.
Suppose n = (VI' ... , Vk) is a solution of (4.31). By induction hypothesis,
b = u+ 1 where 1 E (Pll

-
l)\ the k-th Cartesian power of r:'. Since

2(n-1) "'"n, Taylor's formula yields

fo(u+O == (fou)+Al modP"

where A = (atfs) (ul' ... , Uk))' whence

Al == I-(fou) mod P",

(4.33)

(4.34)

l'
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By b), Det A ~ 0 mod P whence there exists some k X k-matrix B over
R such that AB == BA == E mod P where E is the k X k-identity matrix.
Bence (4.34) implies that

1 ~ B(£-(fou)) modP". (4.35)

. Thus there is at most one solution b mod P" of (4.31). The existence
of such a solution now follows easily: Let n = U+ 1where 1 is picked
as above. Then

fOb = fo(u+O == (,fou)+AB(f-(fou)) == f modP",

by (4.33). Hencen is a solution of (4.31).
Conversely let f be any permutation polynomial vector mod Q. By

Prop. 4.2, f is also a permutation polynomial vector mod P. Moreover
h = 0f(O'(R IQ)) Ck(?7(Q)) f E UiR IQ), and since R IQ is finite,
Uk(R I Q) is a group' by ch. 3, Lemma 11.43. Thus j, has a inverse
gl E Uk(R I Q). Let g be any polynomial vector of Ck(R) such that
rl(O'(RIQ)) Ck(?7(Q)) 9 = gl' Then, if f = (Xl' ... , xk), we have
0f(O'(R IQ)) Ck(?7(Q)) (g 0 f) = 0f(O'(R IQ)) Ck(?7(Q))f, thus go f =r+ q,
1)= (hI' ... , hk) EC k(R), hi E {Q}, i = 1, ... , k. The chain rule
for partial derivatives yields LI(g0 f) = (Llg0 f) zl]. If oij denotes the
Kronecker symbol, we may write LI(gof) = LI(f+1)) = (a;(xs+hs)) =
(0ts+ a/hs), and a/hs E {P}, by Lemma 4.32. Hence (Llg0 f) Llf = (ots+aA)
and switching over to determinants, we get (agof) af = I 0ts+athsI == 1
mod {P}. Therefore (agof)af = l+p,PE{P}, whence af(ul, ... ,uk) ~ 0
mod P, for all (ul, ... , Uk) E Rk.

4.34. Proposition. Let Q be any primary ideal of R with associated prime
ideal P, Q ¢ P, and R I Q finite. Then a polynomial f E R[xl, ... , xd is a
strict permutation polynomial mod Q if and only if

a) f is a strict permutation polynomial mod P,
b) the system of congruences aJ(xl, ... , xk) == 0 mod P, i= 1, ... , k,

has no solution in R.

Proof. Let f be any polynomial satisfying a) and b), then ?7(P)(X)f = gl
is a strict permutation polynomial over RIP. Thus we can find poly-
nomials g2' ···,gk in Xl' ""Xk over RIP such that g=(gl' ···,gk)
is a permutation polynomial vector over RIP. If IRIP 1= n, then in RIP
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{x?-x;}E{O}, i = 1, ... , k: Therefore, if hij are arbitrary polynomials
over RIP, the polynomial vector

(
. k k)

~ = gl,g2+j~lh2/X'l-Xj)' ... ,gk+j~lhk/X'j-X) (4.36)

is also a permutation polynomial vector over RIP. If we put hlj = 0,
j = 1, ... , k, then

Lll) == (atgs-hst) mod {O}. (4.37)

If (u
l
, ,uk) = uEU~IP)k,thenbyb),(algl(U),a2gl(U), ... ,akgl(u))=

(dll(u), , dlk(U)) = b1(u) is not the zero vector. Since RIP is a field,
we may regard (R I p)k as an R IP-vectorspace, thus we can find vectors
b;(u) = (dil(u), ... , dik(U)), i = 2, ... , k, in (RIP)k such that bl(u),
b

2
(u), ... , bk(u) are RIP-linearly independent. The finiteness of RIP

moreover implies that RIP is polynomially complete. Hence we can
choose hst E (R IP) (xl' ... , Xk], 2.,,;; s.,,;;k, 1.,,;; t ",;;k, such that hst(u) =

atgsCu) -dst(u), for all u E (R IPi. When substituting these polynomials
hst into (4.36), the congruence (4.37) yields

(LI~)ou = (ds/u)).

Hence (a'£))(u
I
' ... , Uk) = Idst(U)I ~ 0, for all (ul' ... , Uk) E (R IP)k because

of the linear independence of bl(u), ... , bk(u). Let /; ER(xl, ... , Xk],

i = 2, ... , k, such that ?')(P)(X)/; = gi+ I~=l hij(xj'-x) then f = (f,f2'
... , fk) is a permutation polynomial vector mod P, and ?,)(P)(X) 'Of= a'£)
implies that 'Of(Xl' ... , Xk) == 0 mod P has no solution in R. By Prop.
4.31, f is a permutation polynomial vector mod Q whencefis a strict
permutation polynomial mod Q.

Conversely let fbe any strict permutation polynomial mod Q then,
by Prop. 4.2, fis also a strict permutation polynomial mod P. Moreover
there exists f = (f, f2' ... ,fk) which is a permutation polynomial vector
modQ. Hence, by Prop. 4.31, af(~l' ... ,uk)'¥- OmodP, for all
(ul' ... , Uk) E Rk, therefore the system : aJ(xl' ... , Xk) == 0 mod P,
i = 1, ... , k, has no solution in R. .

4.35. Corollary. If f (f) is a permutation polynomial vector (strict permuta-
tion polynomial) modulo some primary ideal Q of R with associated prime
deal P ~ Q, IR I Q I finite, then f (f) is a permutation polynomial vector

-t,
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(strict permutation polynomial) modulo any primary ideal Q of R different
from P, having P as the associated prime ideal and IR I i2I finite.

4.4. Let R be any Dedekind domain and M an ideal of R such that RIM
is finite. The results of§ 4.2 and § 4.3 yield a practical method of deciding
whether or not a given polynomial vector f in Xl' ... , Xk over R is a
permutation vector mod M or a given polynomial f E R[xl, ... , xk]
is a strict permutation polynomial mod M. For if M = P~l... P~'where
the prime ideals Pi are pairwise distinct, then P7i and P? are comaximal
primary ideals, for i ~ j, and R IP~i is finite, for i= 1, ... , r. Thus we
have just to investigate the behavior of f or I, respectively, and of 'Ofor
ad, ... , akJ, resp. modulo the prime ideals Pi. in particular, this method
applies to the domains of the algebraic integers in algebraic number fields
where the rational integers are a special case.

It is, however, not known yet how to decide whether or not a poly-
nomialfis a permutation polynomial mod M. A result similar to Prop.
4.34 has not yet been derived. Nor do we know whether or not there are
rings R, in particular finite residue class rings of Dedekind domains,
such that not every permutation polynomial over R is a strict permutation
polynomial.

5. Semigroups of polynomial function vectors and polynomial permutations
over finite factor rings of Dedekind domains

5.1. Let R be any Dedekind domain, M an ideal of R such that RIM is
finite, and Vk(R 1M), Uk(R IM) as in ch. 3,§ 11.45. We recall that Vk(R 1M)
is the semigroup of all polynomial function vectors, Uk(R IM) consists
of all polynomial permutations over RIM, and Uk(R IM)is asubsemigroup
of Vk(R IM). Since RIM is finite, Vk(R IM) and Uk(R 1M) are also finite,
and Uk(RIM) is a group by ch. 3, Lemma 11.43. We observe that all results
of this section will hold, in particular, for the case where R is the domain
of rational integers and M ~ {O}.

5.2. In ch. 3, Prop. 11.51, we have proved the result: Let B be any
finite, A any arbitrary algebra of a variety ~, n: A ->- B an epimorphism,
and Vk(?')): Vk(A) ...•.Vk(B) the extension of?') to a compositiori epimor-
phism, then Vk(1))Uk(A) ~ Uk(B). This result can be sharpened for ~
being the variety of commutative rings with identity, and A, B finite
residue class rings of a Dedekind domain R as follows:
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5.21. Theorem. Let R be any Dedekind domain, A = RIM andB = R IN
finite residue class rings of R and 'I): A -+ Ban epimorphism. Then
Vk('I) Uk(A) = Uk(B).

R/M

/~
mL . v NN

~/
(RIM)/ (L/M)

FIG. 4.1

Proof. By ch. 6, Prop. 3.3,ker Ker 'I) = LIM where L is some ideal of R
such that M £ L. Let u:RIM -+ RIL be defined by u(a+M)= a+L,
for all aER, then ker Ker u = LIM. Thus if v:RIM -+ (RIM)I(LIM)
is the canonical epimorphism, there are isomorphisms ih, 1}2, by ch. 1,
Th. 1.51, such that the diagram fig. 4.1 is commutative. Hence Vk('I))=
VkWll) Vk(1}2) Vk(u). Since 1Ji, i = 1,2, are isomorphisms, it is sufficient
to show, by ch. 3, Prop. 11.51, that Vk(u) U/«(RIM) = UkCRIL). This,
however, is a consequence of

5.22. Lemma. If RIM is finite, L 2 M, and f is any permutation polynomial
vector mod L, then there exists a permutation polynomial vector g mod M
such that g == f mod {L}.

Proof. Let M = P~'... P:' be the primary decomposition of M, then
L = Pfl ... P:' where d, "",.e., i = 1, ... , r.

Step 1. We show that there exist permutation polynomial vectors gi
mod P7', i = 1, ... , r, such that gi == f mod {p:l,}. If d, = 0, we may
take gi = ~ = (Xl' ... , xk)' If di '?; 2, then f is a permutation poly-
nomial vector mod p1i, by Prop. 4.21 whence, by Cor. 4.35, f is also
a permutation polynomial vector mod P7i, thus we may take gi = f.
Now let d, = 1, then f is a permutation polynomial vector mod Pi'

of
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Let IR IPi I = nand f = (J;" ... ,f/(). Then, if hsjER[xl' , .. , xkl is arbi-
trary, the polynomial vector

gi = (fl +JIhj/xi-x), " .,j/(+ il hk/X7-x))

satisfies gi == f mod {PJ Moreover,

agi == IcaJ';-hst) I mod {Pi}

Since R IPi is a finite field, thus polynomially complete, we can choose
hst such that hst ==atls-Ost mod {P;} where Ostis the Kronecker symbol.
Then agi == 1 mod {P;} whence, by Prop. 4.31, gi is a permutation
polynomial vector mod Pfi.

Step 2. Since P7i ~ {Pfi}, i = 1, ... , r, the ideals {P7i} are pairwise
comaximal, hence the Chinese remainder theorem implies that there
exists some polynomial vector g such that g ==gi mod {Pf'}, i = 1, ... , r.
By Prop. 4.21, g is a permutation polynomial vector mod M. Since
g== f mod {Pfi}, i = 1, ... , r, we have g == f mod {L} by ch. 3, § 5.36.

5;3. The finiteness of A in Th. 5.21 is indispensable. The following lemma
will yield a construction' of such a counterexample.

5.31. Lemma. LetR be any infinite Dedekind domain which has just
finitely many units, and such that every factor ring modulo a non-trivial
prime ideal is finite. Then of is a unit of R, for every permutation
polynomial vector f over R.

Proof. By hypothesis, f isa permutation polynomial vector mod (0),
therefore, by Prop. 4.2 and the finiteness of R Ip2 which follows from ch. 6,
Lemma 4.52, f is also a permutation polynomial vector mod p2, for every
prime ideal P 7"'.(0) in R. Hence, by Prop. 4.31, af(rI, ... , rk) ~ 0
mod P, for any (rI, •.. , rk) ERk. Therefore R af(rI, ... , rk) = R, i.e.
afCrI, ... , rk) is a unit of R, for any Crl, ... , rk) ERk. We now show by
induction on k, that if g(xl, ... , xk) ER[xI, •.. , xk] such thatg(rl, . , ., rk)
is a unit of R for all (rI, .•• , rk) ER", then g is a unit of R. This is
true for k = 1 because of a well-known theorem on the number of roots
of a polynomial. Suppose the assertion holds for k-l instead of k,and

r

let g = I a;(xI, ••• , Xk_l)X~ such that, for arbitrary (r1, ••• , rk_1) ERk-\
i=o
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r

g(rl' ... , rk_l, Xk) = I alrl' ... , rk_l)x~ takes only units of Has values.
i=O

As stated, g(rl, ••. , rk_l, xk) is then a unit of R whence
ai(xl, ... , Xk_l) = 0, for i ~ 1, and ao(xl' ... , Xk_l) assumes only units
as values. By induction, aO(xl, ... , Xk_l) is a unit of R, thus g is a unit of
R.ln particular, af(xl, .. ;, Xk) is a unit of R.

5.32. Remark. Since every element of Ck(R) which has an inverse in
C k(R), is a permutation polynomial vector over R by ch, 3, § 11.45, the
following proposition would be a partial converse of Lemma 5.31:
If R is any integral domain of characteristic zero and f ECk(R) is a
polynomial vector such that af is a unit of R, then f has an inverse in
Ck(R). But no correct proof of this proposition for k ~3 is yet known.

5.33. We now construct the counterexample as announced at the begin-
ning of this subsection. Let R be the ring of rational integers, k = 1,
A = R, B = R I (p), p >- 3 a prime, and 1] : R -+ R/(p) the canonical
epimorphism. Since R satisfies the conditions of Lemma 5.31, every
permutation polynomial vector f over R satisfies either)" = 1or f' = -1
whence {f= x+c, -x+clcER} is the totality of permutation poly-
nomial vectors over R. Therefore UI(R) =:: {e~+cl e =±1, cER}
whence IVI(1]) UI(R) I =2p. But B is a finite field and therefore poly-
nomially complete, thus !VI (B) I = pL Hence Vk(1]) Ul(R) 7'" Ul(B).

5.4. LetE be any ideal of R such that E=CD where C and Dare cornax-
irnal ideals of R, and y: R IE -+ R I C X RID the isomorphism as in the
proof of Prop. 4.21. Then, by the results of ch. 3, § 11.3, Vk(RIE) ~
Vk(RICXRID) ~ Vk(RIC)x Vk(RID), and by ch. 3, § 11,6, Uk(RIE) ~
UkCRICXRID) ~ Uk(RIC)XUk(RID). Therefore, if M = P~l ... P:'
is the primarydecomposition of M, we have Vk(RIM) ~ Vk(RIP~l)X
... X Vk(RIP:') and Uk(RIM) ~ Uk(RIP?)X ... X Uk( RIP:'). Thus
for RIM finite the structure of Vk(R I M) and Uk(R I M) will be determined
as soon as we know the structure of Vk(Rlpe), Uk(Rlpe), for any prime
ideal P of R, e ~ 1, where RIP is finite. Since RIP is also a field and
therefore polynomially complete, Vk(R IP) is isomorphic to the symmetric
semigroup and Uk(RIP) to the symmetric group of (RIP)\ by ch. 3,
Remark 11.22. Thus it remains to investigate the case e :> 1.
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5.5. We first introducesome new notation: As in ch. 3, § 8.6, let N be the
additive semigroup of non-negative integers and Mk the direct product of 1<
copies of N. On Mk' we introduce a partial order"," by (ml, ... , mk) "'"
(nl' ... , nk) if and only if m, "'"ru, i = 1, ... , k. Let CPk = 10k: Mk -+ N

k
be defined by ck(ml, ... , mk) = I c(m) where lOp = 10 is defined as in

i=l
ch. 3, § 8.3. Moreover, let a: Mk -+ N be defined by ctm«, ... , mk) =

k

I mi, "£ = (Xl' ... , Xk), t = X~l... x~, for ~= (iI' ... , ik) E Mk (see ch. 1,
i=l
§ 8.2). Since every finite subset of Mk has an upper bound in Mk, we
can write f = I (a",;t;'"I A "'" d); for every fE R[xl, ... , xkl where a",ER
can be possibly zero, for some A. If we regard the polynomial vectors
over R as k »; l-matrices, then every polynomial vector f ECk(R) can be
written as f = I(U",,,£A I A "'" a), u'"regarded as k X l-matrices over R.

As in ch. 3, § 8.3, we set I R I pi = q. We deviate from the usual conven-
tion by setting P" = R, for n "'"0, and every ideal P of R and an = 1,
for all a ERand n "'"O.

A subset W of Rkfor any e is called a vector system mod P" if the
mapping ( : Rk -+ (R Ip')k defined by ((aI' a2, ... , ak) = (al +P", ... ,
ak +pe) is such that the restriction of ( to W is a bijection. If a EP, a ~ p2,
WI a vector system mod P and We_~a vector system mod P":", then,
by ch. 6, Lemma 4.53, both the sets W = {u+abl u E WI' bE We_I}
and W = {b+ae-lul U E WI' bE We_I} are vector systems mod P".

5.51. Lemma. Let a EP, a ~ I", ~= (iI' ... , ik) E Mk' and d, Epe-aC,)-ekC').
Then there exists a polynomial s, E {pe} such that

s, = dpaCt)t+ I(c"aaC"');t;AIA -<: ~) (5.51)

and a polynomial u, E {pe-I} such that

u, = dpaC,)-It+ I(b",aaCA1-lt'l A -<: ~) (5.52)

Proof. Let s, = dpaC')t, where t, has been defined in ch. 3, § 8.6. By the
proof of ch. 3, Lemma 8.61, t, E {pekC')}, hence s, E {pe}. If we expand s,
into power products of the in determinates xp then we see that s, is as
in (5.51). Similarly,u, = dpaC,)-lt, E {pe-I} and is as in (5.52).

5.52. Lemma. Let 0 7'" g E{pe} and «s: be the leading term oj its
normal form according to ch. 1, Th. 8.21. Then a" Epe-ekC,').
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Proof. By induction on k. For k = 1, the lemma has been proved in ch. 3,
Lemma 8.5. Suppose the lemma holds for k-l, then letg E R[XI, ... , Xk],

o
g E {pe} and a",F."', /h= (ml' ... , mk), its leading term. Let g = I x{hj,

i=mi
wherehj ER[x2, ••• ,xk], then hml ~ 0, and the normal form of hml
has the leading term a",!7i where != (X2' ... , Xk), fi = (m2' .... , mk).
For any (v2, •.. , vk) E Rk

-\ the polynomial g(xl' v2' ••. , Vk_l) =
o
I hiV2' ... , Vk_I)X{ is in {pe}. Since the lemma holds for k = 1,

j=ml

we conclude that hm1(v2, ... , vk_l) E pe-C(rnl) whence h1111E {pe-c(1111l
By induction; a", Epe-e(m1)-ek-l(7i) = pe-ck("').

Thus
twlw+ r) == ri mod P", for W+ r == W mod P,

t".;(w+r) == 0 mod Z", for w+r;i W modP.

Let tWi = tW1iJXI) tW,i2(X2) ... twki/Xk). Then tWi satisfies (5.53).

5.54. Lemma. Let a EP,a ~ p2, and g = IC,lao(,l)r' such that g(tJ) == 0
mod P" for every tJ of some vector system We_l mod pe-I. Then g E {pe}.

Proof. Let WI be a vector system mod P and W = {n+ ae-1u I U E WI'
tJE We-I} as in the beginning' of this subsection, then g(b + ae-Iu) ==
IC,lao(,l)(tJ+ae-Iu),l == IC,lao(,lV == g(tJ)modpe.

5.53. Lemma. Let \1:) = (WI' ... , Wk}ERk and t = (il"'" ik)EMk.
Then there exists a polynomial tw, E R[x1, ... , Xk] such that, for any

. t = (1'1' ... , rk) ERk,

tIU<(l1)+t) == t' mod P", for \1:)+t == ta mod P,

t1uJ\1:)+t)==Omodpe, for \1:)+t;i\1:)modP.
(5.53)

5.6. Let ( : Rk - (R Ipet be the mapping as defined in § 5.5, and Wany
vector system mod P', Then t maps W onto (Rlpel bijectively. If
tp : (f(Fk(Rlpe») -+ Fi(Rlpe)k) denotes the composition isomorphism of
ch. 3, Lemma 11.21, then let x: ViRlpe) -+ Map (W, (Rlpe)k) (where
Map (M, N) means the set of all mappings from a set M to a set N)
be defined by xf = (cpf)(. If (q;fK = (q;h)(, then q;f = cph, whence f = h·
Thus X is injective for any e. In order to determine the mappings of
Vk(Rlpe) = Vk, it suffices to know the mappings of XVk' But these are
given by

Proof. Let E s; R be any full set of representatives for the units of Ripe.
Then CI = IT (n I nEE) also represents some unit of Ripe, thus there
exists some CER such that CCI== 1 mod P', Let too = C IT (x+ nl nEE)
and tOi = (xtooY, i =1, 2, ....

For wE R, we set twi = tOi(x-w), i = 1,2, .... Then we claim

too(r) == 1 mod P",

too(r) == 0 mod P",

for I' == OmodP,

for r;i 0 mod P.
(5.54)

5;61. Proposition. Let a EP, a ~ p2, W = {f+ at) I f EZl, t) E Ze_l} a vector
system mod P" where Zl is a vector system mod P and Ze-l a vector
system mod tr:', and, for every integer r, Wr a vector system mod P'
containing the "zero vector" 0 = (0, 0, ... , 0). Then the mappings

f+ aL) -+ I(afPo(')t)' It EMk) mod P", af, E We-o«)-'k(')" (5.61)

are mappings of XVk' every mapping of XVk has the form (5.61), and the
mappings of (5.61) are pairwise distinct.

For, too(r) = cIT(r+nlnEE). Any eER representing a unit of RIP
also represents a unit of Ripe by ch. 6, Lemma 4.51. Hence if r == 0
mod P, then {r+ n InEE} is again a full system of representatives for
the units of Ripe whence the first congruence of (5.54) follows. Further-
more if r· ~ 0 mod P, then - r represents some unit of RIP and therefore
of Ripe whencen == - r mod P", for some nEE, and the second congru-
ence follows. (5.54) implies that

toi(r) ==ri mod P', for r == 0 mod P,

toll') == 0 mod P', for r;i 0 mod P.

Proof. a) Let f) E XVk>then there exists fl E Vk(R Ipe) such that f) = (q;fl)('
thus there is a polynomial vector fEe k(R) such that f) is the mapping

f+at) -+ fo(f+aL) mod P".

If 1'] = (e-1, ... , e-1) EMk' then Taylor's formula yields

f 0 (f+al) == L<vrpo(')L)'It ~ 1']) mod P": (5.62)
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For any f E Z1> there is some af~E We-a(~)-sk(1J)such that Of~ == at1Jmod
pe-a(1J)-sk(1J) thus 0 = a +b where b E (pe-a(1J)-sk(~))k By Lemma

, f~ f1J 1J 1J .
5.51, there exists a polynomial vector i37) E C,lR) such that i31JE {pe}k and
i3'7 = b,pa(1J)f~+I(e/,aa('>')!"'1A -< 1')). Since i3~E {pe}", (5.62) implies that

f 0 (1:+at)) == af1Jaa(1J)t)1J+ ICoi~)aa(")~"I ~ <: 1')) mod r,
Let No == {~ EMk I ~ "'" 17}, N1 = No~ {1')}, 171 be a maximal element of N1
and apply the same procedure to 1')1 instead of 1'), then take a maximal
element of Nz = N1 ~ {1')1} etc. In each step, O~~iis replaced by af~i E
We-a(1J,)-Sk(1Ji)while the other vectors oV; are changed only for T -e; "lt- Thus
after a finite number of steps we arrive at f 0 (f+ a~) == I (af"aa(")t)"I ~"'" r;)
mod P", for every ~ E Ze-1> where arl E We-aCl)-SkCl)'for every ~. Hence
every -0 E XVk is of the form (5.61).

b) We now show that every mapping of the form (5.61) belongs to
XVk' Let -0 be such a mapping, then let ttr)< be as in Lemma 5.53; for
IV E Zl and ~E Mk' and g = ICI(ahJJhJ.I ~E M k) IIV E Z1)' then this is a
finite sum, indeed, since We-aCl)-Sk(l)= {o}unless ~"'" 1'). By Lemma 5.53,
we obtain

go (f+ a~) =I(I( a\tJJhJ.(f+ a~) I ~E Mk) IIV E ZI) .

== L(afh.(f+a~)I~EMk)

== L(af.aaC")~"I ~EM k) mod t-,

Hence -o(f + a~) == go (f+ a~) mod P", for all I+ a~ E W.
c) We have to show that the mappings of (5.61) are pairwise distinct.

Suppose that

L(af.aa(")~"l ~E Mk) == ICOf.aaC")~"1 ~E Mk) mod r, for all f+a~ E W,

arid let f E ZI' Then

I(arl-ofJaaCl)~'1 ~EMk) == 0 mod P", for all u EZe_l'

By Lemma 5.54, L(ar"-ofJaaCl)f"I~EMk)E{pet If (afJ.l-Or)aaCJ.l)t' is
the leading term of this polynomial vector according to ch, 1, Th, 8.21,
and afJ.l,c 0rJ.l' then, by Lemma 5.52, (arJ.l- 0r)aaCJ.l)E (pe-SkCJ.l))\ hence
a = 0 mod pe-a(J.l)-sk(J.l) since a II: pZ By hypothesis a = 0 arJ.l - fJ.l " . 'fJ.l fJ.l'
contradiction. Hence afl = 0rl' for all ~EMk·
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5.62. Corollary. If N(k, e) = {~EMk I e-a(~) - Sk(~) >- O} and T =
L(e-a(~)-sk(~)I~EN(k, e)), then

iVk(Rlpe)! = q Tkqk. (5.63)

Proof. This is an immediate consequence of counting the mappings of
(5.61) and applying ch. 6, Lemma 4.52.

5.63. As a special case of Cor. 5.62, we get tvk(RIP2)I = q(k+2)kqk
.

5.7. By ch. 3, § 11.4, Uk(RIP't!::. U; is a subsemigroup of Vk-actually
Uk is a group. We are now going to characterize those mappings of
(5.61) that are elements of XUk' Let (0, 0, ... ,0) = 0 E Mk' Oi =
(0, ... ,1, ,0) EMk with 1 as the z-th component and 0 elsewhere, and
Det (u1' , Uk) the determinant of the column vectors UI' ... , Uk E Rk
which sometimes is also denoted by D(ul, ... ,u,J

5.71. Proposition. A mapping of the form (5.61) belongs to XUk if and only if
a) The famiiy{afol f E Z1} is a vector system mod P, and
b) Det (af61, •.. , af6,,) ~ 0 mod P,Jor every f EZI'

Proof. Let I+ a~ -+ :Dafpa(")~"l~EMk) mod P" be a mapping of (5.61),
then, by Prop. 5.61, there exists a polynomial vector g E Ck(R) such that

go(Hat)) == Iafpa(")~"modpe, for every Ha~EW. (5.71)

Let ~ = (yl' ... , Yk), and oJ = (OJ1' ... , OJk)' for any polynomial
vector f = (f1' .. ·,Jk)· Then Taylor's formula implies

k

go(f+"at») = gof+a L [(oig)oI]Yi+a2i3fo~
i=1

(5.72)

where i3rECk(R) and i3foo = o. Substitution of (5.72) into (5.71) yields
k

gof+a I [(oig)of]Yi+a2i3fOt) == IafPo(l)t)" mod P". (5.73)
i=1

for every ~EZe_1' There is exactly one ~EZe_1' such that ~ == 0 modpe-1.
If we substitute this particular ~ into (5.73) and observe that a EP,
we get

g 0 f == alo mod P": (5.74)
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Since e ~ 2, the congruence (5.73) remains valid if we replace P' by p\
thus (5.73) and (5.74) together with a EP, a ~p2 imply that

k k

I [(Oig) 0 rlYi ==I OMYi mod P,. .
i=l ;=1

for all l) E Ze_l,hence' also for all t) E Rk. Thus taking Yi= 1 and
. Yj = 0, for i oFj, we obtain OM, == (Oig) 0 f mod P whence

Det (afo" ... , OM,) == (og)or mod P. (5.75)

If f+at) -+ Iarpo(,V mod P" belongs to XUk' then g is a permuta-
tion polynomial vector mod P". Therefore by Prop. 4.31, g is a permu-

. tation polynomial vector mod P and' (og) 0 r ~ 0 mod P, for every
f E ZI. Hence (5.74) and (5.75) show that a) and b) are satisfied. Conver-
sely if these conditions are satisfied, then (5.74) implies that g is a per-
mutation vector mod P while (5.75) shows that (og) 0 f ~ 0 mod P, for
all f E Rk. Again by Prop. 4.31, g is a permutation vector mod P", hence
the given mapping is in xU k:'

5.72. Corollary. If<1>k(P) denotes the number of nonsingular k X k-matrices
over the field RIP and T has the meaning of Cor. 5.62, then

IUk(R Ipe) I = qk! <1>k(P)qkq(T-k-l)kqk . (5.76)

Proof. By Prop. 5.61 and Prop. 5.71, we have IUkl = IVkl (rls) where
s = qekqkq(e-l)k2qk and I' = qk! q(e-l)kqk[<1>k(p)qCe-2)k2lqk. Then (5.63) im-
plies (5.76).

5.73. As a special case of Cor. 5.72, we get IUk(R IP2) 1= qk! <1>k(P)Qkqkqk.
This follows from § 5.63. .

5.74. Remark. It is well-known (see ch. 6, § 7.2) that <1>k(P)= (qk_l)
•(qk_q) ... (qk_qk-l).

5.8. Proposition. Let a, W, and Wr, I' any integer, have the meaning of
Prop. 5.61. Then the mappings

r+al) -+ (Xf+a(Oto+ I orpO(')-It)') mod P", . (5.81)
'>0

(X E Map (ZI' ZI)' 010 E We_I' Or, E We-o(,)-ek(')'
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are mappings of XVk' every mappingolxVk has the form (5.81), and the
mappings of (5.81)are pairwise distinct. A mappingoftheform (5.81) belongs
to XUk if and only ifcc isa permutation of ZI and.Det (OM" .. ;, 0fo) ~ 0
mod P, for every r E ZI.

Proof. Let 1} E XVk' then 1} is of the form (5.61), by Prop. 5.61. By ch.6,
Lemma 4.53, oro == (Xf+aoto mod P" where (Xf E ZI and Ofo EWe_I'
Hence 1) is a mapping of (5.81). Conversely, every mapping 1} of (5.81)
isa mapping of (5.61) whence' 1} E XVk' If any two mappings of (5.81)
are equal, say ..

Hal) -+ (Xr+a (Oto+ I 0 0(.)-1.) rnod f"
'>0 rP l)

and

Hat) -+ t3r+a(ct~+ I cr,aO(')-ll)')' mod P",
l>.O

then, by Prop. 5.61, or, = cr,' for any ~ >- 0, and f E ZI while (Xr+aofo =
{Jf+acro' for any f E ZI whence (X = t3 and oro = CIa' Suppose now
that a mapping {}.of (5.81) belongs to XUk' Rewriting 1) in the form of
(5.61) and applying Prop. 5.71, we see that Det (Oto

"
... , oro) ~ 0

mod P, for every fEZ1 and that the family {d+aofolfEZ1} is a
vector system mod P. Hence {(Xf IrE ZI} is a vector system mod P
whence (X is a permutation of ZI' Conversely if a mapping 1) of (5.81) is
such that (X is a permutation of ZI and Det (Of0,' ... ,OM) ~ 0 mod P,
for all !, then rewriting of 1} in the form (5.61) and applying Prop. 5.71
shows that 1} E XUk'

5.9. Lemma. Let Q be any commutative ring with identity, A an ideal of Q
and H(A) the set of all polynomial vectors f E Ck(Q) of the form f == '2);.6'"
where aJ, == 0 mod AO(.l)-l, tor every a.l' Then H(A) is a subsemigroup
of Ck(Q) containing the identity t. of Ck(Q) .

Proof.Clearly the sum of any two polynomials Ia.lr\ a.l == 0 mod Ao(.l)-1
for every a.l' is again a polynomial of this form. Thus it suffices to
prove: Let /h = (ml' ... , mk)'E M k' a EQ, such that a == 0 mod AO(I')-l,
and g = (gl' .. ·,gk) E H(A) then if ag~' ... gZ'k = IU.lt.\ we have U.l == 0
mod AO(.l)-r, for every u;.' This will follow as soon we have shown:
For any integer I' ~ 0, a E AT-I, and polynomials hj = Ivj,lJ, Vj'j E AO('j)-l
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f . . - 1 . f" h h -" ,; f 11 E AO(AJ-101 every lj,} - , ,1, 10m a 1 . .. I' - LY£!; 0 oWS U,; ,

for every u,;, But ahl h, = LavI" ... v;,,t"+ '" +" and avI" ... v'" EAg
whereg=r-l+a(lI)-I+ ... +a(lr)-l =a(ll+ ... +l,)-1.

5.91. As before, let R be any Dedekind domain, P a prime ideal of R,
and RIP finite. In Lemma 5,9, take Q=Rlpe,A=Plpe, then we
obtain a subsemigroup H(Plpe) = Hk(pe, P) ofCk(Rlpe). Therefore
0f(a(Rlpe)) Hle(pe, P) = Sle(pe, P) is a subsemigroup of Vle(Rlpe) while
Sle(pe, P) n Uk(Rlpe) = Tk(pe, P) is a subsemigroup of Ule(Rlpe)
containing (~I' ... , ~k) and is even a group. Let e >- 1, Ze_l = W a
vector system mod pe-I, and Xl: Vk(RIpe-I) -+ Map (W, (Ripe-It) the
injection being defined in an analogous manner as X in § 5.6.

5.92. Proposition. Let a EP, a'~ p2, Ze_1 a vector system mod r:',
and Wr a vector system mod P', containing 0, for every integer r. Then

n -> b + "b ao(,)-ll1' mod pe-I n EZ
"') 0 ~''J '''1 e-l . (5.91)

'>0

where bo 'E We-I' b, E We-o(,)-ek(')' for l >- 0, is an element of X1Sk(pe-\ P),
every element of X1Sk(pe-I, P) is of the form (5.91), and these mappings
(5.91) are pairwise distinct. A mapping (5,91) belongs to XITk(pe-\ P)
({ and only if Det (bo" ... , bo.) iE 0 mod P.

Proof. We proceed as in the proof of Prop, 5.61.
a) Let "C E XISk(pe-I, P), then "C can be written as

I) -+ La,I)' mod pe-I

where a, ==' 0 mod PO(')7I, for all z occurring in this sum. Since Ra ~ P,
but Ra g; r. we have Ra"+pe-1 = (Ra)"+pe-I = pmin(lI,e-Il, for any
n. Hence, for any p E P", we have p ==' uamin

(II, e-I) mod tr:', for some
u E R. Taking 'Yf as in § 5.61, we conclude that 7: is of the form

I) -+ L 6,aO(,)-lt)' mod pe-I .
t~'Y}

Now we apply the same procedure as in the first part of the proof of
Prop, 5.61, using Lemma 5,51, to show that 7: can be written in the
form (5.91).
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b) By definition of Sk(pe, P), every mapping (5.91) belongs to
XISk(pe-\ P).

c) Suppose two mappings with coefficients b, c, of (5.91) are equal,
then (bo-co)+ I (b,-c.)ao(,)-l6' E {pe-ly. Again we may argue as in

'>0

the third part of the proof of Prop. 5,61 to show that b,= co' for all i.

d) Suppose that the mapping in (5.91) belongs to XITk(pe-I, P).
Then bo+ I b,aO('J-1t' is a permutation polynomial vector mod r=',

,>0

whence, by Prop, 4.31, this is also a permutation polynomial vector modP.
k

Hence bo +I bal' is also a permutation polynomial vector mod P.
i=I '

k

Therefore the system L baJa' ==' 0 mod P of linear congruences has
i=1

just the trivial solution whence Det (b01' ., ., bak) iE 0 mod P. Conversely
if Det (bo, , ... , bak) iE 0 mod P, then bo+ L b,aO(,)-16, satisfies both

• t>O

the conditions of Prop. 4.31. Hence such a mapping as (5.91) belongs to
XITk(pe-\ P).

5.93. We set (R Ip)k = K and. (R Ipe-l)le = L. Let Zl be any vector system
modP, Ze_1 a vector system mod P"? and (1: Zi -+ (RIP)\ (e-1: Ze_1 -+

(Rlpe-I)k be defined as (in § 5.5, Then W = {f+ al) I f E ZI' l) E Ze_1} is
a vector system mod P" and 12: W -+ KXL defined by e(r+al)) =
((1r, (e-ll)) is a bijection. Let ( be the mapping as defined in § 5.5.
If F1(KXL) denotes the symmetric sernigroup of KXL, then 1): Vk -+

F1(KXL) which is defined by {If = e(-I(cpfXe-l, is a monomorphism.
Thus V; == e(-IVk(e-1 = 17kand U; == e(-IUk(e-I = Uk'

By Prop. 5,8, every mapping of 17k~ F1(KXL) is of the form

(f, ~) -+ (exI, bfo+Ibf,ao(')-I~')

where the bars mean the cosets mod P and mod pe-I, resp. of which
the element under the bar is a member. Hence every mapping of 17kcan
be written as

(£, ~) -+ (CXlt ~(f)~) (5.92)

where«, = (ICX(11EFI(K) and ~(f) E cpSk(pe-\ P). Conversely by Prop. 5.8
and Prop. 5.92, every mapping (5,92) belongs to 17k, We also conclude
that a mapping (5.92) belongs to Uk if and only if CX1 is a permutation
of K and ~(f) E cpTk(pe-I, P), for all f Ez,
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We recall the definition of the wreath product of two permutation
groups and consider also its straightforward generalization to semigroups
of mappings. Then we may summarize our results as

5.94. Theorem. The semigroup Vk(R Ipe) is isomorphic to the wreath
product of the semigroup cpSk(pe-\ P) by the symmetric semigroup
F1(RIPl), and the group Uk(Rlpe) is isomorphic to the wreath product of
the group cpTk(pe-\ P) by the symmetric group Sym (RIPt.

6. Ideal power semigroups

6.1. Let Q be any commutative ring with identity, A an ideal of Q, and
H(A) the subsemigroup of Ck(Q) defined in § 5.9. Clearly H(Q) = Ck(Q)
while H(O))= {ao+ 2)6l'} which will be denoted by L(Q). Moreover
if Al is an ideal of Q such that Al <:; A, then H(Al) <:; H(A). We put
leA) = H(A)n (j(a)-l U,JQ) which is the set of all permutation poly-
nomial vectors of H(A). leA) contains the polynomial vector I, hence
leA) is non-empty and therefore is a subsemigroup of H(A). Furthermore
we put (j(a) H(A) = SeA) which is a subsemigroup of Vk(Q} and
(j(a) leA) = T(A) is a subsernigroup of Uk(Q). SeA) and T(A) are rela-
ted by T(A) = S(A)n u,(Q).

6.2. Proposition. Let 'Y); Q -+ Ql be any epimorphism of rings with identity,
Ck('Y): Ck(Q) -+ Ck(Ql) and Vk('Y)):Vk(Q) -+ Vk(Ql) the epimorphisms de-
fined in ch. 3, § 11.3. Then .

a) Ck('Y))H(A) = H('Y)A), Vk('Y)S(A) = S('Y)A).
b) Vk('Y) Uk(Q) <:; Uk(QI) implies Vk('Y))TeA) <:; T(17A). If e. is finite,

the last inclusion always holds.
c)Ck('Y))l(A) <:; l('Y)A)ifand only if Vk('Y))T(A) < T(rJA).
d) If'Y) is an isomorphism, then Ck(rJ) maps H(A) isomorphically onto

H('Y)A)and leA) isomorphically onto l('Y)A), Vk('Y))maps SeA) isomorphically
onto S('Y)A) and T(A) isomorphically onto T('Y)A).

Proof. a) follows from the definition of H(A) and ch. 3, diagram fig. 3.1.
b) follows from

Vk('Y) T(A) <:; Vk('Y) S(A)n Vk('Y) Uk(Q) <:; S('Y)A)n Uk(QI) = T('Y)A).

The hypothesis of b) is satisfied if Ql is finite, by ch .. 3, Prop. 11.51.
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c) Ck('Y))l(A) S; l('Y)A) implies Vk('Y)T(A) ~ T('Y)A), by ch. 3, diagram
fig. 3.1. Conversely if Vk('Y)T(A) <:; T(rJA), then, again by ch. 3, diagram
fig. 3.1, (j(a)Ck('Y))l(A) <:; (j(a)l('Y)A) <:; Uk(Ql), hence Ck('Y)l(A) <:;
H('Y)A)n (j(a)-l o; (QI) = l('Y)A).

d) If 'Y) is an isomorphism, then Ck('Y)):Ck(Q) -+ Ck(Ql) is an
isomorphism, bych. 1, Prop. 4.5 and ch. 3, Th. 11.11, and Ck('Y))maps
(j(a)-l Uk(Q) isomorphically onto (j(a)-l Uk(QI)' by ch. 3, Remark
11.53 whence the first part of d) follows. Similarly the second statement
can be proved.

6.3. Proposition. Let Q = Ql X-Q2 be a direct product of commutative rings
with identity, AI' A2 ideals of QI' Q2' respectively, 1j!1(j(7:1) : Ck(QI X Q2) -+

CkCQI)XCk(Q2)' 1j!2(j(7:2):V,,(QIX Q2) -+ Vk(Ql) X V,,(Q2) the com-
position isomorphisms of ch. 3, Prop. 11.31. Then 1j!1(j(7:1) induces iso-
morphisms from H(AI X A2) to H(AI) X H(A2) and from l(AI X A2) to
l(AI) X l(A2). Similarly 1j!2(j(7:2) induces isomorphisms from S(AI X A2) to
S(Al)XS(A2) and from T(A1xA2) to T(AI)XT(A2).

