Einführung in die Algebra Vorlesungsunterlagen

Erhard Aichinger

Mitarbeit
Bernd Langensteiner
Peter Mayr

Institut für Algebra, Stochastik und wissensbasierte mathematische Systeme Johannes Kepler Universität Linz

Vorwort

Bernd Langensteiner hat es übernommen, eine Mitschrift meiner Vorlesung Einführung in die Algebra (Sommersemester 2000) zum vorliegenden Skriptum auszuarbeiten. Für die Mithilfe bei der Erstellung dieses Skriptums bedanke ich mich auch bei Waltraud Eidljörg, Barbara Fattinger und Peter Mayr.

Das vorliegende Skriptum ist eine Erstauflage. Der Leser wird daher an vielen Stellen ausführliche Erklärungen vermissen, dafür an anderen Stellen möglicherweise Fehler finden. Ich freue mich über alle Kommentare und Berichtigungen, die zur Verbesserung dieses Skriptums beitragen werden.

Linz, im Juni 2001 E.A.

4 VORWORT

Inhaltsverzeichnis

Vorw	Vorwort		
Kapi	tel 1. Rechnen in den ganzen Zahlen	7	
1.	1. Primfaktorzerlegung		
2.	Größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches	10	
3.	3. Lösen von Kongruenzen		
4.	Der Ring \mathbb{Z}_n	23	
5.	Ein public-key-encryption system: das RSA-Verfahren	27	
6.	Die Multiplikativität der Eulerschen φ -Funktion	30	
Kapi	tel 2. Gruppen	35	
1.	Motivation	35	
2.	2. Definition einer Gruppe		
3.	Beispiele für Gruppen	38	
4.	Permutationsgruppen und der Satz von Cayley	42	
5.	Sätze von Lagrange und Fermat	47	
6.	Die Abzähltheorie von Pólya	49	
7.	Kongruenzrelationen auf Gruppen	54	
Liter	Literaturverzeichnis		

KAPITEL 1

Rechnen in den ganzen Zahlen

Die Summe, das Produkt und die Differenz zweier ganzer Zahlen sind wieder eine ganze Zahl. Man kann aber innerhalb von \mathbb{Z} nicht uneingeschränkt dividieren; so ist etwa 5 nicht durch 7 teilbar. In diesem Kapitel untersuchen wir die Teilbarkeit. Die Disziplin, die sich tiefgehend mit Teilbarkeit und Primzahlen beschäftigt, heißt Zahlentheorie [Remmert and Ullrich, 1987].

Wir kürzen die Menge der ganzen Zahlen mit \mathbb{Z} und die Menge $\{1, 2, 3, ...\}$ der natürlichen Zahlen mit \mathbb{N} ab.

1. Primfaktorzerlegung

DEFINITION 1.1 (Primzahl). Eine Zahl $p \in \mathbb{N}$ ist genau dann eine *Primzahl*, wenn folgende beiden Bedingungen gelten:

- 1. Es gilt p > 1.
- 2. Für alle $a, b \in \mathbb{N}$ mit $p = a \cdot b$ gilt a = 1 oder b = 1.

Definition 1.2 (Teilbarkeit). Für $x, y \in \mathbb{Z}$ gilt

$$x$$
 teilt y

genau dann, wenn es ein $z \in \mathbb{Z}$ gibt, sodass $y = z \cdot x$ ist.

Wir schreiben dann auch x|y; die Zahl y heißt ein Vielfaches von x;

DEFINITION 1.3 (Ideal). Eine Teilmenge I von \mathbb{Z} ist ein Ideal von \mathbb{Z} , falls sie alle folgenden Eigenschaften erfüllt:

- 1. Für alle $i, j \in I$ liegt auch i j in I.
- 2. Für alle $z \in \mathbb{Z}$ und alle $i \in I$ liegt auch $z \cdot i$ in I.
- 3. I ist nicht die leere Menge.

Beispiele:

- 1. Die Menge $\{z \cdot 2 \mid z \in \mathbb{Z}\}$ ist ein Ideal von \mathbb{Z} .
- 2. Die Menge $\{z \cdot 5 \mid z \in \mathbb{Z}\}$ ist ein Ideal von \mathbb{Z} .
- 3. Die Menge $\{0\}$ ist ein Ideal von \mathbb{Z} .
- 4. \mathbb{N} ist kein Ideal von \mathbb{Z} .

Satz 1.4. Sei I ein Ideal von \mathbb{Z} . Dann gibt es ein $a \in I$, sodass

$$(1.1) I = \{z \cdot a \mid z \in \mathbb{Z}\}.$$

Beweis: Sei I von \mathbb{Z} . Wir wollen ein $a \in I$ finden, sodass (1.1) erfüllt ist.

- 1. Fall: $I = \{0\}$: Dann wählen wir a = 0.
- 2. Fall: $I \neq \{0\}$: Es gibt ein $b \in I$ mit $b \neq 0$. Daher gibt es auch ein $b \in I$ mit b > 0. Wir definieren a durch

$$a := \min \left\{ b \in I \mid b > 0 \right\}.$$

Nun zeigen wir, dass a das gewünschte Element ist, d.h., wir zeigen:

$$(1.2) I = \{z \cdot a \mid z \in \mathbb{Z}\}.$$

" \supseteq ": Sei x ein Element aus der Menge auf rechten Seite von (1.2). Dann gibt es ein $z \in \mathbb{Z}$, sodass $x = z \cdot a$. Nun liegt a in I, da wir ja a als ein Element von I ausgewählt haben. Wegen der Idealeigenschaft (2) aus Definition 1.3 liegt auch $z \cdot a$ in I. Somit liegt $x = z \cdot a$ auch in der linken Seite von (1.2).

" \subseteq ": Wir fixieren $c \in I$ und zeigen, dass c ein Vielfaches von a ist. Durch Division erhalten wir $q \in \mathbb{Z}$, $r \in \{0, 1, \dots, a-1\}$, sodass

$$c = q \cdot a + r$$
.

Daher ist $r = c - q \cdot a$. Nun liegt c in I; ebenso liegt $a \in I$. Daher liegen auch $q \cdot a$ und $c - q \cdot a$ in I. Somit folgt, dass auch $r \in I$ liegt. Wegen r < a folgt aus der Minimalität von a, dass r = 0 ist. Daher ist c ein Vielfaches von a.

Wir schreiben für $\{a \cdot z \mid z \in \mathbb{Z}\}$ auch $a \cdot \mathbb{Z}$ oder (a) und bezeichnen es als das von a erzeugte Ideal. Für ein Ideal I heißt jedes $b \in \mathbb{Z}$ mit $I = b \cdot \mathbb{Z}$ auch erzeugendes Element von I.

SATZ 1.5 (Fundamentallemma). Sei p eine Primzahl, und seien $a, b \in Z$. Falls p ein Produkt $a \cdot b$ teilt, so teilt p einen der beiden Faktoren a oder b.

Beweis: Wir definieren I durch

$$I := \{ x \in \mathbb{Z} \mid p \text{ teilt } a \cdot x \}.$$

Wir zeigen zunächst, dass I ein Ideal ist. Die Idealeigenschaften (1) und (2) aus Definition (1.3) folgen daraus, dass für alle $x_1, x_2 \in I$ und $u, v \in \mathbb{Z}$ auch $u \cdot x_1 + v \cdot x_2$ in I liegt. Das gilt, weil p, falls es $a \cdot x_1$ und $a \cdot x_2$ teilt, auch $a \cdot (u \cdot x_1 + v \cdot x_2)$ teilt. Wegen $0 \in I$ ist I nicht die leere Menge.

Das Ideal I besitzt ein erzeugendes Element c. Da wegen $p \in I$ das Ideal I nicht gleich $\{0\}$ ist, können wir c > 0 wählen. Wir erhalten also I = (c).

Nun liegt p aber in I. Daher gibt es ein $z \in Z$, sodass $p = z \cdot c$. Da p und c in \mathbb{N} liegen, ist dieses z positiv. Da p prim ist, ist z = 1 oder c = 1.

- 1. Fall: z = 1: Dann gilt p = c. Da laut Voraussetzung p die Zahl $a \cdot b$ teilt, gilt $b \in I$. Das heißt $b \in (c)$. Also ist b Vielfaches von c = p; p teilt also b.
- 2. Fall: c = 1: Dann liegt 1 in I. Aus der Definition von I erhalten wir

$$p \mid a \cdot 1$$
.

Somit teilt p die Zahl a.

Satz 1.6. Jede natürliche Zahl besitzt eine Zerlegung in Primfaktoren

$$a=p_1\cdot\ldots\cdot p_n.$$

Beweisskizze: Wir zerlegen a, bis es nicht mehr geht.

Satz 1.7. Die Primfaktorenzerlegung einer natürlichen Zahl $a \ge 2$ ist bis auf die Reihenfolge der Primfaktoren eindeutig. Wenn also

$$a = p_1 \cdot \ldots \cdot p_n = q_1 \cdot \ldots \cdot q_m$$

und alle p_i , q_i Primzahlen sind, dann gilt m = n, und es gibt eine bijektive Abbildung $\pi : \{1, \ldots, n\} \to \{1, \ldots, m\}$, sodass $p_i = q_{\pi(i)}$.

Beweis: Wir zeigen das mit Induktion nach a. Für a=2 ist der Satz klar¹.

Nun sei a > 2, außerdem sei

$$a = p_1 \dots p_n = q_1 \dots q_m$$
.

Da p_1 die Zahl a teilt, erhalten wir aus dem Fundamentallemma, Satz 1.5, dass es ein $j \in \{1, 2, ... m\}$ gibt, sodass $p_1 \mid q_j$. Da q_j prim ist, gilt $p_1 = q_j$. Nun gilt aber

$$a' = p_2 \cdot \ldots \cdot p_n = q_1 \cdot \ldots \cdot q_{j-1} \cdot q_{j+1} \cdot \ldots \cdot q_m,$$

- 1. Eine Definition der Menge \mathbb{N} .
- 2. Eine Definition der Operationen + und \cdot .
- 3. Eine Definition der Relation <.

 $^{^{1}}$ Warum eigentlich? – Die einzige Zerlegung von 2 ist 2=2, denn würde in einer Zerlegung von 2 eine Primzahl ≥ 3 vorkommen, wäre auch das Produkt ≥ 3 und könnte also nicht 2 ergeben. Aus dem gleichen Grund kann auch 2 nur einmal in einer Zerlegung von 2 vorkommen.

So einfach – und sinnlos – diese Überlegungen auch scheinen, so scheint es doch, also würden wir implizit unbewiesene Behauptungen, verwenden, etwa die Behauptung, dass das Produkt von natürlichen Zahlen immer größer gleich jedem der Faktoren ist. Um solche Behauptungen zu beweisen, würden wir brauchen:

²Das Fundamentallemma gibt allerdings nur darüber Auskunft, was passiert, wenn p_1 ein Produkt zweier Faktoren teilt. Wie bewältigen Sie die formale Spielerei, zu zeigen, dass wir auch für $m \neq 2$ erhalten, dass p_1 irgendein q_j teilt?

wobei diese beiden Zerlegungen von a' nach Induktionsvoraussetzung "gleich" sind.

ÜBUNGSAUFGABEN 1.8.

1. [Remmert and Ullrich, 1987, p. 28] Sei p_n die n-te Primzahl, d. h. $p_1 = 2$, $p_2 = 3$, usw. Zeigen Sie

$$p_n \le 2^{(2^{n-1})}.$$

Hinweis: Euklids Beweis, dass es unendlich viele Primzahlen gibt ([**Euklid, 1991**, Buch IX, Satz 20], 270 v.Chr.) beruht auf folgender Überlegung: Seien q_1, q_2, \ldots, q_n Primzahlen. Dann ist der kleinste positive Teiler von $q_1 \cdot q_2 \cdots q_n + 1$ eine Primzahl, die von allen q_i verschieden ist.

2. Sei p_n die n-te Primzahl, d. h. $p_1 = 2$, $p_2 = 3$, usw. Zeigen Sie, auch, ohne die Eindeutigkeit der Primfaktorzerlegung zu verwenden, dass folgendes gilt: Wenn

$$\begin{array}{rcl}
a & = & \prod p_i^{\alpha_i} \\
b & = & \prod p_i^{\beta_i},
\end{array}$$

wobei $\alpha_i, \beta_i \in \mathbb{N}_0$, und fast alle $\alpha_i, \beta_i = 0$ sind, dann gilt a|b genau dann, wenn für alle $i \alpha_i \leq \beta_i$ ist. (Zeigen Sie, dass diese Aussage für alle Primfaktorzerlegungen von a und b gilt. Folgt daraus die Eindeutigkeit der Primfaktorzerlegung?)

- 3. Welche Zahlen $q \in \mathbb{N}$ erfüllen folgende Eigenschaft? Für alle $a, b \in \mathbb{Z}$ mit $q|a \cdot b$ gilt q|a oder es gibt ein $n \in \mathbb{N}$, sodass $q|b^n$.
- 4. Zeigen Sie, dass der Durchschnitt beliebig vieler Ideale von $\mathbb Z$ wieder ein Ideal von $\mathbb Z$ ist.

2. Größter gemeinsamer Teiler und kleinstes gemeinsames Vielfaches

2.1. Der größte gemeinsame Teiler. Zwei ganze Zahlen haben stets einen gemeinsamen Teiler, nämlich 1. Also ist die Menge aller gemeinsamen Teiler nicht leer. In diesem Abschnitt werden wir eine Methode vorstellen, den größten unter allen gemeinsamen Teilern zu finden: den *Euklidischen Divisionsalgorithmus*.

DEFINITION 1.9 (Größter gemeinsamer Teiler). Für zwei Zahlen $a, b \in \mathbb{Z}$ (nicht beide 0) ist ggT (a, b) die größte Zahl $z \in \mathbb{N}$ mit $z \mid a$ und $z \mid b$.

Erstaunlicherweise lässt sich der ggT zweier Zahlen immer als Linearkombination dieser Zahlen schreiben.

SATZ 1.10. Seien $a, b \in \mathbb{Z}$ (nicht beide 0). Dann gilt:

1. Es gibt $u, v \in \mathbb{Z}$, sodass

$$ggT(a,b) = u \cdot a + v \cdot b.$$

2. Der ggT ist nicht nur der größte der gemeinsamen Teiler, er ist auch Vielfaches jedes gemeinsamen Teilers.

Die zweite Bedingung bedeutet, dass für alle $t \in \mathbb{Z}$ mit $t \mid a$ und $t \mid b$ automatisch auch $t \mid ggT(a, b)$ erfüllt ist.

Beweis von Satz 1.10: Sei I definiert durch

$$I = \{ua + vb \mid u, v \in \mathbb{Z}\}.$$

I ist ein Ideal von Z. Sei c ein positives erzeugendes Element von I. Wegen $a \in I$ gilt, dass a Vielfaches von c ist. Ebenso gilt $c \mid b$.

Wir zeigen nun, dass c nicht nur ein gemeinsamer Teiler von a und b ist, sondern dass c auch ein Vielfaches jedes weiteren gemeinsamen Teilers ist. Sei also $t \in \mathbb{N}$ eine Zahl, die a und b teilt. Es gilt: $a \in (t)$ und $b \in (t)$. Falls a und b in (t) liegen, muss aber jedes Element aus I in (t) liegen. Das gilt, weil (t) die Idealeigenschaften (1) und (2) von Definition 1.3 erfüllt. Es gilt also

$$I\subseteq (t)$$
.

Insbesondere liegt dann c in (t). Daher gilt $t \mid c$.

Die Zahl c wird also von jedem weiteren gemeinsamen Teiler von a und b geteilt, und ist somit der größte gemeinsame Teiler.

SATZ 1.11. Seien $a, b, c \in \mathbb{Z}$, sodass

$$ggT(a,b) = 1.$$

Falls $a \mid b \cdot c$, dann gilt auch $a \mid c$.

Beweis: Es gibt $u, v \in \mathbb{Z}$, sodass

$$1 = u \cdot a + v \cdot b$$
.

Weil $a \mid uac$, und da wegen $a \mid bc$ auch $a \mid vbc$ gilt, gilt auch

$$a \mid (ua + vb)c;$$

also auch $a \mid c$.

ÜBUNGSAUFGABEN 1.12.

