Gröbner Bases Exercise Sheet 4 for October 29, 2024

(1) The following algorithm computes a standard expression.

Input: $f \in k[x] \setminus \{0\}, \{f_1, \ldots, f_s\} \subseteq k[x] \setminus \{0\}$, an admissible order \leq of \mathbb{N}_0^n .

Ouput: a standard expression $f = \sum_{i=1}^{s} a_i f_i + r$ of f by (f_1, \dots, f_s)

- 1: $r \leftarrow f$; $(a_1, \ldots, a_s) := 0$.
- 2: while $r \neq 0$ and $\exists i \in \underline{s} : LM(f_i)$ divides a term $a\mathbf{x}^{\alpha}$ that appears in r do
- 3: $r \leftarrow r \frac{ax^{\alpha}}{\operatorname{LT}(f_i)} f_i.$ 4: $a_i := a_i + \frac{ax^{\alpha}}{\operatorname{LT}(f_i)}.$
- 5: Return (a_1,\ldots,a_s,r)
- (a) Show that the algorithm terminates, regardless which monomial ax^{α} is chosen at each step.
- (b) Why does the algorithm produce a correct result? Which equation between a_1, \ldots, a_s, r, f is true invariantly throughout the execution of the algorithm?
- (2) Let $U \in \mathbb{R}^{n' \times n}$ be such that $\{\gamma \in \mathbb{Q}^n \mid U\gamma = 0\} = \{0\}$ and the first nonzero entry in every column of U is positive. Show that the order \leq_U defined by

$$\alpha \leq_U \beta :\Leftrightarrow U\alpha \leq_{\text{lex}} U\beta$$

is admissible. Remark: The crucial point is to prove $U\alpha >_{\text{lex}} 0$ for each $\alpha \in \mathbb{N}_0^n$.

- (3) Find the leading term ideal $\langle \operatorname{Lt}(I) \rangle_{k[x]}$ for the following ideals I.
 - (a) $I = \langle x^5 + 5x^4 x^3 15x^2 6x, x^7 3x^5 \rangle_{\mathbb{O}[x]}$ in the univariate polynomial ring $\mathbb{Q}[x].$
 - (b) $I = \{ f \in \mathbb{Q}[x, y] \mid f(-1, 2) = 0 \}$, lexicographic ordering, x > y.
- (4) Let k be a field, and let $F = \{f_1, \ldots, f_s\} \subseteq k[x_1, \ldots, x_n] \setminus \{0\}$.
 - (a) Show the following statement: If F is a Groebner basis of $\langle F \rangle$ and

$$LT(f_i) \in \langle LT(f_1), \ldots, LT(f_{i-1}), LT(f_{i+1}), \ldots, LT(f_s) \rangle$$

1

then $F \setminus \{f_i\}$ is a Groebner basis of $\langle F \rangle$, too.

(b) Is this assertion still valid if one replaces the words "Groebner basis" both times by "basis"?