Proof. By Prop. 6.2, 1j!1(j(7:1) H(AI X A2) <:; H(Al) X H(A2). Since A~X A~
= (AI X A2Y, this inclusion is an equality. By ch. 3, Prop. 11.66,
1J!1(j(7:I) maps (j(a)-l Uk(Q) isomorphically onto (j(a)-l Uk(Ql)X
(j(a)-l Uk(Q2)' hence 1J!1(j(7:l) maps leA) into l(A1)Xl(A2) and this
mapping is onto since 1J!1(j(7:1) is a composition isomorphism from
Ck(Q) to Ck(QI)XCk(Q2)' The second assertion follows from ch. 3,
diagram fig. 3.3.

6.31. Remark. By ch. 6, § 4.6, every ideal of Ql X Q2 is of the form Al X A2'
where Ai is an ideal of Qi' i = 1,2.

6.4. Theorem. Let Q be any commutative ring with identity and A a nilpotent
ideal of Q. Then the subsemigroup leA) of H(A) is equal to t(H(A)),
the group of units of H(A), and therefore is a group. A polynomial vector
f = 2),,( of H(A) belongs to leA) if and only if the determinant
D(06

1
' ••• , a6k) is a unit of Q.

Proof. Let I be the least integer such that Al = (0). If f E t(H(A)),
then f E t(C" (Q»), thus (j(a)f E t((j(a)C,,(Q)) = t(Vk(Q)) <:; Uk(Q),
by ch. 3,Lemma 11.43, whence t E leA). Let now f E leA) and f = Ia,,;1;".
Since (j(a)f ET(A) <:; Uk(Q), the equation f 0;1; = U has a solution ;1;,
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for every U Eo: hence f 0 f == u mod A has a solution f, for every U.
k

Hence the system 00 + I 06/i == U mod A of linear congruences also
i=1

has a solution, for everyuE Qk, thus the matrix (06, ••• ,06) of column vec-
. 1 k

tors 06ihas a right inverse modA. Hence the determinant Dtuj, ... ,06.) = d
is a unit mod A. Therefore there exist elements u EQ, a EA such that
du = I-a whence du(I +a+a2+ ... +ai-1) = 1. Thus d is a unit of
Q. Hence we have to show that if f EH(A) and D(06

"
... , 06

k
) is a

unit of Q, then f E t(H(A)). Let iJZ(H(A)) = iJZ the set of those elements f
satisfying our hypothesis. iJZ is not empty since f E iJZ. Let f, 9 EH(A),
then using matrix notation for the linear coefficients off, g, and fog, we
can.write

f = oo+Ff+ I o,i',
0(,1) ",,2

9 = Oo+Gf+ I DAtI,
0("') ",,2

fog = Co + Cf + I C",f,1
0(,1) "" 2

where F, G, C are suitable k X k-matrices over Q.
Then fog == oo+Foo+FGf mod (A) whence C == FG mod A, thus

ICI == IFIIGI mod A (6.4)

(6.4) shows that iJZ is a subsemigroup of H(A) since every unit mod A is
also a unit of Q, by a preceding result. It now suffices to show
that every element 9 of iJZ has a left inverse in iJZ. But if we show that
9 has a left inverse in H(A), we are done, by (6.4). Let 9 = 00+ I O,1f\

0(,1) "" 1
then 9 = (00 + f) 0 I o",f"'· Since 00 + t has a left inverse in H(A),

o(J.) "" I

we can assume that 9 = I O",f"'·If 9 has a left inverse, then clearly
0(,1) "" 1

it is of the form I OAf"'.We proceed by induction on l. If l = 1,
0(,1) "" I

then A = (0), thus 9 = Gf where G is a matrix and IG I is a unit of Q.
In this case, 9 has a left inverse in H(A), by a well-known theorem on
matrices. Let L> 1 and 9 = Gf+ I DAtI, G a matrix,and IG I a

0("') "" 2
unit of Q. We put Ql = Q IAi-1 and let 'f} : Q -+ Q IAi-1 be the canonical
epimorphism. Then ('f}Ay-l = 'Y)Ai-1 = (0). Let 'Y)F be the matrix
being obtained from applying 'Y)to each entry of F, F any matrix over Q,
then Ck('f})g = ('Y)G)f+ I ('Y)b;.)f,1E iJZ(H('f}A)). By induction hypo-

o(,l) ",,2
thesis, there exists f = Pf+ I a,lf,lE H('f}A) such that f oCk('Y))g = f. Let

o(,l) "" 2
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f = Ff + I O,lf'EH(A) such that Ck('f})f = f, then fog = f+ 1) where
o(,l) ~ 2

lJ == 0 mod (Ai-I). Let G1be a matrix over Q such that GIG = E, the identity
matrix, and gl = G1f. Then glo 9 = f + I where 1 == 0 mod (A). If we
set h == f -lJ 0 g1, then hog = to 9 - (lJ0 gl) 0 9 = f + f) -lJ 0 (f + 1). By
Taylor's formula lJo(f+O = lJof = lJ whence hog = f. But H(A) is
dosed with respect to +, -, as remarked in the proof of Lemma 5.9,
and therefore fr EH(A).

6.41. Corollary. If A is a nilpotent ideal of Q, then T(A) = t(S(A)),
therefore T(A) is a group.

Proof. J(A) = t(H(A)) implies T(A) s;:;: t(S(A)). Conversely t(S(A)) s;:;:
S(A)n Uk(A) = T(A).

6.42. Corollary. If A is a nilpotent ideal of Q and 'Y):Q -+ Ql is an epi-
morphism such that ker Ker 'Y) is nilpotent, then Ck('Y)) J(A) = J('f}A) and
Vk('Y))T(A) = T('Y)A).

Proof. By Th. 6.4, J(A) = {IU,lf'" EH(A) I D(06
1
"'" 06

k
) is a unit

of Q}. Since 'f}A is also nilpotent, we also have J('Y)A) = {IO,1f,1E
H(17A) I D(06

"
... , 06.) E t(QI)}' Suppose we have already shown that

17-It(Ql) = t(Q), then Prop. 6.2 a) implies Ck(17)J(A) = J(17A) while
the second assertion follows from the first one and ch. 3, diagram
fig. 3.1. Thus it remains to show that 17-1t(Ql) = t(Q). Let e E t(Q),
then 17eE t(Ql)' Conversely if e E'f}-lt(QI) then there exists fl EQl such
that ('f}e)fr = 1. Let fE Q such that [: = 17f, then 17(ef) = 1, hence
ef = 1~a where a E ker Ker 17. By hypothesis ef(1 +a+ ... +am-1) == 1
for some m whence e E t(Q).

7. Ideal power semigroups over factor rings of Dedekind domains

7.1. Let R be any Dedekind domain, U a non-trivial ideal of R, 'f}(U) : R -+

R IU the canonical epimorphism, and W any ideal of R. Then 17(U)W =
(W + U) IU is an ideal of R IU. Let G stand for any of the letters H, J, S, T
of the preceding section. Our aim is to get information on the subserni-
groups G(17(U)W) = Gk(U, W) of Ck(R IU), Vk(R IU), respectively, using
the results of § 6.

7.2. Suppose that U = CD where C, Dare comaximal ideals of R. Then
'Y : R IU -+ R IC X RID, where 'Y17(U)r= (17(C)r, 'f}(D)r) is an isomorphism
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(see the proof of Prop. 4.21). Also Y17(U)W = 'Y](C)WX'Y](D)W whence
Gk(U, W) ~ G('Y](C)WX'Y](D)W) ~ Gk(C, W)XGk(D, W), by Prop. 6.2 d)
and Prop. 6.3. Hence if U = p~l ... P~' is the primary decomposition
of U, then Gk(U, W) ~ Gk(P~" W) X ... X Gk(P:', W).

Let P be any non-trivial prime ideal, W ~ (0) an ideal of R such that
W = pi Q where Q, Pare comaximal ideals in R, and f""" O. Then
'Y](pe)w = ('Y](pe)pl) ('Y](pe)Q) = 'Y](p")pl since 'Y](pe)Q = Ripe. Thus

Gk(pe, W) = G('Y](P")W) = G('Y](pe)pl) = Gk(pe, pi). (7.2)

We summarize the results so far obtained:

7.21. Proposition. Let G = H, J, S, or T, Pi' i = 1, 2, ... , r+s non-
trivial prime ideals, ei:> O,.f; """0, i = 1, ... , r, then

(
r r+s)

Gk IlPfi, IIp{i ~ Gk(P~" p{l) X ... X Gk(P:', pr')·

7.22. This proposition reduces the investigation of the semigroups
Gk(U, W), U non-trivial, W arbitrary ideal of R, to considering semi-
groups Gk(pe, (0)) and Gk(pe, pi) where P is a non-trivial prime ideal,
e :> 0, r""" o. If f""" e, then Gk(P", pi) = G(O)) = Gk(pe, (0)).

7.3. By§ 6.1, H(O)) = L(Rlpe), thesubsemigroupofCk(Rlpe)consisting
of all polynomial vectors with linear polynomials as their components.
Clearly (j-(a) maps H(O)) isomorphically onto S(O)) and therefore
J( (0)) isomorphically onto T( (0)). By Th. 6.4, l( (0)) is a group consisting
of all those linear polynomial vectors whose determinant is a unit. The
semigroup H(O)), and the group J(O)) in particular, have been studied
very thoroughly in a great number of papers.

Furthermore Gk(pe, pO) = G(Rlpe) which is one of the semigroups
Ck(RIP"), (j-(a)-l Uk(RIP"), Vk(Rlpe), Uk(Rlpe). By Th. 5.94, the last
two of these semigroups will be completely investigated-if RIP is fin-
ite-as soon as the structure of Sk(P"-l, P), Tk(pe-l, P) is known while
little is known about the first two semigroups.

7.4. The remainder of this section will be devoted to the semigroups
Gk(P", pi) where G = H, J, S, or T, P is a non-trivial prime ideal, RIP
finite, and e :> 0, f :> O.
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7.41. Proposition. Let r ",;;e and -& : Ripe ->- R IP' be the unique epimor-
phism such that -&17(pe)= 'Y](r). Then G(-&)Gk(pe, pi) = Gk(r, pi) where
G(-&) = Ck(-&) ifG = H, J and 0(-&) = Vk(-&) ifG = S, T.

Proof, By Prop. 6.2, Ck(-&)Hk(pe, pi) = Ck(iJ)H('Y](pe)pl) = H('Y](p')pl) =
Hk(P', pi) whence, by ch. 3, diagram fig. 3.1, the proposition also holds
for G = S. Since 'Y](pe)pl is a nilpotent ideal of Ripe, and ker Ker 1}==
ripe, r :»: 0, is also a nilpotent ideal of Ripe, Cor 6.42 implies that

Ck({)) Jk(pe, pi) = Ck(1}) J('YJ(p')pl) = l('Y](p')pl) = Jk(r, pi)

which is also true for r = 0 since in this case, IJ,,(P', pi) I = 1. Again ch. 3,
diagram fig. 3.1 proves the proposition for G = T.

7.42. Proposition. Jk(pe, pi) and Tk(pe, pi) are groups.

Proof, Since G,,(pe, pi) = G( 'Y](pe)pl) and 'Y](p')pl is a nilpotent ideal of
Ripe, Th. 6.4 and Cor. 6.41 imply the statement of the proposition.

7.43. Proposition. Let 'Y]= 'Y](P'), a EP, a ~ 1'2, and Wr a vector system
mod P' containing the zero vector 0, for any integer r, Then every poly-
nomial vector

Ck('Y]) (bo+,~o b,(al)a('J:"'1~') (7.4)

. Iwhere bo EWe' b, E We-f(a(,J-1)' for ~ ~ 0, belongs to H,,(pe, p ), every
element of Hk(pe, pi) is of the form (7.4) and the vectors (7.4) are pair-
wise distinct: A vector (7.4) belongs to Jk(pe, pi) if and only if
Det (b~l'... , b~)~ 0 mod P.

Proof', Let f E H,,(pe, pi), then f = Ia,t where a,== 0 mod ('Y]ply(,J-1. But
Ra-s-P' = P implies 'Y]P= (RI1'e)('Y]a) whence ('Y]plr(,J-l = 'Y](Raf(0(,J-1»).

Thus, for suitable 0, ER", we have f = C,,('Y]) (00 + I 0,Calt('J-1t). Since
'>0

b == b mod pe-/(0('J-1) if and only if (al)0"('J-10 = (al)0"('J-1b mod P"
t t _ t - t .,

we conclude that f is of the form (7.4). The other two statements on
Hk(P", pi) art' clear. Furthermore, by Th. 6.4, a vector (7.4) belongs to
Jk(1'e, pi) if and only if D('Y]b61, •.. , 'Y]b6) = 17D(b6j, ... , b

6k
) is a unit of

RIP'· This is the case if and only if D(b~J' ... , b6) ~ 0 mod 1'. .
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7.44. Remark. The greatest amongst the degrees of the polynomials in
the vectors (7.4) is called the length of Hk(P', pI) and Jk(pe, pI). Thus the
length is. the greatest integer I such that e - f(l-l) >- 0, hence it is the
least integer greater than or equal to elf

7.5. Proposition. Let a EP, ci ~ p2, Z, a vector system mod r, Wr a
vector system mod P' containing the zero vector 0, for all integers r, and
X the mapping defined in § 5.6. Then the mappings

~ -+ bo+ L b,(aIr(')-l~i mod P", ~EZe' (7.5)
'>0

from Z; to (R Ipe)k where b, EWe' b, E We-I(O"(,)-l)-ek(')' t <: 0, belong to
XSk(pe, pI), every mapping of XSk(pe, pI) has the form (7.5) and the map-
pings of (7.5) are pairwise distinct. A mapping (7.5) belongs to XTk(pe, pI)
if and only if Det (b~l'.. ;, b~) ~ 0 mod P.

7.51. Remark. Prop. 5.92 is a special case of Prop. 7.5.

7.52. Lemma. If t = (iI' ... , ik) EMk and d, Epe-I(O"(,)-I)-ek(') then there
exists a polynomial u, E {pe} of the form U,= d,aI(O"(,)-l)t+ L bl.aI(O"(I.)-I)~)..

1.<,

Proof. Using the same argument as in the proof of Lemma 5.51, we may
take u, = d.aI(O"(,)-I)t,.

7.53. Proof of Prop. 7.5. We proceed along the same lines as in the proof
of Prop. 5.92., now using Lemma 7.52 and also considering Prop. 7.43.
The detailed proof is left to the reader.

7.54. Corollary. If

N = N(k, e, f) = {tE Mkl t >- 0, e-f(a(t)-l) >- O},
N =N(k, e, f) = {tEMkl t >- 0, e-f(a(t)-l)-ck(t) > O},

L = e+L(e-f(a(t)-l)ltEN), L = e+L(e-f(a(t)-I)-ck(t) ItEN)
and q\(P) as in Cor. 5.72, then. for q = IRIPI,

IHk(pe, pI) I = s'", IJ k(pe, pI) I = <Pk(p)q(L-k)k ,

ISk(pe, pI) I = qi", ITk(P', pI) I = <Pk(p)qCi-k)k .

Proof. By (7.4) and (7.5), using a simple counting argument.
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7.55. Theorem. Let RIP be finite, e >-0,/> O.Then the groups Jk(pe, pI)
and Tk(P', pI) are soluble if and only if the linear groupGL(k, RIP)
is soluble. The group Uk(RIP'), e > 1, is soluble if and only if
GL(k, RIP) and the symmetric group Sym (RIP)k are soluble.

Proof. By Prop. 7.41, there exists an epimorphism from Gk(pe, pI) to
Gk(P, pI) = Gk(P, (0)), for G = J and T. But Gk(P, (0)) is isomorphic to
the group of all polynomial vectors over RIP of the form Al; +D, IA I 7'" 0,
by § 7.3. The mapping 0 defined by o(A~+ 0) = A is obviously an epi-
morphism whose image is GL(k, RIP). Hence GL(k, RIP) is a homo-
morphic image of Gk(pe, pI) '~nder some epimorphism 1). By Cor. 7.54,
Iker Ker 1) I is some power of q whence ker Ker 1) is a p-group and there-
fore is soluble. Thus the first assertion of the theorem is true while the
second statement follows from Th. 5.94 and well-known properties of
wreath products.

7.56. Remark. From group theory we know that GL(k, RIP) is soluble
if and only if k = 1 or if k = 2 and [RIPI = 2,3 while Sym (RIPt is
soluble if and only if k = 1, IRIPI = 2,3 or k = 2, and IRIPI = 2.

7.6. By definition of the semigroups Gk(pe, pI), the mapping (f(a) maps
Hk(P', pI) onto Sk(P', pI) and Jk(pe, pI) onto Tk(pe, pI). The proof of
Lemma 5.9 shows that (Hk(pe, pI); +, -,0, 0) is an Q-multioperator
group where Q = ( 0 )-Hk(pe, pI) is, in fact, a near-ring-and Jk(pe, pI)
is a group by Th. 6.4. Hence we see that Kl = ker Ker (f(a) IHk(pe, pI)
is an ideal of Hk(pe, pI) and K2 = ker Ker (f(a) Ilk(P', pI) is a normal
subgroup of J,,(pe, pI). We are going to derive some results on KI and K2•

7.61. Lemma. Let rJ= rJ(P'), a EP, a ~ p2, and Wr a vector system
mod P' containing the zero vector 0, for every integer r. Then the polyno-
mial vectors

Ck(rJ) (Co+ L c,(aIt(')-lt,) ..
'>0

(7.61)

belong to Hk(pe, pI), every vector of Hk(pe, pi) is of the form (7.61),
and the vectors of (7.61) are pairwise distinct if Co EWe' C, E We-I(O"(,)-l)'
t >- o. A polynomial vector (7.61) belongs to Jk(pe, pI) if and only if
Det (C~l' ... , C~) ~ 0 mod P.
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g = Ck('Y))(Uo+ I upmax (e-ekC,).!(a"(,)-I))t)
O<L t

(7.62)

for some b, ERk and every to Hence we may replace c,(al)"C')-1 in (7.61)
by b,ae-ek('), for every t which satisfies e-c,/t) >- f(a(t)-l) and so we
obtain a representation for g which is of the form (7.62) but without the
condition on u, being taken in account. But ck(t) ~ e-f(a(t)-I) if and
only if f(a(l)-l) ~ e-ck(t), thus

min (Ck(t), e -f( a(t) -1)) +max (e - 10k (t),f( «(z)-1)) = e (7.64)

Hence if we replace an element u, t >- o,in (7.62) by some ii, such that
- d min (ek(,),e-/(u(,)-l)) .
u, == U, mo P , the vector g remains unchanged. Thus
g may be taken as in the theorem. Conversely, every element of (7.62) is
of the form (7.61) and therefore belongs to Hk(P", pi). Moreover such
an element belongs to Ck('I}){pe}", by ch. 3, Lemma 8.61, and therefore
to K1. That the elements (7.62) are pairwise distinct follows from (7.64).

7.63. Corollary. q(a) maps Hk(pe, pi) isomorphically onto s,,(pe, pi)
and Jk(pe, pi) isomorphically onto. Tk(pe, pi) if and only if e ~ f(q-l)
where q =: IRIPI.

Proof. By Th. 7.62, IK21= IKll, hence we see that the restriction of
q(a) to Hk(pe, pi), Jk(pe, pi), resp., is an isomorphism if and only
if IKII = 1. By Th. 7.62, this is the case if and only if min (c/c(t),
e-f(a(t)-l)) ~ 0 for every t > o. This is true if and only if ck(t) >- 0
implies e-f(a(t)-I) ~ O. Since t = (q,O, ... ,0) implies ck(i) = 1, by
ch. 3, (8.32) and also a(t) = q, we have e ~f(q-1). Conversely, since
c,,(t) >- 0 implies a(t) ~ q, e ~f(q-1) yields the implication in question.

7.64. Lemma. If (iI' ... , ik) = i, then max (e-Ck(t), f(a(t)-l)) ~ el2.

Proof. Suppose that the lemma fails to hold, then there exists some c >- 0
k

such thatf(a(t)-l) -< el2 -< 10k (z). But c/c(t) = I c(ir), and by ch. 3,
r=l

(8.32), we have c(ir) = (ir-sq(ir))/(q-1). By a well-known formula

of elementary arithmetic, SqCtl ir) ~ rtl sq(ir)' hence

rtl cUr)= ct/ - rtl Sq(ir))I(q -1) ~ cct/) = c(a(t)).

Thusf(a(t)-l) -< c(a(t)) whence a(t) ~ c(a(t)). But

c(a(t)) = (a(l)-Sq(a(t)))/(q-l) ~ a(t)-sq(a(t)) <:: a(l),

a contradiction.

Proof. Let f be a vector (7.61). By definition of t, (see ch. 3, § 8.6), we have
t, = I a'ArA whence f = C/c('Y))I oAI/ where IiA = Icp,ial),T(,)-1 =

A~t A~O t~A
bial)"(A)-I, for some bA.Hence f EHk(pe, pi). Suppose that some poly-
nomial vector (7.61) equals 0, but c;.Caf)"CA)-1 ~ 0 mod P', for some A.
We take A maximal in Mk with respect to this property, thus OA==
c;.(al)"(A)-l ~ 0 mod P", a contradiction. Hence the polynomial vectors
(7.61) are pairwise distinct. Since the number of polynomial vectors (7.61)
equals the number of polynomial vectors (7.4), by Prop. 7.43 every ele-
ment of Hk(pe, pf) is of the form (7.61). If

C/c('Y))(Co+,~o c,(al)""(,)-lt,) = Ck('Y))(bo+,~o b,(af)""(')-lr}

then this equation also holds if 'I} = 'Y)(P). .Hence c6. == b6. mod P,
J . J

j = 1, ... , k, thus D(C
6"

••• , c6) == D(b61, ••• , b6k) mod P. Prop. 7.43
implies the last statement of the proposition.

7.62. Theorem. The vectors

belong to Ks, every element of KI is of the form (7.62), and the vectors
(7.62) are pairwise distinct, if U, E W . ( ( )). The elements of

mm eke,), e-f u(,)-l
K2 are just the polynomial vectors

r+g (7.63)
where g is a vector of (7.62), and the vectors (7.63) are pairwise distinct.

Proof. Suppose we have already proved the statement on Ki, Then every
polynomial vector (7.63) belongs to q(a)-l U/c(R Ipe)nHk(pe, pi) =
Jk(r, pi) and therefore to K2. Conversely if f EK2' then f-r EKr,
thus f is a vector of (7.63). That the vectors of (7.63) are pairwise distinct
is obvious.

We now prove the first assertion: Let g EKI' then, by Lemma 7.61,
g is of the form (7.61), and g EKl implies that Co+I,> 0 c,(al),,(,)-lt,E{pe}/c.
We claim that c,(af)""(,)-l == 0 mod pe-ek('!, for every to Suppose by way
of contradiction, that l is maximal in the lexicographic order of N" with
respect to c,(af),T(,)-1 o;E 0 mod pe-ekC,).But then we have a contradiction
to Lemma 5.52. Since, by the proof of Prop. 7.43, 'l}P= (Rlpe)('I}a),
thus 'Y)pe-ek(')= (R Ipe) ('I}ae-ek(')),we have c,(af),,"C,)-1== b,ae-ek(') mod P",
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7.65. Theorem. Let!+gbe as in (7.63), then !+g -+ 9 defines a map-
ping r :K2 -+ <K1; +, -,0) and r is an isomorphism. (K1; +, -,0) is
isomorphic to the direct product of k copies of the direct product

I1 <
min (ek(')' e-f(O"(,)-l)) ) ) d .' I'C.RIP ; +, -, ° ItEMk an therefore IS an abelian

p-group.

Proof. By Th. 7.62, r : K2 -+ K1 is a bijection. Let n be the least integer
greater than or equal to e12, and h, f2 E K2. By Th. 7.62, h = !+ g1,
fz = ! + g2 where g; E K1' i = 1, 2, hence f10 f2 = ! + g2+ 91o (! + 92)' By
Th. 7.62 and Lemma 7.64, 9; = CkC'Y)an9;,i= 1,2, for some 9;ECkCR).
Thus, since 2n ~ e, Taylor's formula implies that 910 (!+9z) =
CkC'Y)(an910 (!+an9z») = Ck('Y)an91= 91. Hence hofz = !+91+g2,
therefore r(h 0 f2) = 91+ g2 = rh +rfz. This means that r is an isomor-
phism. The mapping which assigns to each 9 of (7.62) the family

{
min (ek('), e-f(O"(,)-l)) }" . . fu, mod P . I tEMk) , IS obviously an isomorphism rom

(Kl; +, -,O)to I1C(R Ipmin (ek(')' e-f(u(,)-l); +, -,O)kltEMk).

7.7. By the homomorphism theorem, Sk(P", pf) ~ HkCP', pf)IKl'
Tkcpe, pI) ~ Jk(pe, pI) I K2• We have just investigated K1 and K2' so it
is sufficient to discuss Hk(pe, pI) and Jk(pe, pI) in order to get some
information on Sk(pe, pI) and Tk(pe, pI). The near-ring Hk(P', pI) has
not been considered yet. There is something known about the group
Jk(pe, pI), in particular, for R being the ring of rational integers and
k: = 1. The farthest-reaching results for this particular case have been
obtained by KOWOL [1]. All these investigations have turned out to be
quite elaborate.

8. Characterization of permutation polynomials over finite fields

8.1. Permutation polynomials over finite fields in one indeterminate
have already been considered as early as a century ago by HERMITE.
Since then plenty of papers have been written on this topic whereas per-
mutation polynomials over finite fields in more than one indeterminate
had not been investigated until a few years ago with rather few results.
This and the subsequent section are to develop the most remarkable
aspects of the theory of permutation polynomials over a finite field K of
order q in One indeterminate x.
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8.2. The first and most fundamental problem is finding a method of
deciding in the simplest possible way whether or not a given polynomial
fE K[x] is a permutation polynomial. Basically there is always an answer,
namely by computing the values offfor all elements of K, butthis method
does not give any deeper insight into the nature of permutation poly-
nomials. In order to state and to prove a theorem due to HERMITEand
DICKSON which shall illustrate what we mean by "deeper insight", we
require the following definition: The reduction of a polynomial fEK[x]
is the (well-defined) polynomial g E K[x] such that [g] <: q and
g == fmod (xq -x). Since (xq --:x) = {O}, we conclude that g is just the
polynomial ofleast possible degree such that ag = of. We can now state

8.21. Theorem. A polynomial f over the finite field K of order q and charac-
teristic p IS a permutation polynomial if and only if

a) f has exactly one root in K,
b) The reduction of [I,° <: t <: q -1, t ~ °mod p, has a degree less

than or equal to q - 2.

The proof will depend on two lemmas which weare going to prove first.

8.22. Lemma. Let K be a finite field of order q and s E K. Then, if
o

ns = 1- L sQ-1-je, we have nss = 1 and n,( = 0, for t 7'" S.
j=q-l

o
8.23. Corollary. Let e :K -+ K be any mapping. Then e = L Cj~jwhere

j=q-l
cj =-I(Ces)sq-HlsEK), j = 1, .. ', q-1,

Co =I((es)(1-sq-1)lsEK).
o

Proof. nss = 1 - L sq-l = 1. Furthermore
j=q-1

o 0
~ns = s-sq+~-~q- L sq-l-j~j+l = s- L ssq-l-;~; =snsj=q-2 ;=q-1

whence t(nst) = s(nst). Hence ni = 0, for t 7'" s. Furthermore e =

I( (es)ns Is E K) implies the corollary.

8.24. Lemma. Let al' ... , aq be any family of elements of a finite field
K of order q. Then these elements are pairwise distinct if and only if

ita~= I 0,

-1,

for t = 1, 2, ... , q - 2

for t = q-l.

I
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Proof. By Lemma 8.22, the elements aI' ... , aq are pairwise distinct if
and only if the polynomial function

y = t (1- .I ai
q
-
l
-
j e) = .I (-.f ai

q
-
l
-
j
) e

,=1 . }=q-l }=q-1 '=1

equals the constant function with value l. Since {a} = (xq-x), this is
true if and only if the condition of the lemma is satisfied.

8.25. Proof of Th. 8.21, By Cor. 8.23, the reduction of l' IS some
o

polynomial I c.x' where cq_l = - Df(sY Is E K). If f is a per-
j=q-l

mutation polynomial, then a) holds obviously and by Lemma 8.24,
I(f(sYlsEK) = 0, t = 1, ... , q-2, whence b) follows. Conversely let
a) and b) be satisfied. Then a) implies that I(f(s)q-llsEK) = -1 while'
b) implies I(J(sYls EK) = 0, for ° <: t <: q -1, t ~ ° mod p. Since
char K = p, we have I(J(sYP I s E K) = (I(J(sY Is E K))p whence we
can drop the hypothesis t ~ ° mod p. Hence Lemma 8.24 implies thatf
is a permutation polynomial.

8.26. Corollary. If d > 1is a divisor of q -1, then there is no permutation
polynomial over K of degree d.

8.3. Next we will characterize permutation polynomials from a quite
different point of view. If K is any field and fE K[x], then
<P(f) = [f(x)-f(y)]f[x-y] is a polynomial of K[x,y] which is a unique
factorization domain. Let C be the algebraic closure of K. An irreducible
polynomial u E K[x, y] is called absolutely irreducible if u is irreducible
regarded as a polynomial of C[x, y]. This definition can be extended
in the obvious way to polynomials u of K[xl, ... , xnl. A polynomial
fEK[x] is called exceptional over K if no absolutely irreducible factor
occurs in the prime factorization of<P(f) E K!x, y].

8.31, Theorem. Let K be any field, fE K[x] exceptional over K, and
char K = 0 or char K:> [fl. Then afE PI (K) is an injective polynomial
function, thus f is a permutation polynomial if K is finite.

(Recently S. D. COHEN[1], by means of algebraic number theory, has
proved that, if K is finite, every exceptional polynomial over K-without
any restriction-vis a permutation polynomial).
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The proof of this theorem depends on some lemmas we are going to
prove first. C will denote any algebraic closure of K we keep fixed.

8.4. Every non-zero polynomial u E K[x, y] has a representation

u = POxn+PlX"-l+ ... +P; (8.41)

where Pi E K[y], i = 0, ... , n, Po 7'" 0. If Po E K, then u is called semi-
monic in x while u is called monic in xif P» =1.

Let u E K[x, y] be semimonic in x. A splitting field of u over K is a
subfield S of C which is a finite normal extension of K such that u, being
regarded as a polynomial of S[x, y], splits into absolutely irreducible
factors. A splitting field of u over K is called minimal if it is contained
in every splitting field of u over K.

8.41, Lemma. Let u.E K[x, y] be semimonic in x. Then uhas one and only
one minimal splitting field SK(U) over K.

Proof. POIU E C[x, y] has a unique decomposition into irreducible poly-
nomials, monic in x, up to the order, say

POlU = VlV2 •.• v; (8.42)

If we adjoin all the coefficients of the polynomials Vi and their conjugates
to K, we obtain some finite normal extension field S of K which is a
subfield of C. Since (8.42) also holds in S, this field is a splitting field
of u over K. If T is any splitting field of u over K, then (8.42) is also the
decomposition of POlU into irreducible polynomials, monic in x, in
T[x, y]. Thus, since T is normal over K, we have T;2 S. Hence S is a
minimal splitting field of u over K.

8.42. Let SK be a normal extension field of K and VI' V2 E SK[X, y].
VI' V2 are called conjugate over K if there is an automorphism a of SK

fixing K elementwise such that «[x, Y]Vl = V2. "Being conjugate" is
obviously an equivalence relation in SK[X, y].

8.43. Lemma. Let wE K[x,y] be monic in x and irreducible over K.
Then any two divisors of w in SKCW) that are monic in x and irreducible,
are conjugate over K.
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Proof. Let Z = {z ESK(W) Iz separable over K}, then Z is a subfield of
SK(W), Since SK(W) is a finite normal extension of K, we conclude that Z
is also a finite normal extension of K. Let

W = VIV2 .. 'Vr (8.43)

be the decomposition of W into polynomials monic in x and irreducible
over Z. If a E Gal Z IK, the Galois group of Z over K, the automorphism
cc[x, y] of Z[x, y] permutes the polynomials 'Vi' If (Gal ZIK) [x, y] =
{a[x, y] I a E Gal Z I K}, then the product of all the different elements
of the orbit of VI under (Gal Z I K) [x, y] is a divisor of w. This product is,
however a polynomial over K and monic in x, hence it equals w. Therefore
the orbit of VI consists of VI' ... , V" and the lemma holds for Z = SK(W),
If Z is a proper subfield of SKew), then Z is not a splitting field of w,
therefore, WLOG, we may assume that VI splits into at least two irreduc-
ible factors in SKew), say

VI = VllVl2 ... VIS (8.44)

where VIi is moruc III x and irreducible over SKew). Let char K = p,
and e the exponent of the extension SK( w) IK. Then vf; EZ[x, y],
for j = 1, ... , s. On the other hand, (8.44) implies that

pC _ pc pc peVI - VllVl2 ... VIs' (8.45)

Hence vi; is a divisor of vi' in Z[x, y]. Since VI is irreducible over Z
and Z[x, y] is a unique factorization domain, vi; = v~j, for some
rj,j = 1, ... , s. Hence

p·c r·"j r·vlj = vlivl2 ... VI~; (8.46)

hence, by the uniqueness of the prime factor decomposition in SK(W),
all the elements vlj are equal, therefore

VI = V~l (8.47)

is the prime factor decomposition of VI in SK(W), If a EGal Z IK such
that a[x, Y]VI = Vi and fJ is the extension of a to an automorphism of
SKeW), then (8.47) implies

Vi = [fJ[x, y]vllY (8.48)

which is the prime factor decomposition of Vi in SK(W), Substitution of
(8.48) into (8.43) yields the decomposition of w in SKew) into factors
which are monic in x and irreducible. Hence any two of these factors are
conjugate to Vll over K.
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8.5. Lemma. Let U E K[x,y] be semimonic in x, a = a(x, y) the form con-
sisting of all terms of maximal degree in the normalform ofu, a(x, 0) ~ 0,
and c EX such that the polynomial a(x, c) EK[x] has no multiple roots.
Then SK(U) is asubfield of the splittingfield ofa(x, c) over Kin C.

Proof. Let D be the splitting field of a(x, c) over Kin C, and

POIU = UIU2 ... u, (8.51)

the decomposition of POIU into polynomials monic in x and irreducible
over D. If U is a finite generating set of SK(U) over K and T is the
set of all elements of C conjugate over D to elements of U, then
L = D(T) is a finite normal extension of D containing SK(U) and is the
least extension w.r.t. being a normal extension of Din C and containing
SK(U), Clearly L is a splitting field of Uover D, hence L is also a splitting
field for every uj over D. If every uj is absolutely irreducible, then D ;;:>
SK(U), and we are done. Hence we may assume, WLOG, that Ul splits
into at least two factors in L. Let ~

UI = UllUl2 ... ulS (8.52)

be the decomposition of UI into polynomials monic in x and irreducible
over L. Since L 2 SD(UI), the elements ulj are polynomials over SD(UI),
By Lemma 8.43, there is an automorphism a of SD(UI) fixing D element-
wise such that «[x, Y]UIi = ulj. Let a1 = alex, y) and alj = alj(x, y),
j = 1, ... , s, be the forms consisting of the terms of maximal degree
in the normal form of uI' ulj, resp. Then al = alla12 ... als whence

alex, c) = all(x, c) G12(x, c) ... aIS(x, c) (8.53)

By (8.51), al divides a whence aleX, c) divides a(x, c). Since D is the split-
ting field of a(x, c) in C, a,(x, c) splits into linear factors in D and therefore
in L. By (8.53), every alj(x, c) splits into linear factors of D, thus aI/X, c) E
D[x], j = 1, ... , s. But «[x, Y]Uli = ulj implies a[x, y]ali = alj whence
a[x, y] ali(x, c) = aI/X, c). But a fixes D elementwise, therefore ali(x, c) =
alj(x, c), for all pairs (i, j). Since alex, c) divides a(x, c) which, by hypo-
thesis, has no multiple roots, aleX, c) ED. Hence aleX, y) is a multiple
of y and a(x, 0) = 0, a contradiction. Thus every uj is absolutely irredu-
cible and the proof is complete.
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8.6. Lemma. Let m >- 0 be an odd integer and a EK. Then x" -a is either
irreducible over K, or there exists 0 < d <im, dfm such that xd-b di-
vides x'" - a for some b E K.

Proof. Let m = p be a prime and xP-a =fg, j, gEK[x], fll, [g] < p.
p-l

Then xP -a = n (x-Cvc) where c is in the splitting field of x" -a,
v=o

and C" runs trough the p-th roots of unity. Hence b = f(O) = ± Cc'
where C is some p-th root of unity and 0 < r < p. Therefore (±bY =
= c" = a'. There exist integers u, v such that ur+up = 1 whence
a = a'''+vp = (± btP aVP• Therefore a is the p-th power of some element
al E K whence x-al divides x" -a. Now we use induction on m and
assume that m is not a prime, and x" - a is not irreducible. Then every
root of x'" -a is of degree less than mover K. If P is a prime dividing m,
k = mfp, and we assume that Xk- a is not irreducible, then, by induction,
xd-b divides xk-a for dlk, d< k and bEK whence xm/p-a =
(xd-b)g(x), for some g(x)EK[x]. Hence x'I'<-c = (xdp-b)g(xP),dpfm,
dp < m. Therefore we may assume that Xk -a is irreducible over K.
Let c be a root of ~-a. By the first part of the proof, xP -c is either irre-
ducible over K(c) or has some. linear factor in K(c). in the first case
e is a root of x" -G, then [K(e) :K] ~ [K(e) :K(c)] [K(c) :K]
= pk = m, but em = ck = a implies [K(e): K] < m, a contradic-
tion. Therefore x" -c has some root e E K(c). If 9C(s)denotes the norm of
s w.r.t. K(c) IK, then k odd implies that (J[(c) = (-1)" (-a) = a while,
on the other hand (J[(c) = (J[(eP) = (J[(ey. Thus a is the p-th power of
some al E K, therefore x" -a = (Xky -ai, hence x'" -a has the factor
xk-al in K[x].

8.61. Lemma. Let char K l' n, x'<:« be an irreducible polynomial in
K[x], c a root of x" -a, and suppose 1 is the only n-th root of unity in K.
Then K is the only subfield of K(c) which is normal over K.

Proof. We choose a subfieldL of K(c) maximal w.r.t. being normal over K,
and assume, by way of contradiction, that L contains K properly. If
[K(c) :L] = d, then din. Let cl' ... , Cd be the roots of the minimal
polynomial for cover L. Since every ci is a root of x"-a, we have ci = c(
where Ci is an n-th root of unity. Hence C1C2••. Cd= cdCwhere C is some
n-th root of unity, on the other hand, C1C2 .•• CdEL, thus C EK(c).
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Hence L(O is a subfield of K(c). Since L(C) is a splitting field for some
suitable polynomial over K, L(O is normal over K, and the maximality
of L implies that C EL. Therefore CdEL. Let n = md, and x" - a = fg.
Then x" - a = f(xd) g(xd) whence x" -a is also irreducible over K with Cd
as a root. Therefore [K(cd) : K] = m = [L: K]. Since K(cd) ~ L, we have
L == K(cel

). Since L is normal over K, the polynomial x" -a splits into
linear factors in L[x], thus L contains every m-th root of unity. Let pbe
the least prime dividing m and B a primitive p-th root of unity. Then
eEL and [K(e):K] divides m. Hence [K(e):K] = I or [K(e):K],,",p.
But [K(e) :KJf(p -1) whence eE K, and char K 'J". P implies 13 'J". 1.
This is a contradiction since 13 is also an l7-th root of unity.

8.62. Lemma. Let char K l' n and suppose 1 is the only n-th root of unity
in K. Ifa E K, then there is some root c E C of x''<:« such that K(c)n
K(O = K, for every root of unity C E C.

Proof. If n were even, then char K would be odd and -1 EK would be
an n-th root of unity different from 1. Thus n is odd. Let d be the least
divisor of n such that x"-a has some divisor xd-b E K[x], then Lemma.
8.6. implies that xd-b is irreducible in K[x]. Let c. be a root of xd-b.
Since K contains no d-th root of unity apart from 1, Lemma 8.61 implies
that Kis the only subfield of K(c) which is normal over K. If C Eeis a
root of unity, then K(C) is a normal, separable, abelian extension of K,
thus K(c)nK(C) is normal over K since GalK(C)IK is abelian. Hence
K(c)nK(C) = K.

8.7. Lemma. Let fE K[x] be exceptional over K and a, bE K, a 'J". b,
f(a) = f(b). Thenf'(a) = f'(b) = O.

Proof. Let <P(f) = rp(x, y) as in § 8.3, then rp(a,b) = O. Since rp(x,y) is
semimonic in x, this polynomial is the product of an element of K and
factors that are monic in x and irreducible in K[x, y]. Sincefis exceptional
none of these factors is absolutely irreducible, therefore each such factor g
splits into at least two absolutely irreducible factors in SK( rp), thus g
splits into these factors in SK(g). By Lemma 8.43, these factors are con-
jugate over K. Hence there are at least two factors ips, rp2 amongst
the irreducible factors of rp in SK(rp)and therefore also amongstthe irre-
ducible factors of u=f(x)-f(y) in SK(rp) such that rpl(a,b)=
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= rp2(a,b) = O. We conclude that f'(a) = (ou) /(ox)(a, b) = 0 and f'(b) =
-(ou)/(oy) (a, b) = O.

8.71.Lemma. LetfEK[x] be exceptional over K andf = a"x"+an_Ix,,-I+
+ ... + a.x", char K l' r, r::» 1, a, "'" O. Then 1 is the only r-tli root of
unity in K.

