UNTERLAGEN ZU RINGERWEITERUNGEN

VORLESUNG "KOMMUTATIVE ALGEBRA", SOMMERSEMESTER 2008

1. Ganze Erweiterungen

Seien A, B kommutative Ringe mit Eins. Wir schreiben $A \leq B$, wenn A ein Unterring von B (mit dem gleichen Einselement) ist.

Definition 1.1. Seien A, B kommutative Ringe mit Eins mit $A \leq B$, und sei $S = \langle s_i | i \in I \rangle$ eine Folge von Elementen von B. Dann ist A[S] der Durchschnitt aller Unterringe R von B mit $A \cup \{s_i \mid i \in I\} \subseteq R$.

Definition 1.2. Seien A, B kommutative Ringe mit Eins, sodass $A \leq B$, und sei $x \in B$. Das Element x ist ganz über A, wenn x Nullstelle eines Polynoms in A[t]mit führendem Koeffizienten 1 ist.

Definition 1.3. Seien A, B kommutative Ringe mit Eins, sodass $A \leq B$. B ist $ganz \ \ddot{u}ber \ A$, wenn alle $b \in B$ ganz $\ddot{u}ber \ A$ sind.

Satz 1.4. Seien A, B kommutative Ringe mit Eins, sodass $A \leq B$. Wenn x ganz *über B ist, so gibt es* $n \in \mathbb{N}$ *und* $b_0, \ldots, b_{n-1} \in \mathbb{N}$ *mit* $b_0 = 1$, *sodass*

$$A[\![x]\!] = A \cdot 1 + A \cdot b_1 + \dots + A \cdot b_{n-1}.$$

Beweisskizze: Sei n der Grad eines Polynoms mit führendem Koeffizienten 1, das x als Nullstelle hat, und sei $b_i := x^i$.

Satz 1.5. Seien A, B kommutative Ringe mit Eins, sodass $A \leq B$. Sei $x \in B$ so, dass es $n \in \mathbb{N}$ und $b_0, \ldots, b_{n-1} \in B$ gibt, sodass

- (1) $b_0 = 1$,
- (1) $b_0 = 1$, (2) $\sum_{i=0}^{n-1} A \cdot b_i$ ist abgeschlossen unter \cdot , (3) $x \in \sum_{i=0}^{n-1} A \cdot b_i$.

Dann ist x qanz $\ddot{u}ber$ A.

Satz 1.6. Seien A, B kommutative Ringe mit Eins, sodass $A \leq B$. Sei $x \in B$ so, dass x ganz \ddot{u} ber A ist. Dann ist A[x] ganz \ddot{u} ber A.

Date: April 24, 2008.

Erhard Aichinger, Institut für Algebra, Johannes Kepler Universität Linz, Austria, erhard@algebra.uni-linz.ac.at.

Satz 1.7. Seien A, B kommutative Ringe mit Eins, sodass $A \leq B$, und seien $x, y \in B$. Wenn x ganz über A ist, und y ganz über $A[\![x]\!]$ ist, so ist y ganz über A.

Satz 1.8. Seien A, B, C kommutative Ringe mit Eins, sodass $A \leq B \leq C$. Wenn B ganz über A, und C ganz über B ist, so ist C ganz über A.

2. Algebraische Erweiterungen

Definition 2.1. Seien A, B kommutative Ringe mit Eins mit $A \leq B$, und sei $e \in B$. Das Element e ist algebraisch über A, wenn es ein $p \in A[t]$ mit $p \neq 0$ gibt, sodass $\overline{p}(e) = 0$. B ist algebraisch über A, wenn alle $b \in B$ algebraisch über A sind.

Definition 2.2. Seien A, B kommutative Ringe mit Eins mit $A \leq B$. Eine Folge $S = \langle s_i | i \in I \rangle$ von Elementen aus B ist algebraisch unabhängig über A, wenn für alle $n \in \mathbb{N}$, für alle $p \in A[t_1, \ldots, t_n] \setminus \{0\}$ und für alle paarweise verschiedenen $i_1, \ldots, i_n \in I$ gilt:

$$\overline{p}(s_{i_1},\ldots,s_{i_n})\neq 0.$$

Lemma 2.3. Seien A, B Integritätsbereiche mit $A \leq B$. Dann sind äquivalent:

- (1) B ist algebraisch über A.
- (2) Q(B) ist algebraisch über Q(A).

