Übungen zu Lineare Algebra und Analytische Geometrie 1 12. Übungsblatt für den 16. Jänner 2012

Beachten Sie bitte für alle Aufgaben mit Unteraufgaben: Ankreuzen ist nur möglich, wenn Sie alle Teilaufgaben gelöst haben.

1. Zeigen oder widerlegen Sie: Für alle Kardinalzahlen α, β, γ gilt:

$$(\alpha \neq 0 \land (\alpha \cdot \beta = \alpha \cdot \gamma)) \Rightarrow \beta = \gamma$$

2. Wegen Satz 16.28 aus dem Vorlesungsskript wissen wir bereits, dass

$$|\mathbb{N}| = |\{A \subseteq \mathbb{N} \mid A \text{ endlich}\}|.$$

Finden Sie nun eine Methode mit der sich eine bijektive Abbildung zwischen den natürlichen Zahlen und der Menge aller endlichen Teilmengen der natürlichen Zahlen konstruieren läßt.

- 3. Sei α eine transfinite Kardinalzahl und $A(\alpha)$ die Menge aller Kardinalzahlen $\leq \alpha$. Um welche algebraische Strukturen (Halbgruppe, Monoid, Gruppe, Ring, Körper,...) handelt es sich bei:
 - (i) $(A(\alpha), +)$
 - (ii) $(A(\alpha), \cdot)$
 - (iii) $(A(\alpha), +, \cdot)$
- 4. (a) Was stimmt an dieser Aussage nicht?

Die Menge aller Kardinalzahlen bildet mit der Addition ein Monoid.

(b) Warum ist der folgende "Beweis" für Satz 17.3 a) ($\lambda \mathbf{o} = \mathbf{o}$) falsch?

$$\lambda \mathbf{o} = \lambda (v - v) = \lambda v - \lambda v = \mathbf{o}$$

5. Sei M eine beliebige Menge. Überprüfen Sie, ob es sich bei $(\mathcal{P}(M), \Delta)$ über \mathbb{Z}_2 mit der durch $(N \in \mathcal{P}(M))$

$$1\cdot N:=N$$

$$0 \cdot N := \emptyset$$

definierten Skalarmultiplikation um einen Vektorraum handelt.

- 6. Sei V der Vektorraum aus 5 mit $M = \mathbb{N}$.
 - (a) Sind die endlichen Teilmengen von \mathbb{N} ein Unterraum von V?
 - (b) Sind die **un**endlichen Teilmengen von \mathbb{N} ein Unterraum von V?
- 7. Überprüfen Sie, ob es sich bei
 - (a) $(\{a+b\sqrt{3} \mid a,b\in\mathbb{Q}\},+)$ über \mathbb{Z}
 - (b) $(\{a+b\sqrt{3} \mid a,b\in\mathbb{Q}\},+)$ über \mathbb{Q}
 - (c) $(\{a+b\sqrt{3} \mid a,b\in\mathbb{Q}\},+)$ über \mathbb{R}

mit der Skalarmultiplikation $\lambda(a+b\sqrt{3})=\lambda a+\lambda b\sqrt{3}$ um einen Vektorraum handelt.

8. Sei V der Verktorraum aus 7b. Handelt es sich bei

- (a) $\{b\sqrt{3} \mid b \in \mathbb{Q}\}$
- (b) $\{a+b\sqrt{3} \mid a \in \mathbb{Z}, b \in \mathbb{Q}\}$
- (c) $\{a + b\sqrt{3} \mid a \in \mathbb{R}, b \in \mathbb{Q}\}$

um einen Unterraum von V?