Proof. Let
([J(f) = a"uIu2· . . . ut (8.71)

be. the decomposition of cfJ(f) = rp into polynomials which are monic
in x and irreducible over K, and W = w(x, y), Wj = wix, y), j = 1, ... , t,
the forms consisting of the terms of minimal degrees in the normal forms
of rp,v» resp. Then

W = anwIw2 ... Wt. (8.72)
On the other hand,

W = ar(xr- y')/(x-y) = arIl(x~~iY) (8.73)

where t, runs through all the roots of (x' -:-1)/(x~ 1) in C. Suppose there
is an r-th root ~ ¢ 1 of unity in K. Then Z is one of the elementsZ,
whence x-~ydivides w. By (8.72), x-~y divides some Wi' WLOG,
we may assume x-~y divides WI. Since fis exceptional, the polynomial
UI splits into k >- 1 polynomials, monic in x and absolutely irreducible
in SK(rp), thus ul also splits into these factors in SK(UI), Then Lemma
8.43 implies that these polynomials are conjugate over K. Let vi' ... , vk

be the forms consisting of the terms of minimal degree of these polyno-
mials, then these Vj are also conjugate over K, and

WI = VIV2 ••• vk• (8.74)

Since x-~y divides w1,one of the polynomials Vj is divisible by x-~y.
But~ EK and the polynomials Vj are conjugate, hence x-~y divides
every VI' Therefore W has a multiple linear factor. But since char K l' r,
this contradicts (8.73).

8.72. Lemma. Let f+ K[x] be exceptional over K of degree n, char K l' n,
~ a primitive n-th root of unity in C, and L <;;. C a finite extension of K
such that Ln K(C) = K. Then f is also exceptional over L.
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Proof. Suppose f is not exceptional over L, then the polynomial cfJ(f) = rp
has some factor g EL[x, y] which is monic in x and absolutely irreduc-
ible, hence g is an irreducible divisor of rpin SK (rp). If a = a(x, y) is the
form consisting of the terms of maximal degree in the normal form of rp,
then a = an(xn _yn)/(x_y) whence a(x, 0) ¢ 0 and a(x, 1) has no mul-
tiple roots. By Lemma 8.5, Sx(rp) is a subfield of K(~). Hence the coeffi-
cients of g are contained in LnK(C) = K, and rpis not exceptional over
K, contradiction.

8.73. Proof of Th.8.31. Let IE K[x] be exceptional over K of degree n,
char K = 0 or char K >- n, and L an extension field of K in C which is
maximal w.r.t. f being exceptional over L. The existence of such a field
L follows from ZORN'S Lemma. If afEP1(L) is injective, afEP1(K) is
injective a fortiori, hence we can assume that f is not exceptional over
any proper finite extension field of K in C. Suppose now thataf EPI (K)
is not injective. Then there exist a, bE K such that a"", b, f(a) = f(b).
Let g =f((b-a)x+a)-f(a). Then if 0 ¢ dEK, the polynomial h = dg
is exceptional over K, but not exceptional over any proper finite extension
field of K in C, and h(O) = h(l) = O. Let

hex) = anXn+an_Ixn-l+

h(x+l) = bnxn+bn_Ix"-'-l+

+a.x', a; "'"0,

+bsxS
, b, "'"O.

For a suitable choice of d, we have b, = 1. Sinceh(O) = h(!) = 0 implies
h'(O) = h'{l) = 0, by Lemma 8.7, we have r >- 1 and s >- 1, and by
hypothesis, r, s are not divisible by char K. Hence Lemma 8.71 shows
that K contains no r-th and no s-th root of unity except 1. Let t be a
primitive n-th root of unity in C. By Lemma 8.62, there exists some
root c of xr -ar such that K(c)nK(C) = K. By Lemma 8.72, f is also
exceptional over K(c) whencec EK. Similarly, there exists some root
d of XS-c in K. Therefore xrs-ar has the root din K We put cfJ(h)=
rp(x, y), then h(x)-h(y}= (x-y)rp(x, y) whence h(xs)-h(yr+l) =
(XS_yr -1) rp(XS,yr + 1).Letp(x, y)be the form consisting of the terms
of minimal degree in the normal form of rp(XS

, yr + 1),then

arxrs-yrs = -p(x, y). (8.75)

Hence -p(x/d, 1) = xrs-l = q. Sincechar K l' rs, 1 is a simple root of
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q. Let
rp = anU1U2 ... Uk (8.76)

be the decomposition into polynomials which are monic in x and irre-
ducible over K. Then

rp(XS
, yr + 1) = anu1(x', yr + 1) ... uk(XS

, yr+ 1),

thus p(x, y) is the product of the forms consisting of the terms of minimal
degree of the polynomials u/x', yr + 1). Since h is exceptional over K,
every uj splits into at least two irreducible factors in SK(rp) which are
conjugate over K, by Lemma 8.43. Hence also every uix', yr + 1) splits
into at least two factors which are conjugate over K, and so do the forms
consisting of the terms of minimal degree in u/xs

, yr+ 1). Hence also
p(x, y) splits in SK(rp) such that there is at least one other factor to each
factor which is conjugate. Thus q =-p(x/d, 1) splits in the same way in
SK( rp).Therefore every root of q in K is amultiple root which is a contra-
diction since 1 is a simple root of q.

8.8. Under what conditions does the converse of Th. 8.31 hold? That
means we want to know under what conditions on K and f E K[x] it is
true that af injective implies that j is exceptional over K.

8.81. Theorem. There exists a sequence Cl, C2, ... of integers such that
for any finite field K of order q >- cn and (n, char K) = 1 the following
statement is true: If fE K[x] is a permutation polynomial and [f] =
n >- 1, then f is exceptional over K.

Proof. We require a lemma for the proof of the theorem.

8.82. Lemma. There exists a monotonically increasing sequence C1, C2,
C3, ... of positive integers with the following property: If K is any finite
field such that I K I >- Cd' then, for every absolutely irreducible polynomial
p E K[x, y] of degree d which is not of the form a(y -x), the equation
p(x, y) = 0 has a solution (x, y) in K such that y ~ x.

Proof. We put Co = 0 and construct the sequence co, C1,C2, ... recursively:
We choose Cdsuch that Cd>-Cd_1andq-(d-l) (d-2) y(q) -ked) >- 2d+2,
for every q >- Cd' where ked) is the constant of ch. 6, Th. 9.41. This is a
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sequence we require. In order to show this we argue as follows. Let
IK I = q >- Cd' and P EK[x, y] an absolutely irreducible polynomial of
degree dwhich is not of the form a(y-x). Then zdp(X/Z, y/z) = u(x, y, z)
is an absolutely irreducible form of degree d of K[x, y, z] since u(x, y, z) =
= glg2 implies p(x, y) = gl(X, y, 1) g2(X, y, 1) whence one of the g;(x, y, 1)
would be a constant, thus gi = bz' arid gi itself is a constant. By ch. 6, Th.
9.41, if n is the number of non-equivalent solutions in K of u(x, y, z) = 0,
then n ~ q-·(d-l)(d-2) y(q)-k(d), thus n ~ 2d+3. The number
of non-equivalent solutions inK, where z = 0, is at most d+ 2, and the
number of non-equivalent solutions where z ~ 0 and y = x equals the
number of different solutions' in x of u(x, x, 1) == p(x, x) = O. Since
p(x, y) is irreducible and not of the form a(y-x), p(x, y) is not divisible
by y-x,hencep(x, x) EK[x] is not the zero polynomial whencep(x, x) = 0
has at most d solutions in K. Hence there is at least one solution
of u(x, y, z) = 0 such that z ~ 0 and x ~ y, therefore p(x, y) = 0 has
a solution in K as stated in the lemma.

8.83. Proof of Th. 8.81. LetfE K[x] be a permutation polynomial such
that the hypothesis of the theorem is satisfied for the coristant c; of
Lemma 8.82. If rp = cJJ(f) E K[x, y], then the equation rp(x, y) = 0 has
no solution (x, y) in K such that y ~ x. Let rp= anPl ... P, be the decom-
position of rpinto polynomials which are monic in x and irreducible over
K. Suppose, by way of contradiction, that f is not exceptional, then,
WLOG, PI is absolutely irreducible. We put [PI] = d. If PI = a(y-x),
then f(x)-f(y)= (X_y)2g(X,y), for some g(x,y)EK[x,y], hence
f'(y) = 2(x-y)g(x, Y)_(X-y)2 (og(x, y)/oy), thus ['(x) = 0, a contra-
diction since (n, char K) = 1. Therefore PI is not ·of the form a(y-x),
and IK/ >- cn >- Cd' Hence Pl(X, y) = 0 has a solution in K such that
y ~ x and so has rp(x, y) = 0, by Lemma 8.82, a contradiction.

8.84. Remark. The hypothesis (n, char K) = 1 is indispensable, for xP

is a permutation polynomial if char K = p, but x" - yP = (x - y)P shows
that x" is not exceptional over K.

8.85. Lemma. Let fE K[x] be exceptional over K of degree n >- 1 and
char K l' n. Then K contains no n-th root of unity except 1.

Proof. We proceed almost in the same way as in the proof of Lemma 8.71,
but replace "form consisting of the terms of minimal degree" by "form
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consisting of the terms of maximal degree". The details of the proof are
left to the reader.

8.86. Theorem. If n >- 1 is an integer and K.is a finite field of order q
such that (q, n) =1, (q-l, n) >- l,and q :> cn' then there is no permuta-
tion polynomial of degree n in K[x].

Proof. Let C be any generator of the multiplicative group of K, then if
(q-l, n) = d > 1, we see that Cq-1/d is an n-th root of unity different
from 1. By Lemma 8.85, there is no exceptional polynomial of degree
n in K[x].By Th, 8.81, there is no permutation polynomial of degree n in
K[x].

8.87. Corollary. Let n >- ° be even and K a finite field of order q such that
(q, n) = 1 and q :> c.: Then there is no permutation polynomial of degree
n in K[x].

Proof. Clear.

8.88. Remark. The hypothesis (q -1, n) >- 1 is indispensable, for if
(q-l, n) = 1, then x"is a permutation polynomialinK[x].

8.89. Remark. CARLITZhas conjectured that, for any even numbern >- 0,
there exists a constant b; such that, for any finite field K of odd order
q >- b

n
, there is no permutation polynomial of degree n in K. Cor. 8.87

shows that this conjecture is true for n = 2m
. In all the other cases, the

conjecture has been verified only for n = 6 (DICKSON[2]) and n = 10
(HAYES [1]) so far.

8.9. Th. 8.31 and Th. 8.81 together show: For every n>- 1, there is a
constant In such that, for any finite field K such that char K >- In' a poly-
nomial fE K[x] of degree n is a permutation polynomial if and only
iffis exceptional over K. We may take I" == max (clI, n).

8.91. Remark. Th 8.86 and Cor. 8.87 tell us something about the non-
existence of permutation polynomials of given degree n in certain finite
fields which is ultimately a consequence of the Riemann hypothesis for
algebraic function fields over finite fields. This hypothesis, however, has
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also some consequences for the existence of certain permutation poly-
nomials over certain fields, such as

8.92. Theorem. Lete :> 1 be any integer. Then there exists some constant
me such that, in any finite field of order q; q' == 1mod e, q >- me' there is an
elementa ~ ° with the property: Every polynomial f = xC(X(q-l)/e+a)\
(c, q-l) = 1, k ~ 1, is a permutation polynomial.

Proof. Let K be a finite field of 'order q and q == 1 mod e. Let wE K be
of multiplicative order e and

w-WS wS-ly; = 1+--1 x",w- w-
s = 2, 3, ... , e -1, (8.91)

a systein of equations in the unknowns x, Y2' ... , Ye-I' (8.91) satisfies
the conditions of ch. 6, Th. 9.42. sincew-ws ~ 0, wS-l ¥- 0,
and (w-WS jw .; l)(wl"':'ljw-l) = (w-wl jw-l)(wS -1 jw-l) implies
w(WI~ WS)= WI- WSwhence W= 1 or Wi= wS

, thus t = s. Hence ch. 6,
Th. 9.42 implies that, for q >- C, where C is some positive constant, the
number n of solutions of(8.91)in K satisfies n ~ q12. But the number of
those solutions of (8.91) for which x" = ° or 1, or W; or (wS-wjwS-l)
is at most (e+ l)eC

-
z. Hence ifq> me' for some suitable constant me'

the system (8.91) has always a solution x, Y2' ... , Ye-l such that x' is
different from 0, 1, w, and (wS-wlwS-l); s = 2,3, ... , e-1. Let us
choose such a solution x, Y2' ... , Ye-l and put a == (xe-wlt-xe) ~ O.
Then, for 2"", s "'"e-l, we have

xe_w (l_w)xe+ wS-w (l_w)ye
wS+a=ws+-

1
--= . 1 =-~I--s=y~(l+a).._xe =x" _xe

Since w +a ~ 0,1"", S "'" e, we obtain

(ws+a)(q-l)/e = (l+a)(q-l)/e, 1 ""'s"",e. (8.92)

Let fbe as in the theorem and suppose that for u, v E K,j(u) = f(v).
Thenf(u)(q-l)/e = f(v)<q-l)/e whence

uc(q-ll/e(u(q-l)/e+a)k(q-l)/e = vc(q-i)le(v(q-l)/e+a)k(q-l)/e . (8.93)

If u or v equals zero, then also v or u, resp., equals zero, otherwise
WS +a = 0, for some s. If both u and v are different from zero, then
u(q-I)/e and v(q-l)/e are e-th roots of unity, hence u(q-l)/e = wr
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Then (8.92) implies
wrc(l +a)k(q-1)fe = wlC(1 +a)k(q-1).e . (8.95)

Proof. The first assertion has just been proved above. If V is a subsemi-
group of T and V1 = vns1is not empty, then VIis also a subsemigroup
of T. We have to show that, for any functiona EP1(K), there is a regular
polynomialvg EK[x] such that cg = n. Let fE S such that of = it;

Since ker Ker IJ = (xq-x), we have ck = si, for any k = f+h(xq-x).
Since k' =/,-h mod kerKer o, and K is polynomially complete,
k EK[x] is regular, for some suitable h EK[x].

and V(q-1)fe = wt, for some rand t.. Hence (8.93) can be written as

wrc(wr +a)k(q-1)fe = wIC(wl+at(Q-1)fe. (8.94)

Since a ,c" -1, we have wrc = wlC whence wr = WI since (c, q-I) = 1.
Therefore u(q-llie = v(q-1)!e. But feu) = f(v) implies uC(U(Q-1)fe+a/ =

vC(v(Q-1)le+a)k. Since wS+ a ,c 0, for alls, we have UC = VC and there-
fore u = v since (c, q-l) == 1. We conclude that f is a permutation
polynomial.

9. Semigroups of permutation" polynomials and groups of polynomial
permutations over finite fields

9.1. Let K be a finite field of order q and (K[x]; 0 ) = S the semigroup
of polynomials over K with polynomial composition 0 as operation as
in §1.2. A polynomialfE K[x] is called regular if rea) ,c 0, for all
a E K.

9.14. Remark. The importance of regular permutation polynomials stems
from the fact that if Q is a primary ideal of the ring R with associated
prime ideal P such that R IQls finite and Q ,c P, then fE R[x] is a per-
mutation polynomial mod Q if and only if rJ(P)(x)f is a regular per-
mutation polynomial of the finite field RIP, by Prop. 4.31.

9.2. We are now going to consider some special classes of semigroups
of permutation polynomials as recently investigated in various pa-
pers (e.g. WELLS [1]). Throughout this subsection, K will denote a
finite field of order q, Q the multiplicative group of K, A the subgroup
of Q of order m, and Bj> j = 1,2, ... , (q-I)/m = k the cosets of
A. In each Bj' we select an element bj.

9.11. Lemma. The set S1 of all regular polynomials of K[x] is a subsemi-
group of the semigroup S.

Proof. The chain rule implies (fog), = (f'og)g' whence j,gES1
implies fog E S1, and S1 is not empty since x E S1.

9.21. Lemma. The polynomial

(
k-1 )Pj = -m I bY-/)mxlm
1=0

(9.21)

9.12. By ch. 3, § 11.45, the subset T of S consisting of all permutation poly-
nomials over K is a subsemigroup of S. If V is any subsemigroup of T,
then aU is a subsemigroup of o'I' = V1CK) = Sym K, the latter equality
holds since K is polynomially complete by ch. 1, Th. 12.21. Hence «U
is a subgroup of Sym K. Conversely if W is a subgroup of Sym K, then
clearly a-1W is a subsemigroup of T.

is the unique polynomial in K[x] such that [pJ -< q, p/O) = -m, p/y) = 1
for y E Bj' and p;Cy) = ° otherwise.

9.13. Lemma. The canonical epimorphism a:K[x] -+ P1CK) induces
a mapping from the set of all semigroups of permutation polynomials onto
the set of all subgroups of Sym K. Furthermore a also induces a surjective
mapping from the set of all semigroups of regular permutation polynomials
to the set of all subgroups of Sym K.

Proof. Since {O}= Cxq - x), there is at most one such polynomial.
Furthermore p;(0) = -mby-1 = -m.If y EBj' then y = b.a, a EA,
hence r" = bj" whence B, is just the set of solutions of x" = b7 in K.
Hence p/Y) = +mkb'[" = ~(q-l) = 1, for y EBj. Moreover (9.21)
implies

(
k-1 )

XXn'pj = -mx bj" I W-I)mxtm+bj"(xQ-1-I) ,
1=0

hencexxmpj = xbj"pj mod {O}.Therefore zuj-) = Oify ,c Oandy~Bj.
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9.22. Lemma. Let G be a groupo! permutations of A, H a group of per-
mutations of the set B = {bl, ... , bk}, and U the set of all polynomials
fE K[x] of the form

k

f = I (ebt) ItCb";lx}Pt
t=1

(9.22)

where e E H and It' t = 1, ... , k, is a polynomial of K[x] such that
{ceO) = ° and lly) = Tty, for all yEA, T, E G. Then every polynomial
of U is a permutation.polynomial, and aU is a subgroup ofSym K isomor-
phic to the wreath product of G by H.

Proof. Clearly f(O) = 0, and if a E A, then, by Lemma 9.21, f(bia) =
(ebJ (Tia). Hence f is a permutation polynomial. If z: B X A ~ Q is
defined by X(bi, a) = ba, then X is a bijection and x-leaf) x(bi, a) =
(ebi' Tia). Thus x-l(ajh is an element of the wreath product W of
G by H. Clearly of ~ x-l(af)x is a bijection from aU to Wand the
inverse of this bijection is an isomorphism from W to all,

9.23. Theorem. Let m be a divisor of q -1, k = (q -1)jm, A the subgroup
of Q of order m and B = {bl' ... , bd a system of representatives for the
cosets s, of A. Then:

a) The set Ul of all permutation polynomials of the form xg(x"') where
g E K[x] is a subsemigroup of T and all-; is isomorphic to the wreath
product of the regular representation Zm of A by the symmetric group
SymB ofB.

b) The set U2 of all permutation polynomials of theform xg(xm)k is a
subsemigroup of U1, and aU2 is isomorphic to the direct product of k
copies of z.;

c) The set U3 of all permutation polynomials of the form xrg(x"') where
r >- 0, is a subsemigroup ofT, and ctl« is a group extension of all , by the
group of prime residue classes mod m.

Proof. a) U1 is obviously a subsemigroup of T. In Lemma 9.22; set
G = Zm and H = SymB. Then It = a,x+gt' where at E A and gt E K[x]
such that gb) = 0, for y E {O}UA. Hence U consists of all polynomials

k k

f = I (eb,) a,b;-lXPt+ I (eb,) g,(b;-lX) PI'
t=l 1=1

hence aU = aV where V ~ U is the set of all polynomials
k

h = I (eb,)atb;-lxp,.
'=1

(9.23)
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Every polynomial (9.23) is a permutation polynomial of the form
k

h = x I C,p" Ct E Q .
1=1

(9.24)

k

Conversely such a polynomial (9.24) canbe written as h = I c,b,b;-lXPt.
'=1 .

Since h maps Bj = bjA onto cjbjA by Lemma 9.21, the Sb/s form a full
set of representatives for the cosets B, whence cb, = (eb,)a" for every t,
where e is a permutation of B,. Hence V is the set of all permutation
polynomials of the form (9.24). 'By (9.21), every such permutation polyno-
mial belongs to U1whence aV,~ aU1, and if conversely f = xg(xm

) E U1,
then f(bja) = bjag(bj"), for every a E A, whence

af = al x tt1 g(b;lI)pl

Hence aUl ~ aV, and we conclude that aUl = aU. Lemma 9.22 com-
pletes the proof of part a).

b) U2 is obviously a subsemigroup of Ul. Let x : aUl ~ W, where W
is the wreath product of Zm by Sym B, be an isomorphism and A
the epimorphism which maps every element of W onto the corre-
sponding permutation of Sym B. We put L = ker Ker AX. The proof of
Lemma 9.22 shows that if h is of the form (9.23) then ah E L if and only
if e is the identical permutation. Since aUl = aV, we have L = oR where

R = {X,t1 a,Ptl a,EA} = {X,tl d,kp,1 dt ~ +
Since

a[x It 1d~Ptl = a [X(tl dtpYl

we have L = aRl where R1 is the set of all permutation polynomials of

. the form X(t1 dIP,) k , and every such permutation polynomial belongs

to U2. Conversely if f = xg(xm)k E U2, then f(bja) = bjag(bj")k implies

oi= a[ X(t1 g(b)")Pt)"l Hence aU2 = L which proves b).

c) U3 is obviously a subsemigroup of T. If f = xrg(xlll) E U3, and
(r, m)= d > 1, then there exists 1 ~ z E Ksuch that Zd = 1 whence
z" = z" = 1 and fez) == f(1). Hence (r, m) = 1. Ifxrg(x/1/), xSh(x"') E U3

. and axrg(xm) = (fxSh(xm), then, for all a E A, we have arg(1) = aSh(l).
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Since g(1) ¥- 0, a:' = 1, for all a EA, whence r == s mod in: Therefore
we can define a mapping 1J:aU3 ~ group of prime residues modm by
1Ja(xrg(xll1»)= r mod m, which is obviously a homomorphism. Let
(r, m) = 1, n = IT(primes pi jJ l' m and plq-l). If b >- 0 is a solution
of b == r mod m, b == 1 mod n, then (b, q ~ 1) = 1 whence xb EU3 and
1J(axb) = r mod m. Hence 1Jis an epimorphism whose kernel is just aU1.

9.3. Proposition. a) The set L of all linear polynomials of K[x] is a subsemi-
group of S which is even a group. Every polynomial of L is a regular per-
mutation polynomial.

b) L is isomorphic to the semidirect product of the additive group A of K
by the multiplicative group Q of K The canonical epimorphism a: K[x] -+

PI (K) maps L injectively into Pi (K), hence aL ~ L.

Proof. Obvious.

9.31. A permutation polynomial of the form x" is called a power permu-
tation polynomial.

9.32. Proposition. Let K be afinite field of order q and Z the ring of rational
integers. Then

a) N = {xnE K[x] In"'" I} is a commutative subsemigroup of S. A poly-
nomial of N is a permutation polynomial if and only if (n, q-l) = 1
and is regular ~fand only !f n = 1.

b) Let P be the semigroup of permutation polynomials of N. Then aN is
isomorphic to the multiplicative semigroup of ZI(q-l) and aP ~
t(Z I(q -1»). Hence laP I = ({J(q-l) where ip denotes the Euler tp-function.

Proof. Obvious.

9.4. Lemma. Let Z be the ring of rational integers, yl, Y2 indeterminates

and k >- 0 an integer. Then (k/(k-t)) (k~t) is an integer, for 0,.;;; t -< k(2

and t E Z, and

k k [k/2] k (k-t) 1 k-21
Yl +Y2 = I k- t (-)I1Y2) (Yl+Y2)

1=0 t
(9.41)

holds in Z[yl, Y2] where [k(2] denotes the greatest integer t ,.;;;k(2.

§9 SEMIGROVPS OF PERMUTATION POLYNOMIALS AND GROUPS 209

Proof. This is an immediate consequence of Waring's formula (ch. 6,
§,9.2).

9.41. Let R be a commutative ring with identity. A polynomial gk =
gk(a, x) over R of the form

[k/2] k (k )_ " =t (_ )1 k-21gk - L., -- a x
1=0 k-t t

(9.42)

where k ~ 1 is an integer and a E R, is called a Dickson polynomial
over R.

9.42. Remark. Dickson polynomials are closely related to Cebyshev
polynomials of the first kind: If we substitute Yl = eiip,Y2 = e-i<p in
(9.41), then 2 cos kxp = gil, 2 cos ({J) whence, iftk denotes the k-th
Cebyshev polynomial,. 2tk(c6s ({J)= gk(1, 2 cos ((J),i.e. gk(1, 2x) = 2tk(x).
If R = K is a field and char K ;c 2, a ¥- 0, and y'(a) is a square root of
a in an extension field of K, and if the image of any polynomial f EZ[x]
under the extension of the epimorphism from Z to the prime field of K
to a homomorphism from Z[x] to K[x] which fixes x is again denoted
by J, then

[k/2] k (k-t) , '
2tk(x(2 y'a) = gk(I, x(y'a) = I k- (-1)' (x(y'at-21

1=0 t t
= (1(y'a)kgk(a, x)

hence
gk(a, x) = 2(y'at tk(x(2 y'a). (9.43)

Since gk(O, x) = x", we will consider only Dickson polynomials gk(a, x)
where a"", O.

9.43. Theorem. if K is a finite field of order q and characteristic p and
o "'"a EK, then a Dickson polynomial gk(a, x) E K[x] is a permutation
polynomial of K if and only if (k, qL 1) = 1, and gk(a, x) is a regular
permutation polynomial of K if and only if (k,p(q2-1») = 1.

Proof. Let z ¥- 0 be any element of an arbitrary extension field of K,
then the substitution Yl = Z, Y2 = a(z in (9.41) yields

gk(a, z+(a(z») = ~+(a(:tt. (9.44)
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Each of the q quadratic equations in K,

x2-rx+a = 0, rEK, (9.45)

has two solutions (which may possibly coincide) in some extension
field H of K of order q2. Let M(a) be the subset of H consisting of all
those elements of H which are solutions of an equation (9.45). IfO '" u E K,
then u+ (a/u)== rwhence uEM(a). Suppose uEM(a)----K and x2-rx+a=0
is an equation (9.45) which is satisfied by u. Since {}z = zq defines an auto-
morphism {}E Gal HI K, also uq is a solution of this equation. Hence
uq+1 = a. Conversely if u E Hand UQ+l= a, then u+(a(u) = u+u

q
= r E K

whence u E M(a). Therefore
M(a) = {u E HI uq-1 = 1 or UQ+l = a}. (9.46)

Suppose now that (k, q2-1) = 1, and gk(a, s) = gk(a, t), for some
elements s, t E 1(. Let u, v E H such that u+ (alu) = sand v+ (alv) == t,
then (9.44) implies uk+(a/ut = vk+(a/v)k whence uk = v

k
or Uk = (a/v)k.

Therefore u = v or u = alo, thus s = t, and g/c is a permutation poly-

nomial.
Now suppose that (k, q2 -1) = d ::> 1. Ifd is even, then q is odd and k

is even whence gk(a, x) contains only even powers of x, by (9.42). If° '" c E K, then c = -c, but gk(a, c) = gk(a, ~c), hence gk is not a
permutation polynomial. If d is odd, then there exists an odd prime p
such that pld, hence plk and pl(q-l), or p/k and p/(q+ 1). In the first
case, there are p elements v EK with vP = 1, and these elements also
satisfy vk = 1 whence gk(a, v+a/v) = l+ak, for all these elements v,
but VI + a/vI = V2+ a/v2 implies VI = V2 or VI = a/v2, hence there are at
least two different elements Wi = vi+ a/Vi' i = 1, 2, in K such that
gk(a, WI) = gk(a, W2). In the second case there are p elements V E H
such that vP = 1 and therefore also vq+1 = 1. If t is a solution of UQ+l= a,
then {tv I vq+1 = I} is the set of all solutions of uq+1 = a, hence there
are p elements u such that UQ+l = a which have equal p-th powers and
therefore also equal k-th powers. Again by (9.44), we conclude that
g/c(a, w) = gk(a, WI) for two different elements w, WI E K. So in either
case.g, is not a permutation polynomial.

Let z be an indeterminate and K(z) the field of rational functions in z
over x. Since K(z) is an extension field of K, (9.44) also holds for z EK(z).
We differentiate (9.44) and obtain

g~(a,z+(a/z)) (1-(a/z2)) = kzk-l_k(ak/ik+1),
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hence
(Z2)k_ak . k k-l .. k

g~(a, z+(a(z)) = k k-l( 2 = k-l- I (Z2)k-l-la1 = k"':'l h(z)
z z -a) z j=O z

(9.47)

where h(z) E K[z]. Hencezk-lg~(a, z+(a/z)) = kh(z), thus (9.47) holds
for every z ",0 of an arbitrary extension field of K. Let gk be a regular
permutation polynomial, then (k, q2-1) = 1. If s E K, then let u E H
such that u+ (a/u) = s. Then. (9.47) implies g~(a, s) = (k/uk-1) h(u)
whence (k, p(q2-1)) = 1. Conversely if (k, p(q2-1)) = 1, then gk is a
permutation polynomial of K.. Suppose there is some s E K such that
g~(a, s) = 0, then, for u+ (a(u) = s, we have h(u) = o. Hence (u2~a) h(u)

k-l
= (u2l-ak = .0, therefore u2 = a. But then h(u) = I ak-1 =

j=O
kak-1 = 0, a contradiction since p l' k. Hence gk is a regular permutation
polynomial.

.' .. . (k/2] (k - t)
9.5. For an arbitrary b E K, (9042) implies gk(ab2, x) = I (klk - t)

1=0 t
.( -aY bkb-(k-2/)Xk-21 = bkgk(a, (l/b)x). Hence, if char K = 2, then
every polynomial gk(a, x) E K[x], a .,c 0, can be obtained from compo-
sition of gk(l, x) by linear polynomials ux E K[x], and if char K.,c 2,
composition of either gk(l, x) or gk(U, x), u being a fixed non-square of K,
by linear polynomials ux E K[x]. In the second case, .we can also obtain
every gk(a, x) E K[x], a", 0, from composition of gk(1, x) by linear poly- .
nomials ux E H[x] where H is an extension field of K of order q2. Thus,
in a certain sense, all the Dickson polynomials gk(a, x), a '" 0, can be
"reduced "to the Dickson polynomial gk(l, x) = hk(x). We will therefore
restrict ourselves to this particulartype for the remainder of this section.

If K is the field of rationals, then (9.43) shows that gk(l, x) =
= 2tk(x/2)=g/c where gk is the polynomial which has been introduced
in §3.3. Hence, for an arbitrary field K, the set V={gk(l,x)lk~l}
is just the P-chain over K of Cebyshev polynomials of § 3.32, which
proves

9.51. Proposition. The set V = {hl/ = gl/(l, x)1 n ~ 1} is a commutative
subsemigroup of S which is isomorphic to the multiplicative semigroup Iof
positive integers.

9.52. Proposition. Let K be any finite field of order q and characteristic p,
W the semigroup consisting of the permutation polynomials of V, Wi. the
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semigroup of all regular permutation polynomials of V, and v = q2-1,
for p = 2, v = (q2-1)(2, for p ;;t 2. If C(l) denotes the subgroup of
. t(ZI(v)) generated by {lmod v, -1 mod v, q mod v, -q mod v} which
is of order 2, for q "'"3, and of order 4 otherwise, then aV is isomorphic to
the factor semigroup of the multiplicative semigroup of Z I (v) mod C(1),
and aW = aWl is isomorphic to the factor group of t(ZI(v)) mod C(1).

Proof. f)k = ahkdefines an epimorphism f): I -+ aVo The kernel Ker f) of
f) is a congruence on I. Let C(l) be the congruence class of I E I under
Ker f). Then k: E C(l) if and only if l}k = f)1 which is equivalent to
hk(s) = hls), for every s E K. If M(l) is defined as in the proof of Th.
9.43, then (9.44) shows that hk(s) = hls), for every s E K, is equivalent to
Uk+(1(Uk) = ul+(I(ul), for every uEM(1). This is true if and only if
Uk = ul or uk = 1(ul, for every uEM(1). Let w be agenerator of'the
multiplicative group of H, then (9.46) implies

M(l) = {ulu = w"'(Q+1) or u = W"(q-l)}. (9.5)

Hence uk= ul or u" = 1(ul for every u E M(1) if and only if w"(q+1)=
Wl(q+l)or W"(q+l) ~ W-f(q+l) and W"(q-l) = Wf(q-l) or Wk(q-l) = W-f(q-l).

Therefore k E C(l) if and only if k is a solution of one of the following
four systems of congruences:

k == I mod q-l
k == I mod q+1

k == -/mod q-l
k == l mod q+1

k == I mod q-I
k: == -I mod q+1

k == -/ modq-1
k == -I mod q+1

If v is defined as in the proposition, a straightforward computation
shows that the solutions k are the positive ones among the integers
1+ tv, Iq+tv, -Iq+tv, =l-s-t» where t runs through the integers. Hence
if k == I mod v, then k E C(l). If J is the multiplicative semigroup of
ZI (v), then 'Y)(l mod v) = oh, defines an epimorphism 'Y): J -+ aVo In
order to simplify our notation, we will subsequently write a for a mod v
and C(a) for the congruence class of a under Ker 'Y). Then C(l) = {I, -1,lq,
-Iq} = IC(I). ButC(l) = {I, -1, q, -q} is a subsemigroupofthe units
of Z I (v), hence C(1) is a group. By Th. 9.43, h" E W if and only if (k,
q2-1) = 1 which is equivalent to(k, v) = 1. Hence n maps the group E
of units of Z I (v) onto aW, and the ideal kernel ofT}:E -+ aW is EnC(l) =
C(l).Furthermore, by Th. 9.43, hkE Wlifand only if (k,p(q2-1)) = 1.
Since (p, q2-1) = 1, every element of E contains some positive integer
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k with (k, p(q2-1)) = 1, thus aWl = aW. If 1C(1)1 -< 4, then a == 1 mod v
where a = -1, or q, or -q. An easy calculation shows that this is the
case if and only if q "'"3, and that q ~ 3 implies 1C(1)1 = 2.

10. Permutation spectra of polynomials

10.1. Let A be any algebra of a variety Q5, X = {Xl, ... , xk} a set of
in determinates, and ~ a subset of the congruence lattice 3(A) of A. For
any BE 3(A), 'Y)(e): A -+ A Ie .shall denote the canonical epimorphism,
r; (B) (X) : A(X, m) -+ (A IB) (X,' m) shall denote the extension of r; (B) to a
composition epimorphism and.Ck(B): Ck(A) -->- Ck(A IB) the correspond-
ing epimorphism.

For any f E Ck(A), we define the ~-permutation spectrum of f by

Spec(~, f) = {B E~ I C,,(e)f is a permutation polynomial vector of A IB}.

Similarly we define the ~-permutation spectrum and strict ~-permutation
spectrum of f E A(X,. m) by

(Strict) Spec (~, f) = {BE ~ I r;(B) (X)f is a (strict) permutation
polynomial of A Ie}.

If A is an Q-multioperator group, then by ch. 6, § 3, there is a bijection
. from 3(A) to the ideal lattice S'e(A) of A, thus we can interpret ~ also

as a subset of ~(A) and B as an ideal of A in our definitions.
Permutation spectra have so far been studied justin the case n =.1

for certain Dedekind domains. This section is to work out the most
important of these results.

10.2. Let Q5be the variety of commutative rings with identity, then
every algebra R of Q5 is a multi operator group, thus we will use the
interpretation of spectra in terms of ideals of R. As in ch. 3, the compo-
sition of polynomial vectors will be denoted by 0, and if f E R[x

l
, , xd,

and g = (gl' ... , gk) is a polynomial vector, we will write f(gl' , gk) =
fog as in ch. 3, § 2.

10.21. Proposition. Let R be a commutative ring with identity and ~ the
set of all ideals D of R such that RID is finite. If f E R[x

l
, ... , xkl and

f, g E C,,(R), and if we set Spec (~, ) = Spec, then:
a) Strict Spec f ~ Specf,
b) Spec (fog) = Spec fnSpec g,

Spec (fog) ::2 Spec,tnSpec g,
Strict Spec (fog) =2 Strict Spec fnSpec g.
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c) If DE Spec f (Spec j, Strict Spec f) and C :2 D, then C ESpec f
(Spec j, Strict Spec f).

Proof. a) follows from ch. 3, Prop. 12.23.
b) DE Spec fnSpecg if and only if RID is finite and Ck(1')(D»)f,

Ck(1')(D»)g are permutation polynomial vectors of RID which is true if
and only if R ID isfinite and Ck(1')(D»)(f 0 g) is a permutation polynomial
vector of R IDwhichis equivalenttoD ESpec (f 0 g). If DE Specj'T) Spec g,
then RID is finite, 1')(D)(X)f is a permutation polynomial, and Ck(1')(D»)g
is a permutation polynomial vector of RID. Therefore there are functions
fz' ... Jk EFk(R ID) such that rp( a1')(D)(X)f, fz' ... , fk) = or is a permu-
tation of (RID)k and q/l(a)Ck(1')(D»)g = e is also a permutation
of (R I D)k. Hence ore = rp( a1')(D)(X) (fog), hz, ... , hk), for some
hi Er,(R I D), is a permutation of (R I D)\ thus 1')(D)(X) (fog) is a permu-
tation polynomial of RID. Similarly we can prove the third assertion of b).

c) If D E Spec f, then RID is finite, and f is a permutation polynomial
vector mod D. Then R I C is finite, thus by Prop. 4.2, f is a permutation
polynomial vector mod C whence C ESpec f. The proof of the other
two assertions runs along the same lines.

10.22. Lemma. Let R be a Dedekind domain and Spec be defined as in
Prop. lO.21. Then:

a) If E = CD whereC, Dare comaximal ideals in R, then EESpec f
(Spec j, Strict Spec f) if and only if C, DE Spec f (Spec j, Strict Spec f).

b) If P is a prime ideal and Q = P", e >- 1, then Q ESpec f (Strict Spec f)
if and only if p2 E Spec f (Strict Spec f).

Proof. a) E E Spec f if and only if RIE is finite and f is a permutation
polynomial vector mod E. By the Chinese remainder theorem and Prop.
4.21, this is true ifandonlyif R IC and RID are finite and f is a permutation
polynomial vector mod C and mod D, i.e. C, D E Spec f. Similar argu-
ments work for Spec f and Strict Spec f

b) Q E Spec f if and only ifR I Q is finite and f is a permutation poly-
nomial vector mod Q. By ch. 6, Lemma 4.52, and Cor. 4.35, this is true
if and only if R Ip2 is finite and f is a permutation polynomial vector
mod p2, i.e. p2 E Spec f. The argument for Strict Spec is similar.

10.23. Theorem. Let R be any Dedekind domain, ~ = ~(f) the set of all
prime ideals of Spec f and £1 = £1m the set of all prime ideals Q E ~(f)
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with Q2E Spec f. Then Spec f is the set of all ideals D of the form

D =PIP2 ••• PrQ~' ... Q:'

where r+ s >- 0, PI' ... , PI" QI' ... , Q$ are pairwise distinct prime ideals,
such that PjE\13(f)---£1(f),i=l, ... ,r, and QjE£1(f),j=l, ... ,s,
ej ~ 1. This assertion remains valid if f is replaced by f and Spec by Strict
Spec.

Proof. This is an immediate consequence of Prop. lO.2l c) and Lemma
lO.22.

10.24. Lemma. Let p~ (0), R be any ideal of \13(f), \13(f) resp. ThenPE£1(f)
if and only if af(UI' ... , Uk) ii 0 mod P,for every (ul, ... ,Uk) ER\ P E £1(1)
if and only if there is no (ul, ... , Uk)E Rk such' that aJ(ul, ... ,Uk) == 0
mod P, i = 1, ... , k, resp.

Proof. This is nothing other than Prop. 4.31 and Prop. 4.34.

10.25. Th. lO.23 shows that Spec f and Strict Spec f are completely
determined by the pair (\13, 0) of sets of prime ideals. We will call
(\13, 0) the basis pair of Spec [, Strict Spec j, resp. The following two
questions arise:

a) How can one find the basis pair for a given polynomial vector f or a
polynomialf?

b) What pairs (\13,0) of prime ideal sets can be basispairs for suitable
polynomial vectors or polynomials?

We do not intend to attack this problems in general, but will give some
results for the case where k = 1 and R isthe Dedekind domain of rational
integers. The reader may work out how far these results carryover to
the domains of integers in algebraic number fields of finite degree.

10.3. Let R be the domain of rational integers and R[x] the polynomial
ring over R in one indeterminate x. The three notions of [-permutation
spectra clearly coincide. Thus only Spec([, f), forJE R[x], has to be
considered. Since R is a principal ideal domain, every ideal D in R can be
written as D = (d) where d ~ 0 is a unique integer. Thus we can describe
Spec ([, f) as a set of non-negative integers. [ will again denote the
set of all ideals D ofR such that RID is finite, and Spec f = Spec ([, I).



216 COMPOSITION AND POLYNOMIAL FUNCTIONS OVER RINGS AND FIELDS CH.4

Rewriting the results of 10.2 we obtain:

Spec (fog) = Spec j'Tl Spec g. (10.3)

If d E Spec f and cld, then c E Spec f, and Spec f i: uniquely determined
by its basis pair which consists of the set SfS= SfS(f) of all primes of
Spec f and the set 0 = 0C!) of all primes q E SfS(f) with q2 E Spec f
Moreover a prime p E SfS(f) is in O(f) if and only if .f'(u) ~ 0 mod p,
for every U E R, i.e. if 1)(p) (x)f is regular.