1. Seien $a, b, x \in \mathbb{N}$ und $u, v \in \mathbb{Z}$ so, dass

$$x = ua + vb$$
.

Zeigen Sie: Wenn x sowohl a als auch b teilt, so gilt x = ggT(a, b).

- 2. Seien $a, b \in \mathbb{N}, y \in \mathbb{Z}$ so, dass $a|y, b|y, \operatorname{ggT}(a, b) = 1$. Zeigen Sie (ohne Primfaktorzerlegung): $a \cdot b|y$.
- 3. Seien $a,c\in\mathbb{Z},\,b,d\in\mathbb{N}.$ Zeigen Sie: Wenn die Brüche $\frac{a}{b}$ und $\frac{c}{d}$ gekürzt, und die Nenner b und d teilerfremd sind, so ist auch der Bruch $\frac{ad+bc}{bd}$ gekürzt. 4. Sei $n \in \mathbb{N}$, und seien a_1, a_2, \ldots, a_n in \mathbb{N} . Wir definieren G_1, G_2 und G_3 durch:
- - (a) $G_1(a_1) := a_1, G_1(a_1, a_2, \dots, a_n) = \operatorname{ggT}(G_1(a_1, a_2, \dots, a_{n-1}), a_n).$
 - (b) $G_2(a_1, a_2, \dots, a_n) := \max\{z \in \mathbb{N} \mid z | a_i \text{ für alle } i \in \{1, 2, \dots, n\}\}.$
 - (c) $G_3 := \min\{z \in \mathbb{N} \mid \text{ es gibt } \lambda_1, \lambda_2, \dots, \lambda_n \in \mathbb{Z}, \text{ sodass } z = \sum_{i=1}^n \lambda_i a_i\}.$

Zeigen Sie, dass G_1 , G_2 und G_3 gleich sind.

5. Sei p_n die n-te Primzahl, d. h. $p_1 = 2$, $p_2 = 3$, usw. Zeigen Sie, auch, ohne die Eindeutigkeit der Primfaktorzerlegung zu verwenden, dass folgendes gilt: Wenn

$$\begin{array}{rcl} a & = & \prod p_i^{\alpha_i} \\ b & = & \prod p_i^{\beta_i}, \end{array}$$

wobei $\alpha_i, \beta_i \in \mathbb{N}_0$, und fast alle $\alpha_i, \beta_i = 0$ sind, dann gilt

$$ggT(a,b) = \prod p_i^{\min(\alpha_i,\beta_i)}.$$

2.2. Der Euklidische ggT-Algorithmus. Es ist einfach, aus den Primfaktorzerlegungen von a und b den ggT von a und b zu bestimmen. Es kann aber sehr rechenaufwendig sein, die Primfaktorzerlegung einer Zahl zu bestimmen. Schneller kann man den ggT mit dem *Euklidischen Algorithmus* berechnen, der ohne die Primfaktorzerlegungen auskommt.

SATZ 1.13. Seien $a, b \in \mathbb{Z}$, nicht beide 0 und sei $z \in \mathbb{Z}$. Dann gilt:

$$ggT(a,b) = ggT(a+z \cdot b, b)$$
.

So gilt zum Beispiel ggT(25, 15) = ggT(40, 15).

Beweis: Wir zeigen, dass nicht nur der ggT, sondern sogar die Mengen der gemeinsamen Teiler der beiden Zahlenpaare gleich sind. Wir zeigen also

$$\{t\mid t\mid a\text{ und }t\mid b\}=\{t\mid t\mid a+zb\text{ und }t\mid b\}\,.$$

" \subseteq ": Falls t sowohl a als auch b teilt, dann auch a+zb und b. " \supseteq ": Falls t sowohl a+zb, als auch b teilt, dann auch a+zb-zb und b, also auch a und b.

Das nützen wir jetzt möglichst geschickt aus, um ggT (147, 33) zu berechnen:

$$ggT (147, 33) = ggT (147 - 4 \cdot 33, 33)$$

$$= ggT (15, 33)$$

$$= ggT (15, 33 - 2 \cdot 15)$$

$$= ggT (15, 3)$$

$$= ggT (0, 3)$$

$$= 3.$$

Günstig ist es also, z so zu wählen, dass a + zb der Rest von a bei der Division durch b wird.

Mit Hilfe des erweiterten Euklidischen Algorithmus findet man nicht nur den ggT von a und b, sondern auch $u, v \in \mathbb{Z}$, sodass gilt:

$$ggT(a,b) = u \cdot a + v \cdot b.$$

Beispiel: Berechnen wir nochmals ggT (147, 33), und schreiben dies so:

ÜBUNGSAUFGABEN 1.14.

1. Bestimmen Sie für a und b jeweils ggT(a,b), und zwei ganze Zahlen $u,v\in\mathbb{Z}$, sodass

$$ggT(a,b) = u \cdot a + v \cdot b.$$

- (a) a = 254, b = 120.
- (b) a = 71, b = 79.
- (c) a = 610, b = 987.
- **2.3.** Das kleinste gemeinsame Vielfache. Sind $a, b \in \mathbb{Z}$, so nennt man jede Zahl $c \in \mathbb{Z}$, die von a und b geteilt wird, ein gemeinsames Vielfaches von a und b. Unter allen gemeinsamen Vielfachen zeichnen wir das kleinste aus.

DEFINITION 1.15. Es seien $a, b \in \mathbb{Z} \setminus \{0\}$. Dann ist kgV (a, b) definiert durch kgV $(a, b) = \min \{v \in \mathbb{N} \mid a \mid v \text{ und } b \mid v\}$.

Die Menge aller positiven gemeinsamen Vielfachen ist ja für $a, b \in \mathbb{Z} \setminus \{0\}$ bestimmt nicht leer, da sie $|a \cdot b|$ enthält.

SATZ 1.16. Seien $a, b \in \mathbb{Z} \setminus \{0\}$, und sei $s \in \mathbb{Z}$ so, dass $a \mid s$ und $b \mid s$. Dann gilt: $\operatorname{kgV}(a, b) \mid s$.

Jedes gemeinsame Vielfache ist also ein Vielfaches des kgV.

Beweis: Wir betrachten $(a) = \{a \cdot z \mid z \in \mathbb{Z}\}$ und $(b) = \{b \cdot z \mid z \in \mathbb{Z}\}$. Der Durchschnitt zweier Ideale ist wieder ein Ideal, und da (a) und (b) Ideale sind, ist $(a) \cap (b)$ auch ein Ideal. Es gibt also $c \in \mathbb{Z}$, sodass

$$(c) = (a) \cap (b).$$

Wegen $c \in (a)$ ist c ein Vielfaches von a, und ebenso ein Vielfaches von b. Sei nun s ein weiteres gemeinsames Vielfaches von a und b. Da s in $(a) \cap (b)$ liegt, liegt s auch in (c), und ist somit Vielfaches von c. Also ist c das kleinste gemeinsame Vielfache und teilt jedes gemeinsame Vielfache von a und b.

Zwischen ggT und kgV kann man folgenden Zusammenhang herstellen:

Satz 1.17. Seien $a, b \in \mathbb{N}$. Dann gilt

ggT
$$(a, b) \cdot \text{kgV} (a, b) = a \cdot b.$$

Beweis: Wir verwenden die Primfaktorzerlegung von $a = \prod p_i^{\nu_i}$, und $b = \prod p_i^{\sigma_i}$. Aus dem Fundamentallemma (Satz 1.5) kann man herleiten, dass dann gelten muss:

$$ggT(a,b) = \prod_{i} p_i^{\min(\nu_i,\sigma_i)}$$

$$kgV(a,b) = \prod_{i} p_i^{\max(\nu_i,\sigma_i)}.$$

Daraus folgt:

$$ggT(a,b) \cdot kgV(a,b) = \prod_{i} p_i^{\left(\min(\nu_i,\sigma_i) + \max(\nu_i,\sigma_i)\right)}$$
$$= \prod_{i} p_i^{(\nu_i + \sigma_i)}$$
$$= a \cdot b.$$

ÜBUNGSAUFGABEN 1.18.

1. Zeigen Sie ohne Verwendung der Primfaktorzerlegung, dass für alle $a,b\in\mathbb{N}$ gilt:

$$kgV(a, b) \cdot ggT(a, b) = a \cdot b.$$

Hinweis: Zeigen Sie dazu $ab|ggT(a,b) \cdot kgV(a,b)$ und $kgV(a,b)|\frac{ab}{ggT(a,b)}$.

- 2. Seien $a, b, c \in \mathbb{N}$. Zeigen Sie:
 - (a) ggT(ggT(a,b),c) = ggT(a,ggT(b,c)).
 - (b) $\operatorname{kgV}(\operatorname{kgV}(a,b),c) = \operatorname{kgV}(a,\operatorname{kgV}(b,c)).$
 - (c) $\operatorname{ggT}(\operatorname{kgV}(a,b),c) = \operatorname{kgV}(\operatorname{ggT}(a,c),\operatorname{ggT}(b,c)).$
 - (d) $\operatorname{kgV}(\operatorname{ggT}(a, b), c) = \operatorname{ggT}(\operatorname{kgV}(a, c), \operatorname{kgV}(b, c)).$
- 3. Sei $n \in \mathbb{N}$, und seien a_1, a_2, \ldots, a_n in \mathbb{N} . Wir definieren K_1 und K_2 durch:
 - (a) $K_1(a_1) := a_1, K_1(a_1, a_2, \dots, a_n) = \text{kgV}(K_1(a_1, a_2, \dots, a_{n-1}), a_n).$
 - (b) $K_2(a_1, a_2, \dots, a_n) := \min\{z \in \mathbb{N} \mid a_i \mid z \text{ für alle } i \in \{1, 2, \dots, n\}\}.$

Zeigen Sie, dass K_1 und K_2 gleich sind.

4. Sei $n \in \mathbb{N}$, und seien a_1, a_2, \ldots, a_n in \mathbb{N} . Wir definieren K_2 durch

$$K_2(a_1, a_2, \dots, a_n) := \min\{z \in \mathbb{N} \mid a_i | z \text{ für alle } i \in \{1, 2, \dots, n\}\}.$$

Zeigen Sie, dass alle ganzen Zahlen, die Vielfaches eines jeden a_i sind, auch ein Vielfaches von $K_2(a_1, a_2, \ldots, a_n)$ sind.

5. Sei p_n die n-te Primzahl, d. h. $p_1 = 2$, $p_2 = 3$, usw. Zeigen Sie, auch ohne die Eindeutigkeit der Primfaktorzerlegung zu verwenden, dass folgendes gilt: Wenn

$$\begin{array}{rcl} a & = & \prod p_i^{\alpha_i} \\ b & = & \prod p_i^{\beta_i}, \end{array}$$

wobei $\alpha_i, \beta_i \in \mathbb{N}_0$, und fast alle $\alpha_i, \beta_i = 0$ sind, dann gilt

$$\operatorname{kgV}(a,b) = \prod p_i^{\max(\alpha_i,\beta_i)}.$$

3. Lösen von Kongruenzen

Bisher haben wir bei gegebenem $n \in \mathbb{Z}$ die Elemente in \mathbb{Z} danach unterschieden, ob sie durch n teilbar sind oder nicht, d. h., ob sie bei Division durch n den Rest 0 oder einen von 0 verschiedenen Rest haben. Die Elemente mit einem von 0 verschiedenen Rest kann man dadurch weiter unterteilen, dass man alle Elemente mit dem gleichen Rest in eine Klasse zusammenfasst, die man dann eine Restklasse bezüglich n nennt. Elemente aus derselben Restklasse heißen $kongruent\ modulo\ n$.

DEFINITION 1.19. Sei $n \in \mathbb{Z}$. Dann definieren wir eine Relation \equiv_n auf \mathbb{Z} durch $a \equiv_n b : \Leftrightarrow n \mid a - b$ für $a, b \in \mathbb{Z}$.

Für $a \equiv_n b$ schreiben wir auch $a \equiv b \pmod{n}$ und sagen: "a ist kongruent $b \pmod{n}$."

SATZ 1.20. Seien $a, c \in \mathbb{Z}$ (nicht beide = 0), und sei $b \in \mathbb{Z}$. Dann sind die folgenden Bedingungen äquivalent:

1. Die Kongruenz

$$ax \equiv b \pmod{c}$$

ist lösbar, d. h., es gibt $y \in \mathbb{Z}$ sodass $c|a \cdot y - b$.

2. ggT(a,c) teilt b.

Beweis: "(1) \Rightarrow (2)": Sei x eine Lösung, d.h. $c \mid ax - b$. Falls c die Zahl ax - b teilt, dann gilt erst recht

$$ggT(a,c) \mid ax - b.$$

ggT(a, c) teilt a, also gilt $ggT(a, c) \mid b$.

"(2) \Rightarrow (1)": Aufgrund der Voraussetzungen existiert ein $z\in\mathbb{Z},$ sodass

$$ggT(a,c) \cdot z = b.$$

Aus dem erweiterten Euklidischen Algorithmus bekommen wir $u, v \in \mathbb{Z}$ mit

$$ggT(a,c) = u \cdot a + v \cdot c.$$

Es gilt dann

$$(ua + vc) \cdot z = b,$$

also

$$a \cdot uz + c \cdot vz = b$$
,

und somit

$$a \cdot (uz) \equiv b \pmod{c}$$
.

Also ist x := uz Lösung von $ax \equiv b \pmod{c}$.

SATZ 1.21. Seien $a, c \in \mathbb{Z}$ (nicht beide = 0), und sei $b \in \mathbb{Z}$. Sei x_0 eine Lösung von

$$(3.1) ax \equiv b \pmod{c}.$$

Dann ist die Lösungsmenge von (3.1) gegeben durch:

$$L = \left\{ x_0 + k \cdot \frac{c}{ggT(a, c)} \mid k \in \mathbb{Z} \right\}.$$

Beweis: " \supseteq ": Wir setzen zunächst $x_0 + k \frac{c}{\operatorname{ggT}(a,c)}$ ein und erhalten

$$a\left(x_0 + k\frac{c}{\operatorname{ggT}(a,c)}\right) = ax_0 + ak\frac{c}{\operatorname{ggT}(a,c)}$$

$$\equiv_c b + ak\frac{c}{\operatorname{ggT}(a,c)}$$

$$= b + ck\frac{a}{\operatorname{ggT}(a,c)}$$

$$\equiv_c b.$$

Daher ist $x_0 + k \frac{c}{\operatorname{ggT}(a,c)}$ wirklich eine Lösung.

$$a(x_1 - x_0) \equiv 0 \pmod{c},$$

oder, äquivalent dazu,

$$c \mid a (x_1 - x_0).$$

Daher gilt auch

$$\frac{c}{\operatorname{ggT}(a,c)} \mid \frac{a}{\operatorname{ggT}(a,c)} \cdot (x_1 - x_0).$$

Da

$$ggT\left(\frac{c}{ggT(a,c)}, \frac{a}{ggT(a,c)}\right) = 1,$$

gilt

$$\frac{c}{\operatorname{ggT}(a,c)} \mid (x_1 - x_0).$$

Bemerkung: Das System $ax \equiv b \pmod{c}$ ist also äquivalent zu

$$x \equiv x_0 \pmod{\frac{c}{\operatorname{ggT}(a,c)}},$$

wobe
i x_0 eine spezielle Lösung von $ax\equiv b\pmod c$ ist.

ÜBUNGSAUFGABEN 1.22.

1. Lösen Sie die Gleichung

$$207 x \equiv 18 \pmod{1989}$$

in \mathbb{Z} !

2. Bestimmen Sie für alle $a, c \in \mathbb{N}, b \in \mathbb{Z}$, wieviele Lösungen in $\{0, 1, \ldots, c-1\}$ die Gleichung $a \cdot x \equiv b \pmod{c}$ hat.

Wir betrachten nun Systeme von zwei Kongruenzen, also Systeme der Form

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$,

wobei $m_1, m_2 \in \mathbb{N}$ und $a_1, a_2 \in \mathbb{Z}$.