Beweis: (1) \Rightarrow (2): Seien $p, q \in B$ mit $q \neq 0$. Wir zeigen, dass $\frac{p}{q}$ algebraisch über Q(A) ist. Da q algebraisch über A ist, gibt es ein Polynom $f \in A[t]$ vom Grad $n \geq 1$, sodass

$$\overline{f}(q) = 0.$$

Für $g(x) := x^n \cdot f(\frac{1}{x})$ gilt $\overline{g}(\frac{1}{q}) = 0$. Also ist $\frac{1}{q}$ algebraisch über A, und somit ganz über Q(A). Das Element p ist ganz über Q(A), also auch über $Q(A)[\![\frac{1}{q}]\!][\![p]\!]$ ganz über Q(A). Da $\frac{p}{q} \in Q(A)[\![\frac{1}{q}]\!][\![p]\!]$, ist $\frac{p}{q}$ ganz über Q(A). $(2) \Rightarrow (1)$: Sei $b \in B$. Dann ist b Nullstelle eines Polynoms f in $Q(A)[t] \setminus \{0\}$, und nach Multiplikation mit den Nennern der Koeffizienten von f auch eines Polynoms $g \in A[t] \setminus \{0\}$.

Proposition 2.4. Seien A, B, C Integritätsbereiche mit $A \leq B \leq C$. Wenn B algebraisch über A und C algebraisch über B ist, so ist C algebraisch über A.

Beweis: Nach Lemma 2.3 ist Q(B) algebraisch, also ganz, über Q(A), und Q(C) ganz über Q(B). Also ist Q(C) ganz über Q(A), und somit ist C algebraisch über A.

Definition 2.5. Seien A, B kommutative Ringe mit Eins mit $A \leq B$, und sei S eine Folge von Elementen aus B. S ist eine Transzendenzbasis von B über A, wenn S maximal unter den algebraisch unabhängigen Folgen aus B ist.

Proposition 2.6. Seien A, B kommutative Ringe mit Eins mit $A \leq B$. Dann besitzt B eine Transzendenzbasis über A.

Beweis: Sei S eine Kette über A algebraisch unabhängiger Folgen, und sei $S := \bigcup S$.

Wenn $S = \langle s_i | i \in I \rangle$ algebraisch abhängig ist, gibt es $i_1, \ldots, i_n \in I$, und $p \in A[t_1, \ldots, t_n]$ mit $p \neq 0$, sodass $\overline{p}(s_{i_1}, \ldots, s_{i_n}) = 0$. Es gibt nun ein Element $S' \in S$, das $\langle s_{i_k} | k \in \{1, \ldots, n\} \rangle$ enthält. Daher ist S' algebraisch abhängig.

Also ist S algebraisch unabhängig. Somit liefert das Zornsche Lemma eine Transzendenzbasis von B.

Satz 2.7. Seien A, B kommutative Ringe mit Eins mit $A \leq B$, und sei $S = \langle s_i | i \in I \rangle$ eine über A algebraisch unabhängige Teilfolge von B. Sei $e \in B$, und sei $j \notin I$. Sei $S' := S \cup \{(j, e)\}$. Dann sind äquivalent:

- (1) S' ist algebraisch abhängig über A.
- (2) e ist algebraisch über A[S].

Beweis: (1) \Rightarrow (2): Seien $n \in \mathbb{N}_0$, i_1, \ldots, i_n paarweise verschiedene Elemente aus I und $f \in A[t_1, \ldots, t_{n+1}]$ so, dass $f \neq 0$ und $\overline{f}(s_{i_1}, \ldots, s_{i_n}, e) = 0$. Sei nun

$$f(t_1, \dots, t_{n+1}) = \sum_{j=0}^{m} u_j(t_1, \dots, t_n) t_{n+1}^{j}.$$

Dann gilt

$$\sum_{j=0}^{m} \overline{u_{j}}(s_{i_{1}}, \dots, s_{i_{n}})e^{j} = 0.$$

Das Polynom $g := \sum_{j=0}^m \overline{u_j}(s_{i_1}, \dots, s_{i_n}) t^j \in A[S][t]$ erfüllt $g \neq 0$ und $\overline{g}(e) = 0$. Somit ist e algebraisch über A.