10.31. Remark. Ins is the set of all ideals of R, then lS =~u {CO)}.
By § 5.33, the permutation polynomials of R I(0) = R are just ex+c,
e = ± 1, thus we know Spec (lS, f) as soon as we know f and Spec f

10.4. Theorem. Let S = (R[x]; 0> be the semigroup consisting of the
polynomials over R with the polynomial composition ° as operation,
H the subsemigroup of S which is generated by the linear polynomials
ax+ b, the powers x" with odd n >- 1, and the Dickson polynomials gll(a, x),
a r" 0, (n, 6) = 1, n >- 1, and L the subsemigroup of H which is generated
by the polynomials ax+b and gn(a, x) of H. Then SfS(f) is infinite for
every fE H. If fE H, then O(f) is infinite if and only if fEL.

Proof. Let fE H, then f is of the form

f=f10f20 ... of, (10.41)

where eachf equals either some ax+b, or some x", or somegn(a, x)
which satisfies the conditions of the theorem. Hence (10.3) implies

SfS(f) = SfS(f~)nSfS(2)n n SfS(f,),

O(f) = 0(f1)nO(f2)n nO(f,).

(10.42)

(l0.43)

Since RI (p) is a finite field for every prime p, we can apply our results
of§§ 9.3 and § 9.4. Prop. 9.3 implies ~(ax+b) = {p I p E~, a ~ ° mod p} .
where SfSdenotes the set of all primes, hence SfS(ax+b) consists of almost
all primes. Prop. 9.32 implies that ~(xn) = {pj p E ~ and (p -1, n) = I}.
If n = r~' ... 1';' is the prime factor decomposition of n, then ~(xn)
is the set of all primes p such that p ;;E 1 mod r., i = 1, ... , s. Th. 9.43
and Prop. 9.32 imply that SfS(gll(a, x») = UUV where U = {pI pESfS,
a;;E ° modp, (p2_1, n) = 1} and V= {pi pESfS, a == 0 modp,
(p -1, n) = I}.If n = r~' ... r:' is the prime factor decomposition of n, then
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U is the set of alJprimes p such that p ~ ± 1 mod r., i = 1, ... , s, and
a ;;E 0 mod p while V is the set of all primes p such that p ~ 1 mod r.,
i = 1, ... ,s, and a == 0 modp.

Suppose now that fE H, and [f] = m = u~J ... u;'vf' ... v~, is
the prime factor decomposition of [f] where u1' •.• , Us are those primes
which occur in the degrees of the factors x" in (10.41) but not in the de-
grees of the factors g,la, x) while VI' ... , VI are the remaining primes.
Let SfS(f) be the set of all primes which belong to those residue classes
C(b)modul .•. usvI", VI for which b ~ 1mod zz., i = 1, ... ,s,
b ;;E ± 1 mod Vj' i = 1, ... , t. Then ~(f) is obtained from W(f) by adding
and removing a finite number of primes. Indeed, any prime of these residue
classes belongs to ~(xn), for every x" in (10.41), and to SfS(g,,(a, x»), for
every gn(a, x) in (10.41) whence, by (10.42), all of these primes which are
not divisors of a, for some ax +b of (10.41), belong to SfS(f). Conversely
by (10.42), all primes of ~(f) except finitely many are contained in W(j).
Hence SfS(f) and W(/) differ by only finitely many primes. By hypothesis,
uj r" 2, i = 1, ... , s, Vj r" 2, 3, j = 1, ... , t. Hence by the Chinese
remainder theorem, there are exactly (ul-1) ... (us -1 ) (VI - 2) ... (VI - 2)
residue classes C(b) mod UI ... usVI ..• VI for which b e: 1mod Uj,

i = 1, , s, b ~±1 mod Vi' i = 1, ... , t, and (ul-2) ... (u,-2)
• (VI - 3) (vl- 3) residue classes are prime residue classes. By
Dirichlet's theorem, each of these classes contains infinitely many
primes (but the other residue classes contain only primes of the set
{ul, .•. , Us' vI> .•. , vJ). Hence SfS(f) is infinite.

We have O(ax+b) = SfS(ax+b), O(X") = <p and O(g,/a, x») =
{pi pESfS, a ~ 0 modp, (p(p2-1), n) = I} by Prop. 9.3, Prop. 9.32,
and Th. 9.43. Thus if n = r~J ... r~s is the prime factor decomposition
of n, then O(g,.(a, x») = {p E ~(gn(a, x») I a;;E 0 mod p, p r" rj,

i = 1, ... , s}. By (10.43), iffE H --L, then O(f) = <p. If, however,fE L
then by (10.43) we see that SfS(f)and O(f) differ by only finitely many
primes, hence O(f) is infinite.

10.5. The question now arises whether there are any other polynomials
fE R[x] apart from thosein Hfor which SfS(f)is infinite. It was SCHURwho
stated the conjecture that this was not the case, and he himself could
prove, that this was true for. polynomials f of certain degrees, e.g. poly-
nomials of prime degree. Recently M. FRII:lDgave a general proofof
SCHUR'Sconjecture which leans heavily on rather intricate tools and deep
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results in the theory of complex functions and is therefore beyond the
scope of this book. We. will state FRIED'S result and two consequences
of it which will follow immediately from Th. 10Aand its proof.

10.51. Theorem. ~(f) is infinite if and only if fE H, and O(f) is infinite
if and only iff E L.

10.52. Corollary. Every infinite ~(f) can be obtained by adding to and
removing from some set T of primes finitely many primes. Such
a set T of primes consists of the primes of all prime residue classes C(b)
mod I where I = u1 ... usVl ... vI' with u., Vj pairwise distinct primes,
ui7"'- 2, .Vj 7"'- 2, 3, b ~ 1 mod u., i = 1, ... , s, andb ~ ± 1 mod Vi'
i= 1, ... , t.

10.53. Corollary. If ~(f) is infinite, then O(f) is either empty or differs
from ~(f) by only finitely many primes.

10.6. Theorem. Let 0 = {qv ... , qs}, ffi = {PI> ... , Pr} be finite disjoint
sets of primes (possibly empty). Then there exist monic polynomials
fE R[x] of arbitrarily large degrees such that ~(f) = DU ffi and O(f) = O.

Proof. If OUffi is empty, then f = X2"_X2"-2, n t» 2, has the required
property. Suppose OU ffi is not empty. Set q = ql ... qs if 0 is not empty,
q = 1 otherwise, and P = PI ... Pr if ffi is not empty, p = 1 otherwise.
Throughout the proof the sum over an empty set will be 0 while the
product over an empty set will be 1. We choose positive integers u, V

such that u :> V and XU =x" E {pq} which is possible because of the fini-
teness of R[x] I {pq}. Furthermore we choose k i» 2 integral such. that
w = kupq+ 1 is a prime-by Dirichlet's theorem, there are infinitely
many such k. Let

g = xkupq+l_x"Vpq+l (10.6)

Then g E {pq} and g' E {pq}. Furthermore let
r i

h = g+ I (pqIPm)xPm+ L (pqlq,,)x,
m=l n=l

which is a monic polynomial of degree w. It follows easily that
h == (pq/qi) x mod k} and h' == (pq/q;) mod {qJ Thus h is a!permutation
polynomial mod qi and moreover qiEO(h), i = 1, ... ,s. Similarly,
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h == (pq/p;) x mod {p;} and h' == 0 mod {pj, hence Pi E ~(h), butp;1 O(h),
i = 1, ... , r.

Suppose ~(h) is infinite. Then by Th. 10.51 (we need just the weaker
result of SCHUR) hE H. Since [hI = w is a prime, h is of the form
a(a1x+b1r"+b or of the form ag.vCc,a1x+b1)+b. Ifb1 7"'-0, then such a
polynomial contains a non-zero term dxw-l, and if b1 = 0, then such a
polynomial contains, apart from the leading term, only a constant term
or it contains a non-zero term dx":": But tkupq-s- 1)-(kvpq+ 1) =
kpq(u-v);;., 4, and kvpq+I> max(Pl' P2'" "Pr' 1), hence h is
certainly not a polynomial of'this form, contradiction. Therefore ~(h)
is finite, thus ~(h) = OUffiU% where % = {bl' ... , bt} is a finite set of
prirriesdisjointfromOUffisuchthatO ~ O(h) ~ OU%. Setb = b1b2··· b,
and choose a positive integer z such that z == 1 mod pq, z== 0 mod b,
and positive integers I, m such that I:> m and Xl_X'" E {pqb}.
If e = X1M_X

l1lpq+zx, then OUffi ~ O(e), but %n~(e) = 1>. By
(10.42) and (1O.43),·if d r- h o e, then ~(d)=OUffi,O(d)=O. Let

r s

k= I1(p(-I)I1q/q]-I) and h,,=gnC1, x). If (n, k)= 1, then
i=l j=l

~(hll) ;2 OUffi and O(h,,) ;2 0, by the proof of Th. 10.4, whence by
(10.42) and (10.43), if f = dohn' then ~(f) == OUffi and O(f) = O.
Clearly f is monic and there are infinitely many n with (n, k) = 1. This
proves Th. 10.6.

Remarks and comments

I

§§ 1, 2. If R is a comrriutative ring with identity and 0 means the compo-
sition of polynomials, then the set R[x] of all elements of the polynomial
ring (R[x]; +, .) can also be viewed as an algebra (R[x]; 0), i.e. as
a semigroup, as an algebra (R[x]; +, 0), i.e. as a near-ring, as an algebra
(R[x]; " 0 ), and as an algebra (R[x]; +. " 0), i.e. as a composition ring.
In this book we treat just the first and the last case. To the best of our
knowledge the third case has never been looked at, but there are a few
papers which consider the near-ring (R[x]; +, 0) -mainly for R being
a field-or certain subnear-rings of it (ORE [1], [2], CARCANAGUE[1], [2],
RIHA [1], CLAYand DOl [1]).

The semigroup (R[x]; 0 )has been studied mainly for R being a field,
and apart from the topics of our §§ 1-3; also the automorphism group of
this semigroup has been examined (FADELLand MAGILL [1], SAIN [2D.
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Most of the results and problems referring to (R[x]; 0) also make sense for
the superassociative system (R[Xl' ... , xk]; x), x being the composition
of polynomials, or for the semigroup (](R[Xl" .. , xk]; x»), but for
k c- 1, almost nothing has been done in this direction save GOODSTEIN
[1], [2] on generating systems of (R[xl' ... , xk]; x).

Th. 1.34 and Th. 2.46 have been essentially proved by RITT [1], for the
case that K is the field of complex numbers, by means of rather deep
methods of the theory of complex functions. The purely algebraic proofs
of these theorems for arbitrary fields of characteristic zero which are
contained in our book are due to ENGSTROM[1] (Th. 1.34) and H. LEVI
[1] (Th. 2.46). FRIED and MACRAE[1] have given a different algebraic
proof of Th. 1.34. This proof admits also a generalization of the main
statements ofTh. 1.34 to fields of characteristic p >- °as long as the degree
[f] of the polynomial f is less than p. Apart from this result nothing is
known so far about the decomposition into indecomposable polynomials
over fields of characteristic p >- 0, nor over integral domains other than
fields.

§ 3. A systematic study of permutable elements in the semigroup (K[x]; 0 )

where Kis a field of characteristic ° is due to JACOBSTHAL[1] who gave a
proof of our Th. 3.33 for this case. For arbitrary fields, KAUTSCHITSCH[1]
could prove this theorem. He also found a similar result for the semigroup
of all formal power series in one indeterminate without a constant term
over a field with respect to the composition. Th. 3.53 in its general forin is
due to NIEDERREITER.AF HALLSTROM[1] introduced the semipermutability
of elements in (K[x]; 0) which is an interesting generalization of per-
mutability.

a ¥:- 0, every permutation polynomial mod (a) is a strict permutation
polynomial mod (a), this proof is, however, wrong. So it remains an
open problem,even for most of the factor rings of the rational integers,
whether or not every permutation polynomial-is a strict permutation
polynomial. A very interesting characterization of permutation polyno-
mial vectors over the field K of real numbers is due to BrALYNICKI-BIRULA
and ROSENLICHT[1] who used topological methods: A k-dimensional
polynomial vector f over the real numbers is a permutation polynomial
vector if and only ifthe mapping <pf : f(k -+ f(k induced by f is injective. P.
CHOWLA[1] studied an interesting class of polynomials related to permu-
tation polynomials.
§ 5. Comparing Th. 5.21 with Ch. 5, Th. 3.3, one may expect that Th.
5.21 is open to a considerable generalization. This, however, has not
been done yet.

The semigroups Vk (R I M) and even more u, (R I M) have been
examined by NOBAVERfor the case where R is the ring of rational
integers, first for k = 1 (see NOBAUER[1], [2], [5]), then also for k >- 1
(see NOBAUER[4], [9]). IfR is an arbitrary Dedekind domain, then results
were obtained by LAUSCH[1] for k = 1, and AIGNER [I]for arbitrary k.
Our presentation follows AIGNER'S paper. Recently the unit group
t(Z I (n) [xl) of the semigroup Z I (n) [x] with respect to the composition
was discussed by SUVAK[1] (Z denotes the ring of rational integers).

§§ 6, 7. For R being the ring Z of rational integers and k: = 1, ideal
power semigroups were originally investigated by NOBAUER[7], [9]. The
structure of special cases ofthe groups Jk (P", pI) was discussed by FERSCHL
and NOBAUER[1], FEICHTINGER[l]for R = Z and k = 1, and DIRNBER-
GER[1] forR = Z and k >- 1. For more general classes of rings, we refer
to LAUSCH[2], SCHITTENHELM[1], and AIGNER [1]. Our presentation
follows partly AIGNER'Spaper and sometimes makes use of the papers of
LAUSCHand DIRNBERGER.

§ 4. For the case of polynomials in one indeterminate over the ring of
rational integers, this section is due to NOBAUER[1] (see also NOBAUER[2],
CAVIOR [2], ZANE [1], KELLER and OLSON [1], for general Dedekind
domains we refer to SCHONIGER[1]). Polynomial vectors in several
indeterminates were investigated by NOBAUER[4] for the ring of rational
integers, for arbitrary Dedekind domains by AIGNER[1].

NOBAUER[22] also introduced and investigated permutation polyno-
mials and strict permutation polynomials in more than one indeterminate
over rings, this paper contains the conditions of § 4. Moreover, there is a
proof in this paper that, in the ring of rational integers and for arbitrary

§ 8. As announced in the remarks and comments to Ch. 3, § 12, we now
give some references for the extensive literature about permutation poly-
nomials in one indeterminate over finite fields. For a survey of the work
on this subject prior to 1920 we refer to DICKSON[4]. During this period
it was DICKSONhimself who contributed substantially to this subject
(see DICKSON[1], [2], [3]). Recently, mainly CARLITZand his school, but
also several other authors, have taken up this subject again and widened
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our knowledge through some interesting contributions (CARLITZ [1],
[3], [4], [5], [6], [7], CAVIOR [1], S. CHOWLA[1], S. CHOWLAand H.
ZASSEN,HAUS[1], LAWKINS [1], LONDON and ZIEGLER [1], REDEl [1]).
There is also some recent work on permutation polynomials over finite
fields in several in determinates (KURBATovand STARKOV[1], LIDL [1], [2],
LIDL and NIEDERREITER[1], NIEDERREITERtn, [2], [3]).

Our proof ofTh. 8.21 is dueto GWEHENBERGER[1], Th. 8.31 is a result
of MAC CLU'ER[1] (for the case that K is a finite field there is a much
simpler proof of this theorem by WILLIAMS[1]). Th. 8.81 was proved by
HAYES[1] (for a similar result see DAVENPORTand LEWIS[1]), and the
results of § 8.8 are also due to HAYES[1]. CARLITZand WELLShave
proved Th. 8.92.

§ 9. Papers on groups of polynomial permutations over finite fields,
mainly for ~)Deindeterminate, are numerous and deal with generating
sets of such groups (CARLITZ[1], [6], WELLS[2]), with the distribution of
the minimal possible degrees of the polynomials representing the permu-
tations of these groups (WELLS[3]) and various. other questions (AHMAD
[1], CARLITZand HAYES[1], FRYER[1], [2]).

Th. 9.23 is due to WELLS[1], but our proof stems from GWEHENBERGER
[1]. Related results can be found in AHMAD[2]and FILLMORE[1]. The gene-
ralization of the groups aP of Prop. 9.32 from finite fields to finite residue
class rings of the integers can be found in NOBAUER[3]. DICKSON[1], [2]
introduced the permutation polynomials that now bear his mime, in
these papers our Th. 9.43 has essentially been proved. Prop. 9.52 is due to
NOBAUER[27]. The generalization of the group aW of this proposition
from finite fields to finite residue class rings of the integers was recently
discussed by LAUSCH,MULLERand NOBAUER[1]. Dickson polynomials
were generalized to the case of several indeterminates recently by LIDL
and WELLS[1].

§ 10. The theory of spectra in this section was started by NOBAUER[24],
[25] for the case of one indeterminate and the rational integers. We follow
closely these papers. For contributions to SCHUR'Sconjecture prior to
FRIED'Ssolution of this problem, see SCHUR[1], WEGNER[1], KURBATOV
[1], [2]. Spectra in more than one indeterminate and spectra over varieties
other than the variety of commutative rings with identity have so far
not been investigated.

..!:

CHAPTER5

COMPOSITION OF POLYNOMIALS AND
POLYNOMIAL FUNCTIONS OVER GROUPS

1. The concept of length

1.1. Let Q5 be the variety of groups as defined in ch. 1, § 2.4, Q the set
of its operations, G any group; and X = {Xl' ... , Xk} a set of inde term i-
nates. As in ch. 1,§ 9.2, we set G(X, Q5) = G[X] and also F(X, Q5) = F(X)
which denotes the free group with free generating set X. From specializing
the general definition of a in ch. 1, Prop. 6.41, we obtain the canonical
epimorphism ak(G): G[X] -+ Pk(G) which describes the connection
between polynomials and polynomialfunctions over G. Let 8 : G -+ F(X)
be the homomorphism that maps every g EG onto the identity e of
F(X) and z : F(X) -+ F(X) the identity automorphism of F(X).By ch, 1,
Th. 4.31, there is a unique homomorphism A: G[X] -+ F(X) such that
8 = Arpl, ~ = Arp2 which means - if we observe the definitions of rpl, rp2
- that Ag = e, for every g EG, and Axi = Xi' i = 1, ... , k: Clearly A
is an epimorphism. We set A = Ak(G) which we call the length epimor-
phism (ofG[X]). The normal subgroup A,JG) kerak(G) of F(X) is called
the length of G[X] and will be denoted by Lk(G).

1.11. Lemma. H """ G implies LkCH) = Lk(G).

Proof. Let 1J: H -+ G be any isomorphism and 1J[X]: H[X] -+ G[X]
its extension to an isomorphism according to ch. 1, Prop. 4.5. Then
Ak(H) = Ak(G) 1J[X] whence Lk(H) = AiG) 1J[X]ker ak(H). But by diagram
fig. 3.1 of ch. 3, 1J[X]kerak(H) = kerak(G) which proves the lemma.

1.12. Proposition. Lk(G) is a verbal subgroup of F(X).

Proof. By ch. 6, § 6.72, it is sufficient to show that W(XI' ... , Xk) ELk( G)
implies w( WI(Xl' ... , xk), .. , Wk(XI, ... , Xk)) ELk( G), for any k elements
wJxl, ... ,xk)EF(X),i= 1, ... ,k. Let/(xl, ... ,xk)Ekerak(G) such
that Ak(G)f(xl, ... , Xk) = w(xl' ... , Xk)' By definition of kera,cCG), we
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have f( W1(gl' ... , gk), ... , Wk(gl' ... , gk)) = 1, for all gl' ... , gk t G
whence f(Wl(Xl, ... , Xk), ... , Wk(Xl, ... , Xk)) E ker O"k(G). Therefore
Ak(G)f(Wl(X1, ... , xk), ... , Wk(X1, ... , Xk)) = W(Wl(Xl' ... , Xk), ... ,
Wk(X1, ... , xk)) ELk(G).

1.13. Proposition. G[X]lker O"k(G) ker Ak(G) == F(X) I Lk(G).

Proo[F(X) ILk(G)==Ak(G) G[X] I Ak(G) kerO"k(G)==G[X] Ikerak(G)ker Ak(G)
by the second isomorphism theorem of group theory.

1.14. Proposition. If N is a normal subgroup of G, then L,,(G) ~ Lk(G IN).

Proof. Let 1J: G -+ GIN be the canonical epimorphism and
1J[X] : G[X] -+ (G I N) [X] its extension to an epimorphism which fixes X
e1ementwise (see ch. 1, Prop. 4.5). Then the diagram fig. 5.1 is commu-
tative. Hence L,,(G) = A,,(G) kerak(G) = Ak(G I N) 1J[X] ker O",,(G). But
1J[X]kerO'k(G) ~ kerO'k(GIN), by ch, 3, diagram fig. 3.1 whence
Lk(G) ~ Lk(G IN).

Ak(G)
G[X} • F(X)

jnrx)
(G/N}[X]

FIG. 5.1

1.2. Proposition. Let G1, G2 be any two groups. Then Lk(GlXG2) =
Lk(G1)nL,,(G2)·

Proof. By Prop. 1.14 and Lemma 1.11, Lk(G1X G2) ~ L,,(Gl)nLk(G2)·
Conversely let WELk(G1)nLk(G2). Then there exist /;EkerO'k(G;),
i = 1, 2, such that Ak(G)f = w, i = 1,2. Let CP2:F(X) -+ (GlXG2)[X]
be the homomorphism which fixes X elementwise and L;: G; -+ G1XG2,

i = 1, 2, the inclusion monomorphisms (see ch. 6, § 6.4). Since ch. 1,
Prop. 4.5 remains valid if we replace "epimorphism" by "homomorphism"
and "onto" by "to" as one can easily see, ti can be extended to a homo-
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morphism tJX] : GJX] -+ (GlXG2)[X] which fixes X elementwise. Let
f = (t1[XJfl) (t2[X]/) (CP2W)-l E(G1X G2)[X]. Then O"k(GI X G2)f maps
every element of G1XG2 onto 1, thus fEkerO"k(GIxG2). Moreover
Ak(G1XG2)f= w. Hence WEAk(G1XGz)kerO"k(GIXG2) = Lk(G1XGZ)'

1.21. Proposition. Let G = G1X Gz. Then ker A,,(G) ker. O"k(G) I ker O"k(G) ==
ker Ak(Gl) ker O"k(GI)lker O"k(G1)Xker Ak(G2) ker O"k(G2)lker O",,(Gz).

Proof. Let ti be defined as in the proof of Prop. 1.2, (fIJJ Eker Ak(G1) X
kedk(Gz) and r : kedk(G1) Xkedk(GZ) -+ kedk(G) kerak(G) Iker O'K(G)
be the mapping defined by -c(f~, JJ = (tl[X]f1) (l2[X].I;) ker O"k(G). That -c
has the required range follows from

A,,(G)(ll[X]fr) (t2[X]fz) = (Ak(G1)fr)(A,,(G2)fz) = 1.

Moreover -c is a homomorphism since

-C[UI' .I;)(gl' g2)] = (tl[X] fr) (t1[X]gl)(t2[Xl!;) (l2[X]g2) ker O"k(G),

-C(fr,f2) -C(gl' g2) = (t1[X1fl)(t2[X] !z)(tl [X1gl)(t2 [X1g2) ker O"k(G),

and, for arbitrary (a, b) E G, we have

[O"k(G)(t1[X1g1) (t2[X1!2)](a, b) = (gl(a), 1) (1;/2(b») =

= [O"k(G)(tz[X1f2)(t1[X]g1)] (a, b).

-c is an epimorphism, for let fE ker Ak(G), ni: G -+ Gi, i = 1, 2, the
projections and nJX1 : G[X1 -+ GJX], i = 1, 2, the extensions to com-
position epimorphisms. Then

-c(n1[X]f, n2[X]f) = (t1[X]n1[X]f) (t2[X1 n2[X1f) ker O'k(G) =f ker O'k(G)

smce

[O"k(G)(tl[X] n1[X1f)(t2[X1 n2[X1f)J(a, b) =

= ((n1[X]f) (a), 1) (1, (n2[X1f) (b)) = (O"k(G)f) (a, b).

By definition of r, we have (/I'/z) Eken if and onlyif (tl[X1/I) (t2[X11z) E
kerO"k(G) which is equivalent to /;EkerO",,(G;)nkerAk(GJ Hence
ker Ak(G) ker O"k(G)Iker O"I/G) == ker Ak(G1) X ker Ak(G2) I(ker O"k(G1)n
ker Ak(G1)) X(kew k(G2) n ker A,,(G2)) == [ker Ak(G1) kerak(Gl) Iker O"k(G1)1X
[kerAk(G2) ker O"k(G2)Iker O',,(Gz)] by the first isomorphism theorem of
group theory.
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1.22. Corollary. If Gl, G2 are finite groups and G = G1 X G2, then the
decomposition homomorphism T of P k(G) is an isomorphism if and only if
Lk(G1)Lk(G2) = F(X).

Proof. We know fromch. 3, Prop. 3.53, that T:Pk(G) -+ Pk(G1)XPk(G2) .

is a monomorphism. Thus T is an isomorphism if and only if IPk(G) 1=
IPk(G1) I IPk(G2) I, i.e.

IG[X]I kero'k(G)1 = IG1[X]I kero'k(G1)IIG2[X]lkero'k(G2)1·

This is equivalent to

I G[X] Iker 0'k(G) ker Ak(G) IIker 0'k(G) ker Ak(G) Iker 0'k(G) I =
2

= IT IGi[X]lkero'k(GJker Ak(GJllkeruiGJker Ak(GJlker Gk(GJi·
;=1

By Prop. 1.21 and Prop. 1.13, this 'is true if and only ifIF(X) ILk(G) I =
IF(X) ILk(G1) I IF(X) ILiG2) I, and by Prop. 1.2, if and only if IF(X) I
Lk(G1)nLk(G2)I = IF(X)ILk(G1)IIF(X) ILk(G2)I· By the first isomorph-
ism theorem, this is equivalent to saying ILk(G1) Lk(G2) ILk(G2)1 =
IF(X) ILk(G2) I which holds ifand only if Lk(G1) Lk(G2) = F(X).

1.3. Proposition. Let G be any finite group and p a prime. Suppose Ap(X)
is the verbal subgroup of F(X) generated by xi and X1IX21XIX2' for
IXI ~ 2, and generated by x", for X = {x}, then Lk(G) ~ Ap(X) if and
only if G possesses some central p-chieffactor.

Proof. Let HIK be a central p-chief factor of G. Since by Prop. 1.14;
Lk( G) ~ Lk( G I K), the "if" part of the proposition will be proved if we
show that Lk(G) ~ Ap(X) whenever G has some central minimal normal
p-subgroup N which, by ch. 6, § 6.51, is cyclic of order p. Suppose wE
Lk(G). Then there exists fEkerak(G) such that Ak(G)f= w. Let
m1, , ink EN, then 1 = f(m1, ... , mk) = f(1, ... , 1) w(ml' ... , mk) =
w(ml' , mk) since N is central in G. Hence w = 1 is a law for N.
But every k-variable law for N is of the form v = 1 where v EAiX)
(see ch. 6, Lemma 6.73). Hence wE Ap(X) and Lk(G) ~ AiX).

Conversely let Lk(G) ~ AiX) and x EX. Then, since the subgroup
of F(X) generated by x is a free group, we have L,/G)nF(x) ~ Ap(X)n
F(x) and therefore L1(G) ~ Ap(x). Let N be a minimal normal sub-
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group of G and L1(G, N) = {w EF(x)1 there exists fE G[x] such that
Al(G)f == w andf(n) = 1, for all n EN}. Then L1(G, N) is a subgroup of
F(x) and L1(N) r:;; L1(G, N). We distinguish two cases: Case a): N is non-
abelian. Then N = N1XN2X ... XNk, N; ~ Nj, i,j=l, ... , 'k, and N;
is simple non-abelian (cf. ch. 6, § 6.51). By a result which will be proved
in § 2.43, LleNJ = F(x) whence Prop. 1.2 implies thatL1(N) = F(x). Let
L1(N)oL1(GIN) be the set of all elements of F(x) which we obtain from
substituting the elements of L1(GIN) into the elements of L1(N). Clearly
L1(N)oL1(GIN) ~ L1(G). Since xEL1(N), we obtain L1(GIN) ~ L1(G) ~
Ap(x). Case b): N is abelian. ,Let L1(G, N)oL1(GIN) be the set of all
elements of FCx) which we obtain from substituting the elements of
L1(GIN) into the elements of L1(G, N). Then L1(G, N)oL1(GIN) ~
L1(G) ~ Ap(x). Since p is a prime, we have either L1(G, N) ~ Ap(x)
or L1(GIN) ~ Ap(x). If L1(G, N) ~ Ap(x), then N is a p-group, for other-
wise there exists some primeq ~ p such that Aq(x) ~ L1(N) ~ L1(G, N) ~
A/x), contradiction: Let K be the prime field of characteristic p,
and regard N as a KG-module where G acts on N by conjugation (cf.
ch. 6, § 7.5). The annihilator An N of N in KG is a maximal two-sided
ideal in KG since KG IAn N is a simple ring (see ch. 6, § 7.4). Let I (kgg I
g EG) EAn N, kg EK, and k; integers representing kg EK ~ Z I(p).
Then IT (gxkgg-1Ig E G) E G[x], where the factors are arranged arbit-
rarily, maps every element of N onto 1. Thus x2:k;'EL1(G, N) ~ Aix) =
[xP

]. Hence pIIk;, i.e. I kg = O. But the set I = {I(kgg Ig E G) Ikg EK,
I kg = O}is a two-sided ideal in KG such that AnN ~ 1. Therefore AnN=
= I, by the maximality of An N. Hence g-1 EAn N, for every g EG,
thus gng-1 = n, for all g EG, n EN, i.e. N is central..

The proof concludes with an induction argument on the length I of
a chief series of G. If 1= 1, then G is simple. If G were non-abelian,
then by a), F(x) = L1(G) ~Aix), contradiction. Hence G is a simple
abelian group and thus obviously possesses a central p-chief factor.
Suppose now that the proposition is true for 1-1 instead of I, and let N
be a minimal normal subgroup of G. Then by a), b), N is a central p-chief
factor of G, or L1(GIN) ~ Ap(x). In the second case, GIN has some
central p-chief factor by induction which is isomorphic to some central
p~chief factor of G.

1.4. Proposition. If a k + l-ary operation u is defined in F(X) by UWOWI

... Wk = WO(w1' ... , wk), then the algebra (F(X); Q, u) is a k-dimensional
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composition group with selector system and the epimolphismAk(G) : G[X]-
F(X) is a composition epimorphism. In particular, ker Ak(G) is a full
idealofG[X].

Proof. By ch. 1, Cor. 9.22, we have F(X) = {I}[X]. Thus by ch. 3, Prop.
2.24, (F(X); Q, %) is a k-dimensional composition group with selector
system. Clearly Ak(G) is the unique extension ofthe epimorphism G --+- {I}
to an epimorphism from G[X] to {l}[X] fixing X elementwise whence it is
a composition epimorphism, by ch. 3, § 3.22. The last assertion follows
from ch. 3, § 4. L

2. Distributively generated composition groups, and polynomial functions
over groups

2.1. In ch. 3, § 11.1, the functor q from the category of k-dimensional
5E-composition algebras to the category of I-dimensional 5E-composition
algebras has been introduced, 5Ebeing any variety. Taking the variety of
groups for 58, the functor q becomes a functor from the category of
k-dimensional composition groups to the category of near-rings. Some
special classes of composition groups and the effect of qon these classes
will be investigated now.

First we define: Let G = (G; +, -, 0, %) be a k-dimerisional compo-
sition group where + is the (not necessarily commutative) group ope-
ration, - the inverse operation, ° the identity, and % the composition.
An element d c G is called a distributive element if %d(al+ bl) ... (ak + bk)

'=%dal ... a,,+%dbl ... bk, for all aI' ... ,ak,bl, ... ,bkEG. Ak-
dimensional composition group G = (G; +, -,0, %) is called a distri-
butively generated (d.g.) k-dimensional composition group if there exist
distributive elements diEG, iE/, such that (G; +, -,0) = [{diliEI}]
- i.e., G regarded as an ordinary group has a generating set consist-
ing of distributive elements. For k: = 1, we obtain the well-known concept
of a distributively generated near-ring. Clearly every homomorphic image
of a d.g. k-dimensional composition group is again a d.g. k-dimensional
composition group.

2.11. Proposition. If G is a d.g. k-dimensional composition group, then
q(G) is a d.g. near-ring.
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Proof. Let (G; +. -,0) = [{diliE/}], d.c G distributive. Then (q(G);
+, -,0) = [U({(di,O, ... , 0), (0, d.; ... ,0), ... ,(0, 0, , d;)}liEI)].
Hence it suffices to show that any element (0, ... , d., , 0) E q(G)
is distributive w.r, t. the composition 0 in q(G). Let (aI' ... , ak),

(bl, •.. , bk) E q(G), then

(0, ... , di, , 0) 0 [(aI' ... , ak)+ (bl, ... A)] =
= (0, , di, ... , 0)0 (al+bl, ... , ak+bk)

= (0, , "d;(al+bl) ... (ak+bk), ... ,0)
= (0, , "dial'" ak+%d;bl ... bk, ••• ,0)

= (0, , %dPI ak, .•. ,0)+(0, ... , %dibl bk> ... ,0)

= (0, , di, , 0) 0 (aI' ... , ak)+(O, ... , di, , 0) 0 (bl, ... , bk).

2.12. Lemma. Let G be any d.g. k-dimensional composition group and A a
normal subgroup of (G; +, -, 0). Then A is a full ideal in G if and only
if %acI ... Ck E A and "cO ... a ... °E A, for any a E A, cI' •.• , c., C E G.

Proof. Let A be a full ideal in G, a E A, cl' ... , ck E G, then by ch. 3,
§ 5.2, %acl ... ck -%OCI .•• ck E A. But "Ocl •.• ck = ° since % is super-
distributive, thus %acl ... CkEA. Moreover if C E G, then again by ch. 3,
§ 5.2, "cO ... a ... 0- %cO... °EA. But since C is a sum of distributive
elements and additive inverses of distributive elements and "dO ... ° = 0,
for any distributive element dE G, superdistributivity again yields
"cO ° = 0. Conversely, let A satisfy the hypothesis of the lemma,
co' , ckE G, aE A. Then %(cO+a)cl· .. ck-"COCI '" ck = %COCI ... Ck
+ "acI ... ck - %COCI ... Ck E A since % is superdistributive and A is nor-
mal in (G; +, -,0). Moreover if 1"", 'V "'" k then "Co'" (cv+a) ck
-%Co··· Cv'" ckE A whenever Co is distributive, for %Co... (cv+a) ck
-"Co·· .cv•• .ck= "Co" .c: .ck+%COO... a ... O-%Co'" c; ... ck, and
if Co is not distributive, then Co is a sum of distributive elements and
additive inverses of distributive elements, and again the superdistribut-
ivity of % yields the same result as is easily checked. Hence by ch. 3,
§ 5.2, A is a full ideal.

2.13. Proposition. Let G be a d.g. k-dimensional composition group with
selector system Sl' ... , Sk' Then q(G) is a simple near-ring if and only if G
is a simple k-dimensional composition group.
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Proof. Assume that G is not simple, and let A bea non-trivial
full ideal in G. Then Ak is a normal subgroup of rt(G). Moreover if
(al,·· .,ak)EA\(gl'·· ·,gk),(h1,·· .,hk)EG\ then (gl+al, ... ,gk+ak)o
(hI' ... , hk) - (gl' ... , gk) 0 (hI' ... , hk) EAk and (gl" .. , gk) 0

. k k .(hl+al, ... , hk+ak)-(gl' .. ·,gk)o(h1, ••. , hk)EA whence A IS a
non-trivial full ideal of rt(G). Therefore rt(G) is non-simple.

Conversely suppose thatG is simple and A is a non-zero full ideal in
rt(G). Then there is a non-zero element (aI' .... , ak)E A. Assume that
ai .,c 0, then the set Ai of all z-th components of elements of A contains
a non-zero element. We will show that Ai is a full ideal in G.
Clearly Ai is a subgroup of <G; +, -, 0) and is moreover normal in G.
Let c1' , CkEG, a E Ai' and (aI' ... , ai_I' a, ai+j, ••• , ak) E A.
Then (aI' , ai-I' a,ai+l, ... , ak) 0 (cl, , Ck) = (xalcl C,,, ... ,
xac1• •• Ck, , xakcl· .. Ck) E A, hence xacl CkE Ai' for all c., , ck EG.
Let cE G, then (0, , Xco ... Os;O... 0, ,0) 0 (aI' , a, , ak) =
(0, ... , XXcO ... Os;O Oal ... ak, ... ,0) = (0, , Xco ... a 0, ,0) E A
by the superassociativity of x, hence xc ... OaO ... 0 EAi' for all C E G.
By Lemma 2.12, Ai is a full ideal of G whence Ai = G by simplicity of G.
Hence, for any a E G, there exist elements aI' ... , ai_I' ai+!' ... , ak EG
such that (aI' ... , ai_I' a, ai+l, ... , Gk) EA. If (0, ... , Si' , 0) E rt(G)
has s, as its j-th component, j = 1, , k, then (0, , s.; ... , 0) 0

(aI' ... ,ai_l,a,ai+l, ... ,ak)=(O, ,a, ... ,O)EA, by Lemma 2.12
where a occurs as the j-th component. But {(O, ... , a, ".. ,0) Ia E G,
j = 1, ... , k} additively generates G whence A = rt(G). Hence rt(G) is
simple.

2.2. Let N be a normal subgroup of a group G and k ~ 1 an integer.
By Pk (G, N) we will denote the set of all mappings obtained by restrict-
ing the action of the elements of Pk(G) to Nk while l\(G, N) =
{cpEPk(G, N)I cp(l, 1, ... , 1) = I}. ClearlyPk(G, N) <;; FiN). The set
Pk(G, G) = {cpEPk(G) Icp(1, 1, ... , 1) = I} is a composition subgroup
of the k-dimensional composition group Pk(G) and the mapping from
Pk(G, G) onto Pk(G, N) which maps every element of Pk(G, G) onto its
restriction to Nk, is a composition epimorphism whence Pk (G, N) is a
composition subgroup of the k-dimensional composition group Fk(N).
Hence rt(Pk(G,N»)is a subnear-ring of rt(Fk(N»). ForNbeinga minimal
normal subgroup of a finite group G, some structural results on
rt(Pk(G, N») will be obtained. We have to distinguish two cases: a) N is
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abelian, then N is an elementary abelian p-group, for somepnme p.
b) N is non-abelian.

2.3. First we deal with case a) and view N as a KG-module where G
acts on N by conjugation and Kis the prime field of characteristic p. In
particular, we will write I[(Iaijgi)nj Inj EN, gi E G] instead of
[HTIginjii gill nj EN, s. E G) where aij are integers. The proof of the
following proposition requires some ring-theoretical results (see ch. 6, § 7).

2.31. Proposition. Let G be a finite group and N an elementaryabelian
minimal normal p-subgroup o/G,Jorsome prime p. Then rt(Pk(G, N») is a
simple ring.

Proof. Let cp: rt(Fk(N») -- Fl (Nk
) be the composition isomorphism of

ch. 3, Lemma 11.21. All we have to show is that cprt(Pk(G, N») is a simple
ring. Let 'ljJEcprt(PkCG,N»), then, by ch. 1, Th. 9.21,

"P(nI, ... , nJ = (JI(I(aijlgilgiEG»)nj, ... , Jl (I(aiikg;/giEG)h)

(2.3)

and any such mapping belongs to cprt(Pk (G, N»), as one can easily check.
Let An N be the annihilator ideal of N in KG, then we may regard N
also as a faithful irreducible KG IAn N-module. Hence by a well-known
theorem of representation theory, KG IAn N is a simple ring, thus a full
matrix ring over some finite field. On the other hand, (2.3) shows that
cp(j(Pk(G; N») is isomorphic to the full k Xk-matrix ring over KG IAn N,
hence also isomorphic to some full matrix ring over a finite field and thus
is a simple ring.

2.4. Lemma. Let G be any finite group and N a non-abelian minimal normal
subgroup ofG. Then Pk(G, N) = {cpEFk(N) I cp(1, ... ,1) = I}.

Proof. We apply ch. 1, Prop. 12.5, putting A = Nk and taking for H
the set of those mappings of P k (G, N) which map Nk to N. Then H is a
subgroup of F such that conditions a) and c) are satisfied. Let 111, 112

be two distinct elements oiN", then ~i111.,c ~i112'for at least one projec-
tion ~iEH whence also condition b) holds. Hence H = Fk(N) and thus
Pk(G,N) = {cpEHlcp(1, ... ,1) = l} = {cpEFk(N)lcp(l, ... ,1) = I}.
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2.41. Remark. If G is any..group and N is a normal subgroup of G,
then Pk (G, N) is a d.g. k-dimensional composition group, Indeed,
[{g;ig-1Ii= 1, ... ,k,gEG}]= (Pk(G,N);., -1, l)andg;ig-1isdistri-
butive, for all g EG and all projections ;i'

2.42. Proposition. If G is any finite group and N a non-abelian minimal
normal subgroup of G, then 0f(Pk(G, N)) is a simple d.g, near-ring,

Proof. Let U be a non-zero full ideal of Pk (G, N), If we identify N with
the group of constant functions of Fk(N), then UN is a subgroup of
(Fk (N); ., -1, 1) since, for CP1'CPzE U, 111'112EN, we have

( CP1111)(CP2112)= CP1(111cpzn11 )(111n2) = CP1(x(n1; 11111)CP21 . , . 1) (111112)E UN,

by Lemma 2,12 where ;1 is the first projection of Fk (N) and thus n1;ln11 E
Pk(G, N), We now apply ch. 1, Prop, 12,5 setting A = Nk and H = UN.
Clearly condition a) is satisfied. Let rEG, 1jJE U, then r-1;lr EPk (G, N)
whence, by Lemma 2.12, x(r-1;lr)1jJ 1 ",1 = y-LrprE U, thus cpEH
and rEG implies r-1cpr E UN. Hence also condition c) holds, Suppose
there exist elements ni, nz ENk such that n1 ¢ nz while 1jJn1= 1jJnz,
for all 1jJEUN. WLOG, we can assume that tti ¢ (1, ... ,1), For

. any 11EN, we choose 'I](n1,11)EFk (N) such that '1](111,11)111= 11 and
7](n1,n)n = 1, for n c¢ n1, By Lemma 2A, 'I](n1,n) EPk (G, N), Hence,
for any n ENk, we have X1jJ'I](111,;111). , . '1](111,;k11) E UN since U is a full
ideal of Fk(G, N), Therefore

1jJ11= X1P'l](111,;111)•.. '1](111,;k11)~

= X1jJ'I](111,;111).•. '1](111,;k11)nz= '1/) (1, 1, ... , 1),

Therefore UN ~ N, i.e. U ~ Nand U would be the zero-ideal of Pk (G, N),
Hence also condition b) is satisfied, Therefore UN = Fk (N), and this
implies that Pk(G, N) = Fk(G, N)n UN = U(Pk(G, N)nN) = U, Hence
Pk(G, N) is simple. Prop, 2.13 yields the result.