Beispiele: Das System

$$x \equiv 1 \pmod{2}$$
$$x \equiv 0 \pmod{4}$$

kann nicht lösbar sein, denn eine Lösung $x \in \mathbb{Z}$ müsste sowohl gerade als auch ungerade sein. Das System

$$x \equiv 1 \pmod{2}$$
$$x \equiv 2 \pmod{5}$$

hingegen hat zum Beispiel die Lösung x = 7. Es stellt sich daher die Frage, wann und wie solche Systeme lösbar sind.

SATZ 1.23. Seien $a_1, a_2 \in \mathbb{Z}, m_1, m_2 \in \mathbb{N}$. Das System

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$

ist genau dann lösbar, wenn gilt

$$ggT(m_1, m_2) \mid a_1 - a_2.$$

Beweis: " \Rightarrow ": Wir nehmen an, dass x Lösung ist. Dann gilt: $m_1 \mid (x-a_1)$ und $m_2 \mid (x-a_2)$. Daher gilt auch ggT $(m_1,m_2) \mid (x-a_1)$ und ggT $(m_1,m_2) \mid (x-a_2)$, und somit

$$ggT(m_1, m_2) \mid (x - a_2) - (x - a_1) = (a_1 - a_2).$$

"\(\sim \)" Es gibt $u, v \in \mathbb{Z}$, sodass

$$u \cdot m_1 + v \cdot m_2 = ggT(m_1, m_2)$$

$$k \cdot u \cdot m_1 + k \cdot v \cdot m_2 = a_1 - a_2$$

$$a_2 + k \cdot v \cdot m_2 = \underbrace{a_1 - k \cdot u \cdot m_1}_{=x}$$

daher ist $x := a_1 - kum_1$ Lösung des Systems.

Der Beweis liefert auch gleich ein Lösungsverfahren.

Beispiel: Wir lösen:

$$x \equiv 2 \pmod{15}$$
$$x \equiv 8 \pmod{21}$$

Da ggT (15,21) = 3 und $3 \mid (2-8)$ ist das System lösbar. Wir berechnen jetzt diesen ggT und Kofaktoren (d.h. Koeffizienten für eine Linearkombination von 15 und 21, die den ggT ergibt).

$$\begin{array}{c|cccc} & 21 & 15 \\ \hline 21 & 1 & 0 \\ 15 & 0 & 1 \\ 6 & 1 & -1 \\ 3 & -2 & 3 \\ \end{array}$$

und erhalten daraus $3 = 3 \cdot 15 - 2 \cdot 21$.

$$\begin{array}{rcl}
3 \cdot 15 - 2 \cdot 21 & = & 3 \\
(-6) \cdot 15 + 4 \cdot 21 & = & 2 - 8 \\
\underline{8 + 4 \cdot 21} & = & \underbrace{2 + 6 \cdot 15}_{=92}
\end{array}$$

Daher erhalten wir eine Lösung: x = 92.

Der folgende Satz gibt an, wie wir aus einer Lösung der Kongruenz alle Lösungen erhalten.

Satz 1.24. Sei x_0 eine Lösung von

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$.

Dann gilt für die Lösungmenge L

$$L = \{x_0 + k \cdot \text{kgV } (m_1, m_2) \mid k \in \mathbb{Z} \}.$$

Beweis: "⊇": Wir setzen

$$x_0 + k \cdot \text{kgV} (m_1, m_2)$$

in die erste Kongruenz ein und erhalten

$$(x_0 + k \cdot \operatorname{kgV}(m_1, m_2)) \equiv a_1 \pmod{m_1}$$
.

Das gleiche gilt für die zweite Kongruenz.

" \subseteq ": Wir fixieren $x_1 \in L$. Um zu zeigen, dass $x_1 \in \{x_0 + k \cdot \text{kgV } (m_1, m_2) \mid k \in \mathbb{Z}\}$, zeigen wir, dass $x_1 - x_0$ ein Vielfaches von kgV (m_1, m_2) ist. Wir wissen ja, dass

$$x \equiv a_1 \pmod{m_1}$$
$$x \equiv a_2 \pmod{m_2}$$

Daher gilt $(x_1 - x_0) \equiv 0 \pmod{m_1}$ und somit $m_1 \mid (x_1 - x_0)$. Ebenso zeigt man, dass $m_2 \mid (x_1 - x_0)$ gilt.

Da das kgV jedes gemeinsame Vielfache teilt, gilt kgV $(m_1, m_2) \mid (x_1 - x_0)$. ÜBUNGSAUFGABEN 1.25.

1. Lösen Sie folgendes System von Kongruenzen!

$$x \equiv 22 \pmod{26}$$
$$x \equiv 26 \pmod{37}$$

2. Seien $m_1, m_2 \in \mathbb{N}$. Wieviele Lösungen in $\{0, 1, \dots, m_1 \cdot m_2 - 1\}$ hat das System

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$?

Die folgenden Sätze zeigen uns, wie man das Lösen von Systemen aus mehr als zwei Kongruenzen auf das Lösen von Systemen aus zwei Kongruenzen zurückführen kann. Der erste Satz zeigt, dass man ein System von Kongruenzen durch eine einzige Kongruenz ersetzen kann – vorausgesetzt, man kennt zumindest eine Lösung des Systems.

SATZ 1.26. Seien $r \in \mathbb{N}$, $m_1, m_2, \ldots, m_r \in \mathbb{N}$ und $a_1, a_2, \ldots, a_r \in \mathbb{Z}$. Falls das System

(3.2)
$$x \equiv a_1 \pmod{m_1}$$
$$x \equiv a_2 \pmod{m_2}$$
$$\vdots$$
$$x \equiv a_r \pmod{m_r}$$

eine Lösung x_0 hat, dann ist (3.2) äquivalent zu

$$x \equiv x_0 \pmod{\text{kgV}(m_1, m_2, \dots, m_r)}$$
.

Beweisskizze: Falls x_0 eine Lösung ist, dann ist auch jedes

$$x_0 + k \cdot \text{kgV}(m_1, m_2, \dots, m_r)$$

eine Lösung. Andererseits haben zwei verschiedene Lösungen die gleichen Reste modulo jedem m_i , ihre Differenz ist daher ein gemeinsames Vielfaches der m_i und somit ein Vielfaches des kgV.

Wir schreiben:

$$kgV(m_1, m_2) =: m_1 \lor m_2$$

 $qqT(m_1, m_2) =: m_1 \land m_2.$

Es gilt dann:

Proposition 1.27. Seien $a, b, c \in \mathbb{N}$. Dann gilt:

- 1. $a \wedge (a \vee b) = a$,
- $2. \ a \lor (a \land b) = a,$
- 3. $(a \wedge b) \wedge c = a \wedge (b \wedge c)$,
- 4. $(a \lor b) \lor c = a \lor (b \lor c)$,
- 5. $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$,
- 6. $a \lor (b \land c) = (a \lor b) \land (a \lor c)$.

Der folgende Satz sagt, wann ein System von Kongruenzen lösbar ist.

SATZ 1.28 (Chinesischer Restsatz). Seien $r \in \mathbb{N}$, $a_1, \ldots, a_r \in \mathbb{Z}$, $m_1, \ldots, m_r \in \mathbb{Z} \setminus \{0\}$. Dann sind folgende drei Aussagen äquivalent.

1. Es gibt $x \in \mathbb{Z}$, sodass

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \vdots
 $x \equiv a_r \pmod{m_r}$.

2. Für alle $i, j \in \{1, 2, ..., r\}$ ist das System

$$x \equiv a_i \pmod{m_i}$$
$$x \equiv a_j \pmod{m_j}$$

lösbar.

3. Für alle $i, j \in \{1, 2, \dots, r\}$ gilt

$$ggT(m_i, m_j) \mid a_i - a_j.$$

Beweis: "(1) \Rightarrow (2)" ist offensichtlich. "(2) \Leftrightarrow (3)" gilt wegen Satz 1.23.

"(3) \Rightarrow (1)": Wir zeigen durch Induktion nach r, dass jedes System aus r Kongruenzen, für das die Bedingung (3) erfüllt ist, lösbar ist. Ein System aus zwei Kongruenzen ist wegen Satz 1.23 lösbar. Um ein System von r (mit $r \geq 3$) Kongruenzen zu lösen, bestimmen wir zuerst nach Induktionsvoraussetzung ein y sodass

$$y \equiv a_2 \pmod{m_2}, \dots, y \equiv a_r \pmod{m_r}$$
.

Wegen Satz 1.26 ist $x \equiv a_1 \pmod{m_1}, \dots, x \equiv a_r \pmod{m_r}$ äquivalent zu

(3.3)
$$x \equiv a_1 \pmod{m_1}$$

$$x \equiv y \pmod{m_2 \vee \ldots \vee m_r} .$$

Jetzt müssen wir zeigen, dass (3.3) lösbar ist. Das gilt nach Satz 1.23 genau dann, wenn

$$(3.4) m_1 \wedge (m_2 \vee \ldots \vee m_r) \mid y - a_1.$$

Es gilt $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$. Daher ist (3.4) äquivalent zu

$$(m_1 \wedge m_2) \vee (m_1 \wedge m_3) \vee \ldots \vee (m_1 \wedge m_r) \mid y - a_1.$$

Wir zeigen dazu, dass für i > 1 gilt:

$$(3.5)$$
 $(m_1 \wedge m_i) | (y - a_1).$

Wir wissen aber

$$y - a_1 \equiv_{m_i} a_i - a_1 \equiv_{(m_i \wedge m_1)} 0.$$

Das beweist, dass für alle i > 1 gilt $(m_i \wedge m_1)|(y - a_1)$. Nun ist jedes gemeinsame Vielfache eine Vielfaches des kleinsten gemeinsamen Vielfachen, und somit gilt (3.4).

Beispiel: Wir lösen folgendes System

(3.6)
$$x \equiv 2 \pmod{15}$$
$$x \equiv 8 \pmod{21}$$
$$x \equiv 7 \pmod{55}$$

Wir kennen bereits die Lösungen von $x\equiv 2\pmod{15},\ x\equiv 8\pmod{21}.$ Das System (3.6) ist daher äquivalent zu

$$x \equiv 92 \pmod{105}$$
$$x \equiv 7 \pmod{55}.$$

Wir berechnen ggT (55, 105) und die Kofaktoren nach dem Euklidschen Algorithmus und erhalten

und daher

$$(-1) \cdot 105 + 2 \cdot 55 = 5$$

$$(-17) \cdot 105 + 34 \cdot 55 = 92 - 7$$

$$7 + 34 \cdot 55 = 92 + 17 \cdot 105.$$

Daraus erhalten wir also, dass 1877 die Lösung ist, also geben wir die Lösungsmenge folgendermaßen an:

$$L = \{ x \in \mathbb{Z} \mid x \equiv 1877 \pmod{1155} \}$$

= \{ x \in \mathbb{Z} \ | x \equiv 722 \ \text{(mod 1155)} \}.

ÜBUNGSAUFGABEN 1.29.

1. Finden Sie alle Lösungen in \mathbb{Z} von

$$x \equiv 26 \pmod{56}$$
$$x \equiv 82 \pmod{84}$$
$$x \equiv 124 \pmod{126}.$$

2. Finden Sie alle Lösungen in \mathbb{Z} von

$$x \equiv 3 \pmod{4}$$

 $x \equiv 8 \pmod{9}$
 $x \equiv 1 \pmod{25}$.

3. Seien $a, b, c \in \mathbb{Z}$. Bestimmen Sie für alle $a, b, c \in \mathbb{Z}$, ob die Gleichung

$$a \cdot x + b \cdot y = c$$

in $\mathbb{Z} \times \mathbb{Z}$ lösbar ist, und bestimmen Sie alle Lösungen.

4. Bestimmen Sie eine Lösung in \mathbb{Z}^3 von

$$12x + 15y + 20z = 1$$
.

5. Bestimmen Sie alle Lösungen in \mathbb{Z}^3 von

$$12x + 15y + 20z = 1$$
.

6. Sei T eine endliche Teilmenge von \mathbb{Z} . Eine Funktion $f: T \to \mathbb{Z}$ heißt kompatibel genau dann, wenn für alle $x_1, x_2 \in T$ mit $x_1 \neq x_2$ der Quotient $\frac{f(x_1) - f(x_2)}{x_1 - x_2}$ ganzzahlig ist.

Sei f eine beliebige kompatible Funktion auf einer endlichen Teilmenge T von \mathbb{Z} , und sei $z \in \mathbb{Z} \setminus T$. Zeigen Sie: Es gibt eine kompatible Funktion $g: T \cup \{z\} \to \mathbb{Z}$, sodass g(t) = f(t) für alle $t \in T$.

Hinweis: Die Funktion g heißt kompatible Erweiterung von f auf $T \cup \{z\}$. Sie müssen nur ein passendes g(z) finden. Stellen Sie dazu ein System von Kongruenzen auf, von dem g(z) Lösung sein muss, und zeigen Sie, dass dieses System lösbar ist.

7. Eine Funktion $f: \mathbb{Z} \to \mathbb{Z}$ heißt kompatibel genau dann, wenn für alle $x_1, x_2 \in \mathbb{Z}$ mit $x_1 \neq x_2$ der Quotient $\frac{f(x_1) - f(x_2)}{x_1 - x_2}$ ganzzahlig ist. Zeigen Sie, dass folgende Funktionen kompatibel sind:

(a)
$$f(x) = x^n$$
 für $n \in \mathbb{N}$,

(b)
$$f(x) = \frac{x \cdot (x-1)}{2}$$
.

8. Eine Funktion $f: \mathbb{Z} \to \mathbb{Z}$ heißt kompatibel genau dann, wenn für alle $x_1, x_2 \in \mathbb{Z}$ mit $x_1 \neq x_2$ der Quotient $\frac{f(x_1) - f(x_2)}{x_1 - x_2}$ ganzzahlig ist. Zeigen Sie, dass die Menge der kompatiblen Funktionen von \mathbb{Z} überabzählbar ist.

4. Der Ring \mathbb{Z}_n

In \mathbb{Z} definieren wir für $n \in \mathbb{N}$ die Relation \equiv_n durch

$$a \equiv_n b :\Leftrightarrow n \mid b - a$$
.

Die Relation \equiv_n ist eine Äquivalenzrelation. Die Äquivalenzklasse von $a \in \mathbb{Z}$ ist

$${a+z\cdot n\mid z\in\mathbb{Z}}=:[a]_n$$
.

Die Faktormenge bezeichnen wir mit \mathbb{Z}_n .

$$\mathbb{Z}_n = \{ [a]_n \mid a \in \mathbb{Z} \} .$$

 \mathbb{Z}_n hat n Elemente, und zwar $[0]_n$, $[1]_n$, ..., $[n-1]_n$. Auf \mathbb{Z}_n definieren wir \oplus und \odot durch:

$$[a]_n \oplus [b]_n := [a+b]_n$$

$$[a]_n \odot [b]_n := [a \cdot b]_n .$$

Wir müssen zeigen, dass \oplus und \odot wohldefiniert sind; wir geben hier nur den Beweis für die Wohldefiniertheit von \odot . Wir wählen also $a, a', b, b' \in \mathbb{Z}$ sodass $[a]_n = [a']_n$ und $[b]_n = [b']_n$. Zu zeigen ist, dass dann

$$[a \cdot b]_n = [a' \cdot b']_n$$

gilt. Es ist also zu zeigen:

$$n \mid a \cdot b - a' \cdot b'$$

 $n \mid a \cdot b - ab' + ab' - a'b'$
 $n \mid a \cdot (b - b') + b' \cdot (a - a')$.

Das gilt, denn laut Vorraussetzung gilt $n \mid (b - b')$ und $n \mid (a - a')$. Daher ist $[a \cdot b]_n = [a' \cdot b']_n$, und somit ist das Ergebnis von $[a]_n \odot [b]_n$ unabhängig von der Auswahl der Repräsentanten.

Wir geben nun ein Beispiel für eine nicht wohldefinierte Operation. Auf der Menge $\mathbb Q$ definieren wir die Relation

$$a \sim b :\Leftrightarrow \lfloor a \rfloor = \lfloor b \rfloor$$
.

Wir definieren:

Da $0 \not\sim 10$, ist die Operation \odot ist also nicht wohldefiniert.

