Gröbner Bases

Exercise Sheet 9 for December 3rd, 2024

- (1) Compute the greatest common divisor of $f = x^4y + x^3y^2 2x^2y^2 2xy^3 + x + y$ and $g = x^4y - x^3y^3 - 2x^2y^2 + 2xy^4 + x - y^2$ in $\mathbb{Q}[x,y]$ by computing the intersection of $\langle f \rangle_{\mathbb{O}[x,y]} \cap \langle g \rangle_{\mathbb{O}[x,y]}$. Remark: Use a computer algebra system. Note that in a UFD, we have $(a) \cap (b) = (\operatorname{lcm}(a, b))$ and $\operatorname{gcd}(a, b) = ab/\operatorname{lcm}(a, b)$ for $a, b \neq 0$.
- (2) For an ideal I of $k[x_1,\ldots,x_n]$ and $f\in k[x_1,\ldots,x_n]$, we define the ideal quotient (I:f) by

$$(I:f) = \{g \in k[\boldsymbol{x}] \mid gf \in I\}.$$

- (a) Show that $(I:f) = \{\frac{h}{f} \mid h \in I \cap \langle f \rangle_{k[x]} \}.$
- (b) Let $f = x^2$ and $I = \langle x^7 y^2, x^9 y + 2x^8 y \rangle_{k[x]}$. Compute $(I : (f^n))$ for each $n \in \mathbb{N}$.
- (3) Find $f \in \mathbb{Q}[t_1, t_2]$ with $f \neq 0$ such that
- $\begin{array}{l} \text{(a)} \ \ f(x^3,\frac{1}{x^9-1})=0. \\ \text{(b)} \ \ f(\frac{y^3z^7+3y^2z^5+3yz^3+z^4+z}{(yz^2+1)^4},\,\frac{z^2}{(yz^2+1)^2})=0. \\ \text{(4)} \ \ \text{Let} \ \ R=\mathbb{Q}[\![x^2+1,x^4+2]\!]=\{p(x^2+1,x^4+2)\mid p\in\mathbb{Q}[t_1,t_2]\}. \end{array}$
 - (a) Show that R is isomorphic to $\mathbb{Q}[t_1, t_2]/I$, where $I = \{p \in \mathbb{Q}[t_1, t_2] \mid p(x^2 + 1, x^4 + 1)\}$ (2) = 0.
 - (b) Compute this ideal I, and find an isomorphism φ from $\mathbb{Q}[t_1, t_2]/I$ to R.
- (5) (a) Find a solution of 6a+9b+20c=53 in \mathbb{N}_0^3 by finding a polynomial $p(t_1,t_2,t_3,t_4)=$ $t_1 - t_2^a t_3^b t_4^c$ with $p(x^{53}, x^6, x^9, x^{20}) = 0$.
 - (b) Find the gcd of 147 and 33 and the cofactors by finding a polynomial $p(t_1, t_2, t_3, t_4, t_5) =$ $t_1^d - t_2^{u_1} t_3^{u_2} t_4^{v_1} t_5^{v_2}$ such that $p(x^1, x^{147}, \frac{1}{x^{147}}, x^{33}, \frac{1}{x^{33}}) = 0$ with minimal nonzero d.