 $(2)\Rightarrow(1)$: Sei $g\in A[\![S]\!][t]$ so, dass $g\neq 0$ und $\overline{g}(e)=0$. Jedes Element in $A[\![S]\!]$ lässt sich in der Form $\overline{u}(s_{i_1},\ldots,s_{i_n})$ mit $n\in\mathbb{N}$ und $u\in A[t_1,\ldots,t_n]$ schreiben. Also lässt sich das Polynom g schreiben als

$$g = \sum_{k=0}^{\deg(g)} \overline{u_k}(s_{i_1}, \dots, s_{i_m}) t^k.$$

wobei $m \in \mathbb{N}$ und die i_j paarweise verschieden sind. Wir betrachten nun das Polynom $g' \in A[t_1, \dots, t_{m+1}]$, das durch

$$g'(t_1, \dots, t_{m+1}) = \sum_{k=0}^{\deg(g)} u_k(t_1, \dots, t_m) t_{m+1}^{k}$$

definiert ist. Es gilt $g' \neq 0$ und $\overline{g'}(s_{i_1}, \ldots, s_{i_m}, e) = 0$. Folglich ist $S \cup \{(j, e)\}$ algebraisch abhängig über A.

Satz 2.8. Seien A, B Integritätsbereiche mit $A \leq B$, sei sei (x_1, \ldots, x_m) eine Transzendenzbasis von B über A, sei $r \in \mathbb{N}$, und sei (w_1, \ldots, w_r) eine über A algebraisch unabhängige Folge von Elementen aus B. Dann gibt es für alle $i \in \{0, 1, \ldots, \min(r, m)\}$ eine injektive Abbildung $\pi : \{i + 1, \ldots, m\} \rightarrow \{1, \ldots, m\}$, sodass B algebraisch über

$$A[w_1,\ldots,w_i,x_{\pi(i+1)},\ldots,x_{\pi(m)}]$$

ist.

Beweis: Induktion nach i. Für i=0 setzen wir $\pi:=\mathrm{id}_{\{1,\ldots,m\}}$. Da (x_1,\ldots,x_m) eine Transzendenzbasis von B über über A ist, gilt für jedes $e\in B$, dass (x_1,\ldots,x_m,e) algebraisch abhängig über A ist. Dann ist e nach Satz 2.7 algebraisch über $A[x_1,\ldots,x_m]$.

Sei nun $i \geq 1$. Wir nehmen an, dass

(2.1) B algebraisch über
$$A[w_1, \ldots, w_{i-1}, x_{\pi(i)}, \ldots, x_{\pi(m)}]$$

ist. Wir wollen nun eines der $x_{\pi(j)}$ durch w_i ersetzen. Dazu wählen wir eine Menge $K = \{k_1, \ldots, k_l\}$ als eine Teilmenge von $\{i, i+1, \ldots, m\}$, die maximal bezüglich \subseteq mit der Eigenschaft ist, dass

$$(w_1,\ldots,w_{i-1},w_i,x_{\pi(k_1)},\ldots,x_{\pi(k_l)})$$
 algebraisch unabhängig

ist; da (w_1, \ldots, w_i) algebraisch unabhängig ist, gibt es ein solches K.

Falls $K = \{i, i+1, \ldots, m\}$, so ist

$$(w_1,\ldots,w_i,x_{\pi(i)},\ldots,x_{\pi(m)})$$

algebraisch unabhängig. Wegen (2.1) ist w_i algebraisch über $A[w_1, \ldots, w_{i-1}, x_{\pi(i)}, \ldots, x_{\pi(m)}]$. Nach Satz 2.7 ist dann $(w_1, \ldots, w_i, x_{\pi(i)}, \ldots, x_{\pi(m)})$ algebraisch abhängig über A.

Daher gibt es ein $j \in \{i, i+1, ..., m\}$, sodass $j \notin K$. Wegen der Maximalität von K gilt also

$$(w_1, \ldots, w_i, x_{\pi(k_1)}, \ldots, x_{\pi(k_l)})$$
 ist algebraisch unabhängig über A , und $(w_1, \ldots, w_i, x_{\pi(k_1)}, \ldots, x_{\pi(k_l)}, x_{\pi(j)})$ ist algebraisch abhängig über A .