Mengen mit Operationen bezeichnet man als algebraische Strukturen. Strukturen, in denen man drei Operationen zur Verfügung hat, die bestimmte, von den Grundrechnungsarten in ganzen Zahlen bekannte, Rechengesetze erfüllen, heißen Ringe. Wir betrachten im folgenden Ringe mit Eins; ein Ring mit Eins hat zwei zweistellige Operationen $(+,\cdot)$, eine einstellige Operation (-) und zwei nullstellige Operationen (0, 1).

DEFINITION 1.30. $(R, +, -, \cdot, 0, 1)$ heißt $Ring\ mit\ Eins$ genau dann, wenn für alle $x, y, z \in R$ die folgenden Eigenschaften erfüllt sind:

```
1. x + 0 = x

2. x + (-x) = 0

3. (x + y) + z = x + (y + z)

4. x + y = y + x

5. (x \cdot y) \cdot z = x \cdot (y \cdot z)

6. (x + y) \cdot z = x \cdot z + y \cdot z

7. x \cdot (y + z) = x \cdot y + x \cdot z

8. 1 \cdot x = x

9. x \cdot 1 = x
```

So ist zum Beispiel $(\mathbb{Z}, +, -, \cdot, 0, 1)$ ein Ring mit Eins. Ebenso bilden die 2×2 -Matrizen den Ring mit Eins $(\operatorname{Mat}_2(\mathbb{R}), +, -, \cdot, 0, E)$, wobei 0 die Nullmatrix und E die Einheitsmatrix ist.

SATZ 1.31. Sei $(R, +, -, \cdot, 0, 1)$ ein Ring mit Eins. Dann gelten für alle $x, y \in R$ folgende Eigenschaften:

```
1. 0 \cdot x = 0

2. x \cdot (-y) = -(x \cdot y)

3. (-x) \cdot y = -(x \cdot y)

4. x \cdot 0 = 0.
```

Nun fragen wir uns, ob die Eigenschaft $\forall x,y \in R: x \cdot y = y \cdot x$ in jedem Ring R gilt, und beobachten, dass diese Eigenschaft in \mathbb{Z} gilt, im Ring aller reellen 2×2 Matrizen aber nicht.

Wir betrachten jetzt den Ring $(\mathbb{Z}_n, +, -, \cdot, [0]_n, [1]_n)$ und geben (auf der Suche nach einer "Division") folgende Definition.

DEFINITION 1.32. Ein Element $a \in \mathbb{Z}_n$ heißt invertierbar, falls es ein $b \in \mathbb{Z}_n$ gibt, sodass

$$a \cdot b = [1]_n$$
.

Beispiel: Betrachten wir etwa \mathbb{Z}_6 :

Beispiel: In \mathbb{Z}_5 gilt:

$$\begin{aligned} [1]_5 \cdot [1]_5 &= [1]_5 \\ [2]_5 \cdot [3]_5 &= [1]_5 \\ [3]_5 \cdot [2]_5 &= [1]_5 \\ [4]_5 \cdot [4]_5 &= [1]_5 \end{aligned}$$

 $[0]_5$ ist aber nicht invertierbar.

Der folgende Satz gibt an, welche Elemente in \mathbb{Z}_n invertierbar sind.

SATZ 1.33 (Invertierbarkeit). Sei $n \in \mathbb{N}$ und $a \in \mathbb{Z}$. Dann ist $[a]_n$ genau dann invertierbar in \mathbb{Z}_n , wenn ggT (a, n) = 1.

Beweis: $[a]_n$ invertierbar $\Leftrightarrow \exists x \in \mathbb{Z} : a \cdot x \equiv 1 \pmod{n} \Leftrightarrow \operatorname{ggT}(a,n)$ teilt $1 \Leftrightarrow \operatorname{ggT}(a,n) = 1$.

SATZ 1.34. Seien a, b invertierbare Elemente aus \mathbb{Z}_n . Dann ist auch $a \cdot b$ invertierbar.

Beweis: Seien $u, v \in \mathbb{Z}_n$ so, dass $a \cdot u = [1]_n$ und $b \cdot v = [1]_n$. Dann gilt: $a \cdot b \cdot v \cdot u = [1]_n$.

DEFINITION 1.35 (Euler'sche φ -Funktion). Sei $n \in \mathbb{N}, n > 1$. Dann ist $\varphi(n)$ definiert durch

$$\varphi(n) := |\{a \in \mathbb{Z}_n \mid a \text{ invertierbar}\}| =$$

$$= |\{x \in \{1, 2, \dots, n-1\} \mid \operatorname{ggT}(x, n) = 1\}|.$$

Wir berechnen $\varphi(12) = |\{1, 5, 7, 11\}| = 4$ und $\varphi(8) = |\{1, 3, 5, 7\}| = 4$. Die φ -Funktion geht auf Leonhard Euler (geboren 1707 in Basel, gestorben 1783 in St.Petersburg) zurück. Von ihm stammt folgende Verallgemeinerung des *kleinen Fermatschen Satzes*.

SATZ 1.36 (Satz von Euler). Sei $n \in \mathbb{N}, n > 1, a \in \mathbb{Z}, \text{ ggT } (a, n) = 1.$ Dann gilt:

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$
.

Wir überprüfen diesen Satz durch zwei Beispiele:

- Gilt $7^{\varphi(12)} \equiv 1 \pmod{12}$? Ja, denn es ist $7^4 \equiv 1 \pmod{12}$,
- Gilt $3^{\varphi(5)} \equiv 1 \pmod{5}$? Ja, denn es gilt $3^4 \equiv 1 \pmod{5}$.

Beweis von Satz 1.36: Wir wählen $n \in \mathbb{N}$ und $a \in \mathbb{Z}$ beliebig aber fest, und nehmen an, dass ggT (a, n) = 1. Sei

$$I := \{ x \in \mathbb{Z}_n \mid x \text{ ist invertierbar} \}.$$

Wir wissen bereits, dass $|I| = \varphi(n)$. Wir definieren

$$\begin{array}{cccc}
f & : & I & \longrightarrow & \mathbb{Z}_n \\
 & & x & \longmapsto & x \odot [a]_n
\end{array}$$

und zeigen, dass f injektiv ist. Dazu fixieren wir $x,y\in I$ mit f(x)=f(y). Das heißt: $x\cdot [a]_n=y\cdot [a]_n$. Da ggT (a,n)=1, gibt es $b\in \mathbb{Z}$ mit $[a]_n\cdot [b]_n=[1]_n$. Wir erhalten also $x\cdot [a]_n\cdot [b]_n=y\cdot [a]_n\cdot [b]_n$ und damit x=y. Daher ist f injektiv. Nun zeigen wir:

$$f(I) = I.$$

"

"
": Wir fixieren $x \in f(I)$. Es gibt also $y \in I$, sodass $x = y \cdot [a]_n$. Da $y \in I$, ist y invertierbar, und somit ist auch $y \cdot [a]_n = x$ invertierbar.

"": Sei $x \in I$. Wir wählen $b \in \mathbb{Z}$ mit $[b]_n \cdot [a]_n = [1]_n$. Das Element $x \cdot [b]_n$ ist invertierbar und es gilt $f(x \cdot [b]_n) = x$. Also ist x wirklich das Bild eines invertierbaren Elements und liegt somit in f(I).

Die Funktion f ist also eine bijektive Abbildung von I nach I.

Es gilt also:

$$\begin{split} & \prod_{x \in I} x &= \prod_{x \in I} f\left(x\right) \\ & \prod_{x \in I} x &= \prod_{x \in I} \left(x \cdot [a]_n\right) \\ & \prod_{x \in I} x &= \left(\prod_{x \in I} x\right) \cdot \left([a]_n\right)^{\varphi(n)} \end{split}$$

Sei $y \in \mathbb{Z}_n$ das Inverse zu $\prod_{x \in I} x$. Dann gilt:

$$y \cdot \prod_{x \in I} x = y \cdot \left(\prod_{x \in I} x\right) \cdot ([a]_n)^{\varphi(n)}$$

$$[1]_n = ([a]_n)^{\varphi(n)}$$

$$1 \equiv a^{\varphi(n)} \pmod{n}.$$

KOROLLAR 1.37. Sei p eine Primzahl, und sei $z \in \mathbb{Z}$. Dann gilt

$$z^p \equiv z \pmod{p}$$
.

Falls p kein Teiler von z ist, gilt

$$z^{p-1} \equiv 1 \pmod{p}.$$

Beweis: Wir wählen eine Primzahl p und $z \in \mathbb{Z}$ beliebig, aber fest, und nehmen an, dass p die Zahl z nicht teilt. Wir wissen, dass $\varphi(p) = p - 1$, und daher gilt nach dem Satz von Euler

$$z^{p-1} \equiv 1 \pmod{p}$$
.

Da $p|(z^{p-1}-1)$, gilt auch $p|(z^p-z)$, und somit $z^p \equiv z \pmod{p}$.

Wenn $p \mid z$, dann teilt p sowohl z als auch z^p .

ÜBUNGSAUFGABEN 1.38.

- 1. ([Remmert and Ullrich, 1987]) Zeigen Sie, dass für jede natürliche Zahl n die Zahl $n^5 n$ ein Vielfaches von 30 ist.
- 2. Zeigen Sie, dass für alle $a, b \in \mathbb{Z}_p$ gilt:

$$(a+b)^p = a^p + b^p.$$

3. Seien m, n natürliche Zahlen. Wann ist $2^m - 1$ ein Teiler von $2^n - 1$?

5. Ein public-key-encryption system: das RSA-Verfahren

Zur Verschlüsselung ist folgendes Verfahren denkbar: um 0/1-Folgen geheim zu übertragen, einigt man sich zuerst mit dem Empfänger über eine (zufällige) 0/1-Folge Z, die man z. B. durch Münzwurf oder einen Zufallszahlengenerator bestimmt. Um eine Nachricht M zu senden, addiert man zu M bitweise Z, und sendet M+Z. Der Empfänger dekodiert das zu (M+Z)+Z=M. Ein solches Verfahren hat aber den Nachteil, dass sich Sender und Empfänger über den Schlüssel Z einigen müssen.

Das folgende RSA-Verschlüsselungsverfahren benötigt den vorherigen, geheimen Austausch von Schlüsseln *nicht*. Es wurde von R. Rivest, A. Shamir und L. Adleman entwickelt (cf. [Rivest et al., 1978]) und funktioniert so:

Jeder, der von anderen verschlüsselte Informationen empfangen will, gibt in einem veröffentlichten Verzeichnis, also in einer Art Telefonbuch, seinen Chiffrierschlüssel E (seine Verschlüsselungsfunktion E) bekannt, hält aber seinen Dechiffrierschlüssel D (seine Entschlüsselungsfunktion D) geheim. Will A an B eine Nachricht übermitteln, so chiffriert er sie mit dem Chiffrierschlüssel E_B von B, den A dem öffentlich zugänglichen Verzeichnis entnimmt. B dechiffriert anschließend die erhaltene Nachricht mit seinem Dechiffrierschüssel D_B .

Es erscheint zunächst so, als ob durch E_B jedem automatisch auch D_B , die "inverse Funktion" zu E_B , bekannt ist. Rivest, Shamir und Adleman haben aber eine Klasse von Funktionen gefunden, für die man E_B sehr wohl bekannt geben kann, ohne dabei "automatisch" D_B zu verraten. Solche Funktionen heißen auch "trapdoor-functions".

Quelle: Pilz G., Lidl R., Applied Abstract Algebra, [Lidl and Pilz, 1998].

Zusammenfassend suchen wir also eine Verschlüsselungsfunktion E (encipher) und eine Entschlüsselungsfunktion D, sodass gilt

- 1. D(E(M)) = M, M ist die Nachricht (message).
- 2. E(M) und D(E(M)) können effizient berechnet werden.
- 3. E kann veröffentlicht werden, ohne dass man daraus D rekonstruieren kann.
- 4. Manchmal fordert man auch E(D(M)) = M.

Und dazu brauchen wir etwas Zahlentheorie:

SATZ 1.39. Seien p, q Primzahlen, $p \neq q$ und seien $a, s \in \mathbb{Z}$. Dann gilt:

$$a^{1+s(p-1)(q-1)} \equiv a \pmod{p \cdot q}.$$

Beweis:

• 1. Fall: ggT (a, pq) = 1: Wir wissen ja, dass $a^{p-1} \equiv 1 \pmod{p}$ gilt (Satz von Euler), daher gilt auch $(a^{p-1})^{(q-1)\cdot s} \equiv 1 \pmod{p}$. Somit ist p ein Teiler von $a^{(p-1)\cdot (q-1)\cdot s} - 1$ und damit auch von $a^{(p-1)\cdot (q-1)\cdot s+1} - a$. Ebenso zeigen wir

$$q \mid a^{(p-1)\cdot (q-1)\cdot s+1} - a.$$

Damit gilt insgesamt:

$$pq \mid a^{(p-1)\cdot (q-1)\cdot s+1} - a.$$

• 2. Fall: ggT (a, pq) = p: Da der ggT (a, q) = 1 ist, gilt mit dem Satz von Euler $a^{q-1} \equiv 1 \pmod{q}$, und somit $a^{(q-1)\cdot(p-1)} \equiv 1 \pmod{q}$. Das heißt

$$q \mid a^{(q-1)\cdot (p-1)\cdot s} - 1.$$

Wir wissen ja, dass $p \mid a$. Daher gilt $p \cdot q \mid (a^{(q-1)\cdot (p-1)\cdot s} - 1) \cdot a$.

- 3. Fall: ggT(a, pq) = q: Beweis genauso wie im 2. Fall.
- 4. Fall: ggT $(a, pq) = p \cdot q$: Dann ist zu zeigen, dass $0 \equiv 0 \pmod{pq}$. \square

ÜBUNGSAUFGABEN 1.40.

1. Sei $n = p_1 \cdot p_2 \cdot \dots \cdot p_k$, wobei die p_i lauter verschiedene Primzahlen sind, und sei $s \in \mathbb{N}$. Zeigen Sie, dass für alle $a \in \mathbb{Z}$ gilt:

$$a^{1+s \cdot \prod_{i=1}^{k} (p_i - 1)} \equiv a \pmod{n}.$$

Versuchen wir nun, D und E zu finden: Seien p, q Primzahlen, und sei $k \in \mathbb{Z}$ mit ggT $(k, (p-1) \cdot (q-1)) = 1$. Dann definieren wir E durch

$$E: \mathbb{Z}_{pq} \to \mathbb{Z}_{pq}$$
$$x \mapsto x^k.$$

Wir bestimmen ein $t \in \mathbb{Z}$, sodass

$$k \cdot t \equiv 1 \pmod{(p-1) \cdot (q-1)}$$

und definieren D durch

$$D: \mathbb{Z}_{pq} \to \mathbb{Z}_{pq}$$
$$x \mapsto x^t.$$

Nun ist D zu E invers, d.h. $D(E(x)) = (x^k)^t = x^{1+s(p-1)\cdot(q-1)} = x$.

Der Entwerfer des Systems gibt $n=p\cdot q$ und k öffentlich bekannt. Die für das Entschlüsseln notwendige Zahl t wird geheimgehalten und nicht weitergegeben. Ein unberechtigter Entschlüsseler wird versuchen, aus $p\cdot q$ und k das geheime t zu rekonstruieren. Zur Bestimmung des geheimen Decodierschlüssels t müßte er folgende Kongruenz lösen:

$$k\cdot t\equiv 1\ \left(\mathrm{mod}\ \left(p-1\right)\cdot \left(q-1\right)\right).$$

Das erfordert jedoch nach derzeitigem Wissensstand die Kenntnis der Primfaktorenzerlegung $n = p \cdot q$ von n. Wenn man n aber groß genug wählt (150 - 200 Dezimalstellen), dann kann man n nicht (schnell genug) faktorisieren.