2.43. Corollary. If G is a finite simple non-abelian group, then Lk(G) =
F(X), for any k.

Proof. As in § 1, let t:Jk(G) : G[X] -> Pk (G) be the canonical epimorphism
and Ak(G) : G[X] -+ F(X) the length-epimorphism. Then, by Prop. 1.4,
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ker Ak(G) is a full ideal of G[X], hence ak(G) ker Ak(G) is a full ideal of
Pk(G). Therefore ak(G) ker Ak(G)nPk(G, G) is a full ideal of Fk(G, G).
By the proof of Prop. 2.42, Fk(G, G) is simple, thus t:Jk(G) ker Ak(G)n
Fk (G, G) equals either {I} or Pk (G, G). In the first case, we arrive at a
contradiction when taking any g EG, g ¢ 1 and hE G such that h does
not centralize g, for then, with the notation of Prop. 2A2, for 111EG\
1\ ¢ (1, 1, ... , 1), we obtain 1 ¢ '1](111,h)-lg'l](111' h)g-l E t:Jk(G) ker Ak(G)n
Pk(G, G). Hence Fk(G, G) ~t:Jk(G) ker Ak(G) ~ Pk(G). But the group
Pk(G)IFk(G, G)is isomorphic to G, hence is simple, and ;lEFk(G,G),
(x(a;1)b1 ... bk) (uab1 ... bk)-.J = ab.a:> ~ r,(G, G), for b1 ¢ 1, shows
that Fk(G, G) is not a full ideal of Pk(G) by ch. 3, § 5.2. Hence
t:Jk(G) ker Ak(G) = Pk(G), therefore ker t:Jk(G) ker Ak(G) = G[X]. Thus, by
Prop. 1.13, Lk(G) = F(X).

3. On polynomial permutations over groups

3.1. Let G be a group and X = {Xl' ... , xd a set of indeterminates.
In ch. 3, § l1A5, the semigroup Uk(G) of all polynomial permutations
of Gk has been introduced. If we recall ch. 3, §§ 11.42, 11A3, we note that
Uk(G) consists of all polynomial function vectors f of 0f(Pk(G)) such
that cpf is a permutation of G\ and that, for finite G, Uk(G) coincides
with the group of units of the near-ring 0f(Pk(G)). Let Go(X) =
{IE G[X]lf (1,1, ... ,1) = I}. Then Go(X) is a composition subgroup
of the k-dimensional composition group G[X], By Prop. lA, Go(X)n
ker Ak(G) is a full ideal of Go(X). Moreover ker t:Jk(G) ~ Go(X) and
Go(X)1 ker t:Jk(G) == Fk(G, G) which, by Remark 2.41, is a distributively
generated k-dimensional composition group with a selector system, Let
x : Go(X) -+ Go(X) 1 ker t:Jk(G) be the canonical composition group epi-
morphism. Then x( Go(X)n ker Ak(G)) is a full ideal of Go(X)1 kert:Jk(G).
Hence ker t:Jk(G)(Go(X)nker Ak(G)) is a full ideal of Go(X), Let

fiG: GoCX) 1 ker ak(G) -+ Go(X) 1 ker ak(G) (Go(X)nkerAk(G)) (3.1)

be the canonical epimorphism. Then t-o is a composition group epimor-
phism whence q(lld is a near-ring epimorphism from a distributively
generated near-ring with identity, by Prop. 2.11. As a consequence of
ch, 6. Prop. 8.51, we obtain:
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3.11. Proposition. Let G be a finite group,and

f-Lc: GoeX) I ker O'K(G) -+ GoeX)1 ker O'keG) (Go(X)nker Ak(G»)

the canonical epimorphism. Then Cif(f-Lc) t( Cif( Go( X) Iker 0' k(G) )) =
t( Cif( GoeX) Iker O'k(G) (GoCX)n ker }'k(G») )).

3.12. The restriction of Cif(f-Lc) to t(Cif( Go(X) Iker O'k(G»)) will be denoted
by t(Cif(f-Lc)). With this notation, we now prove

3.2. Proposition. Let G = Gl X G2 be a finite group. Thenc-,

ker t( Cif(f-Lc») == ker t( Cif(f-Lc) ) X ker t( Cif(f-Lc
2
) ).

Proof. Let 1J : Go(X)->- Go(X) IkefO'k(G), 1Ji : GiO(X) -+ GiO(X) IkefO'k(G;)
be the canonicalepimorphisms, i = 1, 2, and lJXl: GJXl -+

(GIXG2) [Xl the homomorphisms as in the proof of Prop. 1.2. Then
l;[X]GiO(X) ~ Go(X), i = 1, 2. If nJX] : G[X] -+ Gi[X] denotes the ex-
tensions of the projections ni: G -+ Gi, i = 1, 2, to composition epi-
morphisms, then n;[Xl Go(X) ~ GiQ(X), Let e :Cif(GIXG2) -+ Cif(G1)X
Cif(G2) be the isomorphism as in ch. 3, Lemma 11.13, and define a
mapping rp : ker t( Cif(f-Lc)) X ker t( Cif(f-Lc,») -+ ker t( Cif(f-Lc») as follows:
If (ul' u2) E ker t( Cif(f-Lc)) X ker t( Cif(f-Lc,)), then choose counterimages
ui of u, under Cif(1J) such that uiOCif(Gio(X)nker Ak(G;)). This choice
can be made, indeed, since if bi is any counterimage ofu, under Cif(fJ;) ,
then biEtCif(kerO'k(G;) (GiQ(X)nkerAk(G;))). We now set rp(ul' u2) =
Cif(fJ) (Cif(ll[X])UlClCif(l2[X])U2), Then if gEGk = Cif(G) and 1jJg=
(a, b), we have

1jJ[(Cif(ll[XD Ult-1(if(l2[X])UZ) 0 g] =

= 1jJ[((Cif(ll[X])Ulf-1) 0 g) g((Cif(l2[X])Cluz) 0 g)]

= (uloa)a-la, bb-l(uzob») = (uloa, uzob).

Hence Cif( O'k(G») (Cif(ll[X]) Ult-1Cif( l2[X])U2) is independent of the
choice of the Ui' hence rp(ul, u2) is well defined.

Since UiE t(Cif(GiO(X)lker O'k(GJ)), ui is a permutation polynomial
vector of G~, hence the last equation shows that Cif(ll[X]) UlC1Cif(l2[X])U2
induces a surjective mapping from Gk into itself and thus is a permutation
polynomial vector of Gk. Hence rp(u1,u2)Et(Cif(Go(X)lkerO'k(G»)).
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Moreover

Cif(Ak(G») (Cif(ll[X]) Ult-lCif(l2[X])U2) = Cif(Ak(Gl») UlclCif(Ak(G2»)liz

= (Cif(Ak(Gl»)Ull-l)t(Cif(AkCG2»))t-lU2 = l
whence (Cif(ll[X])Ull-lCif(i2[X])U2)C1E Cif(kefO'k(G) (Go(X)n ker }'k(G»)).
Therefore rp(ul' Hz) E ker t(Cif(f-Lcl).

If rp(ul' u2) == rp(bl, b2),and Ui' bi are counterimages of u., bi as used
for defining rp, then (uloa, u20b) = (bloa, b20b), for any (a, b)E
Cif(Gl) X Cif(G2), hence ui = bi, U2 = b2, i.e. rp is injective.

Let \1JE ker t( Cif(f-Lc»), fi) be a counterimage of ru under Cif( fJ) such
that l1JElCif(Go(X)nker Ak(G) J.then Cif(n;[X])l1JElCif(Gio(X)nker Ak(G;)).
If gECif(G) and 1jJg= (a, b), thenlp(l1Jog) = (Cif(nl[X])l1Joa,
Cif(n2[X])l1J 0 b) which shows that Cif(n;[X])l1J is a permutation polynomial
vector of G~ since l1Jis a permutation polynomial vector of o: Hence

. Cif(fJ;) Cif(nJX]) l1JE t(Cif( GioCX) Iker O'k(G;))).

Moreover Cif(Ak(G;)) Cif(ni[X]) fi) = Cif(Ak(G») fi) = l, hence

Cif(n;lXl) fi)l-l E Cif(kerO'k(Gi) (GiQ(X)nker AiGJ)).

Therefore Cif(1~J Cif(n;lX]) l1JE ker t( Cif(f-Lc))' Furthermore

rp(Cif(fJl) Cif(nl[X]) fi), Cif(fJ2) Cif(n2[XJ) fiJ) =
= Cif(fJ) (Cif(ll[X]) Cif(nl[X]) hi) t-1(Cif(l2[X]) Cif(n2[X]) l1J).

Again, if 9 E Cif(G), 'ljJg= (a, b), then

1jJ(Cif(ll[XDCif(nl[X]) l1Jt-lCif(l2[X]) Cif(nz[XD fi) o~) =
= (Cif(nl[X]) fiJ0 a, Cif(n2[X]) fi)0 b) = 1jJ(fi)0 iD

hence
rp(Cif(1Jl) Cif(nl[X]) fiJ, Cif(fJ2) Cif(n2[X]) fiJ) = Cif(1J) hi = \1J.

Hence rp is also surjective, that means rp is bijective. Let \1J1,\1J2E
ker t(Cif(f-Lc») and fi)l' fiJ2 counterimages under Cif(fJ) as before. Then
l1JlofiJ2E tCif( Go(X) n ker Ak(G») since GoCX) n ker Ak(G) is a full ideal of
Go(X). As nJX] and fJi are composition epimorphisms, we obtain

rp-l(\1Jlo \1J2)= (Cif(fJl) Cif(nl[X]) (iUI 0 fi)2), Cif(fJ2) Cif(n2[X]) (fi)1 0 fiJ2»)
= (Cif(Bl) (j (nl[X]) fiJl, Cif(fJ2) (j(n2[X]) fiJI)

o (Cif(fJl) (j(nl[XD hi2, Cif(fJ2) (j(n2[X]) hi 2)
= (rp-l\1Jl) o (rp-l\1J2).

Hence rp-l is an isomorphism and $0 is rp.
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3.3~ Theorem. Let G be a finite group, n: G ...•.H an epimorphism, and
Pk(Yj): Pk(G) ...•.Pk(H) the extension to a composition epimorphism. Then
!/f(PiYj») Uk(G) = Uk(H).

Proof. By ch. 3, Prop. 11.51, !/f(Pk(Yj») Uk(G) f; Uk(H).Let n = (1, 1,
... ,1)EGk and ~=(~l""'~k)EPk(G). By definition, Pk(G,G)=
{cpEPk(G)lqm = I} whence Pk('1)Pk(G, G) f; Pk(H,H). Conversely, if
'IjJE Pk(H, H) and X EPk(G) such that Pk(Yj) X = 1p, then Yj(Xn) = 'ljJn= 1.
Thus (xn)-l X E Pk(G, G) andPk(Yj) (Xn)-lX) = Yj(Xn)-lPk(Yjrx = 'IjJ.Hence
Pk(Yj)Pk(G, G) = Pk(H, H), therefore !/f(PkCYj») !/f(Pk(G, G») = (f(PkCH,
H»). By § 2.2 and § 3.1, PkCG, G) is a d.g. composition subgroup of PkCG)
containing the selector system of PkCG), hence by Prop. 2.11, !/f(PkCG, G»)
is a d.g. subnear-ring of (f(PkCG») containing the identity of !/f(Pk(G»)
which shows that c5((f(PkCG, G»)) f; c5((f(PkCG»)) = Uk(G) since G is
finite. Clearly (f(PkCG, G») is also finite, therefore a result of LAUSCH
Cch, 6,Prop.8.51)implies that (f(PkCYj») c5( !/f(PkCG, G»)) = c5( !/f(PkCH,H»)).
Hence (f(Pk(Yj») Uk(G) 2 c5(!/f(PkCH, H»)) = {f E UkCH) Ifan = n}. More-
over (f(Pk(Yj») UkCG) 2 {fJ~lfJ EHk}. But for any fE UkCH), we have
f = (fan) ~o(fon)-lf, thus (f(PkCYj») Uk(G) 2 Uk(H).

3.31. Theorem. Let GI, G2 be two finite groups and G = Gl X G2. Then
the decomposition homomorphism 'ljJ2(f(T2) for Pk(G) maps UkCG) isomor-
phically onto Uk(Gl)X Uk(G2) if and only if either LkCGl) Lk(G2) = F(X),
or k = 1 and Ll(Gl) Ll(G2) = [X2].

Proof. By ch. 3, Prop. 11.61, 'ljJ2(fCT2) maps UkCG) monomorphically to
Uk(Gl) X Uk(G2), hence also surjective1y if and only if IUk(Gl) II Uk(G2) I=
IU,,(G) I· But, for any group G, f E U; (G) has a unique representation
f = fJ~og where fJEGk and gE(f(P,,(G, G»)nUk(G) = c5((f(Pk(G, G»)),
and any such element belongs to Uk(G). Hence

IUk(G) I = IGk I [c5(!/f(PkCG, G»)) [ = IG Ik[c5((f( Go(X) [ker O"k(G»)) I

by § 3.1. Thus 'ljJz!/f(T2) acts surjectively on UkCG) if and only if
z

[c5((f(Go(X)I kerO"k(G»))! = IT [c5((f(GiO(X) IkerO"k(GJ)) [
i=l

and this is, by Prop. 3.2, equivalent to

[c5((f(,uG») c5((f(Go(X) I ker O"kCG»))I =
2

= IT 1c5(!/f(,uG,») c5((f(GiO(X) Iker O"k(G)))!.
i=l

§ 3 ON POLYNOMIAL PERMUTATIONS OVER GROUPS 237

For an arbitrary group G, we have ker O"k(G) f; GoCX), therefore
kerO"k(G) (GO<X)nkedk(G») = Go(X)nkerO"k(G)kedk(G). By the first
isomorphism theorem of group theory and Prop. 1.13,

Go(X)lkerO"k(G)(Go(X)nker Ak(G») ~

0= Go(X)ker O"kCG)ker AkCG)lker O"k(G) ker AkCG) 0= F(X)ILk(G)

since Go(X)ker Ak(G) = G[X]. Sinceker O"k(G) and ker Ak(G)
are full ideals of G[X] and Lk(G) = Ak(G)kerO"k(G) is a full ideal of
F(X), and the isomorphism theorems also hold for ideals of multi-
operator groups, this isomorphism is a composition isomorphism. Hence
our last condition is satisfied if and only if !c5((f(F(X) ILk(G»)) [ =

2

IT 1c5((f(F(X)ILk(G)))I· If w EF(X), w will denote the coset wLk(G).
i=l .
We define a mapping ~:Aut(FCX)ILk(G») ...•.(f(F(X)ILk(G») by ~rx=
(rxxl' ... , rxxk)· Certainly ~ is injective. Moreover 1J(rx(J)= (rx«(Jxl),
... , rx«(Jxk») = ((Jxlo (rxxl' ... , rxxk), ... , (Jxk a (rxxl' ... , rxxk») = ~(J a ~rx
and if e denotes the identical automorphism, then ~e = (Xl' ... , xk).

Hence ~rx E c5((f(F(X) ILk(G») ). Conversely if (wl(xp ... , xk),· .. , Wk(X1,

... ,Xk»)Ec5(!/f(F(X)ILk(G»)), then the mapping « : F(X}ILk(G) ...•.
F(X)ILk(G) defined by rx(W(Xl' .. ", Xk») = W(W1(Xl; ... , xk), ... , Wk(X1,

... ,xk») is a well-defined automorphism. Thus ~ maps Aut F(X) ILk(G)
bijectivelyonto c5((f(F(X) ILk(G) )) and our last condition is equivalent to

2

IAut F(X) ILk(G) I = IT IAutF(X)ILk(G)I. (3.3)
i=1

We set wLk(GJ = jW, i = 1, 2. Let~i be the mapping we obtain from
~ by replacing G by Gi. Since, by Prop. 1.2, Lk(G) = Lk(G1)nLk(G2),

the mapping ':F(X)ILk(G) ...•.F(X) ILk(G1) X F(X) ILk(G2) defined by'w = (1W, 2W) is certainly a composition monomorphism. Thus !/f('):
!/f(F(X)IL,,(G») ...•.!/f(F(X)ILk(Gl)XF(X)ILk(G2») is a composition mo-
nomorphism. Hence there exists a composition monomorphism
n: (f(F(X)ILk(G») ...•.(f(F(X)I Lk(G1») X (f(F(X)!Lk(G2») which maps the
identity w.r.t. the composition of the first algebra to the identity w.r.t.
the composition of the second one and therefore c5((f(F(X) ILk( G»)) into
c5(!/f(F(X)I Lk(G1»))X c5((f(F(X)ILk(G2»)). If rx E AutF(X) ILk(G) and
Yj1Jrx= (Ul, U2),then we set xrx = Wi-1up ~;-IUz). Thus x :AutF(X)I Lk(G) ...•.
Aut F(X) ILk(Gl) X Aut F(X) ILk(G2) is a monomorphism.
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Suppose now that (3.3) is satisfied, then x is an isomorphism. The
k-generator group G = F(X) ILk(G) has normal subgroups Ni =
Lk(G;) ILk(G), i = 1, 2, which satisfy NlnN2 = 1. Let iWil"'" iWik
be a generating set for F(X) ILk(GJ SinceLk(G) is a full ideal of F(X) and
F(X)ILk(G;) is finite by Prop. 1.13, there exists C<:iEAutF(X)ILk(G;)
such that C<:i;:Xj = iW;j' j = 1, , k: Set C<:= x-l(c<:l' C<:2)'Then 'Y)f)c<:=
(f)l C<:l'f)2C<:2)'Set f)c<:= (VI' , Vk)' then this is a generating set of
F(X) ILk(G), and ;Vj = jWjj' j = 1, ... , k. Hence Vj ~lWljn2W2j' i.e.
vjLkCG) ~ wljLk(Gl)n w2jLk(G2). Therefore the hypothesis of ch. 6,
Lemma 6.9 is satisfied. The lemma implies that either F(X) ILk(G) =
Lk(Gl) I Lk(G) X Lk(G2) ILiG) i.e. F(X) = LkCG1) Lk(G2), or
IF(X) ILk(Gl) Lk(G2) I = 2. Since Lk(Gl) Lk(G2) == V is a full ideal, in
the second case x, ~ V, thus if k: >- 1, we •would have x2x11E V
whence Xl E V, contradiction. Thereforek = 1 and L1(G1)L1(G2) = [X2].

Conversely let LkCGl) Lk(G2) = F(X). Then by Cor. 1.22, the decom-
position homomorphism 't2 of Pk(G) is an isomorphism, and by ch. 3,
§ 11.3, 1pll('t2) is an isomorphism. If, however, k: = 1 and L1(G1)L1(G2) =
[X2], then let Ll(Gl) = [Xl,] and L1(G2) = [XI2]. It follows (11,/2) = 2.
L1(G) = Ll(Gl)nLl(GZ) implies L1(G) = [.xl] where I is the least com-
mon multiple of 11 and lz. Since IAut F(x) I [x"] I = rp(n), rp being Euler's
c-function, (3.3) holds if rp(l) = rp(ll) rp(lz). WLOG, assume that 11= 2n1,
12 = 2'n2' r;;;,o 1, nl, nz odd positive integers, (nl, nz) = 1. Thus I =
2'n1n2, hence rp(l) = 2,-1 rp(nl) rp(n2) = rp(ll)rp(l?J as required.

3.32. Corollary. If G1, Ge are two finite groups and CIGll, IG21) = 1, then
1jJ[iC't2) maps Uk(Gl X G2) isomorphically onto Uk(Gl) X Uk(G2).

Proof. (IGll, IGzl) = 1 implies Lk(Gl) Lk(GZ) = F(X).

4. Further results on the group of polynomial permutations over a finite
group

4.1. Let G be a finite group and Uk(G) the group of its k-dimensional
polynomial permutations which, by § 3.1, coincides with the group of
units of the near-ring 0f(Pk(G»). This section is devoted to various
structuralproperties of Uk(G). Since 0f(Pk(G» is, in general, not a d.g.
near-ring, but 0f(Pk(G, G)) is, by Remark 2.41, it is of advantage to
investigate first of all the group Uk(G) = t((j(Pk(G, G))) = Uk(G)n
(j(Pk(G, G)) in order to utilize some results of ch. 6 on d.g. near-rings.

§4 239FURTHER RESULTS ON THE GROUP

4.11. Theorem. Let IG I ~ 1. If Uk(G) is soluble, then G is soluble and
either

(i) k = 1 and,for every chief factor HIK of G, the group Aute (HIK)
of automorphisms of HIK induced by the inner automorphisms of G is
abelian or IHIKI = 4 or 9, or

(ii) k = 2 and G is a supersoluble (2, 3)-group.

Proof. LetUk(G) be soluble. Since the mapping y: G ->- Uk(G) defined by
yg = (g~lg-l, ... , g~kg-l) is' a homomorphism with ker y = Z(G),
the centre ofG, GIZ(G) is soluble and so is G. Let HIK be a chief factor
of G, then HI K is a p-chief factor, for some prime p. One checks easily
that (H IK)k is an (j(Pk(G, G))-group in the sense of ch. 6, § 8, where the
role of S is taken by the set of elements (1, 1, ... , g- J~jg, ... , 1) and the
action of (j(h(G, G)) on (HIKl is defined by

(rpl"'" rpk)o(hlK, .· .. ,hkK) = (rpl(hl' ... ,hk)K, ... , rpJhl" .. ,hk)K).

(HIKl is even a minimal (j(Pk(G, G))-group since (f(Pk(G, G») contains
all the elements of the· form (1, 1, ... , ~j' •.. , 1). The mapping
a: (f(Pk(G, G)) ->- PI ((HIK)k) defined by (aD 0 1) = f 0 1), f E (j(Pk (G, G)),
1) E (H IK)k is a near-ring homomorphism whence ker a is a full ideal of
(j(Pk(G, G)). With the notation of§ 2.3 and the result therein, we find
that, for any rp Er,(G, G),

k

rp(hl' ... , hk)K = I (IC<:ij(g;K) I gjK E G I K )hjK.
j=l

Hence as in § 2.3, a(j(Pk(G, G)) is isomorphic to the full kXk-matrix
ring over K/G IK) IAn (H IK) where Kp denotes the field of p elements.
But by § 2.3, Kp(G IK) IAn (H IK) is a simple ring, thus is isomorphic to
some full matrix ring of degree m over some finite field L containing Kp.
Therefore a(j(J\(G, G)) is isomorphic to the full matrix-ring Lkm of
degree km over the finite field L of characteristic p.

By ch. 6, Prop. 8.51, at((j(Pk(G, G))) = t(a0f(P,,(G, G))) == t(Lkm)·
Since U,,(G) is soluble, also t(Lkm) is soluble. By a well-known result on
linear groups this is the case only if either (i) km = 1, or (ii) km = 2,
P = 2 or 3 and L = Kp.

(i) km= 1 implies k= landm= 1. Hence K/GIK)IAn(HIK) == L.
Since Aut., (HI K) is isomorphic to a subgroup of the multiplicative semi-
group of K/G IK) IAn (HI K), it is cyclic, therefore abelian.
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(ii) km = 2. Case 1: k = 1, m = 2. By our previous results,
K/ G IK) IAn (H IK) is isomorphic to the full matrix ring R2 of degree
2 over Kp' Hence HI K is a faithful irreducible R2-module. By ch. 6, § 74,
this implies that HI'K is a vector space of dimension 2 over Kp. Hence
iHIKI = 4 or 9, since p must be 2 or 3. Case 2: k = 2, m = 1. The
same argument as in Case 1 shows that dimK (H IK) = 1 whence
iHIKj = 2 or 3. In either case k = 1 or 2. If k ~ 1, then condition (i)
ofTh. 4.11 is satisfied while if k = 2, then every chief factor of G has
order 2 or 3 whence G is a supersoluble (2, 3)-group.

4.12. Theorem. If G is soluble and either (i) or (ii) ofTh. 4.11 is satisfied,
then U,iG) is soluble.

Proof. By induction on IGI. If iGI = 1, then IUiG) I = 1, hence Uk(G)
is soluble. Let N be a minimal normal subgroup of G, then the canonical
epimorphism 'Y/: G - GIN induces an epimorphism 0f(Pkl(1]») =
Uk('Y/) : Uk(G) - Uk(G IN). Since G IN also satisfies (i) or (ii), Uk(G IN) is
soluble by induction, and it remains to show that ker Uk('Y/) is soluble.

Now ker Uk('Y/) = {uE Uk(G)lg-1(uog)ENk, for all gEGk}, thus
u o 9 = gn(u, g), n(u, g) ENk. Furthermore, for any n ENk, 9 Ec-. we
have uc (gn) = (u o g) '"C(u, g)11where '"C(u,g) is some endomorphism of
Nk

. Moreover 't(u, g) is bijective, and cp = al~ila2~i, ... as(as+1 EPk(G)
implies cp(gln1,· .. , gkn,) = a1gi,a2gi, asgipS+l(a2gi2 ... asgiPS+l)-l
ni,(a2gi2· .. as gi,as +1) (a3gi, ... asgiPs+1)-1 , hence (cpa g)-l (cp0 gn1n2) =
(cpa g)- J (cpa gn1)( cp0 g)-1 (cp0 gn2) since N is abelian. Therefore
uo(gn) = gn(u, g)'t(u, g)n, for all UEker Uk(?7). For each gEGk, we
obtain some mapping 8(g): ker Uk('Y/) - Sym Nk, the symmetric group
of Nk, defined by (8(g)u)n = n(u, g) 't(u, g)n since UE Uk(G). More-
over g(8(g) (U10u2»)n = (UlaU2)0(gn) = ulo(g(8(g)u2)n) = g(8(g)Ul)
,( 8(g)u2)n = g( 8(g)Ul 0 8(g)u2)n hence 8(g) (1.11a U2) = 8(g)UIO 8(g)U2,
Therefore 8(g) is a homomorphism. Furthermore In (ker beg)I9 E Gk

) i = 1
whence ker Uk('Y/) can be embedded into the direct product of all
beg) ker Uk ('Y/). All that remains is to show that beg) ker Uk('Y/) is soluble,
for all 9 E Gk. We choose 9 E Gk arbitrary and define tp : beg) ker Uk('Y/) -
Aut Nk by cp(b(g)u) = 't(u, g). This is a well-defined mapping, for if
b(g)u = 8(g)b, then (8(g)u)e = (b(g)b)e, e = (1,1, ... , I)ENk. Hence
n(u, g) = neb, g), thus '"C(u,g) = 't(b, g). Moreover n(u 0 b, g) i(u 0 b, g)n =
(8(g)ua b(g)b)n == (b(g)u) neb, g)'t(b, g)n = n(u, g)'t(U, g)n(b, g) ('t(u, g)a
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't(b, g))n. If we set n = e, then the first factors cancel and '"C(u0 b, g) =
't(u, g) a '"C(b,g). Hence cp is a homomorphism. If b(g)u Eker tp, then
(8(g)u)n = n(u, g)n, hence ker cp is isomorphic to some subgroup of
Nk and therefore soluble. But cp8(g)ker Uk(1]) is a subgroup of Aut Nk,

If (ii) holds or (i) holds and INI = 4 or 9, then AutNk is isomor-
phic to GL(2, 2) or GL(2, 3) which is soluble. If; however, k = 1, and
AuteN is abelian, then any two elements 't(u,g) commute since every
't(u, g) in the endomorphism ring of N can be written as a sum of
elements of Aut., N, and again cpb(g) ker Uk('Y/) is soluble.

4.13. Corollary. If G is a finite group, then Uk( G) is soluble if and only if G
is soluble and either

(i) k = 1 and, for every chief factor HIK of G, Aute (HIK) is abelian,
or IHIKI = 4 or 9; or

(ii) k = 2 and G is a supersoluble (2, 3)-group; or
(iii)1 G I = 1.

4.2. Proposition.lfG is a finite group, then the radicalJ of0f(I\(G, G»)
is nilpotent.

Proof. Let HI K be a chief factor of G, then as in the proof of Th. 4.11,
(HIK)" is a minimal 0f(1\ (G, G»-group. Iff E J, then by definition of J,
f annihilates (HIK)k, i.e. fa(h1> .. " hk)EKk for all (h1> .. ,' hk)EHk,
Hence if I is the chief series length of G, then f consists of the zero
mapping only (i.e. the mapping where every element has the image
(1,1 ... ,1). Thus J is nilpotent.

4.21. Proposition, Every minimal 0f(Pk(G, G»)-group is 0f(Pk(G, G»)-
isomorphic to some Hkl Kk where HIK is some chief factor of G.

Proof. By ch. 6, Prop. 8.43, every minimal 0f(Pk(G, G»)~grotip is iso-
morphic to some0f(Pk(G, G»)iIJi, forsomeidempotentiE0f(Pk(G, G»)
where i is non-zero, since J is nilpotent by Prop. 4.2. But i cannot
annihilate HlcIK\ for every chief factor HIK of G, otherwise i is the
zero mapping. So we can choose some chief factor HI K such that
i(HkIKk) 7"" Kk. Hence there exists mEHklKk with (0f(Pk (G, G»)i)m
7""Kk, Since (0f(Pk(G, G»)i)m is also an0f(Pk(G, G»)-group, the min-
imality of HklKk implies (0f(Pk(G, G»)i)m = HklKk, The mapping
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fi -+- (fi)m; fE i1f-(Pk(G, G») is an i1f-(Pk(G, G»)-homomorphism from
(l(Pk(G, G»)i to HklKk and is surjective, and its kernel contains Ii, by
ch. 6, Prop. 8.43. Hence, by the minimality of i1f-(P,,(G, G»)tiIi, the
kernel equals Ii. Therefore i1f-(Pk(G, G»)ilii ~ HklKk.

4.22. Corollary. With the notation of ch. 6, § 8, 1=nkf(Pk(G, G)(Hk IKk),
the intersection being taken over a full set of pairwise non-i1f-(Pk(G, G»)-
isomorphic factors Hk IKk where II IK are chief factors of G.

4.3. Proposition. Let G be any finite abelian group. Then Uk(G) is isomor-
phic to a semidirect product of G" by a group isomorphic to t(M(k, exp G»)
where M(k, exp G) denotes the ring of k X k-matrices over the integers
modulo exp G.

Proof. Every cpEi1f-(I\(G, G») can be written uniquely as tp =
(~~" ... ~%lk,... , ~~kl ••• ~%kk)where aij is an integer, 0 ~ au <: exp G,
and it is evident that 1J: i1f-(Pk(G, G» -+- M(k, exp G) defined by
1Jcp = (aij mod exp G) is an isomorphism from the multiplicative semi-
group of i1f-(Pk(G, G») to the multiplicative semigroup of Mtk, exp G).
Hence Vk(G) = t(i1f-(Fk(G, G»)) ~ t(M(k, exp G»). If we set t =
(~1' ... , ~k) then for any cp E Vk(G),c E c-, we have sp 0 q = (cp 0 c)t 0 tp,
Since every element of Uk (G) is of the form m;ocp where cpEVk(G) and
9 EG", it follows that C = {Ct IcE Gk} is a normal subgroup of Uk (G),
and clearly C = G", moreover CV,,(G) = U,,(G) and CnVk(G) = {I}.

4.4. Let F(X) be the free group on X = {xl' ... , x,J and Z+ the addi-
tive group of integers. Then 17;: F(X) -+- Z+ defined by 'r)jXj= bu,
1 ~ i, j ~ k, where bijis the Kronecker symbol describes a group homo-
morphism. Let Mtk, 0) be the ring of k X k-matrices over Z, and G a
group. Then Ck(G): i1f-(G[X]) -+- M(k, 0) defined by C,,(G)f =
Ck(G) Up ... Jk) = (aij) where aij = 'r)/'k(G)J; is a near-ring epimor-
phism as one can easily check.

4.41. Theorem. If G ;;'"{I} is a finite p-group, then f E i1f-(G[X]) is a per-
mutation polynomial vector if and only if p does not divide detCk(G)f·

Proof. By induction on IG I. If IG I = p, then G is abelian, hence for any
fEi1f-(G[X])withCk(G)f= (ai),wehavei1f-(o,,(G»)f = (gl~~"'" ~%lk, .•. ,
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gk~~k1 ... ~%kk).By Prop. 4.3, f is a permutation polynomial vector
if and only if pi'det Ck( G)f. Suppose now that IG I >- p, andN is a minimal
normal subgroup of G, Then IN I = p and N ~ Z(G), the centre of G.
Let n: G '+ G IN be the canonical epimorphism and 'r)[X]: G[X] -+-

(G IN) [X] its extension to a composition epimorphism. If f is a per-
mutation polynomial vector of G, then by ch. 3, § 11.5, i1f-('r)[XDf is also
a permutation polynomial vector of G IN. By induction, p does not divide
detCk(G IN) i1f-('r)[XDf = det Ck(G)f· Conversely let pi'det Ck(G)f, then
pi'det Ck(G IN) i1f-('r)[X])f, hence by induction, i1f-('r)[XDf is a permutation
polynomial vector of G IN. Thus. if g, gl EG" and gg;-l ~ N", then fog ;;'"
f 0 gl' If, however, gg;-l EN", then gl = 9b with bE N" ~ Z(G)". Hence
f 0 gl = f 0 9b = (f 0 g)(b 0 b) where b = (~~11 ••• ~%lk, •.. , ~~kl ... ~%kk).
Since P1det (ajk), b is a polynomial permutation of Z(G)", by Prop. 4.3,
whence f 0 gl = fog implies b = e, i.e. gl = g. Hence f is a permutation
polynomial vector of G.

4.42. Corollary.JfG ;;'"{I} is a finite nilpotent group, then fEi1f-(G[X])
is a permutation polynomial vector if and only if (det C,,( G)f, I G!) = 1.

Proof. G is a direct product of its Sylow p-subgroups Gpi, Pi being pair-
wise distinct primes. Repeated application of Cor: 3.32 together with
Th, 4.41 yields the result.

4.43. Theorem. Let G ;;'"{I} be a finite p-group.Then IUk (G) I =
IGL(k, p) I r', for some integer t >- 0, and U" (G) is a group extension of
some p-group by the group GL(k, p).

Proof. LetNbe a maximal normal subgroup of G, n : G -+- GINthe cano-
nical epimorphism andi1f-(Pk('r)) : i1f-(Pk(G») ..•. i1f-(Pk(GIN») the corre-
sponding near-ring epimorphism. If i1f-(Pk ('r), 'r)) denotes the restriction of
i1f-(P,,('r)) to i1f-(P,/G, G»); then certainly i1f-(P,,('r), 'r)) (f(Pk(G, G») =
i1f-(Pk(GIN, GIN») and ker i1f-(Pk('r), 'r)) = h(Pk(G, G)(G"INk). Since G
is a p-group, every chief factor IIIK of G is a group of order p, being
contained in Z(G IK). Hence an element of i1f-(Pk (G, G») is contained in
Irr(Pk(G,G)(Hk IKk) if and only if, for every polynomial vector f repre-
senting this element, we have Ck(G)f = p A where A is some integral
kXk-matrix. Thus, by Cor. 4.22, keri1f-(Pk('r), 'r)) = I, the radical of
i1f-(Pk(G, G»). Since (~i, ... , g)EI and, by Prop. 4.2, I is nilpotent,
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the (additive) order of every element of J is a power of P whence IJI = pS
for some integer s. Now (f(Pk(17, 17))fE t,((f(Pk(GIN, GIN))) if and
only if fEt,((f(Pk(G, G))), by Th. 4.41. Hence 1t,((f(Pk(G, G)))I:=
it,(q(Pk(GIN, GIN)))IIJI. Since GIN is abelian, Prop. 4.3. implies
IUk(G) I = IGlk 1t,((f(Pk(G,G)))! =IGlk IGL(k,p)IIJI=IGL(k,p)lpl.By
Th. 3.3, (f(Pk('I})) Uk(G) = Uk(GIN). Since IGINI = p, the group
Uk(GIN) has a normal subgroup C such that Uk(GIN)IC '= GL(k,p),
by Prop. 4.3, hence the remaining assertion of the theorem follows
from the second isomorphism theorem.

4.44. Corollary. If G is a finite group, then Uk(G) is nilpotent if and only
if either IG I = 1, or k = 1 and G is a 2-group.

Proof. If IG I = 1, then IUk(G) I = 1, and if k= 1 and G is a 2-group,
then by Th. 4.43, IUl(G) I = IGL(l, 2) 121= 21, hence Ul(G) is nilpotent.

Conversely let IG I ,c 1 and U,cCG)be nilpotent. Since the set of all (agI,
... , agk) constitutes a subgroup of Uk(G) isomorphic to G, G itself is
nilpotent, i.e, G is a direct product of its Sylow Pi-subgroups Gp, By Cor.
3.32, every Uk(Gp) is nilpotent whence, by Th. 4.43, every GL(k, pJ
is nilpotent thus k = 1. Let G be any finite group and cpE Z(U1(G)).
Then since g-1 and gg, g EG, belong to Ul(G), we have cp-l =
g-lo cp= tpo g-l and gcp = gg 0 cp= cpogg. Hence cp(l) = cp(gg-l) =
gcp(r1) = gcp-.1(g) thus cp(g) = cp(1)-1g, for any g E G. Therefore tp = ag,
a E G whence g-la-:-J = ag-l. We conclude that a2 = 1 and see that,
for odd IGI, the group Ul(G) cannot be nilpotent. Hence G has G2 as
its only Sylow p-subgroup, i.e. G is a 2-group.

5. Characterization of classes of groups by properties of their permutation
polynomials

5.1. Theorem. A finite group G is abelian if and only if every cpE U1(G)
can be written as cp = ae, a E G, I an integer.

Proof. The "only if" part of the theorem is evident. Suppose that every
polynomial permutation cp of G can be written as cp = agk. Then, for
each bEG, there exists some integer I(b) such that gb = bg1(b\ i.e.
b-1gb = gl(b). Renee the group of inner automorphisms of G is abelian,
i.e., GIZ(G) is abelian whence G is nilpotent (of class .« 2). Moreover
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b1(b)-1= 1 whence the order o(b) of b divides l(b).,-1. Since G is nilpotent,
there exists hE G such that o(h) = exp G whence exp Gf(l(h)-l).
Hence gl(b) = g and h-1gh = g, Therefore hE Z(G) and exp Z(G) =
exp G. For z EZ(G), bE G, we have zl(b) = b=zb = z, hence
exp GI(l(b)-I) and gl(b) = g. Therefore gb = bg, for all bEG, i.e. Gis
abelian.

5.2. Theorem. Let k :> 0 be an integer, X = {Xl' ... , xk}, and G a finite
group. If, for every f E (f(G[X]), (det Ck(G)f, IGI) = 1 implies that f is a
permutation polynomial vector; then G is nilpotent.