Daher ist nach Satz 2.7 $x_{\pi(j)}$ algebraisch über $A[w_1, \ldots, w_i, x_{\pi(k_1)}, \ldots, x_{\pi(k_l)}]$, folglich über $A[w_1, \ldots, w_i, x_{\pi(i)}, \ldots, x_{\pi(j-1)}, x_{\pi(j+1)}, \ldots, x_{\pi(m)}]$. Wir definieren nun

$$\sigma:\{i,\ldots,m\}\to\{1,\ldots,m\}$$

durch $\sigma(j) := \pi(i)$, $\sigma(i) := \pi(j)$, und $\sigma(r) = \pi(r)$ für $r \in \{i, \dots, m\} \setminus \{i, j\}$. Nun ist also $x_{\sigma(i)}$ algebraisch über

$$C := A[w_1, \dots, w_i, x_{\sigma(i+1)}, \dots, x_{\sigma(m)}].$$

Wegen (2.1) ist B algebraisch über $A\llbracket w_1, \ldots, w_{i-1}, x_{\sigma(i+1)}, \ldots, x_{\sigma(m)} \rrbracket \llbracket x_{\sigma(i)} \rrbracket$, und daher erst recht über $A\llbracket w_1, \ldots, w_{i-1}, w_i, x_{\sigma(i+1)}, \ldots, x_{\sigma(m)} \rrbracket \llbracket x_{\sigma(i)} \rrbracket = C \llbracket x_{\sigma(i)} \rrbracket$. Da

 $C[x_{\sigma(i)}]$ algebraisch über C ist, folgt nach Proposition 2.4, dass B algebraisch über C ist. Somit leistet $\sigma|_{\{i+1,\ldots,m\}}$ das Gewünschte.

Korollar 2.9. Seien A, B Integritätsbereiche mit $A \leq B$, und sei (x_1, \ldots, x_m) eine Transzendenzbasis von B über A. Sei (w_1, \ldots, w_r) eine über A algebraisch unabhängige Folge von Elementen aus B. Dann gilt $r \leq m$.

Beweis: Wir nehmen an r > m. Aus dem Austauschsatz (Satz 2.8) erhalten wir, dass B algebraisch über $A[w_1, \ldots, w_m]$ ist. Also ist w_{m+1} algebraisch über $A[w_1, \ldots, w_m]$. Nach Satz 2.7 ist $(w_1, \ldots, w_m, w_{m+1})$ dann algebraisch abhängig.

Definition 2.10. Seien A, B Integritätsbereiche mit $A \leq B$. Wenn B eine endliche Transzendenzbasis über A besitzt, so ist der Transzendenzgrad von B über A die Anzahl der Elemente dieser Basis. Andernfalls ist der Transzendenzgrad ∞ .

3. Noethersche Normalisierung

Lemma 3.1. Sei k ein unendlicher Körper, $n \in \mathbb{N}$, und sei $p \in k[t_1, \ldots, t_n]$ mit $p \neq 0$. Dann gibt es ein $\mathbf{v} \in k^n$ mit $\overline{p}(\mathbf{v}) \neq 0$.

Beweisskizze: Induktion nach n.

Lemma 3.2. Sei k ein Körper, und sei B ein kommutativer Ring mit Eins mit $k \leq B$. Sei $n \in \mathbb{N}$, $\mathbf{x} = (x_1, \dots, x_n)$ eine Folge von Elementen aus B, und sei $p \in k[t_1, \dots, t_n]$ so, dass

$$\overline{p}(x_1,\ldots,x_n)=0$$

und $p \neq 0$. Dann gibt es Polynome $f_2, \ldots, f_n \in k[t_1, \ldots, t_n]$ und $g_1, \ldots, g_n \in k[t_1, \ldots, t_n]$, sodass folgendes gilt:

- (1) x_1 ist ganz über $k[\![\overline{f_2}(\mathbf{x}),\ldots,\overline{f_n}(\mathbf{x})]\!]$,
- (2) Für alle $j \in \{1, ..., n\}$ gilt

$$t_j = g_j(t_1, f_2(t_1, \dots, t_n), \dots, f_n(t_1, \dots, t_n)).$$

(Das bedeutet, dass $k[\overline{f_2}(\mathbf{x}), \dots, \overline{f_n}(\mathbf{x}), x_1] = B.$)

Wenn k unendlich ist, so kann man alle f_i linear wählen.

