Gröbner Bases Exercise Sheet 1 for October 13 and 20, 2020

(1) Using resultants, find a polynomial f in $\{ap + bq \mid a, b \in \mathbb{Q}[x, y]\} \cap \mathbb{Q}[y]$ with $f \neq 0$. $p = x^2y + 2xy, \quad q = 2x^2 + xy + 1.$

For the following problems, we use the notation of the lecture notes.

$$B := ((x^{n-1}, 0), \dots, (x^0, 0), (0, x^{m-1}), \dots, (0, x^0)),$$

$$C := (x^{m+n-1}, \dots, x^0).$$

- (2) (a) Let k be a field of characteristic 0, let $f \in k[x]$ with $\deg(f) = m > 1$, and let K be a field in which f splits into linear factors. Show that f has a double root $\alpha \in K$ (meaning that $(x \alpha)^2 \mid f$) if and only if $\operatorname{res}^{[m,m-1]}(f,f') = 0$. Remark: The result also holds in positive characteristic, but then requires one more step in the proof.
 - (b) Give a criterion when $x^2 + px + q \in \mathbb{Q}[x]$ has a double root in \mathbb{C} .
- (3) Give a polynomial $p \in \mathbb{C}[a, b, c, d]$ with $p \neq 0$ such that every matrix $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathbb{C}^{2 \times 2}$ with $p(\alpha, \beta, \gamma, \delta) \neq 0$ is diagonalisable over \mathbb{C} . Hint: It is sufficient that all eigenvalues are distinct.
- (4) Let k be a field, $m, n \in \mathbb{N}$, $f, g \in k[x]$ with $\deg(f) = m$, $\deg(g) = n$, and let d be the gcd of f and g in k[x]. Show that the row space of $\operatorname{Syl}^{[m,n]}(f,g)$ is equal to

 $\{(p)_C \mid p \in k_{\leq m+n}[x], p \text{ lies in the ideal of } k[x] \text{ generated by } f, g\},\$

and also equal to

$$\{(p)_C \mid p \in k_{< m+n}[x], d \mid p\}.$$

- (5) Let k be a field, $m, n \in \mathbb{N}$, $f, g \in k[x]$ with $\deg(f) = m$, $\deg(g) = n$, and let d be the gcd of f and g in k[x]. Show that the rank of $\operatorname{Syl}^{[m,n]}(f,g)$ is $m+n-\deg(d)$.
- (6) (Gcd-computation via linear algebra) Let k be a field, $m, n \in \mathbb{N}$, $f, g \in k[x]$ with $\deg(f) = m$, $\deg(g) = n$, and let d be the gcd of f and g in k[x]. Let H be a matrix in echelon form such that the row space of H is equal to the row space of $\operatorname{Syl}^{[m,n]}(f,g)$. (For example, H could be the Hermite normal form of $\operatorname{Syl}^{[m,n]}(f,g)$.) Show that the last nonzero row f of H contains the polynomial f (in the sense f).
- (7) Compute $gcd(x^5 2x^3, x^4 x^2 2)$ in $\mathbb{Q}[x]$ by finding a matrix in echelon form with the same row space as the Sylvester matrix of these two polynomials.
- (8) Compute $gcd(2x^3 + 5x^2 4x 3, x^4 + 2x^3 x^2 + 4x 6)$ in $\mathbb{Q}[x]$ by finding a matrix in echelon form with the same row space as the Sylvester matrix of these two polynomials.
- (9) In $\mathbb{Q}[x, y]$, the polynomials x and y have only constant common divisors. Nevertheless, there are no $a, b \in \mathbb{Q}[x, y]$ with 1 = ax + by. Show the following statement:

1

If $f, g \in \mathbb{Q}[x, y]$ have no nonconstant common divisor in $\mathbb{Q}[x, y]$, then there are $a, b \in \mathbb{Q}[x, y]$ with $af + bg \in \mathbb{Q}[x] \setminus \{0\}$.