Proof. a) Assume k = 1. We use induction on IGI. Certainly the theorem
is true for IG 1= 1, Suppose the hypothesis of our theorem holds. Now
let IG I :> 1, and M be a maximal subgroup of G such that IM I and IG I
have the same prime divisors. By ch. 1, Th. 9.11, M[x] is a subgroup of
G[x], and for any fE M[x], certainly (C1(M)f, IMI) = 1 implies (Cl(G)f,
IG I) = 1. Thus if fE M[x] and (C1(M)f, IMI) = 1, f is a permutation
polynomial of M and by induction, M is nilpotent. Now suppose that M
is a maximal subgroup ofG such that IM I and IG I have not the same
prime divisors, and let Pi' i = 1, ... ,r, be those primes with pJIGI,
p;'j'fMI. Let fEM[x] and (C1(M)f, IMI) = 1. Then we can choose an
integer I with 1==0 mod IMI; 1== I-Cl(G)! mod p., i = 1, 2, ... , r,
and set g = xl]. ThenC1(G)g ~ I+C1(G)f whence C1(G)g == Cl(G)f
mod IMI and Cl(G)g == 1 mod Pi' Therefore (Cl(G)g, IGI) = 1 and by
assumption, g is a permutation polynomial of G, furthermore gem) =
m1j(m) = f(m), for all mE M. Hence fis a permutation polynomial of M.
By induction, M is also nilpotent in this case. Therefore G is a group all
of whose maximal subgroups are nilpotent. By ch. 6, § 6.53, G is nilpotent
or IG I = paqb,p ,c q primes, G has a normal Sylow p-subgroup P, and
all Sylow q-subgroups of G are cyclic. We want to show that the second
alternative is impossible: Assume, that G is not nilpotent. Let
fE (GIZ(G)) [xl, (C1(GIZ(G))f, IGIZ(G)I) = 1, 1f: G -+ GIZ(G) be
the canonical epimorphism and 1f[x]: G[xJ -+ (G IZ(G))[x] its extension
to a composition epimorphism. We choose g E G[x] such that (Cl(G)g,
IGI) = 1 and Gl(GIZ(G)) 1f[xJg = Gl(GIZ(G))f Such a g can be found by
a procedure similar to that used in the first part of the proof. Then g is a
permutation polynomial of G whence f is a permutation polynomial of
GIZ(G). Unless Z(G) = 1, GIZ(G) is nilpotent by induction andso would
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G be, contradiction. Therefore Z(G) = 1. Let Q = [h]be a fixed Sylow
q-subgroup of G,. then G = PQ. Since Z(G) = 1, ch. 6, § 6.53 implies
IQ I = q and P is elementary abelian. Moreover if PI is a normal subgroup
of G and PI is properly contained in P, then PlQ is nilpotent, thus abelian
whence PI s; Z(G). Hence P is a minimal normal subgroup of G which
we will regard as an irreducible KG-module where K is the field of order p
and G acts by conjugation as usual. Let T be the representation of Gover K
afforded by P. If T(h) had 1 as an eigenvalue, then there would exist some
1 o;C- rEPsuch that hrh> = r whence r E Z(G), contradiction. Hence T is a
non-trivial representation. Let fez) = UO+U1Z+ ... +usz' be the char-
acteristic polynomial for T(h), then f(l) o;C- O. We choose integers
vo, VI' ... , Vs representing uo' ... , UsE K, respectively, and an integer
m such that m == 0 mod p, m == I-vo-". -vs modq. Letf=
xl1lXVOhXV1h... hxv'h-s E G[x]. Then 'l(G)f = m+vo+ ... +vs whence
Cl(G)f'iE 0 modp and Cl(G)f== 1 modq. Therefore ('l(G)J, IGI) = 1,
hence by hypothesis, f is a permutation polynomial of G. On the other
hand, for any t E P, we have f(t) = tmtVOhtV1h.... htV'h-s = tVO(htV1h-l)
. (h2tV'h-2) ... (hStV'h-S). Or when switching to additive notation, J(t) =

f(T(h))t = 0, by the CAYLEy-HAMILTONequation (seech. 6, § 7.2) which
contradicts the just obtained result that f is a permutation polynomial.
Hence G is nilpotent.

b) k >- 1. If G is riot nilpotent, then by a) there exists a polynomial
f(xl) E G[Xl] such that (Cl(G)f(xl), IG 1)= 1 andf(xl) is not a permutation
polynomial. Let f = (J(xl), x2' .•. , xk) E (f(G[X]), then f is not a per-
mutation polynomial vector, but (det'k(G)f, IGI) = (det'1(G)f(x1),
IGI) = 1.

5.3. Theorem. If G is a finite nilpotent group of class c(G) =<;; 2, then
U1(G) is the set of all polynomial functions cp=a;tb, a, bEG, (I, I GI) = 1.

Proof. Certainly every polynomial function of this form belongs to
U1(G). Conversely let cpE U1(G), then cp = a1;tla2;t' ... ar~/'ar+l' ai E G,
Ii integers. Since c(G) =<;; 2, the commutator group of G is contained in
Z(G), and by ch. 6, § 6.53, we have lab, c] = [a, c] [b, c] and [a, be] =
[a, b] [a, c], a, b, c E G. Hence

m = a a ]:/,+ ... +I,[t/t a] [tl,+I, a] [tl,+ ... +1, a ]
't 1 .. , r+l" .-, 2" '3"'" , 'r-l-L

= a a tl,+ ... +I,"[t al'aI1+1, al,+I,+ ... +1,]
1 . .. r+1" '" 2 3 .• , r+1 .

By Cor. 4.42, (2:~=l/i' IG I) = 1, hence there exists hE G such thathI;[-l/i =
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al'aI1+1, aI1+I,+... +1, Thus
2 3 • •. r+l '.

m = a a tI1+I,+ ... +I,.[t hI1+1,+... +1,]
'r 1. .. r+l> '"

= a a t/,+I,+ ... +/,[t/1+ ... +/,. h]. = a a .1,-ltl,+", +/'h1 . .. r+1" " , 1 •.. ' r+ 1 • ~ ,.

5.31. Corollary. If G is a finite nilpotent group of class 2, cp Euler's cp-
function, and H(G) = {g E G I g-l~g = ~e(g), for someinteger e(g)}, then

)
i' I G 12cp(exp G)

IUi(G ~ = IH(G) I .

Proof. By Th. 5.3, U1(G) = {U~IVIU, V E G, 0 =<;; 1<: exp G, (I, exp G) = I}.
Amongst these IG 12cp(exp G) (not necessarily pairwise distinct) functions,
we have to determine under what conditions a~lb = c~md. Suppose this
holds for a, b, c, dE G, 0 =<;; I, m <: exp G, (I, exp G) = (m, exp G) = 1,
then a = cdb-1 whence db-1;tbd-1 = ~m,and if II == 1 mod exp G, then
db-l~bd-l = em. Hence bd ? = hE H(G), thus d = h-lb, c = ah, and
m == le(h) mod exp G. If conversely, d = h-1b, c = ah, h E G(H), and
m == le(h) modexp G, then c~md = ah~/e(h)h-lb = a(hh-l~hh-ly b = a~lb .

5.32. The converse ofTh. 5.3 is not true as the following example shows:
Let G = S3, the symmetric group on three letters. The polynomial
functions a~±1b, a, bE S3, belong to U1(S3) and are pairwise distinct
since Z(S3) = {1}. Hence IU1(S3) I ~ 72. However, the eosets mod A3,
the alternating group on three letters, are blocks for Ul(S3) as a per-
mutation group on S3. Since there are exactly two blocks of three ele-
ments each, weconc1ude that IU1(S3)I =<;; 2! (3!)2=72. Hence IUl(S3)1=

. 72 whence every mapping of Ul(S3) has the form a;tb. S3 is, however, .
not nilpotent. Yet there is a partial converse of Th. 5.3 if we restrict the
prime divisors of IG I:

5.33. Theorem. If G is a finite group of odd order and everyip E U1(G)
is of the form rp = aeb, a, bEG, then G is nilpotent of class c(G) ~ 3.
Iffurthermore (IGI, 6) = 1, then c(G) ~ 2.

Proof. By ch. 6, § 6.53, it suffices to show that a and b+ab commute,
for any two elements a, bEG. Since (IG I, 2) = 1, xg: lxg = xg2 0 X2 0 xg-c-l
is a permutation polynomial, for any g E G. Hence there exists an integer
I(g) and an element a(g) E G such that gg-l~g = a(g)-l~/(g)a(g), (l(g),
1G I) = 1. Let leg) be a solution of l(g)/(g)== 1 mod 1G I, then ~T(g)g-I~7(g)g=
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= a(g)-l ~a(g) is an inner automorphism of G. Hence ~27(g)g-1~2TCg)g=
;tCg)g-l~7(g)geCg)g-leCg)g, for all g E G. Therefore eCg)(g-leg)g) =
(g-l~l(g)g)~i&!). Since;t(g) is a polynomial permutation, we obtain
t(g-ltg) = (g-ltg)t, for all t, g E G.This completes theproof.

Remarks and comments

§§ 1-5. Polynomial permutations on gr~ups were originally discussed
by LAUSCH,NOBAUERand SCHWEIGER[1], [2], for k = 1, and by No-
BAUER[26], for k >- 1. The concept of length in the case of one indeter-
minate (in a form which is somewhat different from that in our book) has
been introduced by S. D. SCOTT[1] who also proved Prop. 1.3 for this
case. Some of the methods of § 2 originate from FROHLICH[1]. The case
k = 1of Th. 4.12 has been proved implicitly in LAUSCH,NOBAUERand
SCHWEIGER[1], the proof for the general case in our book is due to
LAUSCH.Th. 4.11 has also been proved by LAUSCH,after some preliminary
work had been done in LAUSCH[5]. The characterizations of certain classes
of groups by properties of their permutation polynomials in § 5 are due to
LAUSCH,NOBAUERand SCHWEIGER[2], LAUSCHand SCHWEIGER[1], and
LAUSCH [3]. An explicit computation of the group U1(G), for various
finite non-abelian groups G, has been performed by SCHUMACHER[1].
For a connection between U1(G) and the automorphism group of G,
we can only refer to TROTTER[1].

CHAPTER6

APPENDIX

1. Sets

1.1. In this section we will give a brief survey of those basic concepts
and theorems on sets that are used in the book. For more detailed infor-
mation and proofs of the theorems, we refer to standard texts, e.g.
KAMKE[1].

A set is a collection of objects, these being called elements or members of
the set. As usual we write a E A to indicate that a is an element of the
set A, and a ~ A in the opposite case. A set B is called a subset of the
set A if every element of B'is an element of A, we write in this case
B ~ A. The set peA) of all subsets of A is called the power set of A.
If B is a proper subset of A, i.e. there exists a E A, a ~ B, then we write
B c A. The union AU B of the sets A, B is the set of all elements which
belong to, at least one of the sets A, B. The intersection An Bof A, B is
the set of all elements which belong to both A and Band A ~ B = {a I' a EA,
a ~ B} is the difference of A, B. The empty set cp is the set consisting of
no element. cp is a subset of every set. Two sets A, B are called disjoint
if AnB = cp.

Let I be an arbitrary set. If for every i E I, there is some set Ai defined,
then we speak of the family (AiiiEI) of sets. U(AiliEI) = {al aEAi

for at least one i E I} is called the union of this family while n(Ai liE I) =
{a I a E Ai for all i E I} is called the intersection of this family.

It is well-known that intuitive set theory sometimes leads to contra-
dictions, thus one has to introduce the concept of classes for "very
large" sets. In this book, however, the distinction between classes and
sets is, in fact, not essential.

1.2. Let A, B be two sets. A mapping (or function) rp from A to B
(rp: A ~ B) is a rule which assigns some element spa E B to each a E A.
B is called the range of rp. Sometimes the mapping rp willalso be written
as a ~ tpa. The element spa is called the image of a under rp, and if tpa = b,
a E A, then a is called an inverse image or counterimage of b under rp.

249
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The set consisting of the images of all a E A will be denoted by cpA.
The mapping tp : A --+ B is called injective or an injection if every bE B

has at most one counterimage under cp while cp is called surjective or
a surjection if cpA = B and bijective or a bijection if cpis injective and
surjective. A surjective mapping is also called a mapping "onto", where-
as a mapping "into" is not necessarily surjective. Sometimes we use the
following

Lemma. If A is a finite set and tp : A -+ A is injective or surjective, then cpis
bijective.

Let ip : A --+ B be any mapping and Al c:; A. Then the mapping CPI:
Al --+ B defined by cpla = ipa, for every a E AI, is called the restriction of
cp to Al while cpis called an extension of CPIto A. Sometimes we write
CPI= cpIAI·

Letcp:A --+- Bbe a mapping and C c:; AnB. We say that cp fixes C
(elementwise) if tpc = c, for all c E C.

If cp: A --+- B, 1/): B --+ C, then 1pcpa= 1j!(rpa) defines a mapping 1j!Cp: A --+- C
being called the product or the composition of the mappings 1j!,cpoFor any
three mappings X,1j!" cp,we have (X1f))Cp= X(1j!CP)whenever both sides of the
equation are defined. The mapping s : A --+ A with ea = a, for all a E A,
is called the identical or identity mapping of A. e satisfies ep = cp,
tpe = cp, for every mapping cpto or from A, respectively. If cp:A --+- B is
bijective, then cp-l :B --+- A defined by cp-I(cpa) = a, for alJ spaE B, a E A,
is again bijective. cp-l is called the inverse of tp.

A (finite) diagram consists of a finite family of sets and a finite set of
mappings between the sets of this family which can be drawn in such a
manner that the sets are represented by points and the mappings
tp: A --+ B by arrows linking the points which represent A, B. A diagram
is called commutative if any two sequences of arrows between two points
A and B represent one and the same mapping, e.g. diagram fig. 6.1 is
commutative if 'X1j! = tp.

A family of elements of the set A with index set lis a mapping tp : I--+- A.
We set cpi= a, and write ta, liE 1) for this family. Any restriction CPl
of cp to a subset II of 1is called a subfamily of (ai liE 1). Sometimes we
also speak of systems and subsystems instead of families or subfamilies.
If 1 is the set of positive integers, then (ai liE I) is a sequence, and if I is
finite, then (a, liE 1) is called a finite sequence.
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A cp ~ B

~j/
C

FIG. 6.1

'r
1.3. Let (Ai Ii El) be a family of sets. The Cartesian product D =
I1(Ai liE 1) of this family is the set of all families (ai liE 1) of elements
of U (Ai I i El) such that ai EAi' for all i El. If d = (a, I i El) ED and
j E 1, then aj E Aj is called the j-th component of d. If 1 = {I, 2, ... , k},
then we write Al X A2 X ... X Ak for I1(Ail i E 1) and if Ai = A,
i = 1, ... , k, then we write Ak for Al X ... X Ak. We call Ak a Cartesian
power of A. .

Let k :> 0 be an integer and A a set. By a k-place function or k-ary
operation on A, we understand a mapping cp: Ak --+ A. A subset B ~ A
is said to be closed under cpif cp(bl' ... , bk) E B whenever (bI> ... , bk) E Bk.

1.4. Let A be a set. A binary relation e on A is a subset of A2. For
(a, b) E e we will write aeb.

A binary relation e on A is called an equivalence relation if e is
reflexive, transitive, and symmetric, i.e. the following three coriditions
hold, for any a, b, c E A:

(i) aea;
(ii) aeb, bec imply aec;

(iii) aeb implies beil.
Equivalence relations on A are strongly tied up with partitions of A.

A partition ofthe set A is a set of non-empty subsets of A such that every
a E A is an element of exactly one of these subsets. The subsets are called
classes or blocks of the partition, and the subset containing a E A is
called the class of a, denoted by C(a). Every element of a class C of a
partition is called a representative of C. By a (full) system of representa-
tives of a partition of A, we understand a subset R ~ A such that RnC
consists of exactly one element, for every class C. The connection between
partitions and equivalence relations of A can now be expressed by a

~
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Theorem. Let 1) be any partition ofA. If we define the binary relation e(1))
on A by,' ae( 1J)b if and only if a, b are in the same class of 1J.,then e( 1J)
is an equivalence relation. The mapping rpfrom the set of all partitions of A
to the set of all equivalence relations on A defined by r(1)= e( 1)), for every
partition 1), is bijective.

The classes of the partition, corresponding to the equivalence relation
e, are called equivalence classes under e.

1.5. Let A be any set. A binary relation ,« on A is called a partial order
(relation) if "'" is reflexive, transitive and antisymmetric, i.e., for all
a, b,' c E A, the following conditions hold:

(i) a "",a;

(ii) a "'"b, b "'" c imply a "'"c;
(iii) a "'"band b "'"a imply a = b.

The pair (A; ""') is called a partially ordered set. We write a -< b if a ",,;b
but not a = b.

A partial order relation « on A is called a total order (relation) if also
(iv) a ",,;bar b "'"a, for all a, bE A,

is satisfied. (A; ",,;) where .« is a total order relation, is called a totally
ordered set or a chain.

Let (A; ""') be a partially ordered set. An element a E A is called a
maximal element of A if a ",,;b implies a = b arid a is called a minimal
element of A if b "'"a implies b = a. a E A is the greatest element of A
if b "'"a, for all bE A, and a is the least element of A if a ",,;b, for all
bE A. Clearly A has at most one greatest (least) element being denoted
by max A (rnin A).

Let B be a subset of the partially ordered set (A; "",). Then B2n("",)
is a partial order relation on B which will again be denoted by",,;. a E A

. is an upper (lower) bound of B if b "'"a (a"", b), for all bE B. A very
important theorem gives a condition for the existence of maximal ele-
ments:

Zorn's lemma. Let (A; ",,;)be a partially ordered set such that every totally
ordered subset (B; ""') of A has an upper bound. Then A has a maximal
element.

In most cases this theorem is applied when A is a subset of the power
set P(M) of some set M and a ",,;b means that a is a subset of b.
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Let (A; ""') and (B; ",,;)be partially ordered sets. A mapping rp : A -+ B
is an order homomorphism if al "'"a2 always implies tpa: ",,;rpa2. A sur-
jective order homomorphism is called an order epimorphism. If A = B,
then rp is an order endomorphism. If cp is bijective and rp-l is also an order
homomorphism, then rp is called an order isomorphism.

Let (Ai; ",,;), i = 1, ... ,k, be partially ordered sets and D the Carte-
sian product of these sets. We define a relation .« on D by (aI' ... , ak) "'"
(b1, ••. , bk) if and only if there is an index 1 ",,;i ",,;k+ 1 such that
a1 = b1, ... , ai_1 = bi_1> aj <.b.. Then ",,; is a partial order relation
on D, the so-called lexicographic partial order relation of D. If all <A;; ",,;)
are totally ordered sets, so is -(D; "",).

1.6. The sets A, B are called equipotent if there exists a bijective mapping
tp.; A -+ B. Equipotence of sets is reflexible, transitive, and symmetric.
The class of all sets which are equipotent to some set A is called the
cardinality or cardinal ]A I of the set A. If moreover rp : I -+ A is a family
of elements of A with index set I, then the cardinality of this family will
mean IrpII· If A is a finite set, then the cardinality IA I is called finite and
if A is infinite, then IA I is called infinite. The finite cardinalities can be
identified with the non-negative integers. The cardinality IN I of the set
N of positive integers is denoted by ~o and a set A with IA I = ~o is
called a countable set.

Let rm, liE 1) be a family of cardinals. The sum and productof this family
are well-defined cardinals if we define them as follows: Take any family
(AiliE!) of sets such that IAil = m., for all i c I, and AinAj = c/J, for
i =], and set I(miliE1) = !U(A;liE1)!. Take any family (A;liE1)
of sets such that IAil = m., for all i E I, and set I1(mil i E1) = !I1(A;1 i E1) I·
Important special cases are mi +nh and mlm2, the sum and the product,
resp., of two cardinals ml and m2. If m, = m, . for all i E I, then
I(m;liEl) = 111m.

Let m, n be two cardinals, and I a set with II I = n. If (m, liE 1)
is a family of cardinals with rn, = m, for all iE I, then we define
m" = I1(mjliEl), which is well-defined. For any set A, IP(A) I = 2iAI.

Let rn, 11 be two cardinals. We write rn "'"n if and only if there exist
sets A, B with IA I = m, IB I = n such that there is an injective mapping
rp : A -+ B. If C is an arbitrary set of cardinals, then vs is a total order
!:~l,a!ion on Cjf n is a finite cardinal, then n ~ ~o, and'if n is i~fin;t~ then
~ 0 ",,; 11. If B is a subset of A, then IB I ",,; I A I. If (A;/ i E 1) is a family of

~
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sets, then IU (Ai I i El) I "'" I( IAi II i El). If (m, Ii El), (n; liE 1) are fami-
lies of cardinals such that m, "'"n., for all i E I, then 1)m; liE 1) "'"
I(niliEl) and TI(miliEI) "'" TI(n;liEl).lfm1 "'" rn, and n is an arbi-
trary cardinal, then m~t"'" mg.

If m or n is an infinite cardinal, then m+11 = max (m, 11)and if more-
over m ~ 0, 11~ 0, then mn = max (m, 11).If m is an infinite and 11is a
finite cardinal, then m" = m. For any set A we have IAI -< IP(A)I.

1.7. A partial order relation "'" on the set A is called a well ordering if
every non-empty subset of A has a least element W.r.t. ""'. A partially
ordered set (A; ""') is called well ordered if "'" is a well ordering.

Theorem. (Well ordering principle). On every non-empty set A, one can
define a well ordering ""'.

Two well ordered sets A, B are called isomorphic if there exists an
order isomorphism rp: A -+- B. "Isomorphic" for well ordered sets is
reflexive, transitive, and symmetric. The class of all well ordered sets
isomorphic to some given well ordered set A is called the ordinal of A.
The ordinal of the empty set is denoted by 0, the ordinal of the set
{I, 2, ... , n} ordered by the usual order relation of the integers will be
denoted by n.

Let (x, {J be two ordinals. We write (X "'" {J if and only if there exist well
ordered sets A, B with ordinal ex, {J, respectively, such that there is an
injective order homomorphism ip : A -->- B. If 0 is an arbitrary. s~t_()J
ordinals, then ec is a well order relation on O. If (X is an arbitrary ordinal,
iheri'the~~dinal of the set (G; ""') of airor'di~als y -< (X is just ex.

1.8. Induction is frequently used throughout the book, The principle of
this powerful method will now be described briefly:

Let a be a non-negative integer and the statement rp(m) be defined for
all integers m ;;,,;a. Suppose that

(i) rp(a) holds and
(ii) if rp(n) holds, for a "'" n -< m, then rp(m) holds.

Then rp(m) holds for all integers m "'" a.
An important generalization of induction is the transfinite induction:
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Let ex, (j be ordinals with ex -< 0 and the statement rp(p.) be defined for
all ordinals fJ, with 0 "'" fJ, "'" ex. Suppose that

(i) rp(ex) holds and
(ii) if rp(y) holds for ex """ y -< fJ" then rp(fJ,) holds.

Thenrp(fJ,) holds for all ordinals fJ, with 0 "'" fJ, "'" ex.
1.9. A binary (i.e. 2-ary) operation * on a set M(written with infix nota-
tion) is called a ssociative if x * (y *z) = (x *y) * z, for all x, y, z EM;
commutative if x *y = y * x, for all x, y EM; and idempotent if
x *x = x for all x EM. Let * and 0 be binary operations on M. The
operation 0 is called right (left) distributive w.r.t. * if (x*y)oz =
(xoz)*(yoz) (if zo(x*y) ",,{zox)*(zoy»), for all x, y, zEM. Let *
be a binary operation on M, An element i EM is called a right (left)
identity for * if a* i = a (if i * a= a), for all a EM. If i is a right as
well as a left identity for "*, then i is called an identity for *. There
exists at most one such identity.

2. Lattices

2.1. All those results from lattice theory which are used in this book will
now be reviewed in brief. For more detailed information, we refer to
standard texts (e.g. Sz4sz [1]),

An algebra (L; U, n) where U, n are binary operations is called
a lattice if both U and n are associative and commutative and if more-
over the "absorption laws" aU(anb) = a, an(aUb) = a are satisfied
for all a, bEL.

There is some close relation between lattices and certain partially
ordered sets. Let (A; """) be any partially ordered set and B a subset of A.
A least (greatest) element of the set of upper (lower) bounds of B - which,
of course, need not always exist - is called a least upper (greatest lower)
bound of B. We win write U (b I bE B) for the least upper bound of Band
n(b I b EB) for the greatest lower bound of B.

Theorem. Let (L; U,n) be a lattice. We define a binary relation """
on L by: a e: b if and only if aUb = b. Then (L; """)= 1)L is a partially
ordered set where U (a, b) and n (a, b) exist, for any subset {a, b} <;; L,
and U(a, b) = aUb, n(a, b) = anb. If, conversely, (L; """) is a partially
ordered set where U (a, b) and n (a, b) always exist, then we obtain a
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lattice (L; U, (I) = 1]L when defining aUb = U(a, b), anb = n (a; b).
Moreover 1](1JL)= L, for any lattice L, and iJ(1]L) = L, for any partially
ordered set L where U (a, b) and n(a, b) always exist.

2.2. A lattice L is called a complete lattice if U (b I bE B) and n (b I b EB)
exist in the corresponding partially ordered setiJL, for any B S; L. For
proving completeness of a given lattice one sometimes uses the

Lemma. A partially ordered set (A; """)corresponds to some complete lattice
if and only if A has a greatest element and, for any non-empty subset
B S; A, there exists n (b IbE B).

Let L be a complete lattice. A subset M of L is called a complete
sublattice of L if, for every subset B <;; M, we have U (b I b EB) EM and
n(blb E B) E M.

\'

1.3. A lattice L is called a distributive lattice if U is right distributive
w.r.t. nand n is right distributive w.r.t. U.

Let (L; U, n) be a lattice. A right identity for U - there exists at most
one such identity - is called a zero of L and denoted by 0, and similarly
a right identity for n is called an identity of L, denoted by 1. An element
a EL is a zero (identity) of L if and only if a is the least (greatest) element
of the corresponding partially' ordered set iJL.

Let L be a distributive lattice with zero and identity. L is a Boolean
algebra if, for any a EL, there exists a unique element a' EL such that
aUa' = 1 and ana' = O.

,~-( :

2.4. Let L, M be two lattices. A homomorphism (epimorphism, iso-
morphism) ip : L -+ M from the algebra L to the algebra M is called a
lattice homomorphism (epimorphism, isomorphism). If cp: L -+ M is a
lattice homomorphism (epimorphism), then rp is also an order homo-
morphism (epimorphism) from iJL to iJM, but the converse is not always
true. tp is, however, a lattice isomorphism if and only if rp is an order
isomorphism. Let L, M be complete lattices. A lattice homomor-
phism (epimorphism) sp : L ->0 M is called complete if rp U (b IbE B) =
U (rpbI b EB) and rpn(b I b EB) = n (rpbI b EB), for all subsets B s:::; L.

2.5. An algebra (S; n) is called a semilattice if n is associative, commu-
tative, and idempotent.
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3. Multioperator groups

3.1. This section is to exhibit what is needed in the book from the theory
of multi operator groups, Since just very few books contain some mate-
rial on this subject, we give the proofs in full.

Assume + is a 2-aryoperation, written with infix notation, - is a
l-ary operation, and °is a O-ary operation. Let Q = {Wi liE I} be a family
of operations, indexed by the set I of all ordinals ~ -< a where 0 is an
arbitrary ordinal. Let T = {ni Ii El} be the type of Q. We define:

An algebra G = (G; +, - ,0, Q) is called an Q-multioperator group if
1) (G; +, -, 0) is a group with + as group operation, - the operation

of forming the inverse, and ° the identity;
2) wiO ... ° = 0, for any wiEQ with ni >- 0.

'. Thus e.g. every group (G; +, -,0) and every ring (R; +, -,0,.)
is a multioperator group.

3.11. Proposition. For any Q, the class W1of Q-multioperator groups is a
variety.

This follows from the fact that "(G; +, -,0) being a group" can be
stated by means of laws.

3.2. Assume G = (G; +, -, 0, Q) is an Q-multioperator group. Let 0
be any congruence on G and C(a) the congruence class of the element
a EG under 0. We define the kernel ker 0 of 0 by ker 0 = ceO).
A subset A of G is called an ideal of G if there is some congruence 0
on G such that ker 0 = A. If rp is a homomorphism from the Q"multi-
operator group G to some algebra H, then the ideal kernel ker rp of rp will
be the ideal ker Ker sp.

3.21. Proposition. Assume that A = ker 0. Then A is a normal subgroup
of (G; +, -,0) and 0 is induced by the partition of this group into the
cosets of the normal subgroup A.

Proof. By hypothesis. A = ceO) whence A is a subgroup. Moreover c0b
if and only if c Eb+A but also if and only if CEA+b. Thus b-s-A =
A+b = ceb) whence A is a normal subgroup of (G; +, -,0) and
also the second statement follows.
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3.22. Corollary. The mapping which maps every congruence 0 of the
Q-multioperator group G onto its kernel, is a bijection from the congruence
lattice ~(G) to the set of all ideals of G.

. Proof. Evident.

3.23. From ch. 1, § 1.S and the definition of an ideal, we see that the
subsets {O} and G of G are ideals, the so-called zero ideal and unit ideal,'
respectively. Together they are called the trivial ideals of G. Cor. 3.22 .
shows that the multioperator group G is simple if and only if G has no
non-trivial ideals.

If A is an ideal of G and 9 the congruence such that ker 0 = A, then
we wlU write G I A for the factor algebraC I0.

Let S'r(G) be the set of all ideals of G. The set-theoretical inclusion ~
is a partial order relation on S'r(G). If 01, 02E ~(Q), then 01 ~ O2 if and
only if ker 01 ~ ker O2. Hence the mapping ker : ~(G) -+ (S'r(G); .~ >
is an order isomorphism and keel is also an order isomorphism. There-
fore (S'r(G); ~) is a complete lattice. Let M = {Ai I i El} be a non-empty
subset of S'r(G) and set keel Ai = 0i. Then by ch. 1, § 1.6, the greatest
lower bound of M is ker n (0il i E/) where n means the set-theoretical
intersection. Since a E ker n0i if and only if a E n ker 0i, we conclude
that the greatest lower bound of M is the set-theoretical intersection
n (Ai liE 1) which therefore is again an ideal. The least upper bound S of
Mis ker (Jj where (Jj is the least upper .bound of the set ker "! M. Thus
a ES if and only if a(JjO.By ch. 1, § 1.6, this is true ifand only if there
are congruences 0i" ... , 0ir in ker=! M and elements c1' ... , cr_1 EG
such that afi\c1, c10i,C2, ... , cr_li\O. This is equivalent to
a-c1 = ai, E Ai" C1-C2 = ai, E Ai" ... , cr_2 -cr_1 = air_, E Air_" cr-1 =
airE Air' i.e.

a = ail+ai, + ... +air where r ~ 1, ai• E Ai.' v = 1, ... , r. (3.2)

Thus S is the set of all elements of the form (3.2). This set is called the
sum of the set M = {Ai liE I} of ideals and is, of course, itself an ideal.
Hence

3.24. Theorem. The set' S'r(G) of all ideals of the Q-multioperator group G
being partially ordered by set-theoretical inclusion, is a complete lattice,
the so-called ideal lattice of G. If M is a non-empty subset of Sl'(G), then the
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j greatest lower bound of M is the set-theoretical intersection of the ideals
of M and the least upper bound of M is the sum of the ideals of M. The
mappingker :~(G) -+ S'r(G) is a lattice isomorphism.

3.25. Let P .be a subset of G. The ideal of G generated by P is the inter-
section of all ideals of G containing P.

3.3. Proposition. Let G be an :Q-multioperator group, D an ideal of G,
and ~ the sublattice of S'r(G) consisting of all ideals B ::2 D of G. Then the
canonical epimorphism 1) : G -.+:G ID induces a lattice isomorphism from ~
to the lattice S'r(G I D). Moreover 1) maps the set of all subalgebras of G
containing D bijectively to the set of all subalgebras of G I D.

Proof. We set 0 = keel D. Let IXbe the lattice isomorphism of ch. 1,
Th. 1.71. Then (ker)IX(kee1):~ -+ Sl'(GID) is a lattice isomorphism.
But a E (ker) IX(kee1)B means a(1X keel B)O which is equivalent to
a=1Ju, u(keel B)O, forsomeu E G, i.e. a E 1)B.Hence (ker)lX(keel)B = 1)B,
for every B E~. Let U be any subalgebra of G ID and eU the set of the
inverse images of its elements under 1). Then eU is a sub algebra of G
containing D. On the otherhand, 1)maps every sub algebra of G contain-
ing D to a subalgebra of G ID. Moreover 1)e and e1) are the identical
mapping whence 1) is bijective.

II

-I' )" :' ..:;' ",' If
t\"' ••••_\. .••. • (Ii

3.4. Lemma. A subset A of the Q-multioperator group G is an ideal
of G if and only if

a) A is a normal subgroup of (G; +, -,0),
b) if Wi is.an arbitrary operation of Q with ni >- 0, then, for any a E A,

(el, ... , glli)E GII
;, and 1 ~ v ~ ni, we have

wig1 ... g.-lg. + a)g'+l ... glli-wig1 •.. g"-lg.g'+l ... gillE A.

Proof. Let A be an ideal of G. Then A = ker 0 whence by Prop.
3.21, A is a normal subgroup of <G; +, -,0) and 0 is induced by the
partition of G into the cosets of A. Hence (g. +a)0g., therefore
wig1 ... (g. + a) ... gn,0wig1 ... g•... gilt i.e. b) holds. Suppose now that
a), b) are satisfied. Then the equivalence relation being induced by the
partition of G into cosets of A is some congruence 0 and ker 0 = A.
Hence A is an ideal. .. ,
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3.41. Remark. Lemma 3.4 shows that for a group, regarded as a multi-
operator group, the ideals are just the normal subgroups while for rings,
regarded as multioperator groups, the ideals are the two-sided ideals
in the sense of ring theory.

3.5. Proposition. (First isomorphism theorem for multi operator groups).
Let G be any Q-multioperator group, U a subalgebra of G, and A an ideal
of G. Then U+A is a subalgebra of G, A is an ideal of U+A, un A is an
ideal of U, and U+AjA ~ UjUnA.

Proof. By the first isomorphism theorem for groups, U + A is a subgroup
of G. Since °E A, we have WjE U+ A for any ». with nj =0, and if
ul + aI' ... , Un,+ all, E U+ A, and Wjis an n(ary operation ofQ, nj >- 0,
then by Lemma 3.4, wj(ul+ai)'" (uni+an)-,-WjUl'" un,EA whence
U+ A is a subalgebra of G. A is an ideal of U + A and un A is an ideal
of U, by the first isomorphism theorem of group theory and Lemma 3.4.
Also by the first isomorphism theorem of group theory, ex : U + A I A ~
UIUnA, defined by a(u+A) = u+(UnA), is a group isomorphism.
One checks easily that ex is also a homomorphism w.r.t. the operations
wjEQ.

3.51. Proposition. (Second .isomorphism theorem for multioperator
groups). Let tp:G ~ H be any epimorphism of Q-multioperator groups,
B an ideal of H, and A = {a E G I tpaE B}. Then' A is an ideal of G and
HIB ~ GIA.

Proof. By the second isomorphism theorem of group theory and Lemma
3.4, A is an ideal of a(Also, by the second isomorphism theorem of group
theory.Ythe mapping a: GIA ~ HIB, defined by a(g+A) = cpg+B,
is a group isomorphism. One checks easily that ex is a homomorphism also
w.r.t. the operations WjEQ.

4. Rings

4.1. Ring-theoretical definitions and results that are used in this book
will now be compiled, but proofs will be given only for less widely-
known lemmas. Moreover some important facts about roots and
partial derivatives of polynomials over commutative rings with identity
-even though they are well-known-will be proved for the sake of

\

~

r
I

I
I

i
1
I

§4 RINGS 261

completeness since they are frequently used in this book. We refer the
reader to standard books like REDEl [2], VANDERWAERDEN[1], [2] and
ZARISKI-SAMUEL[1] for some further information.

A ring is an algebra (R; +, .) with two binary operations +, . such
that (R; + ) is a commutative group whose identity is 0; . is associat-
ive and right andleft distributive w.r.t. +. If . is also commutative, then
R is called a commutative ring, and if . has a (left) identity, then R is
called a ring with (left) identity.

Let R be any ring. An element aE R is called nilpotent if a" = 0,
for some integer n >- 0. a ~ ° is a zero divisor if there exists ° ~bE R
such that ab = O. An idempotent a E R is an element with a2 = a.

An (integral) domain is a commutative ring R with identity and without
zero divisors, i.e. ab = ° implies a = ° or b = 0, for all a, b ER. A (not
necessarily commutative) ring K with identity 1 such that {a E K Ia ~ O]
forms a group W.r.t. the multiplication is called a skew-field, and a
commutative skew-field is a field.

Every field is an integral domain and every finite integral domain is a
field. Moreover every finite skew-field is a field. A commutative ring
with identity is a field.if and only if it is a simple algebra with at least
two elements.

Let Dbe any integral domain, then there is (lip to isomorphisms that
fix D) exactly one field K that contains D as a subring such that every
dE K can be written as d = ob: \ a, bED. K is then called the quotient
field of D. An integral domain D is called integrally closed if every x EK
that satisfies some equation xn+dn_lxn-l+ ... +dlx+do = 0, djED
belongs to D where K is the quotient field of D.

Let D be any integral domain. If 1 ED has no finite order in the addi-
tive group of D, then D is said to be of characteristic 0, and if 1 is of
additive order.p, then D is of characteristic p. Such a number p is always
a prime. We write char D for the characteristic of D. If char D = p >- 0,
then (a+b)P = aP+bP, for all a, bED.

If R is a ring with identity, then a unit of R is an element e ER such
that de = ed = 1, for some dE R. The set of all units of R constitutes a
group w.r.t. the multiplication. In a commutative ring R with identity,
bE R is called an associate of a ER if b = ae, for some unit e ER.
The relation "being associated with" is an equivalence relation on R.
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4.2. Let R be a commutative ring with identity. An element bE R is a
divisor of a E R if a = be, for some e E R: If b is a divisor of a, we say b
divides a or a is divisible by b and write bla. If bla, then b is called a
proper divisor of a whenever b is not associated with a, and is called a
non-trivial divisor if b is neither associated with a nor a unit of R. A
non-zero element pER is called an irreducible element of R if it is not
a unit of R and has no non trivial divisor. (Sometimes we shall also say
prime element instead of irreducible element).

An integral domain R is a unique factorization domain (UFD) if
every non-zero non-unit a E R is a product of a finite number of irredu-
cible elements and, for any two factorizations of such an element a E R
into irreducible elements, there is a bijection between the two sets of
factors such that each factor of the one factorization is mapped to
an associate. If R is a UFD, then the polynomial ring R[x] is also a
UFD.

Let R be a UFD. If pER is an irreducible element and a E R, then
the number of associates of p occurring in a decomposition of a into
irreducible factors is called the multiplicity of p in a. The element a is

. J

square free if every irreducible element pER has at most multiplicity
1 in a.

Let aI' ... , a, be elements of the UFD R. An element d c R is a
greatest common divisor (g.c.d) of aI' ... , a., denoted by (aI' ... , ar) if dla.,
i = 1, ... , r and if cla., i = 1, ... , r, implies cld, for any c ER. An
element v ER is a least common multiple (l.c.m.) of aI' , a., denoted by
[aI' ... , ar] if aJv, i = 1, ... , r, and if a.lw, i = 1, ,r, implies ulw,
for all w ER. Greatest common divisors and least common multiples
exist for any elements all ... , a, ER, and are uniquely determined up
to associates. If the irreducible pER has multiplicity ,mj in a.;
i = 1, ... , r, then p has multiplicity min (mill ~ i ~ r) in (all"" ar)
and multiplicity max (m, 11 ~ i ~ r) in [aI' ... , aJ If a, bE R, then
(a, b) [a, b] = ab. The elements a, b ER are called relatively prime if
(a, b) = 1. The elements aI' ... , a; ER are called pairwise relatively
prime or coprimal if (aj, a) = 1, for i r" j. If (a, b) = d, then aid, bid
are relatively prime.

4.3. Let R be any ring. A non-empty subset I ~ R is a left (right) ideal
of R if a, b c I implies a -b E I and a E I, r ER implies ra E I (ar E I).
An ideal of Ris a left and right ideal of R (this definition coincides with

I"
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that in § 3 if we regard R as a multioperator group (R; +, -,
0, . »). If I is an ideal of R, then ae(I)b if and only if a-b EI defines
some congruence e(I) on R, and e is a bijection from the set
of all ideals of R to the set of all congruences on R. For ae(1) b,
usually a == b mod I is written and' R II means R Ie(l). The ideals
{O}, the zero ideal, and R, the unit ideal, are called the trivial ideals
of R.

For the remainder of this subsection, let R bea commutative ring with
identity. If all" .,arE R, then the set (aI' ... ,ar) = {tla] + ... +trarl t, E R}
is an ideal of R, the ideal generated by al, •.. , a.. ap ..• , a, is called
a finite ideal basis of the ideal I if I= (aI' ... , ar)' I is a principal
ideal if I = (a), for some a E R; we then write u ==v mod a instead of
u == v mod (a). Clearly (a) = Ra.

If A, B are ideals of R, then their intersection An B and their
sum A+B = {a+blaEA, bEB} which is sometimes denoted by (A; B)
are also ideals. Moreover AB = {IjEl ab, I aj E A, b, E B, I finite} is again
an ideal, the product of A, B. Intersection, sum, and product of ideals
s~tis~y t~e commutative and th~ associative law!~nd the product is
distributive w.r.t, the sum. If A - (aI' , ar)' B..- (bl, ... , bs), then
AB = (albl, alb2, ••• , albs,a2bl, ... , arbl, , arbs)· An shall mean the
product of n equal ideals A.

Two ideals A, Bare caIIed comaximal if, A +B = R. The ideals
All ... , Ar are called pairwise comaximal if Aj, Aj are comaximal when-
ever i r" j. If All ... , AT are pairwise comaximal, then Al ... Ar =
Al n nAr, and . any system of congruences x == a, mod Aj,

i = I, , r, has a solution in R which is unique mod AI" .Ar (this is
the weII-known Chinese remainder theorem). Moreover if C(a) denotes
the congruence class of a under the congruence e(Al ... Ar) and
Ci(a), i = 1, ... , r, denotes the congruence class of a under e(A), then
qJC(a) = (CI(a), ... , Cr(a)) defines a ring isomorphism qJ:RIAl' .. Ar ->-

(RIAl)X .. , x(RIAr)·

An ideal P of R is called a prime ideal of R if RIP is an integral domain
while an ideal Q is a primary ideal of R if every zero. divisor in R IQ is
nilpotent. If Q is a primary ideal of R, then {b ER Ib" E Q, for some'
integer m :> O}is a prime ideal of R, the so-called radical of Q or the
prime ideal associated with Q. If Q, P are ideals of R, then Q is primary
with associated prime ideal P if and only if: (i) Q ~ P, (ii) if bE P, then
b" E Q, for some integer m :> 0, and (iii) if ab EQ, a ~ Q, then b EP.
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If there is a positive integer n such that P" s;: Q,. then the least such
integer is called the exponent of Q.

An ideal N of R is called nilpotent if N" = {O} for some integer n :> O.