Beweis: Wir betrachten zunächst den Fall, dass k unendlich ist. Sei I eine endliche Teilmenge von \mathbb{N}_0^n , und sei $\langle c_i | i \in I \rangle : I \to k$ so, dass

$$p = \sum_{(i_1, \dots, i_n) \in I} c(i_1, \dots, i_n) t_1^{i_1} \cdots t_n^{i_n}.$$

Für ein passendes $(\alpha_2, \dots, \alpha_n) \in k^{n-1}$ gilt nun, dass das Polynom

$$q(t_1,\ldots,t_n) := p(t_1,t_2+\alpha_2t_1,\ldots,t_n+\alpha_nt_1)$$

von der Form $b_N t_1^N + \sum_{i=0}^{N-1} b_i(t_2, \dots, t_n) t_1^i$ mit $b_N \in k, b_i \in k[t_2, \dots, t_n]$ ist. Um das zu zeigen, bilden wir ein Polynom q' in $k[t_1, \dots, t_n, a_2, \dots, a_n]$.

$$q' := p(t_1, t_2 + a_2 t_1, \dots, t_n + a_n t_1)$$

$$= \sum_{(i_1, \dots, i_n) \in I} c(i_1, \dots, i_n) t_1^{i_1} (t_2 + a_2 t_1)^{i_2} \cdots (t_n + a_n t_1)^{i_n}.$$

Sei N der totale Grad von p. Dann erhalten wir den Koeffizienten K von x^N in q' durch

$$K = \sum_{\substack{(i_1, \dots, i_n) \in I \\ i_1 + \dots + i_n = N}} c(i_1, \dots, i_n) a_2^{i_2} a_3^{i_3} \cdots a_n^{i_n}.$$

Das Polynom $K \in k[a_2, ..., a_n]$ ist nicht das Nullpolynom, also gibt es nach Lemma 3.1 ein $(\alpha_2, ..., \alpha_n) \in k^{n-1}$, sodass $\overline{K}(\alpha_2, ..., \alpha_n) \neq 0$.

Es gilt

$$\overline{q}(x_1, x_2 - \alpha_2 x_1, \dots, x_n - \alpha_n x_n) = 0.$$

Also ist x_1 ganz über $k[x_2 - \alpha_2 x_1, \dots, x_n - \alpha_n x_1]$. Somit leisten $f_j := x_j - \alpha_j x_1$ und $g_1 := t_1, g_j := x_j + \alpha_j x_1$ das Gewünschte.

Wenn k endlich ist, so kann man $g_j := t_j + t_1^{d^{j-1}}$ mit $d > \max\{i_j \mid i \in I, j \in \{1, \ldots, n\}\}$ und $f_j := t_j - t_1^{d^{j-1}}$ wählen.

Satz 3.3 (Noethersche Normalisierung). Sei k ein Körper, sei B ein kommutativer Ring mit Eins mit $k \leq B$, und seien $x_1, \ldots, x_n \in B$ so, dass $k[x_1, \ldots, x_n] = B$. Dann gibt es $r \in \{0, \ldots, n\}$ und $f_1, \ldots, f_n \in k[t_1, \ldots, t_n]$, sodass für $y_j := \overline{f_j}(x_1, \ldots, x_n)$ gilt:

- (1) (y_1, \ldots, y_r) ist algebraisch unabhängig über k,
- (2) B ist ganz über $k[y_1,\ldots,y_r]$.

Beweis: Induktion nach n. Wenn (x_1, \ldots, x_n) algebraisch unabhängig ist, so gilt für r := n und $f_j := t_j$ $(j \in \{1, \ldots, n\})$ das Gewünschte.

Wenn $\mathbf{x} = (x_1, \dots, x_n)$ algebraisch abhängig ist, so gibt es ein $p \in k[t_1, \dots, t_n]$ mit $p \neq 0$, sodass

$$\overline{p}(x_1,\ldots,x_n)=0.$$

Daher gibt es nach Lemma 3.2 $f_1, \ldots, f_{n-1} \in k[t_1, \ldots, t_n]$, sodass x_n ganz über $k[f_1(x_1, \ldots, x_n), \ldots, f_{n-1}(x_1, \ldots, x_n)]$ ist, und

$$k[\overline{f_1}(\mathbf{x}),\ldots,\overline{f_{n-1}}(\mathbf{x}),x_n] = B.$$

Nach Induktionsvoraussetzung gibt es nun $g_1, \ldots, g_r \in k[t_1, \ldots, t_{n-1}]$, sodass $k[\![f_1(\mathbf{x}), \ldots, f_{n-1}(\mathbf{x})]\!]$ ganz über