Fassen wir zunächst nochmals zusammen, was jeder der Beteiligten eines **RSA-Kryptosystems** zu tun hat:

- Aufgaben für den, der das System entwirft ("key source"):
 - 1. Wähle zwei Primzahlen p,q mit $p\cdot q\geq 10^{130},$, die ungefähr gleich groß sind, und berechne n:=pq.
 - 2. Wähle $k \in \mathbb{Z}$ so, dass ggT $(k, (p-1) \cdot (q-1)) = 1$.
 - 3. Berechne $t \in \mathbb{Z}$, sodass $k \cdot t \equiv 1 \pmod{(p-1) \cdot (q-1)}$.
 - 4. Information an den Verschlüsseler: (n; k).
 - 5. Information an den Entschlüsseler: (n;t).
- Aufgaben für den Verschlüssel
er beim Verschlüsseln der Nachricht $M \in \mathbb{Z}_n$.
 - 1. Berechne $E(M) := M^k$ (Rechnung in \mathbb{Z}_n).
 - 2. Sende C := E(M).
- \bullet Aufgaben für den Entschlüssler beim Entschlüsseln des empfangenen Kryptogramms C.
 - 1. $D(C) = C^t \text{ (in } \mathbb{Z}_n).$

Die wichtigsten Anwendungen des RSA-Verfahrens sind die Übertragung geheimer Daten und digitale Unterschriften, durch die gesichert wird, dass eine Nachricht wirklich authentisch ist, also vom angegebenen Absender stammt.

Stellen wir uns vor, der Absender A besitzt den öffentlich bekannten Chiffrierschlüssel E_A und den geheimen Dechiffrierschlüssel D_A , und der Empfänger B besitzt die Schlüssel E_B und D_B , die wie oben ausgeführt berechnet werden können. Nun schickt A an B eine Nachricht M in der Form $(E_B(D_A(M)))$. A wendet also auf M zunächst seinen geheimen Dechiffrierschlüssel D_A und dann darauf den öffentlich bekannten Schlüssel E_B von B an. Dabei hat die Anwendung von D_A die Funktion einer Unterschrift; denn nur A kennt D_A , und daher kann nur A den so verschlüsselten Text gesandt haben. B dechiffriert die Nachricht anschließend durch:

$$E_A(D_B(E_B(D_A(M)))) = M.$$

Die übermittelte Nachricht $E_B(D_A(M))$ ist höchstens für B lesbar, da nur B den Schlüssel D_B kennt und somit nur B den Text $D_A(M)$ herstellen kann. Da E_A für B jedoch bekannt ist, kann B jetzt $E_A(D_A(M))$ bilden und so die ursprüngliche Nachricht M erhalten.

6. Die Multiplikativität der Eulerschen φ -Funktion

Wir beweisen nun noch einen wichtigen Satz der elementaren Zahlentheorie.

SATZ 1.41 (Multiplikativität der φ -Funktion). Seien $n, m \in \mathbb{N}, n \geq 2, m \geq 2$. Wenn n, m relativ prim sind, dann gilt

$$\varphi\left(n\cdot m\right)=\varphi\left(n\right)\cdot\varphi\left(m\right).$$

Der Beweis der Multiplikativität erfordert noch etwas Information über Ringe.

Satz 1.42. Falls R_1 und R_2 Ringe mit Eins sind, dann ist

$$(R_1 \times R_2, +_{R_1 \times R_2}, -_{R_1 \times R_2}, \cdot_{R_1 \times R_2}, 0_{R_1 \times R_2}, 1_{R_1 \times R_2})$$

wieder ein Ring mit Eins. Dabei sind die Verknüpfungen auf $R_1 \times R_2$ definiert durch

$$\bullet \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} +_{R_1 \times R_2} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} := \begin{pmatrix} r_1 +_{R_1} s_1 \\ r_2 +_{R_2} s_2 \end{pmatrix} \\
\bullet \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \cdot_{R_1 \times R_2} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} := \begin{pmatrix} r_1 \cdot_{R_1} s_1 \\ r_2 \cdot_{R_2} s_2 \end{pmatrix} \\
\begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \cdot_{R_1 \times R_2} \begin{pmatrix} s_1 \\ s_2 \end{pmatrix} := \begin{pmatrix} r_1 \cdot_{R_1} s_1 \\ r_2 \cdot_{R_2} s_2 \end{pmatrix}$$

$$\bullet \ \ -_{R_1 \times R_2} \left(\begin{array}{c} r_1 \\ r_2 \end{array} \right) := \left(\begin{array}{c} -_{R_1} \, r_1 \\ -_{R_2} \, r_2 \end{array} \right)$$

$$\bullet \ 0_{R_1 \times R_2} := \left(\begin{array}{c} 0_{R_1} \\ 0_{R_2} \end{array} \right)$$

$$\bullet \ 1_{R_1 \times R_2} := \left(\begin{array}{c} 1_{R_1} \\ 1_{R_2} \end{array}\right).$$

 $R_1 \times R_2$ mit diesen Operationen erfüllt auch alle Ring mit Eins-Rechengesetze.

Rechnen wir zum Beispiel in $\mathbb{Z}_4 \times \mathbb{Z}_5$.

$$\begin{pmatrix} \begin{bmatrix} 3 \end{bmatrix}_4 \\ \begin{bmatrix} 4 \end{bmatrix}_5 \end{pmatrix} \cdot \begin{pmatrix} \begin{bmatrix} 2 \end{bmatrix}_4 \\ \begin{bmatrix} 3 \end{bmatrix}_5 \end{pmatrix} = \begin{pmatrix} \begin{bmatrix} 2 \end{bmatrix}_4 \\ \begin{bmatrix} 2 \end{bmatrix}_5 \end{pmatrix}$$

 $R_1 \times R_2$ heißt das direkte Produkt von R_1 und R_2 .

DEFINITION 1.43. R,S seien Ringe mit Eins. Die Abbildung $\varphi:R\to S$ heißt Ring mit Eins-Homomorphismus: \Leftrightarrow

$$\forall r_{1}, r_{2} \in R: \quad \varphi\left(r_{1} +_{R} r_{2}\right) = \varphi\left(r_{1}\right) +_{S}\left(r_{2}\right),$$

$$\varphi\left(-_{R} r_{1}\right) = -_{S} \varphi\left(r_{1}\right),$$

$$\varphi\left(r_{1} \cdot_{R} r_{2}\right) = \varphi\left(r_{1}\right) \cdot_{S} \varphi\left(r_{2}\right),$$

$$\varphi\left(0_{R}\right) = 0_{S},$$

$$\varphi\left(1_{R}\right) = 1_{S}.$$

Definition 1.44. Ein Homomorphismus φ heißt:

- $Epimorphismus :\Leftrightarrow \varphi$ ist surjektiv;
- $Monomorphismus :\Leftrightarrow \varphi$ ist injektiv;
- Isomorphismus : $\Leftrightarrow \varphi$ ist bijektiv.

Beispiel: Wollen wir uns dies zunächst an zwei Beispielen veranschaulichen.

- $\varphi : \mathbb{Z} \to \mathbb{Z}_5, \ z \mapsto [x]_5$ ist surjektiv, aber nicht injektiv. Also ist φ ein Epimorphismus.
- Wir untersuchen $\alpha: \mathbb{Z}_5 \to \mathbb{Z}$, $[x]_5 \mapsto x$. Hier ergibt sich folgendes Problem: $\alpha([3]_5) = 3$, und $\alpha([3]_5) = \alpha([8]_5) = 8$. Das Problem ist, dass α nicht wohldefiniert ist. Man kann das auch so ausdrücken, dass man sagt, dass die Relation

$$\alpha = \{([x]_5, x) \mid x \in \mathbb{Z}\}\$$

nicht funktional (d. h. eine Funktion = Graph einer Funktion) ist. Sie ist nicht funktional, weil ($[2]_5$, 2) $\in \alpha$ und ($[2]_5$, 7) $\in \alpha$.

DEFINITION 1.45. Sei R ein Ring mit Eins. Dann heißt $r \in R$ invertierbar, falls es ein $y_r \in R$ gibt, sodass

$$r \cdot y_r = 1_R$$
 und $y_r \cdot r = 1_R$.

Satz 1.46. Seien $n, m \in \mathbb{N}$ mit ggT (n, m) = 1. Dann ist die Abbildung

$$\varphi : \mathbb{Z}_{m \cdot n} \longrightarrow \mathbb{Z}_n \times \mathbb{Z}_m$$
$$[x]_{m \cdot n} \longmapsto ([x]_n, [x]_m)$$

ein Ring mit Eins-Isomorphismus.

Beweis: Wir führen den Beweis in drei Schritten.

1. φ ist wohldefiniert: Zu zeigen ist, dass für alle $y,z\in\mathbb{Z}$ mit $[y]_{m\cdot n}=[z]_{m\cdot n}$ die Gleichheiten $[y]_n=[z]_n$ und $[y]_m=[z]_m$ gelten. Zu zeigen ist ist also, dass für alle $y,z\in\mathbb{Z}$ gilt:

$$m \cdot n \mid y - z \Rightarrow (m \mid y - z \land n \mid y - z)$$
.

Das ist aber offensichtlich

2. φ ist Homomorphismus: Wir überprüfen die Homomorphismuseigenschaft für +. Wir berechnen dazu

$$\begin{split} \varphi\left(\left[x\right]_{n\cdot m} + \left[y\right]_{n\cdot m}\right) &= \varphi\left(\left[x + y\right]_{n\cdot m}\right) \\ &= \left(\left[x + y\right]_{n}, \left[x + y\right]_{m}\right) \\ &= \left(\left[x\right]_{n} + \left[y\right]_{n}, \left[x\right]_{m} + \left[y\right]_{m}\right) \\ &= \begin{pmatrix} \left[x\right]_{n} \\ \left[x\right]_{m} \end{pmatrix} + \begin{pmatrix} \left[y\right]_{n} \\ \left[y\right]_{m} \end{pmatrix} \\ &= \varphi\left(\left[x\right]_{n\cdot m}\right) + \varphi\left(\left[y\right]_{n\cdot m}\right). \end{split}$$

3. φ ist bijektiv: Da beide Mengen endlich und gleich groß sind, reicht es, zu zeigen, dass φ injektiv ist. Wir nehmen also an $\varphi([x]_{nm}) = \varphi([y]_{nm})$. Das heißt $([x]_n, [x]_m) = ([y]_n, [y]_m)$. Daher gilt $n \mid x - y$ und $m \mid x - y$. Da der ggT (n, m) = 1 ist, gilt: $n \cdot m \mid x - y$. Wir erhalten daher $[x]_{nm} = [y]_{nm}$. Die Abbildung φ ist also injektiv, somit surjektiv und damit bijektiv. \square

Wenn der ggT (n,m)=1 ist, dann ist $\mathbb{Z}_n \times \mathbb{Z}_m$ also isomorph zu $\mathbb{Z}_{n \cdot m}$. Da Isomorphismen die Invertierbarkeit erhalten, haben beide Ringe gleich viele invertierbare Elemente. Daraus können wir jetzt die Multiplikativität der φ -Funktion, also Satz 1.41, herleiten.

Beweis von Satz 1.41:

1. Anzahl der invertierbaren Elemente von $\mathbb{Z}_n \times \mathbb{Z}_m$: Wir zeigen, dass $\binom{a}{b} \in \mathbb{Z}_n \times \mathbb{Z}_m$ genau dann invertierbar ist, wenn a invertierbar in \mathbb{Z}_n und b invertierbar in \mathbb{Z}_m ist. Dazu fixieren wir zunächst $\binom{a}{b} \in \mathbb{Z}_n \times \mathbb{Z}_m$ und nehmen an, dass $\binom{a}{b}$ invertierbar ist; es gibt also $\binom{c}{d} \in \mathbb{Z}_n \times \mathbb{Z}_m$, sodass $\binom{a}{b} \cdot \binom{c}{d} = 1_{\mathbb{Z}_n \times \mathbb{Z}_m} = \binom{[1]_n}{[1]_m}$. Daher ist a in \mathbb{Z}_n invertierbar (mit Inversem c), ebenso b in \mathbb{Z}_m (mit Inversem d).

Nun fixieren wir $a \in \mathbb{Z}_n$, $b \in \mathbb{Z}_m$, beide invertierbar. Falls $a \cdot c = [1]_n$, und $b \cdot d = [1]_m$, dann ist $\binom{c}{d}$ das Inverse zu $\binom{a}{b}$. In \mathbb{Z}_n gibt es $\varphi(n)$ invertierbare Elemente, in \mathbb{Z}_m gibt es $\varphi(m)$ invertierbare Elemente, und somit gibt es in $\mathbb{Z}_n \times \mathbb{Z}_m$ genau $\varphi(n) \cdot \varphi(m)$ invertierbare Elemente.

2. Anzahl der invertierbaren Elemente in $\mathbb{Z}_{n \cdot m}$: Hier gibt es $\varphi(n \cdot m)$ invertierbare Elemente (nach der Definition von φ).

Damit ist

$$\varphi(n \cdot m) = \varphi(n) \cdot \varphi(m)$$

für $n, m \in \mathbb{N}$ mit ggT (n, m) = 1 bewiesen.

Aus der Primfaktorzerlegung von n und aus $\varphi(p^{\alpha})=p^{\alpha}-p^{\alpha-1}$ kann man jetzt leicht $\varphi(n)$ durch

$$\begin{array}{rcl} \varphi\left(n\right) & = & \varphi\left(\prod p_i^{\alpha_i}\right) \\ & = & \prod \varphi\left(p_i^{\alpha_i}\right) \\ & = & \prod p_i^{\alpha_i}\left(1-\frac{1}{p_i}\right) \\ & = & \prod p_i^{\alpha_i}\cdot\prod\left(1-\frac{1}{p_i}\right) \\ & = & n\cdot\prod\left(1-\frac{1}{p_i}\right) \end{array}$$

berechnen. Dazu noch ein Beispiel:

Beispiel:
$$\varphi(12) = 12 \cdot \left(1 - \frac{1}{2}\right) \cdot \left(1 - \frac{1}{3}\right) = 4 = 2 \cdot 2 = \varphi(3) \cdot \varphi(4)$$
.

ÜBUNGSAUFGABEN 1.47.

- 1. Für das RSA-Verfahren wählen wir p=5, q=11 und k=13. Chiffrieren Sie (01,22,03,08) und dechiffrieren Sie das Ergebnis!
- 2. Frau Huber sendet Herrn Müller mit dem RSA-Verfahren die Nachricht PMOXY. Herr Müller weiß, dass Frau Huber das RSA-Verfahren mit (n = 35, k = 5) verwendet hat (A=0, Z=25). Entschlüsseln Sie die Nachricht!
- 3. (Mathematica) Entschlüsseln Sie (verbotenerweise) die Nachrich (2,3,5,7,11,13), die mit k=13 und pq=1334323339 verschlüsselt wurde.
- 4. (Mathematica) [**Lidl and Pilz, 1998**, p. 265] In einem RSA-System ist n=pq=32954765761773295963 und k=1031. Bestimmen Sie t, und entschlüsseln Sie die Nachricht

899150261120482115

$$(A = 0, Z = 25).$$

KAPITEL 2

Gruppen

1. Motivation

Im 19. Jahrhundert suchte man Lösungsformeln für Gleichungen der Form

$$x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} = 0$$

mit $a_1, a_2, \ldots, a_{n-1} \in \mathbb{Q}$. Für eine quadratische Gleichung der Form $x^2 + px + q = 0$ erhalten wir die Lösungen durch $x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$. Gleichungen dritten Grades der Form $x^3 + ax^2 + bx + c = 0$ kann man mit den Cardano'schen Lösungsformeln lösen; die ersten Lösungsformeln stammen von Tartaglia und Scipione del Ferro (ca. 1515). Für diese Lösungsformeln braucht man die komplexen Zahlen, auch wenn alle Lösungen reell sind. Luigi Ferrari (ca. 1545) fand Lösungsformeln für Gleichungen vom Grad 4. In allen diesen Formeln wird ein Verfahren angeben, die Lösung aus den Koeffizienten durch Verwendung der 4 Grundrechnungsarten und dem Ziehen von Quadratwurzeln und n-ten Wurzeln $(n \in \mathbb{N})$ zu bestimmen. Die Suche nach einer Auflösungsformel für Gleichungen fünften Grades blieb erfolglos. Gegen Ende des 18. und Anfang des 19. Jahrhunderts gelang es Ruffini, Abel und Galois, zu beweisen, dass es Gleichungen 5. Grades gibt, deren Lösungen sich nicht durch die vier Grundrechnungsarten und Wurzelziehen finden lassen (cf. [Rotman, 1998]). Zum Beweis dieses Resultats wurden Vertauschungen der Wurzeln eines Polynoms studiert.