4.4. A principal ideal domain (PID) is an integral domain R such that
every ideal of R is principal. Every PID is a UFD. If aI' ... , a, ER
and d = (aI' , ar), then there exist elements t1' ... , t, ER such that
d = tlal + + t.a, An ideal (a) of R is a non-trivial prime ideal if and
only if a is. irreducible. For a ",,0, the factor ring R I(a) is a field if and
only if a is irreducible.

A Euclidean domain is an integral domain R such that there exists .a
function tp from R ~ {O} to the set of non-negative integers with (i) bla
implies rp(b) "'"rp(a), for any non-zero elements a, s« R, and (ii) if
0"" b, a ER, then there exist q, r ER with a.= bq+r and either r = 0 or
rp(r) -< rp(b). Every Euclidean domain is a PID. The common examples
of Euclidean domains are the ring of rational integers and the polynomial
ring K[x] over any field K.

'I

4.5. A commutative ring R with identity is called noetherian if every ideal
of R has a finite ideal basis. If R is noetherian, then the polynomial
ring R[xl, ... , xk] over R is also noetherian.

A Dedekind domain is a integral domain R where every ideal of R is a
product of a finite number of prime ideals of R. Every Dedekinddomain

'- ,." .

is noetherian and integrally closed. Every PID is Dedekind. The best
know» examples' of Dedekind d~~'~ins are the integral domains consisting
of all algebraic integers in a finite extension field of the field of rational
numbers. In particular, the ring of rational integers is Dedekind. If
A s;: B for two ideals of a Dedekind domain R, then there exists some
ideal C in R such that A = BC.

Let R be a Dedekind domain. Then every non-trivial ideal A of R
can be represented as a product of non-trivial prime ideals, and this
representation, the so-called primary decomposition of A, is unique up to
the order of the factors. If P is a non-trivial prime ideal of R, and
A is a non-zero ideal, then the number of factors P in the decompo-
sition of A into prime ideals is called the multiplicity of P in A.
If a prime ideal P has multiplicity m; in the ideals Ai' i = 1, ... , r, then
P has the multiplicity min (mill"", i "'" r) in the sum and the multiplicity
max (m, 11 ~ i ~r) in the intersection of these ideals. Hence any two

?
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powers P~l, P~2of different non-trivial prime ideals Ps, Pz are cornaximal ?
.An ideal Q of R is primary if and only if Q is a power of some prime
ideal P, and this prime ideal is just the radical of Q.

Let R be a Dedekind domain, and A a non-trivial ideal of R. Then R IA
has only principal ideals, and if 0 "" a E A, then there exists b EA such
that A = (a, b). Subsequently let R be a Dedekind domain.

4.51. Lemma. Let P be a prime ideal of R. If a ER and the class C(a)
under 0(P) is a unit of RIP, then the class Clea) under 0(pe) is a unit of
Ripe.

Proof. By hypothesis, there is bE R, pEP such that ab = l-p whence
ab(l+p+ ... +pe-l) = l_pe.

I
I

I
'1

'4.52. Lemma. Let P be a non-trivial prime ideal of Rand e :> 0 an integer.
Then there exists a bijective mapping from P' (pe+l to R(P.

Proof. Since every ideal ofRIPe+1 is principal, so is Plp+l. Say
pelpe+l = (C(r») where r c P' and e(r) is the class of r under 0(Pe+I).
Hence the equation C(a) = C(r) C(x) has a solution x ER, for any
C(a) EP" Ipe+I. One verifies easily that the set -8C(a) of all solutions x
of this equation is a class under e(p), that -8C(a) = 1JC(b) implies
C(a) = C(b), and that every element of RIP i~ an image under 1J 'I

4.53. Lemma. Let P be a non-trivial prime ideal of R such that IRIPI is
finite, e ~ 2 an integer, a E P and a ~ P2. If WI is a vector system
mod P, We_1 a vector system mod pe-1 ·(cf ch. 4) then the sets
W = {u+aolu EWI, 0 E We_I} and W = {0+ae

-
1ulu E WI' 0 EWe_I}

are vector systems mod P',

Proof. Let iRIPI =r, then by Lemma 4.52, IWI =1 WI = IWIII We_ll=
rk(re-l)k = iRlpel". If in W, u+ao ==UI+aoI mod P", then u== UI
mod P whence u = ul and 0 = 01, hence W isa vector system mod P',
A similar argument shows that W is a vector system mcd P",

4.6. Let Rl' R2 be commutative rings with identity and R = R, XR2•

Then for every ideal A s;: R, there exist ideals Ai of R;, i = 1,2, such
that A = Al X A2. Moreover An = A~ X A~.
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A commutative ring R with identity is called the inner direct product
or the direct sum of its subrings R1, R2 if the mapping tp : Rl X R2 ...•.R,
defined by cp(rl, r2) = rl + r2 is an isomorphism .:If d ER is an idempotent,
then R is the inner direct product of its subrings (d) and (I-d) and if,
conversely, R is the inner direct product of its subrings Rl, R2' then
there is an idempotent d t: R such that Rl = (d) and R2 = (I-d). A
commutative ring R with identity is called directly indecomposable if,
in any representation of R as an inner direct product of subrings Rl' R2,

we have IRjl = 1, for at least one i.

4.7. Let R be a commutative ring with identity, R[x] the polynomial
ring in x over R, andfE R[x]. An element a ER is a root of fif f(a) = O.

4.71. Lemma. If a is a root off, then thepolynomial x-a is a divisor off
in R[x].

Proof. We can write f = (x-a)g+r where g E R[x], r ER. If we substi-
tute a. for X, then r = 0 by the principle of substitution.

4.72. The greatest integer k such that (x-a)k is a divisor of f is called
the multiplicity of aas a root off

4.73. Proposition. Let R be any integral domain, 0 ,,::fE R[x] a poly-
nomial of degree [f], aj' i = 1, ... , r, distinct roots of f, and kj,
i = 1, ... , r, the multiplicities of these roots. Then kl + ... +k, "'"[f]
and f is divisible in R[x] by the polynomial (x -alll ••• (x-ar)k,.

Proof. The first statementfollows from the second one and ch. 1, Prop.
8.31. We have f= (x-al)k'gl' Suppose f= (x~al)kl ... (x-aj_1)kr-1

.(x-a;Ygj/ where 0 "'" 1-< k; Then, since R[x] is an integral domain, we
have (x-afi~/g = (x-alll ... (x-aj_l)ki-lgj/, for some g ER[x]. If we
substitute aj for x, and observe that R is an integral domain, we obtain
giaJ = Owhencef= (x-al)k1 ••• (x-aY+lgj/, for some gj/ER[x].

4.74. Proposition. Let R be any integral domain of characteristic zero, and a
a root of the non-zero polynomial fE R[x] of multiplicity k. Then a is a
root off' of multiplicity k -1.

I
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Proof. By hypothesis, f = (x-a)kg where g ER[x] and g(a) ,,::O. Hence
f' = k(x-at-lg+(x-a)kg' = (x-a)k-l(kg+(x-a)g'). If (x-a)k were
a divisor of/" tbena would be arootofthesecondfactorwhencekg(a)=O.
But then k·I = 0, a contradiction.

4.75. Corollary. If R is an arbitrary commutative ring with identity and a
is a root off of multiplicity k >- 1, then it is also a root oi!'.

Proof. As in Prop. 4.74.

4.8. Let R be a commutative ring with identity and R[xl' ... , xk] the
polynomial ring over R in Xl' ... , Xk' For 1 "'" i "'"k, we define mappings
a/axj = 'OJ:R[xl' , xk] ...•.R[xl, ... ~xk]by: If f ER[xl' ... , xk] and
f = I a(/" ... , Ik)xi' x0 is the normal form off according to ch. 1, Th.
8.21, then 'OJ = I lja(l" ... ,/0x~ ... Xii-I ... x~. The mapping 'OJis call-
ed the i-th partial derivation of R[x1, ... , xk] and 'OJ is called the z-th
partial derivative off If k = 1, then we write x instead of Xl, d/dx for

. a/ax, andf' for (d/dx)f

4.81. Theorem. Let R be a commutative ring with identity, R[xl, , xd
a polynomial ring over R, 'OJthe i-th partial derivation of R[xl, , xk],
:><:the composition of polynomials, and f, g, gl' ... , gk E R[xl' , xk]·
Then

(i) Clja = OJor a E R,
(ii) Clj(f+g) = aJ+ajg,
(iii) a;(fg) = ('OJ)g+f('Ojg)
(iv) aj:><:fgl... gk = IV~l (:><:('OJ)gl... gk) ajg. ("chain rule").

Proof. (i) and (ii) are obvious. Since (ii) and. the distributive law
for rings hold, we have to prove (iii) only for f = ax~' ... xi\ g =
bx';" ... :4.\ a, bE R. Then o;(fg) = (/j+mJabx/l+m1 ••• xii+ml-l ...
xik+l1Ik = (oJ)g+ f(ajg). Similarly, since (ii) holds and :><:is right super-
distributive w.r.t. +, we have to prove (iv) only for f = axi' ... x~,
a E R. Then 'Xfgl ... gk = agi1 ••• g~. Repeated application of (iii) leads
to

k k
OJ'Y:fgl... gk = I Z.ag~l... g~.-l ... gik Ojg. = I ['X(OJ)gl' .. gk]Ojgv'

1'=1 v=l
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4.82. Let fE R[x1, ... , xk], r ~ 1 an integer, 1 ~ i, ~ k, 11 = 1, ... , r.
Then the mapping ail ai, ... ai, :R[x1, •. ., Xk] ->-. R[x1, ..• , xk] is called
a partial derivation of order r of R[x1, ••• , xk] and ail ai, ... ai/ a partial
derivative of order r off

4.83. Lemma. If If] = n, then all partial derivatives of order t :> n off are
zero.

Proof. The application of a partial derivation ai to a polynomialf either
decreases If] by at least 1, or 'OJ = 0.

4.84. Theorem (Taylor's formula). Assume that fE R[x1, ... , xJ with
[f] = n and aI' ... , ak, g l' .... , g k are elements of a commutative ring S
with identity containing R as a subring, Then

k

f(a1+g1, ... , ak+gk) =/(al' ... , ak)+ L (ai/) (aI' ... ,ak)gi,
i1=1

k

+ 0/2!) L (ai, ai,!)(a1, •.. , ak)gi,gi2 + ...
il, ;2=1

k

+O/n!) L (ail ai,··· aij)(al' ... , ak)gi,·· . Kin'
ill i21 •• 0' in=l

Proof. By Th. 4.81, (ii), Lemma 4.83, and the right superdistributivity .
of % W.r.t. +, Th. 4.84is true for all IE R[x1, •.. , xk] if it is true for
f = axil xi\ a ER. The left-hand side of Taylor's formula is then
aia; +g1Yl (ak +gkY'. Using the distributive laws, we expand this
expression. Then, for any k-tuple (rl"'" rk) of non-negative integers
with r1+ ... + rk .,,;If], the term with second factor g~l g~k has as
its first factor (ll!/r1!(ll-r1)!)'" (lk!/rk!(lk-rk)!)aa~-rl , aik-

rk if
ri.,,; Ii' i = 1, ... , k, and zero otherwise. On the right-hand side of
Taylor's formula, the term with second factor g~' g~k has as its first
factor (1/(r1+ ... +rk)1) (r1+ ... +r,J!/'l! rl<!) (11 !/(ll-rl) !) ...
(lk!/(lk-rk)!)aa~-rJ ... a~·';'rkif ri.,,; Ii' i = 1, , k, and zero otherwise.

4.85. Let R[x1, •.. , xk] be the polynomial ring in xl' '.' ., Xk over a
commutative ring R with identity and f = (/1' ... ,1k) an element of
R[x1, ... , Xk]k. The Jacobian determinant B] of f is the determinant of
the k X k-matrix Llf = (aJ) where s means the row and t the column
index.

'I
i
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5. Fields

5.1. First we are going to review standard concepts and results on fields
that are used in this book (for details cf. REDEl [2], VAN D.ER WAERDEN [1],
ZARISKI-SAMUEL [I]). Then we treat, in more detail, a few results on
the rational function field K(x) which are crucial for some sections of
ch. 4, and are not so well-known, as we believe.

Let K be any field. A subset S of K is called a subfield if S is a subring
of K which is afield. Sis a proper subfield of K if SeK. A proper subfield
S of K is called a maximal subfield of K if there is no proper subfield Sl
with SCSI' If (SiIiEI) is afamily of subfields of K, then n(Si IiEI)
is also a subfield of K. Let S be a subfield of K and U a subset of K,
then the intersection of all subfields of K containing SU Uwill be denoted
by S(U), and we say that S(U) is obtained from S by adjoining U.

A field P is called a prime field if P has no proper subfield. Up to ring
isomorphism, the prime fields are just the field of rational numbers and
the factor rings Z I(p) where Z is the ring of rational integers and p is a
prime. Any field K has exactly one prime field P amongst its subfields,
being called the prime field of K.

Let K be a field. A field L containing K as a (proper) sub field is called
a (proper) extension field of K. The extension field L of K is called a
simple extension of K if there is u EL such that L = K(u). Any extension
fieldL of K can be viewed as a K-vector space w.r.t. addition and multipli-
cation in L, the dimension of which is called the degree [L: K] of Lover K.
If [L : KJ is finite, then L is called a finite extension field of K. If a EL,
then [K(a) : K] is called the degree of a over K. If L is a finite extension
field of K, and M is a finite extension field of L, then M is a finite extension
field of K and [M: K] == [M: L] [L : K]. LetL and L, be extension fields
of K. An isomorphism cp : L ->- Ll is called a K-isomorphism if cp fixes K;
if L = Ll' then r:pis called a K-automorphism. Two extension fields L, Ll
of K are called K-equivalent if there is a K-isomorphism from L to L1.

5.2. Let K be any field and K[x] the polynomial ring in x over K. A trans-
cendental element over K is an element a of an extension field of K such
that fE K[x], I(a) = ° implies 1= 0, otherwise a is called algebraic
over K.

Let a be algebraic over K. Then there is exactly one monic irreducible
polynomial p EK[x] such that pea) = 0, and I(a) = ° implies pi/' for
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any IE K[x]. The polynomial p is called the minimal polynomial of a
over K. [p] equals the degree of a over K.

An extension field L of K is called an algebraic extension of K
or algebraic over K if every element of L is algebraic over K. Otherwise
we speak of a transcendental extension of K. If L is a finite extension
field of K, then L is algebraic over K, and there exists a finite subset
{aI' ... , ar} of L such that L = K(a!, , ar). Conversely, if aI' ... ,
a,EL are algebraic over K, then K(av , ar) is a finite extension field
of K.

A field L is called algebraically closed if every element which is alge-
braic over L belongs to L. If K is an arbitrary field, then there exists an
extension field C of K which is an algebraic extension of K and algebrai-
cally closed, and any two such fields are K-equivalent. C is called an
algebraic closure of K.

Let L be an extension field of K. Two elements a, bEL are called
conjugate over K if they are algebraic over K and have the same minimal
polynomial over K.

. Let L be a finite extension field of K, a E L, up ... , Unany K-basis for L.
Then aUi = Ii=1 bijuj, bij EK, i = 1, ... , n. The determinant of the
n X x-matrix (bij) is independent of the choice of the basis UI' ... , Un
and is called the norm (JLDK(a) of a E Lover K. We have (JLLIK(aIa2) =
(JLLIK(al) (JLLIK(a2), if aI' az E L. If a E L, [K(a) : K] = m, [L: K(a)] = n,
and e is the constant term of the minimal polynomial of a over K, then
(JLLIK(a) = (_I)mn en.

Let K be any field and IE K[x] a non-constant polynomial. Then
there exists an extension field L of K such that I is the product
of linear factors in L[x] and such that L is obtained from K by
adjoining the roots of I in L.. Such a field L is called a splitting
field for lover K. Any two splitting fields for lover K are K-
equivalent. An extension field L of K is called a normal extension of
K if L is algebraic over K and every irreducible polynomial IE
K[x], which has one root in L, is the product of linear factors
in L[x]. An extension field L of K is a finite normal extension of
K if and only if L is a splitting field for lover K, for some IE K[x].
If L is a finite normal extension of K and M is a subfield of L containing
K, then every K-isomorphisin from M to any subfield of L can be extended
to an automorphism of L. For any finite extension field L of K, there
exists a finite normal extension N of K which contains L such that there

is no proper subfield M of N which contains L and is a normal extension
of K. N is called a least normal extension field of L I K.

5.3. Let K be any field. A separable polynomial of K[x] is an irreducible
polynomial IE K[x] such that f' ~ 0, otherwise I is called inseparable.
An element separable over K is an element a algebraic over K such
that the minimal polynomial of a over K is separable; otherwise a is
called inseparable. An algebraic extension L of K is called separable over
K if every a E L is separable 'over K, otherwise L is called inseparable.
If char K = 0, then every algebraic extension of K is separable.

If L is an algebraic extension of K, then the subset S of L consisting
of all elements of L which are separable over K is a subfield of L contain-
ing K. If L is a normal extension of K, then S is also a normal extension
of K. Let L be a finite extension of K, char L = p, and S the subfield of
L consisting of the elements of L which are separable over K. Then there
is an integer e ~ ° such that ape E S, for every a EL. The least such e
is called the exponent of the extension L IK.

5.4. Let K be any field and n> ° an integer. An n-th root of unity over
K is an element z of an extension field of K which is a root of the poly-
nomial x"-I. A primitive n-th root of unity is an n-th root of unity which
is not an m-throot of unity, for all m <: n. If char K does not divide n,
then there are always primitive n-th roots of unity over K, and for any
primitive n-th root of unity z, the degree of z over K divides rp(n), rp being
the Euler rp-function.

5.5. Let L be any finite normal separable extension of the field K. Then
the set G of all K-automorphisms of L is a finite group w.r.t. the composi-
tion of mappings, the so-called Galois group of Lover K. We have IG I =
[L: K]: The fundamental theorem of Galois theory tells us that there is
a bijective mapping from the set of all subgroups of G to the set of all
subfields of L containing K. An abelian (cyclic) extension of K is a finite
normal separable extension L of K such that the Galois group of Lover K
is abelian (cyclic). If L is an abelian extension of K, then every subfield of
L containing K is a normal extension of K. If K is a field and n a positive
integer such that char K does not divide nand K contains n n-th roots of
unity, then the splitting field of any polynomial x"-a E K[x] over K is a
cyclic extension of K. If, conversely, L = K(a) is a cyclic extension of K,
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[L : .K] is a prime q r" char K, K contains q q-th roots of unity, and a is a
K-automorphism of L generating the Galois group of Lover K, then
there exists a q-th root of unity z EK such that the "Lagrange resolvent"
1= a+z(aa)+z2(a2a)+ ... +zq-l(aq-1a) satisfies IqEK and K(l) == L.

5.6. Let K be a finite field. Then char K = p, a prime, and IK I is a power
of p. Conversely if p" > 1 is a power of the prime p, there is, up to iso-
morphism, exactly one field K of order pe. If K is a finite field, then
{aEK I a r"O}is acyclic group w.r.t. the multiplication in K. IfKis a finite
field and IK I = q, then every element of K is a root of the polynomial
xq-xE K[x).

If K is a finite field of order pe, then every subfield S of K has order pi
where fie and conversely for every pi with fie, there exists exactly one
subfield of K Of order pl. If I K I = p" and S is a subfield of K of order p/,
then K is a finite extension field of Sand [K: S] = elf Every automorphism
~ of Kis of the formz'c = a'"; aEK, r = 0, 1, ... , e-l, and the S-auto~
morphisms of K are those automorphisms of K for which r is divisible
byf

5.7. Let K be any field. The quotient field Q of K[x] is called the field of
rational functions in x over K and is denoted by K(x). K[x] is a subring
of K(x) whence K(x)is an extension field of K. An "intermediate field of
K(x)" is a subfield of K(x) which contains K.

5.71. Theorem. If r EK(x), r €£ K, then r is transcendental over K and
K(x) is algebraic over K(r). If r E K(x), then K(r) = K(x) if and only if r
is of the form (ax+b)/(cx+d) and r€£K. If rEK[x], then the degree
[K(x): K(r)] equals the degree [r] of r.

5.72. Theorem (Liiroth), Every intermediate field S r" K of K(x) is a simple:
transcendental extension field of K, i.e., there is an element r E K(x}
which is transcendental over K such that S = K(r).

5.73. In the subsequent subsections, we will derive a few results on inter-
mediate fields of K(x) which are not too well known. Throughout these
subsections we assume that char K = 0 (though some results of these
subsections will also hold for arbitrary fields K).
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5.8. Lemma. Let U be an intermediate field of K(x) which contains a poly- .
nomialfEK[x] of positive degree. Then there is a polynomial rEK[x] of
positive degree such that U = K(r).

Proof. By Th. 5.72, U = K(r) for some rE K(x), whence z = glh, g, hE K[x).
If [g) -< [h), we put s = l/r, then U = K(s), and if [g) = [h), then w~
put s= I/(r-a) = hl(g-ah) where a EK is chosen in such a way that
[g-ah] -< [h). Again U = K(s). Therefore we can assume that [g) > [h).
Moreover we may assume that (g, h) = 1, otherwise we cancel by the
g.c.d. of gand h. IffE U, thenf = u(r)lv(r), u, v EK[x], whencefv(r) = u(r).
Letu = I;:o a.x', v = I7=0b;Xi, am r" 0, b; r" O. Then

n In

fhm I bjgihn-; = hn I aigihlll
-;.

;=0 ;=0
(5.81)

Since the degrees of the polynomials on either side of (5.81) are equal and
[g) > [h), we have [J]+m[h]+n[g] = n[h]+m[g] whence m >n. By (5.81),
h divides amgl1l

• Since (g, h) = 1 and K[x] is a UFD, we conclude [h) = 0
whence r EK[x]. Clearly [r] > O.

5.81. Lemma. Let g EK[x] and k E K(g)nK[x]. Then there exists p EK[x]
such that k = peg).

5.82. Corollary. Let g EK[x], [g) > 0, and hE K(g)n K[x] be of minimal
positive degree. Then K(h) = K(g).

Proof. If [g) = 0, then the lemma is obviously true. If [g) > 0, then
k = u(g)lv(g), u, v EK[x], whence u(g) = kv(g). On the other hand,
u = vp+t, p, tEK[x] such that [t] -< [v] or t = O. Hence u(g) =
v(g) p(g)+ t(g). This implies

v(g) (k-p(g)) = t(g). (5.82)

By Th. 5.71, t r" 0 implies t(g) r" 0, thus v(g) r" 0 and k-p(g) r" O.
By (5.82), this contradicts [t] -< [v]. Hence t = 0, u(g) = v(g)p(g) which
implies k = peg).

Let h be as in the corollary. Then [h) "'" [g), and by Lemma 5.81, also
[h) "'" [g], thus [h) = [g]. Moreover, by Lemma 5.81, h = peg), for some
p EK[x], whence [p] = 1. Therefore p = ax+b, 0 r" a, bE K and
K(h) = K(g).
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5.83. Lemma. Let f(x) = aOxrrl+alxm-1+ ... be a polynomial of K[x]
of degree rn r'- 0. Then there exists exactly one monic polynomial g of deg-
ree n in K[x] such that [f-aogr]-< (r-l)n or f-aogr = 0.

Proof. If g = x"+b1xtl-1+ ... +bll_1x+bn, then gr = xrn+(rb1)xm-1+
+(rb2+wl(bl»)XrJl-2+ ... +(rb,,+wn_1(bl"'" b"~l»)xrn-n+ ... where
W;(Xl' ... , x), i=1,... ,n-1, is a polynomial over the ring of rationalinte-
gers. If we additionally define Wo = 0, thenf-aogr = C1XI'l1-1 + C2X"'-2+ ...
+cnx"n-Il+ ... where C; = ai-'ao[rb1+ w;_1(b1, .. ',' bi':'l)], 1",;; i-« n.
Clearly the system ai-ao[rb;+wi_1(bl'" .,bi-1)] = 0, 1",;; i",;; n, of
equations in b1, " ., b.; has exactly one solution in K.

5.84. Theorem. Let f, g E K[x] be polynomials of positive degree such that
the intermediate field D = KCf)nK(g) of K(x) contains a polynomial of
positive degree, and H = K(f, g). Then:

a) If k is a polynomial of minimal positive degree in D, then D = K(k)
and [k] equals the least common multiple v of[f], [g].

b) If h is a polynomial of minimal positive degree in H, then H = K(h),
and [h] is the greatest common divisor x of[f], [g].

c) [H: K(f)] = [K(g) : D] and [H: K(g)] = [KCf) : D].
d) If D is a maximal subfieldof KCf)andof K(g), then KCf) and K(g) are

ma;imal subfields of H.

Proof. Since both D and H contain a polynomial of positive degree,
the first satements of a), b) follow from Lemma 5.8 and Cor. 5.82. If
P E K[x], ° r'- a E K, then K(ap) = K(p). Hence we can assume that f, g,
h, k are monic.

K(x)

I
K(h)»> -------

K(f) K(g)

~~'

K(k)

FIG. 6.2
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By Th. 5.71, [k] is divisible by [f], [g] whence vi[k]. Let [k] = rv. By
Lemma 5.81, there exist polynomials p, q E K[x] such that k =pCf) = q(g).
Since k.f, g are monic;p and q are monic. Moreover [P] [f] = [q} [g] = [k].
Since vd = [f][g] , we have [p] = rv/[f] = r[f][g ]fU]d = rm where
m == [g]fd, and similarly [q] = rnwhere n = [f]/d. By Lemma 5.83,
there are monic polynomials s, t E K[x], [s] = m, [t] = n such that
[p _sr] -< (r-l)m, [q-t'] -< (r-l)n. Hence [pCf) -sCfn -< (r- 1) m[f] =
(r-l)v, and similarly [q(g) -: t(g)''] -< (r-l)v. Hence [s(f)' - t(g)'] -<

(r- l)v, i.e. [scf)- t(g)] ts(fy-l + SCf)'-2t(g) + ... + t(g)'-l] -<

(r-l)v. Every term of the second factor on the left-hand side is monic
and of degree (r-l ~i) [s] [f]+i[t] [g] = (r-l-i)v+iv = (r-l)v.
Since char K = 0, the second factor as a whole is thus of degree (r-l)v.
Hence s(f) - t(l{) = 0, therefore scf) = t(g) = wE K[x] where
[w] = m[f] = v and wE X( f) nK(g) = K(k). By Lemma 5.81,
[w] ~ [k] whence v ~ rv, thus r = 1 and [k] = v.

Furthermore [K(h) : K(k)] = [K(f) (g) : KCf)] [KCf) : K(k)]. But
K(g) == K(k) (g) and [K(g) : K(k)] = [k}/[g] = vf[g] = n implies
[K(f)(g): K(f)]",;;n. On the other hand, [K(f):K(k)] = m, (m, n) = 1,
and m and n divide [K(h) : K(k)]. Hence [K(h) : K(k)} = mn. Therefore
[h] = [K(x): K(h)] = [k]fmn = ulmn = d. Thus a), b) hold. Since
[f] [g] = vd, c) follows.

Finally, suppose that the hypothesis of d) is satisfied and that U is a
field between K(f)and K(h). By Lemma 5.8, U = K(l), IE K[x]. We have
K(k) ~ K(l)nK(g) ~ K(g). If K(l)nK(g) = K(g), then K(l) == K(f, g) =
K(h). Suppose now that K(l)nK(g) = K(k). Since K(l, g) = K(h), a) and
b) imply that ([I}, [g]) ~ ([f], [g]) and [[I], [g]] = [[f], Isll whence [I] [g} =
[f] [g]. Therefore [I] = [fl, hence K(l) = KCf).

5.85. A chain of fields Koc Kl C ... c K, is called' a maximal chain
if every member is a maximal subfield of the subsequent one.

5.86. Theorem. Let fE K[x] be of positive degree and

K(f) = So C Sl C C Sm C Sm+! = K(x),

K(f) = To C Tl C c T" c Tn+! = K(x)

be two maximal chains of subfields from K(f) to K(x). Then
a) m = n.
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b) The degrees [Si : Si-l] can be paired off with the degrees [Tj: 1J-l]'
c) The first chain can be transformed into the second one by applying

finitely many times the following procedure: Take any member of the first
chain different from So and Sm+; and replace this member by a different
field such that the new chain becomes again a maximal chain.

r:

Proof. WLOG, we may assume in ",;;n. Suppose that i is the greatest
index such that Si = T; We proceed by induction on m+l-i. If
m+ l-i = 0, nothing has to be proved. Now let m+ l-i = e >- O.
Then the two chains are

srI: So C SI C

sr2: So C SI C

C Sm-e+l C Sm-e+2 C .,. C SI1I+l'

C Sm-e+1 C Tin-e+2 C ... C Tn+l

whereSm_e+2 ~ Tm-e+2' Let Hbe the field Sm-e+2(Tm-e+2)· SinceSm_e+l
is a maximal subfield of Sm-e+2 and Tm_e+2, we have Sm-e+1 =
Sm_e+2nTi"_e+2' By Lemma 5.8, Sm-e+2' Tm-e+2 satisfy the hypothesis
of Th. 5.84 whence d) implies that Sm-e+2' Tm-e+2 are maximal sub fields
of H. Now we take any maximal chain H CHI C ... c K(x) from H
to K(x) which can always be done since [K(x) : H] is finite, and consider
the two maximal chains

~1: So c SI C

~2: So c SI C

C Sm-e+1 C Sm-e+2 C He HI c c K(x),

c Sm-e+1 C Tm-e+2 c H C HI C c K(x).

By induction, a), b), c) holdfor the chains srl and :i't'l. Hence the number
of members in ~2 equals the number of members in srI. Again by induc-
tion, a), b), c) hold for the chains ~2 and sr2. By Th. 5.84 c), also the chains
~1' ~2 satisfy a), b), c) whence the theorem is proved.

5.87. Remark. The number of different maximal chains of subfields from
K(f) to K(x) is finite.

Proof. By Th. 5.71, K(x) is algebraic of degree [/J over K(f). Since
char K = 0, K(x) is separable over K(f). LetNbe a least normal extension
field of K(x) IK(f) (see § 5.2). Then N is of finite degree oyer K(f) and is
separable over K(f). By the fundamental theorem of Galois theory, the
number of fields between K(f) and N is finite, therefore - a fortiori-

<.;
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the number of fieJds between K(f) and K(x) is finite. Hence there is only
a finite number of maximal chains from K(f) to K(x).

5.88. Let J, g be two non-constant polynomials of K[x] such that
K(g) ~ K(f). mil/h) will denote the norm mK(!)IK(C)(h)of an element h
in the finite algebraic extension K(f) of K(g). Then mil/h) equals - up to
the sign - the [K(f): K(g) (h)]-th power of the constant term of the
minimal polynomial of hover K(g) and m/lg(hlh2) = mil/hI) m/ig(h2),
for all hI, h2 E K(f).

5.9. Let K be a field and K(x)the field of rational functions in x over K.
Let 0: K(x) -+ K(x) be defined by: If I' = uj», U, v E K[x], then or =
(vu' -uv')/v2. 0 is well-defined since, if r = u.l», is the unique representa-
tion of r as a quotient of polynomials Ul, VI E K[x] such that (Ul, VI) = 1

. and VI is monic, then u = tu-, v = tVl, t E K[x]. Hence (vu' -uv')/v2 =
(VIU~-ulv~)/vi· a is an extension of the derivation djdx of K[x], we
will write therefore 0 = djdx, set (d/dx)r = r', and will call 1" the
derivative of r.

5.91. Theorem. Let r,sEK(x) andfEK[x]. Then:
(i) (r+s)' = r' +s',

(ii) (/'s)' = /"s+/'s',
(iii) f(/'), = r(r)/".

Proof. We set r = u]», s = usl», and compute either side of (i) and (ii).
(iii) follows easily from (i) and (ii).

6. Semigroups and groups

6.1. Very little is used in this book from the theory of semigroups,
but quite a lot from group theory. Both will be reviewed now, details
can be found in books like HUPPERT [1], KUROS [1], SPECHT [1]. At
the end of this section we will also prove a few lemmas which are not
so well-known.

A semigroup is an algebra (S; .) with an associative binary operation >.

If . is also commutative, S is called a commutative semigroup. If S is a
semigroup and U, V are subsets of S, then the "complex product" UV
is defined to be the set {uv I u E U,V E V}. U" will denote the complex



278 CH.6APPENDIX

product of n factors U. If U is an arbitrary subset of S, then the subsemi-
group [U] generated by U is just [U] = U (un In = 1,2, 3, ... ).

Let S be a semigroup with identity 1. If u ES, then .v ES is called a
left (right) inverse of u if vu= 1 (uv = 1). If v is a right as well as a left
inverse of u, then v is called an inverse of u. Every element of S has at
most one inverse. The elements of S that possess inverses are called the
units of S. The set of all units of S is a subsemigroup E = ~(S) of S,
and E is a group.

If S is a ~~ative_ semigroup with identity I and H is a subsemi-
group of S that is a group such that 1 EH, then the set of all subsets
aH of S is a semigroup w.r.t. complex multiplication, the so-called factor
semigroup of S modulo H. If IS I is finite, then the factor semi group is
of order ISI/IHI.

Let S be any semigroup. A left (right) regular element of S is an ele-
ment a ES such that au = av (ua = va) implies u = v, for all u, v ES.
a is caned regular if a is right as wen as left regular. An idempotent is an
element aE S such that a2 = a.

A partially ordered semigroup is a semi group S together with a partial
order relation "'" such that a "'"b implies ax "'"bx and xa "'"xb, for all
xES. If "'" is a total order relation, then S is called a totally ordered
semigroup.

6.2. A group is a semigroup G with identity such that every element of G
possesses an inverse. A semi group with identity such that every element
has a left inverse is a group. An abelian group is a commutative group.

Let U be a subgroup of G. A subset aU, a EG, of G isca lIed a left coset
of G modulo U while the subsets Ua are caned right cosets of G modulo U.
The set of all left (right) cosets of G modulo U is a partition of G. The
cardinality of the set of all blocks of this partition is equal for left and
right cosets and is denoted by [G : U]. If G is a finite group and U is a
subsemigroup of G, then U is a subgroup of G. The order of any subgroup
of a finite group G divides the order of G. A proper subgroup U of G
is called maximal if U c V implies V = G, .for any subgroup V of G.

Let G be a group and g EG. The order of g is the order of the subgroup
[g] generated by g. A torsionfree group is a group with no element g ,r. 1
of finite order. Let p, q be two distinct primes, then a group G is
called a p-group if the order of every element of G is a power of p,
and G is called a (p, q)-group if the order of every element of G is a prod-
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uct of powers of p and q. A group G is called cyclic if G = [g], for some
g EG. Any group of prime order is cyclic. If G is a finite cyclic group,
then G has exactly one subgroup of order d, for any divisor d of IG I. If
the order of the elements in a group G is bounded, there exists a least
positive integer n such that g" = 1, for all g E G, and n is called the
exponent exp G of G. An elementary abelian group is an abelian group
G with exp G = p where p is a prime.

The set End G of all endomorphisms of a group G is a semigroup
w.r.t. the composition of mappings. The set Aut G of all automorphisms
of a group G is a group w.r.t. the composition of mappings. 1JEAut G
is called an inner automorphism of G if 1Jg = aga:t; for all g E G and
some a EG. The set In G of an inner automorphisms of G is a subgroup
of Aut G. Two subgroups Hi, H2 (elements h-; h2) of G are called conju-
gate if 1JH1 = H2(fJh1 = h2), for some 1JEln G. If G is a finite cyclic
group, then IAut G I = <p(1 G \) where cp is the Euler g;-function.

Let G be any group and Q <; EndG. If we regard w;EQ as a l-ary
operation on G, then, since W; I = 1, for all W; EQ, G together with
Q is an Q-multioperator group (G; Q), in short an Q-group. The subal-
gebras of (G; Q) are called Q-admissible subgroups of G. If Q is the set
of all endomorphisms, automorphisms, inner automorphisms of G, resp.,
then the Q-admissible subgroups of G are called fully invariant, character-
istic, normal, resp. If T is a subset of G and [Q] is the subsemigroup of
End G generated by Q, then the subalgebra [T] of (G; Q) generated by T
is the set of all elements g EG of the form g = (w;/7;) (w;,tf:) ...
(w; t7") where n is some integer, W; E [Q], t; ET, 8k = ± 1,

n 1t k k .

k = 1, ... , n. If [T] = G, then T is caned an Q-generating set for G.
An n-generator Q-group G is an Q-group with a generating set of car-
dinality n. A l-generator Q-group is called monogenic.

6.3. N <J G will mean that N is a normal subgroup of G. The normal
subgroups G and {I} of G are called the trivial normal subgroups of G.
A non-trivial normal subgroup N of G is called a minimal normal sub-
group of G if MeN implies M =" {1}, for any normal subgroup M of G
and is called a maximal normal subgroup of G if N c M implies M = G,
for any normal subgroup M of G.

If N <J G, then the partitions of G into left cosets and right cosets
modulo N coincide and the equivalence relation corresponding to this
partition is a congruence 1JN on G. The mapping 1J is a bijection from
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the set of all normal subgroups to the set of all congruences on G, and
we will write GIN for G I{)N. A group G is simple if and only if G has just
the trivial normal subgroups. A finite abelian group G is simple if and
only if IG I = 1 or IG I = p, for some prime p.

First isomorphism theorem. If U is a subgroup and N is a normal subgroup
of G, then UN is a subgroup of G, UnN is a normal subgroup of U, and
UNIN ~ UI UnN. An isomorphism IX: UNIN -+ UI UnN is given by
lX(tiN) = u(UnN), u E U.

Second isomorphism theorem. Let cp: G -+ H be an epimorphism from the
group G to the group H, N <J H, and M = {g E G IcpgEN}. Then M <J G
and G IM ~ HI N. An isomorphism IX : G IM -+ HI N is given by lX(gM) =
(cpg)N.

If N <J G, then every IX E In G induces an automorphism of N, and
the set of all automorphisms of N induced by automorphisms of In G
is a subgroup of Aut N.

Let G be an .o-group. Then the .o-admissible normal subgroups of
G are just the ideals of the multioperator group (G; .0), by Lemma 3.4. IffV
is' an arbitrary and N a normarp-admissible subgroup of G, then VN is
the Q-admissible subgroup generated by VUN.

6.4. Assume that (Gi liE l) is a family of groups and let G = n(G; Ii U)
be the direct product of this family. For any k E I, the mapping tk: Gk -+ G
defined by tkg = (a(i)liU) where a(k) = g and a(i) = 1, for i rf; k,
is a monomorphism from Gk to G, the so-called inclusion monomorphism
from Gk to G. A group G is called the inner direct product of its subgroups
U1> ... , U; if rp: U1X ... XUn -+ G, rp(u1,·· .,un)= U1U2•·· Un is an
isomorphism. Subsequently "direct product" will always mean "inner
direct product". A finite group G is elementary abelian if and only if Gis
the direct product of a finite number of groups of order p where p is some
fixed prime.

Let G be a group, N a normal subgroup, and H a subgroup of G.
Then G is called the semidirect product of N by H if NH = G and
Nn H = {1}, and H in this case is called a semidirect factor or a retract
ofG.

A group extension of a group N by a group H is a group G such that
N <I G and GIN ~ H.
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6.5. Let G be a group. The set Z(G) = {zEG I zg = gz, for all g EG}
is called the centre of G. The centre is a characteristic, thus a normal
subgroup of G and In G '= G IZ( G). If G is a finite p-group, then
IZ( G) I >- 1. A subgroup U of G is called central if U ~ Z( G). An element
z E G centralizes g E G if zg = gz.

Let G be a finite group. The intersection of all maximal subgroups of
G is denoted by ([)(G) and is called the Frattini subgroup of G. W(G) is a
normal subgroup of G. If Gis ap-group, then GIW(G) is elementary
abelian.

6.51. Let G be any group. If K 'and H are normal subgroups of G such
that K cHand HIK is a minimal normal subgroup of GIK, then HIK
is called a chief factor of G. HI K is called a central chief factor if
HI K ~ Z( G IK) and a p-chief factor if HI K is a p-group.

A finite series G = Ho ;2 HI ;2 ... ;2 HII = {I} of subgroups of G is
called a composition series of G if Hi is a maximal normal subgroup of
Hi_1> i = 1, ... , 11, and is called a chief series of G of length n if each Hi
is normal in G and Hi-II H; is a chieffactor of G, i = 1, ... , n. The factor
groups H;_I/H; are called the factors of the series.

Theorem. Let G possess a composition series. Then G possesses a chief
series, any two chief series of G have the same length and, up to the order
and isomorphism, the same factors. Every chief factor of G is the direct
product of a finite number ofisomorphic simple groups.

A finite group G is called soluble if all the chieffactors of G are abel-
ian (and hence elementary abelian). G is called supersoluble if all the
chieffactors of G are cyclic (hence of prime order). Therefore every super-
soluble group is soluble. Every subgroup and every factor group of a
soluble (supersoluble) group is soluble (supersoluble). If N <J G andN
and G IN are soluble, then G is soluble.

6.52. Let G be a finite group and p a prime dividing I G I. If pa is the greatest
power of p dividing IG I, then any subgroup of G of order po is called a
Sylow p-subgroup of G. A Sylow p-subgroup always exists arid any two
Sylow p-subgroups of G are conjugate.

6.53. Let G be a group and g, hE G. Then we define the commutator
[g, h] of g and h by [g, h] = g-lh-1gh. If S, T are two subsets of G, then
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[S, T] = [[s, t] Is ES, t ET] i.e. the subgroup generated by all [s, tJ. The
subgroup [G, G] = G' of G is called the commutator subgroup of G.
The lower central series of G is the series Go -= G, Gj = [Gj_1, G], i =
1, 2, ... , of subgroups of G.

A group G is called nilpotent if GII = {I}, for some n. The least such
integer n is called the class of G.