$$k[\![\overline{g_1}(\overline{f_1}(\mathbf{x}),\ldots,\overline{f_{n-1}}(\mathbf{x})),\ldots,\overline{g_r}(\overline{f_1}(\mathbf{x}),\ldots,\overline{f_{n-1}}(\mathbf{x}))]\!]$$

ist

Für $h_j := g_j(f_1, \dots, f_{n-1}) \in k[t_1, \dots, t_n]$ gilt also:

$$k[\![\overline{f_1}(\mathbf{x}),\ldots,\overline{f_{n-1}}(\mathbf{x})]\!]$$
 ist ganz über $k[\![\overline{h_1}(\mathbf{x}),\ldots,\overline{h_r}(\mathbf{x})]\!]$.

Da x_n ganz über

$$k[\overline{f_1}(\mathbf{x}), \dots, \overline{f_{n-1}}(\mathbf{x})]$$

ist, gilt:

$$k[\![\overline{f_1}(\mathbf{x}),\ldots,\overline{f_{n-1}}(\mathbf{x})]\!][\![x_n]\!]$$
 ist ganz über $k[\![\overline{h_1}(\mathbf{x}),\ldots,\overline{h_r}(\mathbf{x})]\!]$.

Folglich ist B ganz über $k[\![\overline{h_1}(\mathbf{x}), \dots, \overline{h_r}(\mathbf{x})]\!]$.

4. Der Hilbertsche Nullstellensatz

Satz 4.1 (Hilberts Nullstellensatz – Schwache Form). Sei k ein Körper, und sei I ein Ideal von $k[t_1, \ldots, t_n]$ mit $1 \notin I$. Dann gibt es eine algebraische Körpererweiterung K von k und $\mathbf{x} \in K^n$, sodass für alle $f \in I$ gilt: $\overline{f}(\mathbf{x}) = 0$.

Beweis: Sei M ein maximales Ideal von $k[t_1, \ldots, t_n]$ mit $I \subseteq M \neq k[\mathbf{t}]$, und sei $K := k[\mathbf{t}]/M$. K ist ein Körper, und $(x_1, \ldots, x_m) := (t_1 + M, \ldots, t_m + M)$ ist eine Nullstelle aller Polynome in I. Es bleibt zu zeigen, dass K algebraisch über k ist: Seien dazu $r \in \{0, \ldots, n\}$ und $y_1, \ldots, y_r \in K$ so, dass K ganz über $k[y_1, \ldots, y_r]$ ist, und (y_1, \ldots, y_r) algebraisch unabhängig ist. Wenn r = 0, so ist K ganz über k, also algebraisch. Wenn $r \geq 1$, so gilt wegen der Unabhängigkeit der y_i , dass $y_1 \neq 0 + M$. Also gibt es ein $z_1 \in K$ mit $z_1 \cdot y_1 = 1 + M$. Da z_1 ganz über $k[y_1, \ldots, y_r]$ ist, gibt es $m \in \mathbb{N}$ und $f_1, \ldots, f_{m-1} \in k[t_1, \ldots, t_r]$, sodass

$$z_1^m + \sum_{i=0}^{m-1} \overline{f_i}(y_1, \dots, y_r) z_1^i = 0 + M.$$

Durch Multiplikation mit y_1^m erhalten wir

$$1 + \sum_{i=0}^{m-1} \overline{f_i}(y_1, \dots, y_r) y_1^{m-i} = 0 + M.$$

Das Polynom $g \in k[t_1, \ldots, t_r]$, das durch

$$g := 1 + \sum_{i=0}^{m-1} f_i(t_1, \dots, t_r) t_1^{m-i}$$

gegeben ist, erfüllt $g \neq 0$ und $\overline{g}(y_1, \dots, y_r) = 0$. Dann ist (y_1, \dots, y_r) algebraisch abhängig.