Wir werden in diesem Kapitel folgendes Problem lösen: Wir wollen die Seitenflächen eines Würfels mit zwei Farben (rot und blau) einfärben. Wieviele Färbungen gibt es? Dabei sehen wir zwei Färbungen als gleich an, wenn sie durch Drehen des Würfels ineinander übergeführt werden können. So gibt es z. B. nur eine Färbung, bei der eine Fläche rot ist, und alle anderen Flächen blau sind.

2. Definition einer Gruppe

Eine Gruppe ist eine algebraische Struktur

$$(G,\cdot,i,e)$$
,

wobei \cdot eine zweistellige Verknüpfung ist, ieinstellig, und ${\tt e}$ ein Element von G ist.

36 2. GRUPPEN

DEFINITION 2.1. Eine Menge G zusammen mit den Operationen $\cdot: G \times G \to G$, $i: G \to G$ und einem Element $\mathbf{e} \in G$ ist genau dann eine Gruppe, wenn für alle $x, y, z \in G$ folgende Eigenschaften gelten:

- 1. $(x \cdot y) \cdot z = x \cdot (y \cdot z);$
- $2. \ \mathbf{e} \cdot x = x;$
- 3. $i(x) \cdot x = e$.

Beispiel: Sei X eine Menge, und sei

$$S_X := \{ f : X \to X \mid f \text{ ist bijektiv} \}.$$

Für $f_1, f_2 \in S_X$ definieren wir $f_1 \circ f_2$ durch

$$f_1 \circ f_2(x) = f_1(f_2(x))$$
 für alle $x \in X$,

 $i(f_1)$ als die inverse Funktion zu f_1 ; mit id_X bezeichnen wir die identische Funktion auf X. Dann ist $(S_X, \circ, i, \mathrm{id}_X)$ eine Gruppe.

In jeder Gruppe gelten folgende Gleichungen.

SATZ 2.2. Sei (G, \cdot, i, e) eine Gruppe. Dann gilt:

- 1. Für alle $z \in G : z \cdot e = z$;
- 2. Für alle $z \in G$: i(i(z)) = z;
- 3. Für alle $z \in G : z \cdot i(z) = e$.

Beweis: Wir zeigen zunächst (1), und wählen dazu $z \in G$ beliebig, aber fest. Es gilt

$$\begin{split} z \cdot \mathbf{e} &= \mathbf{e} \cdot (z \cdot \mathbf{e}) \\ &= (\mathbf{e} \cdot z) \cdot \mathbf{e} \\ &= ((i(i(z)) \cdot i(z)) \cdot z) \cdot \mathbf{e} \\ &= ((i(i(z)) \cdot i(z)) \cdot z) \cdot (i(z) \cdot z) \\ &= (i(i(z)) \cdot (i(z) \cdot z)) \cdot (i(z) \cdot z) \\ &= (i(i(z)) \cdot \mathbf{e}) \cdot (i(z) \cdot z) \\ &= i(i(z)) \cdot (\mathbf{e} \cdot (i(z) \cdot z)) \\ &= i(i(z)) \cdot (i(z) \cdot z) \\ &= (i(i(z)) \cdot i(z)) \cdot z \\ &= \mathbf{e} \cdot z \\ &= z. \end{split}$$

Nun zeigen wir (2). Wir wählen $z \in G$ beliebig, aber fest, und rechnen:

$$\begin{split} i(i(z)) &= i(i(z)) \cdot \mathbf{e} \\ &= i(i(z)) \cdot (i(z) \cdot z) \\ &= (i(i(z)) \cdot i(z)) \cdot z \\ &= \mathbf{e} \cdot z \\ &= z. \end{split}$$

Für (3) berechnen wir

$$z \cdot i(z) = i(i(z)) \cdot i(z)$$

= e.

ÜBUNGSAUFGABEN 2.3.

- 1. Sei (G,\cdot,i,\mathbf{e}) eine Gruppe. Zeigen Sie, dass für alle $a,b\in G$ die Gleichung $a\cdot x=b$ genau eine Lösung hat.
- 2. Sei (G, \cdot, i, e) eine Gruppe. Benutzen Sie das vorige Übungsbeispiel, um zu zeigen, dass i(e) = e, und dass für alle $x, y \in G$ gilt:

$$i(x \cdot y) = i(y) \cdot i(x).$$

3. * Sei (G, \cdot, i, e) eine Gruppe. Zeigen Sie durch eine Kette von Gleichungen wie im Beweis von Satz 2.2, dass i(e) = e, und dass für alle $x, y \in G$ gilt:

$$i(x \cdot y) = i(y) \cdot i(x).$$

- 4. Finden Sie eine Menge H, eine Funktion \cdot von $H \times H$ nach H, eine Funktion i von H nach H, und ein Element $e \in H$, sodass alle folgende Eigenschaften erfüllt sind:
 - (a) Für alle $x, y, z \in H$ gelten: $(x \cdot y) \cdot z = x \cdot (y \cdot z)$, $e \cdot x = x$, $x \cdot i(x) = e$.
 - (b) (H, \cdot, i, e) ist keine Gruppe.
- 5. Zeigen Sie, dass bei einer Gruppe G die Funktion, die das inverse Element bestimmt, und das neutrale Element der Gruppe, bereits durch die zweistellige Gruppenoperation vollständig bestimmt sind. D. h., zeigen Sie: Seien (G, \circ, i_1, e_1) und (G, \circ, i_2, e_2) zwei Gruppen. (Die beiden Gruppen haben also die Trägermenge G und die zweistellige Operation \circ gemeinsam.) Zeigen Sie $i_1 = i_2$ und $e_1 = e_2$.

Es ist erfreulich, dass man Satz 2.2 automatisch beweisen lassen kann; die theoretische Grundlage dafür ist die Methode von Knuth und Bendix [Knuth and Bendix, 1970], die z. B. in [Buchberger, 1982] beschrieben wird. Eine Implementation dieses Algorithmus, der "Larch"-prover, liefert bei Eingabe der Gleichungen

$$e * x = x$$

$$i(x) * x = e$$

$$(x * y) * z = x * (y * z)$$

innerhalb weniger Sekunden folgende Konsequenzen aus diesen Gleichungen:

group.1:
$$e * x = x$$

group.2: $i(x) * x = e$
group.3: $x * y * z = x * (y * z)$
group.4: $i(y) * (y * z) = z$
group.6: $z * e = z$
group.8: $i(e) = e$
group.10: $i(i(z)) = z$
group.11: $z * i(z) = e$
group.12: $z * (i(z) * g) = g$
group.24: $i(g * y) = i(y) * i(g)$

3. Beispiele für Gruppen

In manchen der folgenden Beispiele geben wir eine Gruppe $(G, \cdot, i, \mathbf{e})$ einfach als (G, \cdot) an.

3.1. Matrixgruppen.

1. Sei GL (n, p) die Menge aller regulären $n \times n$ -Matrizen über \mathbb{Z}_p .

$$(GL(n, p), \cdot, ^{-1}, E^{(n)})$$

ist eine Gruppe.

2. Sei SL (n, p) := $\{A \in GL(n, p) \mid \det A = 1\}$.

$$\left(\mathrm{SL}(n,p),;^{-1},\mathrm{E}^{(n)}\right)$$

ist eine Gruppe.

3.2. Restklassen von \mathbb{Z} mit Multiplikation.

- 1. Sei $n \geq 2$. Dann ist (\mathbb{Z}_n, \cdot) keine Gruppe.
- 2. Sei $n \geq 2$. $(\mathbb{Z}_n \setminus \{[0]_n\}, \cdot)$ ist genau dann eine Gruppe, wenn n eine Primzahl ist.
- 3. Sei $n \geq 2$, und sei

$$\mathbb{Z}_n^* := \{ [x]_n \mid x \in \mathbb{Z} \text{ und } \operatorname{ggT}(x, n) = 1 \}.$$

Dann ist $(\mathbb{Z}_n^*, \cdot, ^{-1}, [1]_n)$ eine Gruppe mit $\varphi(n)$ Elementen.

3.3. Zyklische Gruppen. Eine Gruppe (G, \cdot) heißt zyklisch, wenn es ein $g \in G$ gibt, sodass

$$G = \{g^n \mid n \in \mathbb{N}\} \cup \{(g^{-1})^n \mid n \in \mathbb{N}\} \cup \{1_G\}.$$

- 1. Sei $n \in \mathbb{N}$. $(\mathbb{Z}_n, +)$ ist eine zyklische Gruppe mit n Elementen.
- 2. Sei $n \in \mathbb{N}$. $(\{x \in \mathbb{C} \mid x^n = 1\}, \cdot)$ ist eine zyklische Gruppe mit n Elementen.

3.4. Symmetriegruppen geometrischer Objekte. Wir zeichnen das Quadrat mit den Eckpunkten (-1,-1), (1,-1), (1,1), (-1,1), und betrachten alle bijektiven linearen Abbildungen von \mathbb{R}^2 nach \mathbb{R}^2 , die das Quadrat auf sich selbst abbilden (diese Abbildungen bezeichnen wir als *Symmetrieabbildungen*).

Es kann höchstens 8 solche linearen Abbildungen geben, denn 1 kann auf höchstens vier Ecken landen, 2 muss zu 1 benachbart bleiben (höchstens zwei Möglichkeiten), 3 muss die andere zu 1 benachbarte Stelle einnehmen und ist also, ebenso wie 4, durch die Lage von 1 und 2 bereits fixiert. Es gibt also höchstens $4 \cdot 2 \cdot 1 \cdot 1$ Symmetrieabbildungen.

Die Hintereinanderausführung zweier Symmetrieabbildungen ist wieder eine Symmetrieabbildung. Die identische Abbildung ist eine Symmetrieabbildung, und zu jeder Symmetrieabbildung d ist die inverse Abbildung wieder eine Symmetrieabbildung. Die Menge aller Symmetrieabbildungen, mit der Hintereinanderausführung als zweistelliger Operation, ist eine Gruppe.

ÜBUNGSAUFGABEN 2.4.

1. Bestimmen Sie die Matrixdarstellung der acht linearen Abbildungen, die das Quadrat mit den Eckpunkten (-1,-1), (1,-1), (1,1), (-1,1) in sich selbst überführen.

Wir bezeichnen nun eine Drehung des Quadrats um 90° gegen den Uhrzeigersinn mit a und eine Spiegelung an der y-Achse mit b. Was können wir nun aus a und b zusammenbauen? Überlegen wir uns zunächst einmal die folgenden beiden Beispiele:

1.
$$b \cdot a = a^3 \cdot b$$

2.
$$baba = a^3bba = a^31a = a^4 = 1$$
.

Wir können die Symmetrieabbildungen also auf zwei Arten darstellen:

- 1. Als Matrizen;
- 2. Als Worte in a und b. So ist aaabba eine Symmetrieabbildung. Beim Rechnen berücksichtigen wir, dass $a^4 = 1$, $b^2 = 1$, und $ba = a^3b$ gilt. Damit können wir jedes Wort zu einem Wort aus der Menge

$$\{1, a, aa, aaa, b, ab, aab, aaab\}$$

umformen, das die gleiche Symmetrieabbildung darstellt. Daher gibt man diese Gruppe der Symmetrieoperationen (=Symmetrieabbildungen) des

Quadrats, die man als D_4 (Diedergruppe mit 8 Elementen) bezeichnet, auch oft so an:

$$D_4 = \left\langle \underbrace{a,b}_{\text{Erzeuger}} \mid \underbrace{a^4 = 1, b^2 = 1, ba = a^3 b}_{\text{definierende Relationen}} \right\rangle.$$

ÜBUNGSAUFGABEN 2.5.

- 1. Wir betrachten alle Abbildungen $\{f: \mathbb{C} \to \mathbb{C}\}$, die sich als Hintereinanderausführung der Funktionen $x \to i \cdot x$ und $x \to \overline{x}$ schreiben lassen. (Dabei ist $\overline{a+bi}:=a-bi$).
 - (a) Wieviele Funktionen lassen sich daraus zusammenbauen?
 - (b) Was machen diese Funktionen mit den Punkten $\{-1-i, 1-i, 1+i, -1+i\}$?
- 2. Wir betrachten in \mathbb{R}^2 das Sechseck mit den Eckpunkten $\{(\operatorname{Re}(z),\operatorname{Im}(z)) \mid z \in \mathbb{C}, z^6 = 1\}$. Bestimmen Sie alle Deckabbildungen, die dieses Sechseck auf sich selbst abbilden.
- 3. Wir betrachten in \mathbb{R}^2 das Sechseck mit den Eckpunkten $\{(\operatorname{Re}(z),\operatorname{Im}(z))\,|\,z\in\mathbb{C},\,z^6=1\}$. Wie können Sie die Gruppe aller Symmetrieoperationen dieses Sechseckes durch Worte in a und b angeben? Was sind die "Rechenregeln"? (Diese Rechenregeln bezeichnet man auch als definierende Relationen.)
- 4. * Als "Wort" betrachten wir eine endliche Folge von Buchstaben aus $\{a,b,c,\ldots,z\}$. Diese Worte verknüpfen wir durch Aneinanderhängen, also z.B. afc*gff=afcgff. Für manche Worte w_1,w_2 gilt $w_1*w_2=w_2*w_1$, zum Beispiel aaa*aa=aa*aaa, oder, komplizierter, avd*avdavd=avdavd*avd. Beschreiben Sie alle Wortpaare (w_1,w_2) , sodass $w_1*w_2=w_2*w_1$.
- 3.5. Gruppen, die durch die Gruppentafel gegeben sind. Wir definieren eine Gruppenoperation auf $\{0, 1, 2, 3\}$ durch

Eine Gruppentafel sieht also so aus: $\frac{g_j}{g_i \ g_i \circ g_j}$

3.6. Permutationsgruppen und die Zyklenschreibweise. Für $n \in \mathbb{N}$ sei

$$S_n := \{ f : \{1, 2, \dots, n\} \to \{1, 2, \dots, n\} \mid f \text{ ist bijektiv } \}.$$

Wir können jedes Element von S_3 so anschreiben:

$$\left(\begin{array}{ccc}
1 & 2 & 3 \\
f(1) & f(2) & f(3)
\end{array}\right)$$

Damit können wir

$$S_3$$

schreiben als:

$$S_3 = \left\{ \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 1 & 3 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 2 & 1 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 3 & 2 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} \right), \left(\begin{array}{ccc} 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} \right) \right\}.$$

Kürzer ist die Zyklenschreibweise:

$$S_3 = \left\{ \left(\right), \left(\begin{array}{ccc} 1 & 2 \end{array}\right), \left(\begin{array}{ccc} 1 & 3 \end{array}\right), \left(\begin{array}{ccc} 2 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 2 & 3 \end{array}\right), \left(\begin{array}{ccc} 1 & 3 & 2 \end{array}\right) \right\}.$$

Wie die Zyklenschreibweise Permutationen kodiert, geht aus folgendem Beispiel hervor.

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix} = \begin{pmatrix} 3 & 1 \end{pmatrix} \begin{pmatrix} 5 & 4 \end{pmatrix} = \begin{pmatrix} 5 & 4 \end{pmatrix} \begin{pmatrix} 3 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 5 \end{pmatrix}.$$

In S_3 gibt es x, y, sodass $x \cdot y \neq y \cdot x$.

DEFINITION 2.6. Eine Gruppe $(G, \cdot, ^{-1}, 1)$ ist *abelsch*, wenn für alle $x, y \in G$ die Gleichung $x \cdot y = y \cdot x$ gilt.

Die Gruppe S_3 ist nicht abelsch:

$$\left(\begin{array}{ccc} 1 & 2 \\ 1 & 3 \end{array}\right) \circ \left(\begin{array}{ccc} 1 & 3 \\ 1 & 2 \end{array}\right) = \left(\begin{array}{ccc} 1 & 3 & 2 \\ 1 & 2 \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 1 & 2 & 3 \end{array}\right)$$

Wir sehen also: wenn $n \geq 3$, dann ist S_n nicht abelsch.

ÜBUNGSAUFGABEN 2.7.

- 1. Geben Sie Beispiele für Gruppen an, die bis jetzt noch nicht erwähnt wurden.
- 2. Sei (G, \cdot) eine abelsche Gruppe mit n Elementen. Zeigen Sie, dass für jedes $g \in G$ gilt: $g^n = 1_G$. Hinweis: Für $G := (\mathbb{Z}_n^*, \cdot)$ ist das der Satz von Euler. Bemerkung: Dieser Satz gilt nicht nur für abelsche, sondern für alle Gruppen.