Every subgroup and every factor group of a nilpotent group is nil-
potent. Every minimal normal subgroup of a nilpotent group G is
contained in Z(G). A finite group G is nilpotent if and only if G is the
direct product of its Sylow subgroups. Every finite p-group is nilpotent.
Every finite nilpotent group is supersoluble and a fortiori soluble.

Theorem (Schmidt-Redei-Iwasawa). Let G be a finite non-nilpotent
group such that every proper subgroup of G is nilpotent. Then:

a) I G I =paqb where p ,c. q are primes, a, b >- 0, G has a normal
Sylow p-subgroup, and the Sylow q-subgroups are cyclic.

b) If S is a Sylow p-subgroup or a Sylow q-subgroup of G, then (()(S) ~
(G).

et G be a nilpotent group of class 2. Then G' ~ Z(G) and lab, c] =
[a, ~ [b, c], [z, be] = [a, b] [a, c], for all a, b, cE G.

The10m (Levi). If, in any group G, ab=ab = b=aba, for all a, bEG,
then is nilpotent and of class ~ 3. If moreover G has no elements of
orde 3, then G is of class ~ 2.

6.6. Let M be any set. Then the set of all mappings from M to M is a
semigroup S(M) with identity W.r.t. the composition of mappings. This
semigroup is called the symmetric semigroup of M. An element of S(M)
is called a permutation of M if it is a bijective mapping from M to M.
The permutations of M are just the units of the semigroup S(M) whence
the set of all permutations of M is a group W.r.t. the composition of
mappings. This group is called the symmetric group Sym M of M. If M
is finite, then I Sym M I = I M I !. Any subsemigroup of S(M) is called a
mapping semigroup on M, and any subgroup of Sym M is called a
permutation group on M.

Let G be a permutation group on M. If a, b EM, we will write a ~ b
if and only if there is some n: E G such that na = b. ~ is an equivalence (
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relation on M, and the blocks of the corresponding partition of Mare
called orbits of G on M.

Let G be an arbitrary group and a E G. Then (ea)g = ag, g E G,
defines a permutation oa of G, and e: G ->- Syrn G is a monomorphism.
The permutation group eG on G is called the. regular representation of G.

Suppose that M = {I, 2, ... , n}. Then

A~ = {n E Syrn MI II (n;i-nj) = DCi -j), i, j = 1, ... , n}
1<) 1<)

is a normal subgroup of Sym /t1 of order n !/2 and is called the alterna-
ting group on M.

6.61. Let G be any mapping semi group on M and H a mapping semigroup
on N. Suppose that ex E G, (3(m) E H, for all mE M, then w(m, n) =
iccm, (3(m) n) defines a mapping co : MXN -+ MXN. The set W of all
mappings of S(MXN) of this kind is a mapping semigroup on. MXN
which is called the wreath product of H by G and is denoted by HwrG.
If G and H are permutation groups, so is HwrG.

Let G, H be permutation groups on M, N, resp. and W = HwrG. If
'" E W an~ w(m, ~1)= (am, (3(m) n).' t~en w~ se: Dw = ex. T~en D: W -+ G 1<>.•. >1::
IS an epimorphism and ker D IS isomorphic to the direct product " -.
IT (H(m) 1m EM) where H(m) = H, for all m EM. If M and H are finite, (0-

then HwrG is soluble if and only if G and H are soluble.
Let G be a finite and H an arbitrary group. Let R = {(g, cp)1 g E G,

cp : G ->- H} and define a binary operation. on R by (gl, CPl) (g2, CP2)=
(glg2,1p) where 1pg= (CPlg)CP2(ggl). Then (R; .) is a group which is
called the regular wreath product of H by G and also denoted by
HwrG.

1,11
P

!}
t"

6.7. Let F be a free group, then any two free generating sets for F are of
equal cardinality which is called the rank reF) of F. Every subgroup of a
free group is again a free group.

Let ® be the variety of groups. Then a free product in ® exists for any
family of groups. If (Gj liE J) is a family of groups, then their free prod-
uct in ® will be denoted by * (Gjli E/), or if i = 1, ... , n, by G1*...*G".
If F is the free group with free generating set {xjl i E I} and F(x) is the
free group with free generating set {x}, then F = * (F(xj) liE l). If G is a
free product of the family (Gjli EJ) and every G, is a free product of the
family (HjjUEJ(i)), then G is a free product of the family (HjjliEI,
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j E J(i»). The free product of free groups F; is itself a free group F, and
the rank of this free group equals the sum of the ranks reF;).

Let G be a group and (A; liE 1) be a family of subgroups of G. Then
G is the free product of this family if [U (A; liE 1)] = G and if every
g E G, g 'i"" 1, can be uniquely represented in the form g = a1 ... an'
n ~ 1, ak 'i"" 1, k: = 1, ... , n, akEAik, ik 'i"" ik+l' k = 1, ... , n-1.

The KUROSH subgroup theorem gives information on the subgroups of
a free product. We need the following special case of this theorem:

Let G = * (Gi liE I) be a free product of a family of groups and H a
normal subgroup of G. Then H can be represented as

is called a dihedral group. If m = 0, then Dm is an infinite group, and if
m >- 0, then ID m I = 2m, a is of order 2 and for m 'i"" 0, b is of order m.

6.72. Let Y = {YiliE I} be a set of indeterminates, W = {wih' ...
Yj,,) I j E J} a set of words in Y over the group operations, G an arbitrary
group, and W(G) = {wigl' ... , gn) I j E J, gk E G}. The subgroup [W(G)]
is called the verbal subgroup of G generated by W. If F is a free group,
then the set of all verbal subgroups of F coincides with the set of all fully
invariant subgroups of F.

H = F *(*(* (Uik Ik: EK;) liE 1))
6.73. Lemma. Let N be a finite elementary abelian p-group, Y = {Y1, ... ,
Yd a finite set of indeterminates, Ap the verbal subgroup of the free group
F(x1, .•. , xk) generated by yf and y~lY2lYIY2, for k ~ 2, and by yf,
for k = 1, and W(Y1' ... , y,J = 1 a law for N. Then W(Xl' ... , xk) E Ap.

,.....;

where Uik ~ HnGi, for all k c K; IKil = [G:GiH], and F is a free
group such that r(F)+ [G:H]+ L (IKilli E 1) = III [G:H]+ 1.

Let (Gi liE l) be. a family of groups and (CPi liE I) a family of mono-
morphisms from a group B to G; Then there exists a group A such
that (i) B is a subgroup of A, (ii) for every i E I, there is a monomorphism
Yi: G, -+- A t~>erestriction onto CPiB of which is cP;-l, (iii) [U (yPil i E l)] = A
ff, and (iv): (yPJn[(UykGklk EI, k 'i"" i)] = B, and such that every
group with these four properties is a homomorphic image of A. The
group A which we obtain if we perform the embedding of B into G, by
CPi' for all i E I, and then the embedding of the groups so obtained into ,fJ'J
by Yi is called a free product of the family (Gi liE 1) with amalgamated
subgroup B.

Proof. Since every finite elementary abelian p-group is the direct product
of cyclic groups of orderp, w(Yl' ... ,Yk) = 1is also alaw for the elementary
abelian group N1 of order p". The group G, generated by Y1' ... , Ytcand
defined by the relations yf = 1, i = 1, ... , k, Yi1Yj-lY,Yj = 1, i,j =
1, ... , k, is elementary abelian of order p'', hence isomorphic to N1.

Thus w(Yl' ... , Yk) = 1 is also a law for G whence wtx., ... , xk) is con-
tained in the normal subgroup R of F(xl, ... , xk) which is generated by
the elements xf and Xi-lXj-1X,Xj' But since these elements are also
contained in Ap and AI' is fully invariant, hence normal in F(xl, ••. , xk),

we have R ~ AI"

6.71. Let F(X) be the free group with free generating set X = {Xiii EI},
W = {w) j E J} a set of words in Y = {y,1 i E I}, Yi being indeterminates,
and R the normal subgroup of F(X) which is generated by all words
wj(x), j E J. If, for all i EI, we denote the class C(x) of the factor group
F(X) IR also by y" we obtain a group G which is called the group gene-
rated by the family (Yi liE l) and defined by the relations Wj = 1, j E1.
If H is an arbitrary group with a generating set {a, liE I} which satis-
fies the relations wia) = 1, j EJ, then the mapping 1): Y -+- H, 1)Yi = ai'
i E I, can be extended to an epimorphism from G to H.

Let us consider a special case of this construction: Let m r= 1,2 be a
non-negative integer, Y = {a, b}, W = {a2, b", (ab)2}. Then the group
Dm generated by {a, b} and defined by the relations a2 = b" -== (ab)2 = 1

6.8. Proposition. Let G be a group, A, B subgroups of G and {k: A -+- B
an isomorphism. Then there exists an extension group H of G and t E H
such that ua = t:-at, for all a EA.

6.81. Corollary. Two elements a, b of a group G are conjugate in a suitable
extension group of G if and only if they have the same order.

Proof. The corollary is an immediate consequence of the proposition.
Let K = G[uJ and L = G[v] where u, v are indeterminates , and set
U = [GUu-1Au] ~ K. Then U = G*u-1Au since every wE U can be
represented in the form w = gou-la1uglu-la2u ... gr_lu-larugr where
r~O, ajEA, aj'i"" J, gjEG, gj'i"" 1, i= 1, ... ,1'-1, and this repre-
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sentation is unique, by ch. 1, Th. 9.11. Similarly for V = [GU vBv-l] ~ L,
we have V = G *vBv-l. Hence there is an isomorphism a: U -+ V which
fixes G such that a(u-1au) = v(p,a) v-I, for every a E A. Let H be the
free product of K and L with amalgamated subgroup U according to
this isomorphism, then G is a subgroup of H, and if we put t = uv, then
r+at = v-Iu-1auv = v-1v(p,a) V-IV = ua, for all a E A.

6.9. Lemma. Let G be an n-generator group and Ns, N2 normal subgroups
of G such that NInN2 = {I}. If, for each pair of generating sets {eINI'
... ,enN1} and {fIN2, ... ,fnN2}for GINI,QINz resp., tJ!.~!.~_exW a gener-
ating set {gl' ... , gll} for G ,such.1h..CJ1gi E e;NInJ;N2' i = i:...,n, then
either G = NI XNz or [G :NINz] = 2.

Proof. Suppose that {gi , ... , gn} isa generating set for G. Then {glNi,

... , g"NI} generates GINI and {g;N2' gzN2, ... , gnN2} generates GIN2.
Hence there are g; E G, i = 1, ... , n, such that [g~, ... , g~] = G and
g~EgINlng;N2' g; Eg;NIngINz' Then s.s;' = (glg~-I)(g~gil)ENIN2
whence G INI N2 is cyclic. Moreover [gllNl' ... , g;;-W1]= G IN1, hence
we can find g;'EG, i = 1, ... ,n, such that [g~', ... ,g;,'] = G and

r t -1 n Th C" z ( /I-I) ( /I ) Ngi E gi Nl giN2' ererore gi = gigi . gi gi E N2Nl = 1N2 whence
IGIN1Nzl..,; 2.

6.91. Lemma. Let n be a positive integer, G an n-generator Q-group,
and N a finite Q-admissible normal subgroup of G. Then, for each Q-
generating set {fIN, , fnN} of the Q-factor group GIN, there exists an
Q-generating set {el, , en} of G such that ei EJ;N, i = 1, ... , n.

l LAS "CV:f).v; Qc~A i ~,~(t
Proof. Let % be the set of all Q-subgroups V of G such that VN = G.
If V E %, then J;N = u.N, for some ViE V, i = 1, ... , n. By the first
isomorphism theorem for multi operator groups, there is an isomorphism
cx:GIN -+ VJVnN such that cx(vN) = v(VnN), vE V, whence the set
of all v;(VnN) = vn viN = VnJ;N is an Q-generating set for VI VnN.
Therefore V = [(VnfIN)U (Vnf2N)U ... U (VnJ"N)U (VnN)]. Since
N is finite, we conclude that % is also finite. Hence % contains only fini-
tely many maximal Q-subgroups and every proper Q-subgroup in % is
contained in at least one maximal Q-subgroup in %. If every maximal
Q-subgroup of G contains N, then % = {G} whence [It, ... ,f,,] = G.
Otherwise let M l' ... ,M; be just those maximal Q-subgroups of G which

L ~\i -\:,'" ,t\ .v. Ii. '
\ ",\/ ,_, ,I'. l .~\

f \ I\,.k·("
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do not contain N, i.e. all maximal Q-subgroups in %. For an arbitrary
Q-subgroup U of G, we set

e(U) = {O, for UN ¢ G,
1, for UN= G.

Then the number of all systems

{e1, .. "' en}, ei EJ;N, i = 1, ... , n, (6.9)

which are contained in U, is given by INnUlne(U). For if UN = G, then
UnJ;N = vi(UnN), for some ViE U and if UN ¢ G, then at least one
of the UnJ;N is empty. Hence the number of all systems (6.9) that are
not contained in any proper Q-subgroup of G is

r

if)(N) = INI"+ I I (-ltJNnMi n ...nMi Ine(Mi n ... nMi)·
k=l i1<i2< .. <i

k
,..."-<; 1 k 1 k

if)(N) does not depend on the particular choice of the generating set
{fIN, ... ,f"N}. Since G is an n-generator Q-group, there exists such a
generating set which yieJds a system (6.9) that is not contained in any
proper Q-subgroup of G. Hence if)(N) ¢ 0. --? [fe"l' , e., .~J co b

7. Linear algebra and representation theory

7.1. This section is devoted to linear algebra and representations, but
will be reviewed just briefly. For further information, we refer to standard
books, such as CURTIs-REINER[1], HUPPERT [1], REDEl [2].

Let R be an arbitrary ring and m, n positive integers. An m X n-array

(

an a12 a1,,)

a21 a22 a2n

amI am2 amn

of elements aik E R, i = 1, ... , m, k: = 1, ... , n, is called an m Xn-
matrix over R. A brief notation for such a matrix A is A = (aik).

The sum A+B of any two mXn-matrices A = (aik), B = (bik) is
defined to be the mxn-matrix A+B = (aik+bik). If A = (aik) is an
m X n-matrix and B = (bik) is an n Xp-matrix, then we define the product

n

AB to be the mXp-matrix AB = (cik) where Cik = I aitb1k.If A = (aik)
1=1
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is an m X n-matrix and c E R, then cA and Ac are m X It-matrices defined by
cA = (caik), Ac = (aikc). The m X n-zero matrix Otnnis the matrix (aik)
with aik= 0, for all pairs (i, k), and if R has an identity 1, then the m X m-
identity matrix is the matrix Em = (Oik)where 0ik = 0, for i ~ k, and
0ik = 1, for i = k, i. e. Oil<is the so-called Kronecker symbol.

If, in any of the following equations, one side is defined, so is the other
side and the equation holds:

A+B = B+A, (A+B)+C = A+(B+C), (AB)C = A(BC),
A(B+C) = AB+AC, (B+C)A = BA+CA,

c(A+B) = cA+cB, (c+d)A = cA+dA, (cd)A = c(dA),

where A, B, C are matrices over Rand c, dER. If A is an mXn-matrix,
then A+Omll = 0ll1n+A = A, EmA = AE" = A.

These equations show that, for any m, the set of all m X m-matrices
over R is a ring w.r.t. + and . as just defined which is called the full
m X m-matrix ring Rm over R. If R has an identity, then Rm also has an
identity. Then the group of all units of Rm is called the general linear
group GL(m, R) of dimension mover R.

Theorem. If S is a skewfield, then every full matrix ring Sill over S is
simple. C onversely, if R is a simple ring such that I R I ~ 1, ab ~ 0,101' at
least one pair (a, b) of elements a,b E R, and every descending chain
Ll ::) L2 ::) L3 ::) ... of left ideals Li in R is finite, then R is isomorphic
to a full matrix ring over some skewfield S.

7.2. Let R be a commutative ring with identity, A = (aik) an m x m-
matrix over R, and M = {I, 2, ... , m}. We define the determinant
IAlof A by

IA 1 = 2J c:(n)aInIa2n2... anmmlin: E Sym M), c:(n) =-1

c:(n) = 1
if n~Am'
if nEAm•

Sometimes we write IA I = det A. If A, B are any two m X m-matrices
over R, then 1 AB 1 = 1 All B I· Moreover the mapping det: Rill -+- R is an
epimorphism of (multiplicative) sernigroups. A matrix A ERm is a unit
of Rm if and only if IA 1 is a unit of R.

A matrix A ERm is called unimodular if IA I = 1. The set SL(m, R)
of all unimodular matrices of Rm is a subgroup of GL(m, R). Let A ERm
and 6 be an m X I-matrix over R, then nt; = At; + 6, t; ER'", defines a
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mapping st: E S(Rm). The set of all these mappings is a subsemigroup of
S(Rtn) , the so-called inhomogeneous linear semigroup of dimension m
over R. In this semigroup, the subset of all mappings with IA I being a
unit is a group, the inhomogeneous linear group of dimension mover R.

If R is a finite field of order p', then we write GL(m, R) = GL(m, i).
We have IGL(m,i)1 = (pml_l)(pmt_pt) ... (plllt_lm-IJI). The group
GL(m,i) is soluble if and only if m =1 or m = 2 and pI = 2,3.
GL(m, pt) is nilpotent if and only if m = 1.

Let A be an mXm-matrix over R and set Em = E. Then xE-A is an
mXm-matrix over R[x] whence IxE-AI is a polynomial of R[x], the
so-called characteristic polynomial of A. If 1 xE -A 1 = xtn+aIxm-l+ ...
+am, then Am+aIAm

-
l+ ... +am_IA+amE = 0mm(CAYLEY-HAMILTON

equation). The roots of the characteristic polynomial of A are called
the eigenvalues of A.

Let A be an m X m-matrix over the field K and 0 the m X l-matrix
where all elements are 0. Then the "system of linear equations" At; = 0

has a solution t; ~ 0 in K'" if and only if A is singular, i.e. I A 1 = 0.

7.3. An abelian group (M; +, -,0) is also called a module. Let R be
a ring with identity. An R-module (or left R-module) is an abelian group
(M; +, -,0) together with a mapping from RXM to M, (r, m) -+- rm,
such that (r+s)m = rm+sm, r(m+n) = rm-i-rn, (rs)m = r(sm) , 1m = m,
for all r, s E R, m, n E M.

If K is a field, then a K-module V is called a vector space over K or
K-vector space. The elements of V are called vectors, and the identity° of V the zero vector. The family VI' ... , V" E V is called linearly
independent if rIvl+ ... +rllvn=O implies r;=O, i=I, ... ,n;
otherwise linearly dependent. If, for any integer d ""' 0, there exists
a family of d linearly independent elements in V, but every family
of n:> d elements is linearly dependent, then we set d = dim V
= dirn ; V and call d the dimension of V. Then every family
of d linearly independent elements is called a basis of V. If m -< dim V
and vI>"" Vm are linearly independent, then there exist elements
vm+1' ... , vnE V such that VI' ... , Vn is a basis of V. If VI' ... , VII
is a basis of V, then any wE V can be uniquely represented as

Il 11

W = I rkv" , r" EK. If WI' ... , wlIE Vand W;= I r;kvk' then wl' ... , wlI
k=1 k=1

are linearly independent if and only if det (r;k) ~ o.
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Let V be any vector space over K. An endomorphism (automorphism)
of V is an endomorphism (automorphism) cp of (V; +,-,0) such that
cp(kv) = kcp(v), for all kEK, vE V. If CPl+CPZand CPICPZare defined, for
endomorphisms cpr, cpz of V, by (CPl+cpz)v = CPIV+CPZV,(CPICPZ)V= CPl(CPZV),
then the set Homj, (V, V) of all endomorphisms of V is a ring with iden-
tity. The units of Hornj. (V, V) are just the automorphisms of V, they
form a group Aut V. If dim V = n, then Hornj. (V, V) ~ K" as rings, and
Aut V 2; GL(n, K).

7.4. Let M be an R-module. A submodule of M is a subgroup U of
(M; +, -, 0) such that ru E U, for all r E R, u E U. The submodules {O}
and M orM are called the trivial submodules. M is irreducible if M has
no non-trivial submodules. An isomorphism (homomorphism) ip : M -+- N
of R-modules is an isomorphism (homomorphism) from (M; +, -,0) to
(N; +, -,0) such that cp(rm) = rcp(m), for all rER, mEM.

Let M be an R-module. Then the set An M = {r E R I rm = 0, for all
mE M} is an ideal of R, the so-called annihilator of M. M is called faithful
if An M = {O}. If M is an arbitrary R-module, then M is a faithful
R I An M-module under the action v+ An M)m = rm, r ER,m EM.
If R is a ring where every descending chain Ll :::::> Lz :::::> ••• of left ideals
is finite, and if R possesses a faithful, irreducible R-module M, then R is a
simple ring.

Let K; be the full n X n-matrix ring over a field K. Then every irreducible
Kn-module can be regarded as a vector space over K and its dimension
IS n.

7.5. Let G be a group and V a vector space over the field K. A homo-
morphism 0 : G -+- Aut V is called a representation of G on V. If og = 1
for all g EG, then 0 is called a trivial representation. If dim V = n
and 0 : Hornj- (V, V) -+- K; is an isomorphism, then 00 is called a matrix
representation of Gover K afforded by V.

Let G be a finite group, K any field, and KG the set of aJI formal sums
L(kgg Ig E G), kg EK. In KG we define Lkgg+ Dgg = L(kg + 19)9,
(Lkgg) CDgg) = DLk"I"-'g I h E G)g. Then (KG; +, .) is a ring
with identity which is called the group ring of Gover K

Let V be a vector space over K and 0 a representation of G on V. If we
define (Lkgg)v = Lkg(og)v), for any LkggE KG, v E V, then V becomes
a KG-module. The representation 0 of G is called irreducible if V is an
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irreducible KG-module. All these concepts are used in the special situation
that K = Kp, the field of prime order p, V = N, a minimal abelian nor-
mal p-subgroup of G regarded as a Kp -vector space by means of
nl +nz = nine, (kl)n = ll, for any integer k ~ 0, and (og)n = gng :':

8. Near-rings

8.1. Near-rings and distributively generated (d.g.) near-rings, in particu-
lar, have been defined in ch. 3, § 1.3 and ch. 5, § 2. This section shall pre-
sent some basic facts on d.g. near-rings as they are applied in ch. 5. Since
there does not exist a book on near-rings so far, every result will be
proved here.

Let (A; +, .) = A be a d.g. near-ring with an identity 1 for " and S
a generating set for (A; +, -, 0) consisting of distributive elements. An
(additively written) group M together with a mapping fJ: A X M ->- M,
fJ(a, m) = am, is called 'an (A, S)-group or-if S is kept fixed-an A-group
if

(al +a2)m = alm+a2m,
s(ml +mz) = sm-; +sm2,

(slsZ)m = SI(S2m),
1m = m,

aI, a2EA, mEM,
sES, ms, m2EM,
SI, S2 E S, m EM,
mEM.

Let M be an A-group. A subgroup N of M is called an A-subgroup of
.M if an EN, for all a EA, n EN. A non-zero A-group M is called a
minimal A-group if M contains no non-trivial A-subgroups.

If M is an A-group and N is a normal A-subgroup of M, then the
factor group MINbecomes an A-group by virtue of a(m+N) = am+N,
and MINis called an A-factor group of M.

Let Ml, M2 be two A-groups. An A-homomorphism (isomorphism,
epimorphism) is a group homomorphism (isomorphism, epimorphism)
sp : Ml -+- M2 such that cp(am) = a(Tm), for all a EA, mE M. If
cP: M'; -+- M2 is an A-epimorphism, then ker cPis a normal A-subgroup
of Ml and M2 is A-isomorphic to the A-factor group MIl ker tp.

Note that A itself is an A-group through the left multiplication by
elements of A. If U is an A-subgroup of A and bE A, then Ub is also an
A-subgroup of A.

We say that A satisfies the minimum condition for A"subgroups if
every set of A-subgroups of A has a minimal element w.r.t. to the inclu-
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sion of sets, or equivalently, if every chain VI ~ V2 ~ ... of Acsub-
groups is finite.

Throughout this section,we will assume that A is a d.g. near-ring with
identity 1 and minimum condition for A-subgroups.

8.2. An element a EA is called nilpotent if an = 0, for some positive
integer n. An A-subgroup V of A is a nil A-subgroup if every u E V is
nilpotent. An A-subgroup V of A is nilpotent if there exists a positive
integer n such that U" = {a}, where U" means the complex product.

Let VI' ... , U; be A-subgroups of A. Then V10 V20 ... 0 U; is de-
fined to be the A-subgroup of A generated by VI V2 ... Vn' This does
not necessarily imply (V10V2)OV3 = U10(V20V3), but VIO(U2b) =
(V10V2)b, bEA, is always true since V10V2 is the set of all finite

sums IapIP2j' aj EA, -» E Vi' i = 1, 2.

8.21. Theorem. Every nil A-subgroup of A is nilpotent.

Proof. Let V be any nil A-subgroup of A and set U(O) = V,
v(n) = v(n-l) 0 ov:», n = 1,2, .... The minimum condition implies
U(k) = V(k+11, for some k. Suppose V(k) o;C {O}, then there exists an
A-subgroup I of A minimal w.r.t. U(k) 0 I o;C {O},again by the minimum
condition. Choose b c.I such that U(k)b o;C {O}.Then U(k)b is an A-sub-
group of A which is contained in I and V(kJo(V(k)b) = (U(k) 0 V(k))b =
U(k+l)b = U(k)b o;C {a}, whence U(k)b = I. Hence there exists an element
u E U(k) such that b = ub. Therefore b = ub = u2b = ... = urb = 0,
for some r, since u E U and U is a nil A-subgroup, contradiction. Hence
U(k) = {a}, therefore U2k = {O}.

8.3. Let M be an A-group and X any set of elements in M. The set
fiX) = {a E A I ax = 0, for all x EX} is called the left annihilator of X
in A. If X = {x}, we will write fA(X) = fA(X).

8.31. Proposition. Let M be an A-group and X a set of elements in M.
Then lA(X) is an A-subgroup of A.

Proof. Let xEX, al, a2EA, alX = a2X = 0, then (al+a2)x =
alx+ a2X = 0, and (-al)x = -aIX = 0. Moreover if a E A, then
(aal)x = a(alx) = ° since (A; +) is generated by S.
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8.32. Theorem. Every non-nilpotent A-subgroup V of A contains an idem-
po tent e lement e o;C 0.

Proof. Since the minimum condition holds for A, it suffices to prove the
theorem for the case that every proper A-subgroup of V is nilpotent.
Since V is non-nilpotent, there exists a non-nilpotent element UoE V, by
Th. 8.21, hence U = Uu«, for if Uus c V, then Uus would be nilpotent
whence u~ would be nilpotent, contradiction. Hence there exists u1E U
such that u« = UIUO,and UI is non-nilpotent, otherwise we would have
Uo = UIUO= uiuo = ... = u~uo.= 0, for some s, contradiction. Hence
V = VUI' and again there is a non-nilpotent element U2EU such that
Ul = U2Ul· If we continue this procedure, we obtain a sequence
uc, Ul, U2, . .. of non-nilpotent elements in V such that V = UUi and
ui = Ui+1Ui' i == 0, 1, 2, .... This yields a chain lA(uo) ;2 {A(UI) ;2 ...
of A"subgroups of A, and by the minimum condition, we have
{A(Uk+1) = lA(uk)· Since Uk = Uk+1Uk' we conclude (uk+1 -l)uk = 0,
hence Uk+1-1 E liuk) = [A(Uk+1)' Therefore (uk+1 -1)Uk+1 = ° i.e.
uZ+I = Uk+I' Hence U"+I E V is an idempotent.

8.33. Corollary. Every minimal non-nilpotent A-subgroup V of A is of the
form V = Ae where e is an idempotent of A.

8.34. Proposition. Every set {el, e2, } of non-zero idempotents of A such
that ei+1 EfA({e1, ... , eJ), i = 1,2, , is finite.

Proof. Suppose the opposite is true, then by the minimum condition,
[AC{e1, , ed) = [A({el, ... , e"+1})' for some k. But then ek+1 E
{A({e1, , ek+l}) whence eZ+1 = 0, contradiction.

8.35. Corollary. There exists a finite set {Ael, ... , Aen} of minimal non-
ni/potent A-subgroups of A, ei idempotent, i = 1, ... , n, such that
ei+1E1A({el, ... ,e;}), i = I, ,n-1, and such that there is no non-
zero idempotent en+1 E lA({el, , en}).

Proof. Since A is non-nilpotent as 1 EA, there is a minimal non-nilpotent
A-subgroup Ael of A. Take any minimal non-nilpotent A-subgroup Ae2
of {AC{el}), then e2 E lAC{e1}). Then choose a minimal non-nilpotent
A-subgroup Ae3 of {AC{el, e2}), etc. By Prop. 8.34, this procedure must

I]

,!
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terminate after finitely many steps, i.e. there is no non-zero idempotent
en+! E (A({el, " ., en}) for some n.

8.36. Proposition. Let {Ael, ... , AeJ be a set of minimal non-nilpotent
A-subgroups of A such that all e; are idempotents, e;+l E (A({el, ... , eJ),
i = 1, 2, ... , n -1, and there is no non-zero idempotent en+! E
(A({el, ... , en})' Then L = lA({el, ... , en}) is a nilpotent A-sub-
group of A, and every element a E A can be written uniquely as
a = al+a2+ ... +an+l, akEAek, k = 1, ... , n, IEL.

Proof. Suppose L is not nilpotent. Then by Th. 8.32 and Cor. 8.33, L
contains a minimal non-nilpotent A-subgroup Aen+l where en+! is an
idempotent, and en+! E (A({el, ... , en}), contradiction. The second state-
ment will follow from: Every element a E A can be written uniquely as
a = al + ... +ai+l;, ak E Aek, k = 1,2, ... , i, and I; E lA({el, ... , eJ).
We will prove this by induction on i: for i = 1, we have A = Ae I + lA(el)
since, for any a E A, a = ael + (-ael + a) and -ael +a E lA(el)'
Moreover Ael n fA(el) = 0, hence this decomposition is unique. Let
j~ 1. By induction, a = al+ ... +aj+lj, akEAek, k = 1, ... , j,
o EfA({e1, ... , ej}). If we put IHI = -~eHl +~, then aHl = IjeHl E AeHI
and IHI E [A({el, ... , eHI})· Suppose that a = al + ... + aHl + ~+! =

I I I' I k I . 1 I Ia1+ ... +aHI+HI, ak, akEAek, =, ... , J+, HI' ~+lE

(A({e1,·· .,eH1})· Then (aHl+~+!)ek = ° = (a;+!+~/+1)ek' k = 1, " .,j.
By induction, ak = a~, for k = 1, ... , j, and aHl + Ij+1 = a;+l + 1;+1'

I I '( ,

Hence -aH1+aHl = IHl-/HIEAej+1ntA(eHl)' Therefore aHl = aH1,

~+! = ~/+l"

8.4. The intersection of all A-subgroups U of A such that there is a
minimal A-group M with U = lA(M) is called the radical I(A) of A.

8.41. Proposition. I(A) contains every nilpotent Arsubgroup of A.

Proof. Suppose not, then there exists some nilpotent A-subgroup U of A
and minimal A-group M such that UM rO {a}. Then Um rO {a}, for
some mE M whence Um = M. Hence, for some u E U, m = um =
u2m = ... = u'm = 0, for some s, since U is nilpotent: contradiction.

8.42. Proposition. Let M be an A-group. Then lA(M) is a normal A-sub-
group of A and [A(M)a ~ lA(M), for all a E A.
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Proof. By Prop. 8.31, lA(M) is an A-subgroup of A. Let x E lA(M),
aEA, mEM. Then (-a+x+a)m = -am+xm+am = 0. Moreover,
(xa)m = x(am) = 0.

8.43. Proposition. Suppose the radical I of A is nilpotent, and Ae is a
minimal non-nilpotent A-subgroup of A, e idempotent. Then Je = AenI,
and Je is a proper A-subgroup of Ae which contains every proper A-sub-
group of Ae. Furthermore Je is a normal subgroup of Ae, and for every
minimal A-group M, there exists some minimal non-nilpotent A-subgroup
Ae of A, e idempotent, such that M is A-isomorphic to the A-factor group
Aelle.

Proof. By Prop. 8.42, I is a normal A-subgroup of A, and Ja ~ I, for all
aEA, thus Je <; I, whence Je ~ AenI; but also Aeni ~ Je since e
is an idempotent. Therefore Je = Ae n I, hence by the first isomorphism
theorem of group theory, Je <l Ae. Since I is nilpotent, also Aeni
is nilpotent, hence Aen I is properly contained in Ae. Let U be an
arbitrary proper A-subgroup of Ae, then U is nilpotent. By Prop. 8.41,
U ~ I whence U ~ Aeni = Je. Now let M be a minimal A-group,
{Ael' ... , Aen} a set of minimal non-nilpotent A-subgroups of A as in
Cor. 8.35, and L = fA({e1, ... , e,J). Then M = AM = Ae.M + ... +
AenM +LM, by Prop. 8.36. Since L is nilpotent, L ~ I whence
LM = {a}. Therefore there exists an idempotent e; such that
Ae;M rO {a}. Thus we can find an element mE M such that Aem ,c {a},
hence Aem = M by minimality of M. If we define an A-epimorphism
rp : Ae; -+ M by cp(ae,) = ae m, then M "" Ae, I ker cpoker rp is a proper
normal A-subgroup of Ae, whence ker rp = Je, i.e. M "" Ae, I Je..

8.5. We recall ch. 3, Prop. 5.11, which tells us that every near-ring
(A; +, -, 0, .) may be regarded as a I: }-multioperator group. Let
A = (A; +, -,0, " 1) be a near-ring with identity and teA) the group
of units of the semigroup (A; .,1).

8.51. Proposition. Let A be a d.g. near-ring with identity 1 and minimum
condition for A-subgroups, and rp : A -+ B a near-ring epimorphism. If
ker rp is finite, then rpt(A) = t(B).

Proof. By the homomorphism theorem, it suffices to show: If I is a finite
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ideal of A and u+ 1 a unit of A Il, then there exists an element iE I such
that u+ i is a unit of A.

By the minimum condition, there exists a positive integer k = k(v)
such that AVk = Avk+1, for all v E A. Let u, v E A such that vu = 1, then
A = AVkUk = Avk+1Uk = Av whence 1 = av, for some a EA. But
u = lu = avu = a whence 1 = uv. Since S additively generates A, we
can regard A as a monogenic S-group with S-generator 1. ByLemma 3.4,
I is a finite S-admissible normal subgroup of the S-group A, and 1+I
is an S-generator of the S-factor group A I1. Since u +I is a unit of A II
and S additively generates A, we conclude that u+ 1 is an S-generator of
All. Hence by Lemma 6.91, there exists an S-generator u+i of A where
i E 1. Thus by § 6.2, 1 = I7=1 ti(u+ i) where t, E A, i = 1, ... , k, whence
v(u+ i) = 1, for some v E A, i.e. u+ i is a unit of A.

9. Miscellaneous

9.1. In this section, we collect various definitions and results from quite
divergent branches of mathematics which are used at some place in this
book. Not all of these results are well-known, but since some of the proofs
are far beyond the scope of this book, we will restrict ourselves to giving
references.

First we deal with the concepts of category and functor: Let ~ be a
class of objects A, E, C, ... , and suppose that, for any ordered pair
(A, E) of objects in ~, there is a set Mor (A, E) such that Mor (A, E) n
Mol' (C, D) = cP if (A, E) ~ (C, D). For any ordered triple (A, E, C) in
~, let w(A, E, C): Mor (A, E)XMor (E, C) --+- Mol' (A, C) be defined to
be a mapping (we will write w(A, E, C)(f, g) = gf) such that:
For any four objects A, E, C, D E~ and all fE Mor (A, E), g E
Mor (E, C), hE Mor (C, D), we have h(gf) = (hg)f; for any A E~, there
exists a morphism lA E Mor (A, A) such that fiA = f, for any E E ~
and IE Mor (A, E); and lAg = g, for any C E~ and gE Mor (C, A).
Then the triple consisting of the class ~, the class of all Mor (A, E), and
the class of all w(A, E, C) is called a category which will be denoted briefly
by~.

As an example, we may take any variety j8 for ~, and the set of all
homomorphisms fJ.: A --+- E for Mor (A, E) while w(A, E, C) will be the
composition of mappings.
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Let (~, Morlif' wlE) = ~ and (~, MorSD, wSD) = ~ be two categories,
rf : ~ --+- ~ a mapping and rf(A, E) :MorlE(A, E) --+- Mor SD (q(A), q(B)) .
a mapping. For any pair (A, E) of objects in ~ we will write
q(A, E)f = qU)· If q(gf) = q(g) qU) for all A, E, C E~,
IE MorlE (A, E), gE MorlE (E, C), and (f(1A) = II](A) for all A E~, then
the pair consisting of the mapping rf and the family rf(A, E) is cal-
led a covariant functor from the category ~. into the category ~.

9.2. Waring's formula. Let Z be the ring of rational integers, Yl' ... , Yk
indeterminates and n a positive integer. For every positive integer i,
let W?) E Z[Yl' ... , Yk] be the sum of those terms in the expansion of
(h+ ... +YkY into monomials cy1' ... y~k for which el +2e2 + ... +
+ke; = n. Then the polynomial Wn = I7=1 [(-IY n/i]Wf") belongs
to Z[Yl"" , Yk]. If Xl"'" Xk are indeterminates and at =
(-1 Y I(xi1 ••• Xi, I il <: ... -< it), t = 1,... , k, then Wn (al, ... , ak) =
X~+ ... +XZ.

We refer the reader to REDEl [2] for a detailed proof.

9.3. We continue with a few number-theoretical results that can be
found in almost every text on number theory.

Let Z be the ring of rational integers, n a positive integer, (n) the princi-
pal ideal with basis n, and Z I (n) the corresponding factor ring of order n.
The group t(Z I (n)) of units of Z I (n) is called the group of prime residue
classes mod n. We call <pen) = I t(Z I (n)) I the Euler <p-function. If n = ab
and (a, b) = 1, then <p(ab) = <pea) <pCb), and if p is a prime and e ~ 1,
then <p(pe) = peCI-Ilp).

Let q :> 1 be a fixed integer. Then any integer k ~ 0 can be writ-
ten uniquely as k = amqm+am_lqm-l+ ... +ao where m ~ 0 and
o "'"a, -e; q, i = 0, 1, ... , m. This representation is called the q-adic
expansion of k and sq(k) = am+ ... +ao is called the sum of digits
of this expansion. If k and 1 are arbitrary positive integers, then
sq(k+ I) "'" sq(k)+ Sq(l) , and if we put Je(i) = max (Je I qt. divides i), then
I7=lA(i) = (k-sik))j(q-l).

In contrast to these very elementary results, the famous DIRICHLET

theorem is very deep. It is used at the end of ch. 4 and can be stated
as follows:
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If a, b are positive rational integers and (a, b) = 1, then the arithmetic
progression an +b, n = 1, 2, 3, ... contains infinitely many primes.

9.4. WElL [1] has proved the RIEMANNhypothesis for algebraic function
fields over finite fields. Two of its consequences are the theorem of
LANG and WElL on the number of rational points of varieties in finite
fields and a theorem of CARLITZand WELLSwhich we need here.

Let K be a finite field of order q; and rv the equivalence relation on
KXKXK defined by: (b!, b-, b3) rv (a!, a2, a3) if and only if there is
o ~ IE K such that b, = la.; i = 1,2,3. Then a. special case of the
LANG-WElL theorem is the following

9.41. Theorem. Let u E K[x, y, z] be an absolutely irreducible form of
degree d >- 0 and n the number of non-equivalent solutions in K of the
equation u(x, y, z) = O. Then

In-ql ~ (d-l) (d-2) y(q)+k(d)

wherek(d) is a constant which depends only on d.

For a proof, we refer to LANG and WElL [l].
Now we state the CARLITZ-WELLSresult:

9.42. Theorem. Let K be a finite field of order q; a!, ... , a., bl' , b,
non-zero elements of K such that ab, ~ ajb;, for i =I: k, kl' , k;
positive integers and n the number of solutions in K of the system

Yk/ = a.+b.xk
I I I '

i = 1, ... ,1',

of equations in x, y!' ... , Yr' Then n = q+ O(q!/2)(q - 00), i.e.
In-ql ~ Cq1l2,for some C >- O.

For a proof, we refer to CARLITZ-WELLS[1].

9.5. Finally we state some elementary results from analysis: The complex
exponential function e', for z = icp, cp being real, satisfies e;<P= cos cp+
i sin cp which is a special case of EULER'Sformula and implies DEMOIVRE'S
equation (cos cp+ i sin CPt = cos nip+ i sin nip, for any integer n. We have
cos (n-cp) = -cos tp, If, for any differentiablereal function j, af denotes
the first derivative, then a cos cp = -sin ip, and.if g is also a differentiable
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function, then au 0 g) = (af 0 g) ago If f is a polynomial in x over the
field of real numbers and a is the canonical mapping from the ring of
polynomials to the ring of polynomial functions, then a(af) = of",

Remarks and comments

§ 1-9. The concept of a multi operator group is due to HIGGINS[1].
KURos [2] contains the elements of the theory of multioperator groups.
§ 5.8 follows ENGSTROM[1], Th. 5."86was also proved by a diiferentmethod
in the paper by FRIEDand MAC RAE [1]. Prop. 6.8 is due to HIGMAN,
B. H. NEUMANNand H. NEUMANN[1], Lemma 6.91 is a result of GA-
SCHUTZ[1]. The theory of d.g. near-rings with minimum condition as
contained in § 8 has been developed by LAUSCH[7], using some ideas of
BEIDLEMAN[1], [2]. Prop. 8.51 was proved by LAUSCH[6].
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