Gröbner Bases

Exercise Sheet 7 for November 21, 2024

- (1) Let I be the ideal of $\mathbb{Q}[x,y]$ generated by $\{x+y^2+2,xy+3\}$. Find generators of the ideals $I \cap \mathbb{Q}[x]$ and $I \cap \mathbb{Q}[y]$ of $\mathbb{Q}[x]$ and $\mathbb{Q}[y]$, respectively.
- (2) Let $A = \{x_1 + 2x_2 + 2x_3 + 2x_4 15, -2x_1 4x_2 + x_3 + 11x_4 20, -4x_1 8x_2 + 2x_3 + 22x_4 40, x_1 + 2x_2 + 5x_3 + 11x_4 45\}.$
 - (a) Compute a reduced Gröbner basis for the ideal of $\mathbb{Q}[x_1, x_2, x_3, x_4]$ that is generated by A. (Lexicographic ordering, $x_1 > x_2 > x_3 > x_4$.)
 - (b) Compute a basis for the linear subspace of \mathbb{Q}^4 that is generated by the rows of the matrix

$$B = \begin{pmatrix} 1 & 2 & 2 & 2 & -15 \\ -2 & -4 & 1 & 11 & -20 \\ -4 & -8 & 2 & 22 & -40 \\ 1 & 2 & 5 & 11 & -45 \end{pmatrix}.$$

- (3) Compute the reduced Gröbnerbasis for the ideal of $\mathbb{Q}[x]$ that is generated by $\{x^2 x 2, x^3 + x^2 6x\}.$
- (4) Let $F \subseteq k[x] \setminus \{0\}$, and let $f, g \in F$ be such that $f \neq g$, Lc(f) = Lc(g) = 1 and $Lm(g) \mid Lm(f)$. Which of the following statements must be true?
 - (a) If r is a remainder in a standard expression of f by $F \setminus \{f\}$, then r is a remainder in a standard expression of S(f,g) by F.
 - (b) If r is a remainder in a standard expression of S(f, g) by F, then r is a remainder in a standard expression of f by $F \setminus \{f\}$.
- (5) Let F be a finite subset of $\mathbb{Q}[x_1,\ldots,x_n]$, and let $f \in \mathbb{Q}[x_1,\ldots,x_n]$ be an element of the ideal I that F generates in $\mathbb{C}[x_1,\ldots,x_n]$. Show that f is also an element of the ideal I that F generates in $\mathbb{Q}[x_1,\ldots,x_n]$.

1