4. Permutationsgruppen und der Satz von Cayley

DEFINITION 2.8. Sei $(G, \cdot, ^{-1}, 1_G)$ eine Gruppe und sei $H \subseteq G$. H heißt Trägermenge einer Untergruppe von $G :\Leftrightarrow$

- 1. $1_G \in H$
- 2. $\forall h_1, h_2 \in H : h_1 \cdot h_2 \in H \text{ und } h_1^{-1} \in H.$

 $(H, \cdot |_{H \times H}, ^{-1} |_{H}, 1_{G})$ ist dann eine Untergruppe von G.

ÜBUNGSAUFGABEN 2.9.

- 1. Sei $(G, \cdot, ^{-1}, 1)$ eine Gruppe und sei H eine nichtleere Teilmenge von G, sodass für alle $h_1, h_2 \in H$ auch $h_1^{-1} \cdot h_2$ in H liegt. Zeigen Sie, dass H dann Trägermenge einer Untergruppe von $(G,\cdot,^{-1},1)$ ist.
- 2. Sei $(G, \cdot, ^{-1}, 1)$ eine Gruppe und sei H eine nichtleere Teilmenge von G, sodass für alle $h_1, h_2 \in H$ auch $h_1 \cdot h_2$ in H liegt. Muss H dann Trägermenge einer Untergruppe von $(G, \cdot, ^{-1}, 1)$ sein?
- 3. Sei $(G,\cdot,^{-1},1)$ eine Gruppe und sei H eine nichtleere Teilmenge von G, sodass für alle $h_1 \in H$ auch h_1^{-1} in H liegt. Muss H dann Trägermenge einer Untergruppe von $(G, \cdot, ^{-1}, 1)$ sein?
- 4. Sei $(G, \cdot, ^{-1}, 1)$ eine Gruppe, sei H eine nichtleere Teilmenge von G, und sei e ein Element von H. Wir nehmen an, dass $(H, \cdot|_{H\times H}, ^{-1}|_{H}, e)$ eine Gruppe ist. Zeigen Sie $e = 1_G$.
- 5. Sei $(G,\cdot,^{-1},1)$ eine Gruppe und sei H eine endliche nichtleere Teilmenge von G, sodass für alle $h_1, h_2 \in H$ auch $h_1 \cdot h_2$ in H liegt. Muss H dann Trägermenge einer Untergruppe von $(G,\cdot,^{-1},1)$ sein?

Wir bestimmen die Trägermengen von Untergruppen der Gruppe \mathbf{S}_3 und erhalten

```
1. {id},
2. \{ id, (12) \},
3. \{ id, (13) \},
4. \{id, (23)\},\
5. \{id, (123), (132)\},\
6. S_3.
```

Die Trägermengen der Untergruppen kann man durch ⊆ ordnen, und wir erhalten folgendes Hasse-Diagramm.

Ubungsaufgaben 2.10.

- 1. Welche der folgenden Mengen sind Trägermengen von Untergruppen der Gruppe \mathbf{S}_n ? $(n \geq 2)$.
 - (a) $A = \{ f \in S_n \mid f(1) = 1 \};$
 - (b) $B = \{ f \in S_n \mid f(2) > f(1) \};$
 - (c) * C = $\{f \in S_n \mid \forall k \in \{1, 2, \dots, n\} : f(k) \equiv k \cdot f(1) \pmod{n} \}$.

Berechnen Sie die Anzahl der Elemente von A, B, und C!

DEFINITION 2.11. Seien $(G,\cdot,^{-1},1)$, $(H,\odot,^{-1_H},1_H)$ Gruppen. Eine Abbildung $\varphi:G\to H$ heißt Gruppenhomomorphismus : \Leftrightarrow

- 1. $\varphi(g_1 \cdot g_2) = \varphi(g_1) \odot \varphi(g_2)$ für alle $g_1, g_2 \in G$, 2. $\varphi(g_1^{-1}) = (\varphi(g_1))^{-1_H}$,
- 3. $\varphi(1) = 1_H$.

Beispiele:

- 1. Sei $G := (\mathbb{R}^+, \cdot)$ und sei $H := (\mathbb{R}, +)$. Dann ist $\varphi : \mathbb{R} \to \mathbb{R}^+, x \mapsto \ln(x)$ ein Homomorphismus.
- 2. Die Abbildung

$$\varphi: \quad \mathbb{Z} \to \mathbb{Z}_n \\ x \mapsto [x]_n$$

ist ein Homomorphismus von $(\mathbb{Z}, +)$ nach $(\mathbb{Z}_n, +)$.

Definition 2.12. Homomorphismen, die

- injektiv sind, heißen Monomorphismen
- surjektiv sind, heißen Epimorphismen
- bijektiv sind, heißen Isomorphismen
- Homomorphismen von $G \to G$ heißen Endomorphismen.

Bijektive Endomorphismen heißen Automorphismen.

Beispiel: Seien \mathbf{H} und \mathbf{K} die Untergruppen von S_3 mit den Trägermengen

$$H := \{(), (1, 2, 3), (1, 3, 2)\}, K := \{(), (1, 2)\}.$$

Dann ist **H** isomorph zur Gruppe (\mathbb{Z}_3 , +), und **K** isomorph zur Gruppe (\mathbb{Z}_2 , +).

ÜBUNGSAUFGABEN 2.13.

- 1. Wir haben einen Gruppenhomomorphismus als eine Abbildung $\varphi: \mathbf{G} \to \mathbf{H}$ definiert, die folgende drei Bedingungen erfüllt:
 - (a) $\varphi(g_1 \cdot_{\mathbf{G}} g_2) = \varphi(g_1) \cdot_{\mathbf{H}} \varphi(g_2)$ für alle $g_1, g_2 \in G$; (b) $\varphi(g_1_{\mathbf{G}}^{-1}) = (\varphi(g_1))_{\mathbf{H}}^{-1}$ für alle $g_1 \in G$;

 - (c) $\varphi(1_{\mathbf{G}}) = 1_{\mathbf{H}}$.

Seien G und H Gruppen, und sei ψ eine Abbildung, die die erste Bedingung

$$\psi(g_1 \cdot_{\mathbf{G}} g_2) = \psi(g_1) \cdot_{\mathbf{H}} \psi(g_2)$$
 für alle $g_1, g_2 \in G$

erfüllt. Zeigen Sie, dass ψ dann ein Gruppenhomomorphismus ist, das heißt, zeigen Sie, dass ψ auch die anderen beiden Bedinungen erfüllt. Hinweis: Starten Sie mit der dritten Bedingung!

- 2. Finden Sie alle Gruppenendomorphismen von $(\mathbb{Z}_n, +)!$ Wieviele davon sind Automorphismen?
- 3. Die Ordnung eines Gruppenelements g ist das kleinste $n \in \mathbb{N}$, sodass $g^n = 1$. Sei φ ein Gruppenhomomorphismus. Seien **G** und **H** endliche Gruppen, und sei $\varphi:G\to H$ ein Gruppenhomomorphismus. Zeigen Sie, dass für jedes $g\in G$ die Ordnung von g ein Vielfaches der Ordnung von $\varphi(g)$ ist.
- 4. Finden Sie das kleinste $m \in \mathbb{N}$, sodass die Gruppe $(\mathbb{Z}_{30}, +)$ in die symmetrische Gruppe \mathbf{S}_m einbettbar ist!
- 5. Finden Sie eine 4-elementige Untergruppe der S_4 , die nicht isomorph zur \mathbb{Z}_4 ist.

- 6. Seien G und H Gruppen, sei h ein Homomorphismus von G nach H. Sei A Trägermenge einer Untergruppe von G. Zeigen Sie, dass h(A) Trägermenge einer Untergruppe von H ist.
- 7. Seien G und H Gruppen, sei h ein Homomorphismus von G nach H. Sei B Trägermenge einer Untergruppe von H. Zeigen Sie, dass $h^{-1}(B) = \{x \in G \mid h(x) \in B\}$ Trägermenge einer Untergruppe von G ist.
- 8. Zeigen Sie, dass ein Homomorphismus, der die Eigenschaft

für alle
$$x \in G$$
: $h(x) = 1_H \Rightarrow x = 1_G$

erfüllt, injektiv ist.

- 9. Seien $n, m \in \mathbb{N}$. Finden Sie alle Homomorphismen von $(\mathbb{Z}_n, +)$ nach $(\mathbb{Z}_m, +)$.
- 10. Zeigen Sie, dass die Abbildung $f: G \to G, g \mapsto g^{-1}$ genau dann ein Homomorphismus ist, wenn G abelsch ist.
- 11. Sei **G** die Gruppe $((\mathbb{Z}_2)^n, \star)$ mit der Verknüpfung

$$(x_1, x_2, \ldots, x_n) \star (y_1, y_2, \ldots, y_n) := (x_1 \oplus y_1, x_2 \oplus y_2, \ldots, x_n \oplus y_n),$$

wobei \oplus die Addition modulo 2 ist. Sei X eine Menge mit n Elementen, und sei $\mathcal{P}(X)$ die Potenzmenge von X. Zeigen Sie:

 $\mathbf{H} := (\mathcal{P}(X), \Delta)$ ist eine Gruppe. (Finden Sie das Inverse zu $Y \subseteq X$, und das Einselement.)

Geben Sie einen Gruppenisomorphismus von H nach G an!

DEFINITION 2.14. Die Gruppe A heißt einbettbar in G (geschrieben als $A \hookrightarrow G$), wenn es einen Monomorphismus von A nach G gibt.

Da das Bild $\varphi(A) = \{\varphi(a) \mid a \in A\}$ Trägermenge einer Untergruppe von G ist $(\varphi$ sei der Monomorphismus von A nach G), ist A dann sogar isomorph zu einer Untergruppe von G.

Also gilt: einbettbar in ... ⇔ isomorph zu einer Untergruppe von

Beispiel:

1. Ist S_3 einbettbar in S_4 ? Wir betrachten folgende Abbildung:

$$\varphi : S_3 \longrightarrow S_4$$
 $f \longmapsto \varphi(f),$

wobei $\varphi(f)$ definiert ist durch

$$\varphi(f) : \{1, 2, 3, 4\} \longrightarrow \{1, 2, 3, 4\}$$

$$x \longmapsto \begin{cases} f(x) & \text{falls } x \leq 3 \\ 4 & \text{falls } x = 4. \end{cases}$$

Die Abbildung φ ist ein Monomorphismus; S_3 ist also einbettbar in S_4 .

2. Ist $(\mathbb{Z}_4, +)$ in S_4 einbettbar? Da

$$\{id, (1\ 2\ 3\ 4), (1\ 3), (2\ 4), (1\ 4\ 3\ 2)\}$$

Trägermenge einer Untergruppe von S_4 ist, die isomorph zur Gruppe $(\mathbb{Z}_4, +)$ ist, gilt $(\mathbb{Z}_4, +) \hookrightarrow S_4$.

Der Satz von Cayley sagt, dass jede Gruppe in irgendeine Gruppe S_X einbettbar ist; anders gesagt: jede Gruppe ist isomorph zu irgendeiner Untergruppe irgendeiner S_X .

SATZ 2.15 (Satz von Cayley). Sei $\mathbf{G} = (G, \cdot, ^{-1}, 1)$ eine Gruppe. Dann gilt: \mathbf{G} ist einbettbar in $(S_G, \circ, ^{-1}, id_G)$.

Eine n-elementige Gruppe ist also isomorph zu einer Untergruppe der S_n .

Beweis: Sei

$$\Phi: \quad G \to S_G \\ g \mapsto \Phi(g) ,$$

wobei

$$\Phi(g): G \to G$$

 $x \mapsto g \cdot x.$

Wir zeigen nun einige Eigenschaften von Φ :

- 1. Für alle $g \in G$ ist $\Phi(g)$ eine bijektive Abbildung von G nach G. Wir fixieren $g \in G$, und zeigen als erstes, dass $\Phi(g)$ injektiv ist. Dazu fixieren wir $x, y \in G$ so, dass $\Phi(g)(x) = \Phi(g)(y)$. Es gilt dann $g \cdot x = g \cdot y$, daher auch $g^{-1} \cdot (g \cdot x) = g^{-1} \cdot (g \cdot y)$, und somit x = y. Um zu zeigen, dass $\Phi(g)$ surjektiv ist, fixieren wir $y \in G$ und suchen ein x mit $\Phi(g)(x) = y$. Wir finden dieses x als $x := g^{-1} \cdot y$.
- 2. Φ ist injektiv. Seien $g, h \in G$. Wir nehmen an, dass $\Phi(g) = \Phi(h)$ gilt. Dann gilt auch $\Phi(g)(1) = \Phi(h)(1)$, also $g \cdot 1 = h \cdot 1$. Daher gilt g = h.
- 3. Φ ist Homomorphismus. Dazu ist zu zeigen:

$$\forall g, h \in G : \Phi\left(g \cdot h\right) = \Phi\left(g\right) \circ \Phi\left(h\right)$$

Wir fixieren $q, h \in G$ und zeigen:

$$(4.1) \qquad \forall x \in G : \Phi(g \cdot h)(x) = (\Phi(g) \circ \Phi(h))(x).$$

Wir fixieren $x \in G$ und berechnen beide Seiten von (4.1). Die linke Seite erhalten wir durch

$$\Phi(g \cdot h)(x) = (g \cdot h) \cdot x.$$

Die rechte Seite:

$$(\Phi(g) \circ \Phi(h))(x) = \Phi(g)(\Phi(h)(x))$$
$$= \Phi(g)(h \cdot x)$$
$$= q \cdot (h \cdot x).$$

Daher ist Φ ein Monomorphismus.

Beispiel: Wir betten $(\mathbb{Z}_3, +)$ in die Gruppe $S_{\{[0]_3,[1]_3,[2]_3\}}$ ein.

$$[0]_3 \mapsto \varphi_0, \quad \varphi_0(x) = [0]_3 + x, \quad \varphi_0 = ([0]_3)([1]_3)([2]_3) = ()$$

$$[1]_3 \mapsto \varphi_1, \quad \varphi_1(x) = [1]_3 + x, \quad \varphi_1 = ([0]_3[1]_3[2]_3)$$

$$[2]_3 \mapsto \varphi_2, \quad \varphi_2(x) = [2]_3 + x, \quad \varphi_2 = ([0]_3[2]_3[1]_3)$$

5. Sätze von Lagrange und Fermat

SATZ 2.16. Sei H eine Trägermenge einer Untergruppe von (G, \cdot) . Wir definieren auf G eine Relation durch

$$x \sim_H y :\Leftrightarrow x^{-1} \cdot y \in H.$$

Dann ist \sim_H eine Äquivalenzrelation. Außerdem gilt:

- 1. $x \sim_H y \Leftrightarrow x \in y \cdot H = \{y \cdot h \mid h \in H\};$
- 2. Die Äquivalenzklasse von y bezüglich \sim_H ist die Menge $y \cdot H$;
- 3. Alle Äquivalenzklassen haben gleich Kardinalität, und die Kardinalität einer solchen Klasse ist |H|.

Beweis: Wir zeigen zunächst, dass \sim_H eine Äquivalenzrelation ist.

- \sim_H ist reflexiv: Wir fixieren $x \in G$. Zu zeigen ist $x \sim_H x$. Das gilt, falls $x^{-1} \cdot x$ in H liegt. Da H Trägermenge einer Untergruppe von (G, \cdot) ist, gilt $1 \in H$.
- \sim_H ist symmetrisch: Wir fixieren $x, y \in G$ mit $x \sim_H y$. Zu zeigen ist $y \sim_H x$, also $y^{-1} \cdot x \in H$. Da $x^{-1} \cdot y \in H$ und H Trägermenge einer Untergruppe ist, liegt auch $(x^{-1} \cdot y)^{-1}$ in H. Daher gilt auch $y^{-1} \cdot (x^{-1})^{-1} = y^{-1} \cdot x \in H$.
- \sim_H ist transitiv: Wir fixieren $x, y, z \in G$, sodass $x \sim_H y$ und $y \sim_H z$. Zu zeigen ist $x \sim_H z$. Da $x^{-1} \cdot y \in H$ und $y^{-1} \cdot z \in H$, gilt auch $x^{-1} \cdot y \cdot y^{-1} \cdot z \in H$, und daher $x^{-1} \cdot z \in H$.

