Gröbner Bases

Exercise Sheet 10 for December 10th, 2024

- (1) Let $I := \langle x_1^3, x_2^2 \rangle$, and let $R := \mathbb{Q}[x_1, x_2]/I$.
 - (a) Find an ideal J of $\mathbb{Q}[t_1, t_2, t_3]$ such that $\mathbb{Q}[t]/J$ is isomorphic to R, and an isomorphism φ with $\varphi(t_1+J) = (x_1+x_2)+I$, $\varphi(t_2+J) = x_1+I$, $\varphi(t_3+J) = x_2+I$.
 - (b) Find a polynomial witnessing that $x_1 + x_2 + I$ is algebraic over \mathbb{Q} .
- (2) Let $R := \mathbb{Q}[x_1, x_2]/I$ with $I := \langle x_1^6 2, x_1^4 x_2 \rangle$. Show that $x_1 + x_1^2 + I$ is algebraic over $\mathbb{Q}' := \{q + I \mid q \in \mathbb{Q}\}$ by exhibiting a polynomial $f \in \mathbb{Q}[t] \setminus \{0\}$ with $f(x_1 + x_1^2 + I) = 0 + I$.
- (3) Let

$$f := x^3 + 3$$

$$g := x^6 + 6x^3 + 10$$

$$h := x^9 + 9x^6 + 26x^3 + 26$$

Determine whether $f \in \mathbb{Q}[g, h], f \in \mathbb{Q}(g, h), h \in \mathbb{Q}[f]$.

(4) Let

$$f = ((x^2 + y)^2 + 2)^3,$$

 $g = ((x^2 + y)^2 + 1)^2$

be polynomials over \mathbb{Q} . For each $h \in \{x, x^2 + y, (x^2 + y)^2\}$, find an ideal I such that $\mathbb{Q}[t_1, t_2, t_3]/I$ is isomorphic to $\mathbb{Q}[h, f, g]$ and answer the following questions:

- (a) Is h an element of $\mathbb{Q}[\![f,g]\!]$? How can h be expressed as p(f,g)?
- (b) Is h integral¹ over $\mathbb{Q}[\![f,g]\!]$? In this case, find a polynomial in $\mathbb{Q}[\![f,g]\!][t]$ witnessing this fact.
- (c) Is h algebraic over $\mathbb{Q}[\![f,g]\!]$? In this case, find a polynomial in $\mathbb{Q}[\![f,g]\!][t]$ witnessing this fact.
- (d) Do we have $h \in \mathbb{Q}(f, g)$? In this case, find polynomials $p, q \in \mathbb{Q}[X, Y]$ with h = p(f, g)/q(f, g).
- (5) * [1] Let $a, b, q, r, f \in \mathbb{Q}[x]$ such that $\deg(f) > 0$, $b \neq 0$, $a = q \cdot b + r$ and $\deg(r) < \deg(b)$. Suppose that $a, b \in \mathbb{Q}[\![f]\!]$. Show that q and r are elements of $\mathbb{Q}[\![f]\!]$. Hint: Write a = a'(f), b = b'(f) and compare the divisions a : b and a' : b'.

References

[1] H. T. Engstrom. Polynomial substitutions. Amer. J. Math., 63:249–255, 1941.

¹An element b is integral over A if there is $p \in A[t]$ with Lc(p) = 1 and p(b) = 0. Some authors prefer entire, and the German translation is "ganz".