Satz 4.2 (Grundlage des automatischen Beweisens geometrischer Sätze). Sei k ein algebraisch abgeschlossener Körper, seien $n \in \mathbb{N}$, $r, s \in \mathbb{N}_0$, $f_1, \ldots, f_s, h_1, \ldots, h_r, g \in k[t_1, \ldots, t_n]$. Dann sind äquivalent:

- (1) Für alle $\mathbf{x} \in k^n$ qilt: $(f_1(\mathbf{x}) = \cdots = f_s(\mathbf{x}) = 0, h_1(\mathbf{x}) \neq 0, \dots, h_r(\mathbf{x}) \neq 0) \Longrightarrow q(\mathbf{x}) = 0.$
- (2) 1 liegt in dem von

$$(f_1,\ldots,f_s,h_1\cdot u_1-1,\ldots,h_r\cdot u_r-1,g\cdot v-1)$$

erzeugten Ideal von $k[t_1, \ldots, t_n, u_1, \ldots, u_r, v]$.

Satz 4.3 (Rabinowitschs Trick). Sei k ein Körper, $s, n \in \mathbb{N}$, und seien $f_1, \ldots, f_s \in$ $k[t_1,\ldots,t_n]$. Dann sind äquivalent:

- (1) $g \in \sqrt{\langle f_1, \dots, f_s \rangle_{\mathsf{Id}\,k[\mathbf{t}]}}$. (2) $1 \in \langle f_1, \dots, f_s, g \cdot u 1 \rangle_{\mathsf{Id}\,k[\mathbf{t},u]}$.

Beweis: (1) \Rightarrow (2). Sei $I := \langle f_1, \dots, f_s, g \cdot u - 1 \rangle_{\mathsf{Id}\,k[\mathbf{t},u]}$. Wegen (1) gibt es ein $r \in \mathbb{N}$, sodass $g^r \in I$. Folglich gilt auch $g^r \cdot u^r \in I$. Da $g \cdot u \equiv 1 \pmod{I}$, gilt auch $(g \cdot u)^r \equiv 1^r \pmod{I}$, und somit $1 \in I$. (2) \Rightarrow (1) Wenn g = 0, so liegt gklarerweise im Radikal. Wenn $g \neq 0$, so gibt es Polynome $a_1, \ldots, a_s, b \in k[\mathbf{t}, u]$,

$$\sum_{i=1}^{s} a_i(t_1, \dots, t_n, u) f_i(t_1, \dots, t_n) + b(t_1, \dots, t_n, u) (g(t_1, \dots, t_n) \cdot u - 1) = 1.$$

Wir werten jetzt beide Seiten im rationalen Funktionenkörper $Q(k[x_1,\ldots,x_n])$ an der Stelle $(x_1, \ldots, x_n, \frac{1}{g(x_1, \ldots, x_n)})$ aus, und erhalten

$$\sum_{i=1}^{s} a_i(x_1, \dots, x_n, 1/g(x_1, \dots, x_n)) f_i(x_1, \dots, x_n) = 1.$$

Es gibt nun $r \in \mathbb{N}$ und $h_1, \ldots, h_s \in k[x_1, \ldots, x_n]$, sodass

$$a_i(x_1,\ldots,x_n,1/g(x_1,\ldots,x_n)) = \frac{h_i(x_1,\ldots,x_n)}{g(x_1,\ldots,x_n)^r}.$$

Dann liegt g^r in dem von (f_1, \ldots, f_s) erzeugten Ideal von $k[t_1, \ldots, t_n]$.

Satz 4.4 (Hilberts Nullstellensatz – Starke Form). Sei k ein algebraisch abgeschlossener Körper, sei $n \in \mathbb{N}$, und seien $f_1, \ldots, f_s \in k[t_1, \ldots, t_n]$. Wenn für alle $\mathbf{x} \in k^n \ mit \ \overline{f_1}(\mathbf{x}) = \cdots = \overline{f_s}(\mathbf{x}) = 0 \ gilt, \ dass \ g(\mathbf{x}) = 0, \ so \ liegt \ g \ im \ Radikal \ von$ $\langle f_1,\ldots,f_s\rangle_{\operatorname{Id} k[\mathbf{t}]}.$

Beweis: Sei u eine neue Variable. $f_1 = \ldots = f_s = 0, g \cdot u = 1$ ist unlösbar, also gilt wegen der schwachen Form des Nullstellensatzes $1 \in \langle f_1, \dots, f_s, g \cdot u - g \rangle$ $1\rangle_{\mathsf{Id}\,k[\mathsf{t},u]}$. Also liegt nach dem Satz von Rabinowitsch (Satz 4.3) g im Radikal von $\langle f_1,\ldots,f_s\rangle_{\mathsf{Id}\,k[\mathbf{t}]}.$