Nun zeigen wir die drei angegebenen Eigenschaften von \sim_H :

- 1. " \Rightarrow ": Sei $x \sim_H y$. Zu zeigen ist $x \in y \cdot H$. Da $x \sim_H y$, gilt $x^{-1} \cdot y \in H$. Es gibt also $h \in H$ mit $x^{-1} \cdot y = h$. Dann gilt $x^{-1} = h \cdot y^{-1}$, und damit auch $x = y \cdot h^{-1}$. Somit gilt $x \in y \cdot H$. " \Leftarrow ": Sei $h \in H$ so, dass $x = y \cdot h$. Dann ist $y^{-1} \cdot x = h$, somit gilt $y \sim_H x$, und, da \sim_H symmetrisch ist, gilt auch $x \sim_H y$.
- 2. Sei $y \in G$. Wir suchen die Menge

$$[y]_{\sim} := \{ x \in G \mid x \sim_H y \}.$$

Wegen Eigenschaft (1) ist diese Menge gegeben durch $\{x \in G \mid x \sim_H y\} = y \cdot H$. Die Menge $[y]_{\sim}$ schreibt man oft auch als y/\sim .

3. Für alle $y \in G$ ist die Abbildung

$$\begin{array}{cccc} \psi & : & H & \longrightarrow & y \cdot H \\ & h & \longmapsto & y \cdot h \end{array}$$

bijektiv.

Die letzte Eigenschaft sagt, dass alle Äquivalenzklassen der Relation \sim_H gleich viele Elemente haben. Das ergibt folgende Konsequenz:

SATZ 2.17 (Satz von Lagrange). Sei H Trägermenge einer Untergruppe von (G, \cdot) , wobei G endlich ist. Dann gilt: |H| teilt |G|.

Die Anzahl der Elemente von G heißt auch die Ordnung von G. Der Satz von Lagrange sagt also, dass die Ordnung einer Untergruppe ein Teiler der Ordnung der Gruppe ist.

DEFINITION 2.18. Sei G eine Gruppe und $g \in G$. Die kleinste Untergruppe von G, die g enthält, heißt die von g erzeugte Untergruppe. Wir kürzen die Trägermenge der von g erzeugten Untergruppe mit $\langle g \rangle$ ab.

Wie kann $\langle g \rangle$ aussehen?

- 1. Fall: Es gibt $n \in \mathbb{N}$ mit $g^n = 1$: Dann gilt $\langle g \rangle = \{g^1, g^2, \dots, g^m = 1\}$, wobei m das kleinste $m \in \mathbb{N}$ mit $g^m = 1$ ist. Die Gruppe $(\langle g \rangle, \cdot)$ ist dann isomorph zu $(\mathbb{Z}_m, +)$.
- 2. Fall: Es gibt kein $n \in \mathbb{N}$ mit $g^n = 1$: Dann gilt $\langle g \rangle = \{\dots, g^{-2}, g^{-1}, 1_G, g, g^2, \dots\}$. Die Gruppe $(\langle g \rangle, \cdot)$ ist dann isomorph zu $(\mathbb{Z}, +)$.

Eine Gruppe G die ein $g \in G$ besitzt, sodass $\langle g \rangle = G$, heißt zyklisch. Jede zyklische Gruppe ist isomorph zu einem $(\mathbb{Z}_m, +)$ $(m \in \mathbb{N})$, oder zu (Z, +).

DEFINITION 2.19. Sei (G, \cdot) eine Gruppe, und sei g ein Element von G. Mit ord (g) (Ordnung von g) bezeichnen wir das kleinste $m \in \mathbb{N}$, sodass $g^m = 1_G$, falls es ein solches m gibt; sonst schreiben wir ord $g = \infty$.

Beispiel: Wir berechnen die Ordnung zweier Elemente der Gruppe $(\mathbb{Z}_5 \setminus \{0\}, \cdot)$. Es gilt ord $([2]_5) = |\langle g \rangle| = |\{2, 4, 3, 1\}| = 4$, und ord $([4]_5) = |\{4, 1\}| = 2$.

SATZ 2.20 (Satz von Fermat). Sei (G, \cdot) eine endliche Gruppe und sei $g \in G$. Dann gilt:

- 1. ord (g) teilt |G|;
- 2. $g^{|G|} = 1_G$.

Beweis: Die Gruppe $(\langle g \rangle, \cdot)$ hat ord (g) Elemente. Nach dem Satz von Lagrange teilt also ord (g) die Zahl |G|. Die zweite Eigenschaft zeigen wir so:

Aus der Definition von ord (g) erhalten wir $g^{\operatorname{ord}(g)} = 1_G$. Daher gilt auch $g^{|G|} = (g^{\operatorname{ord}(g)})^{\frac{|G|}{\operatorname{ord}(g)}} = 1_G$.

Der Satz von Fermat liefert auch ein Ergebnis aus der Zahlentheorie. Für $\mathbb{Z}_n^* := \{[x]_n \mid x \in \mathbb{Z} \text{ und } \operatorname{ggT}(x,n) = 1\}$ hat die Gruppe (\mathbb{Z}_n^*,\cdot) genau $\varphi(n)$ Elemente. Für jedes Element a dieser Gruppe gilt daher $a^{\varphi(n)} = [1]_n$.

Für jede Permutation $\pi \in S_n$ gilt: $\pi^{n!} = \text{id}$. Das hat Konsequenzen in der Kryptologie: Eine Verschlüsselungsabbildung E ist oft eine Permutation einer endlichen Menge; es gibt also ein $n \in \mathbb{N}$, sodass $E^n(x) = x$. Kennt man also E(x) und die Funktion E, so iteriert man die Anwendung von E so lange, bis man $E^{n+1}(x) = E(x)$ erhält. Dann ist $E^n(x)$ der gesuchte Klartext (repeated encryption).

6. Die Abzähltheorie von Pólya

Wir lösen folgendes Problem: Auf wieviele Arten kann man die Ecken eines Quadrats mit drei Farben färben? Dabei sehen wir zwei Färbungen als gleich an, wenn man sie durch Drehungen oder Spiegelungen des Quadrats ineinander überführen kann.

DEFINITION 2.21 (Gruppenoperation). Sei (G, \cdot) eine Gruppe und X eine Menge. Eine Verknüpfung $*: G \times X \to X$ heißt Gruppenoperation, falls gilt:

- 1. Für alle $\xi \in X : 1_G * \xi = \xi$;
- 2. für alle $g, h \in G$ und $\xi \in X : g * (h * \xi) = (g \cdot h) * \xi$.

Diese Gruppenoperationen geben uns eine Möglichkeit, ein mathematisches Modell für das Färbeproblem zu finden. Eine Färbung ist eine Funktion von der Menge der Ecken $\{1, 2, 3, 4\}$ in die Menge der Farben $\{r, b, g\}$. Die Menge aller Färbungen X ergibt sich also als:

$$X = \{f : \{1, 2, 3, 4\} \to \{r, b, g\}\}.$$

Jede Symmetrieoperation des Quadrats ist eine Permutation der vier Eckpunkte. Alle Symmetrieoperationen erhalten wir aus folgendem Dialog mit GAP [GAP, 1999]. Diese Symmetriegruppe nennen wir D_4 .

```
gap> D4 := Group ((1,2,3,4), (1,2)(3,4));
Group([ (1,2,3,4), (1,2)(3,4) ])
gap> AsList (D4);
[ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) ]
gap>
```

Zwei Färbungen α, β sind gleich, wenn es ein g aus der "Symmetriegruppe" gibt, sodass für alle Eckpunkte $z \in \{1, 2, 3, 4\}$ gilt:

$$\beta(g(z)) = \alpha(z).$$

Wir definieren nun eine Gruppenoperation von D_4 auf der Menge X der Färbungen:

$$\begin{array}{cccc} * & : & G \times X & \longrightarrow & X \\ & & (g, \alpha) & \longmapsto & g * \alpha, \end{array}$$

wobei

(Die näherliegende Definition $g*\alpha(z) := \alpha(g(z))$ ergibt keine Gruppenoperation.)

DEFINITION 2.22. Sei G eine Gruppe, X eine Menge und * eine Gruppenoperation von G auf X. Wir bezeichnen ξ und η in X als G-äquivalent, falls es ein $g \in G$ gibt, sodass $\xi = g * \eta$. Wir schreiben dafür $\xi \approx_G \eta$.

Es gilt also

$$\xi \approx_G \eta : \Leftrightarrow \exists g \in G : g * \xi = \eta.$$

Satz 2.23. Sei G eine Gruppe, X eine Menge und * eine Gruppenoperation von G auf X. Dann gilt:

- 1. \approx_G ist eine Äquivalenzrelation.
- 2. Für ein $\xi \in X$ ist die Äquivalenzklasse $\xi / \approx_G = \{ \eta \in X \mid \eta \approx_G \xi \}$ gegeben durch

$$\{\eta \in X \mid \eta \approx_G \xi\} = \{g * \xi \mid g \in G\}.$$

 $G*\xi := \{g*\xi \mid g \in G\}$ heißt "Bahn" oder "Orbit" von ξ unter der Operation von G. Wenn wir also die nichtäquivalenten Färbungen des Quadrats zählen wollen, dann müssen wir die Anzahl der Bahnen der Gruppenoperation von D_4 auf der Menge der Färbungen X berechnen. Diese Anzahl der Bahnen erhalten wir aus folgendem Satz:

SATZ 2.24 (Frobenius-Burnside-Lemma). Sei G eine Gruppe, sei X eine Menge, und sei * eine Gruppenoperation von G auf X. Sei n die Anzahl der Bahnen von G auf X. Dann gilt:

$$n = \frac{1}{|G|} \cdot \sum_{g \in G} |\text{Fix } (g)|,$$

$$wobei \; \mathrm{Fix} \, (g) = \{ \xi \in X \mid g * \xi = \xi \}$$

Bevor wir diesen Satz beweisen, wenden wir ihn auf das Abzählproblem an. Wir berechnen also Fix (g) für alle Elemente $g \in G$. Wir tun das zum Beispiel für g = (1,4,3,2). Eine Färbung α liegt in Fix (g), falls für alle $z \in \{1,2,3,4\}$ gilt: $\alpha(z) = \alpha(g(z))$. Damit gilt: $\alpha(1) = \alpha(4)$, $\alpha(4) = \alpha(3)$, $\alpha(3) = \alpha(2)$, $\alpha(2) = \alpha(1)$. Also liegen in Fix (g) alle Färbungen, die alle 4 Eckpunkte gleich färben. Das

sind, bei drei Farben, genau drei Stück. Für g=(1,2)(3,4) liegen genau jene Färbungen in Fix (g), die $\alpha(1)=\alpha(2)$ und $\alpha(3)=\alpha(4)$ erfüllen. Das sind $3\cdot 3=9$ Stück. Für g=(1,3) werden genau die Färbungen von g fixiert, bei denen 1 und 3 gleich gefärbt werden. Das sind 27 Färbungen. Der Satz von Burnside-Frobenius ergibt also für die Anzahl n der Färbungen

$$n = \frac{1}{8}(3^4 + 3^3 + 3^2 + 3^1 + 3^3 + 3^2 + 3^1 + 3^2).$$

Es gibt also 21 verschiedene Färbungen.

Beispiel: Wir färben ein Sechseck mit den Farben rot und blau so, dass drei Ecken rot und drei Ecken blau sind. Zwei Färbungen des Sechsecks seien gleich, wenn sie durch Drehung ineinander übergeführt werden können. Wieviele Färbungen gibt es?

Die Menge X aller Färbungen ist gegeben durch

$$X = \left\{ \varphi \mid \varphi : \left\{1, 2, \dots, 6\right\} \to \left\{r, b\right\}, \left|g^{-1}\left(\left\{r\right\}\right)\right| = 3, \left|g^{-1}\left(\left\{b\right\}\right)\right| = 3\right\}.$$

Auf dieser Menge X operiert die Gruppe G (Untergruppe der S_6) durch

$$g * \varphi(z) := \varphi(g^{-1}(z))$$

Wir suchen die Anzahl der Bahnen der Gruppe G auf X. Nach dem Frobenius-Burnside-Lemma erhalten wir für diese Anzahl $n = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}(g)|$ mit $\operatorname{Fix}(g) = \{ \varphi \in X \mid g * \varphi = \varphi \}.$

Welche Permutationen auf $\{1,2,\ldots,6\}$ liegen in der "Drehgruppe des Sechsecks"? Wir finden die Drehungen:

$$G = \{(), (123456), (135), (246), (14), (25), (36), (153), (264), (165432)\}.$$

Wir erhalten die Tabelle:

$$\begin{array}{c|c} |Fix (g)| \\ \hline 1 \times () & \binom{6}{3} = 20 \\ 2 \times (123456) & 0 \\ 3 \times (135) (246) & 2 \\ 4 \times (14) (25) (36) & 0 \\ \hline \end{array}$$

Die Anzahl der Bahnen ergibt sich als $n = \frac{1}{6} \cdot (20 + 2 \cdot 2) = 4$.

Wieviele verschiedene Färbungen eines Sechsecks gibt es, wenn wir zwei Färbungen als gleich betrachten, wenn sie durch Spiegelungen und Drehungen des Sechsecks ineinander übergehen? Wieder sollen drei Eckpunkte rot und drei blau sein. Wir erhalten folgende Tabelle:

$$\begin{array}{c|cccc} () & & & \begin{pmatrix} 6 \\ 3 \end{pmatrix} = 20 \\ (26) (35) (1) (4) & & 4 \\ (13) (46) (2) (5) & & 4 \\ (15) (24) (3) (6) & & 4 \\ 4 \times \left\{ & (12) (36) (45) & 0 \\ 2 \times \left\{ & (123456) & 0 \\ 2 \times \left\{ & (135) (246) & 2 \end{array} \right. \right.$$

Wir bekommen nun für die Anzahl n der Bahnen $n = \frac{1}{12} \cdot (20 + 12 + 4) = 3$.

Beweis des Satzes von Frobenius-Burnside: Wir zählen die Elemente der Menge F auf zwei Arten, wobei

$$F := \{ (g, \xi) \mid g \in G, \xi \in X, g * \xi = \xi \}.$$

Wir erhalten

$$|F| = \sum_{g \in G} |\{\xi \in X : g * \xi = \xi\}| = \sum_{g \in G} |\operatorname{Fix}(g)|$$

und

$$|F| = \sum_{\xi \in X} |\{g \in G : g * \xi = \xi\}|.$$

Die Menge $\{g \mid g * \xi = \xi\}$ heißt *Stabilisator von* ξ . Wir schreiben dafür auch stab_G $(\xi) = G_{\xi}$. Wir zeigen zunächst, dass für alle $\xi \in X$ gilt:

(6.1)
$$|G * \xi| = |\{g * \xi \mid g \in G\}| = \text{Größe des Orbits von } \xi = \frac{|G|}{|\operatorname{stab}_{G} \xi|}$$

Die Abbildung $\phi: G \to G * \xi, g \mapsto g * \xi$ ist surjektiv. Außerdem gilt $\phi(g) = \phi(h)$, falls $g * \xi = h * \xi$. Das gilt genau dann, wenn $g^{-1} \cdot h \in \operatorname{stab}_G \xi$. Nun ist $S := \operatorname{stab}_G \xi$ eine Untergruppe von G. Die Gleichheit $\phi(g) = \phi(h)$ gilt also genau dann, wenn $g^{-1} \cdot h \in S$. Jedes Element in $G * \xi$ hat also genau |S| Urbilder unter ϕ , und es gilt:

$$|S| \cdot |G * \xi| = |G|.$$

Wir bekommen also:

$$\sum_{\xi \in X} |\{g \in G : g * \xi = \xi\}| = \sum_{\xi \in X} |\mathrm{stab}_G \xi|$$
$$= \sum_{\xi \in X} \frac{|G|}{|G * \xi|}.$$

Wir wählen nun Repräsentanten für die Orbits. Wir wählen also $\xi_1, \xi_2, \dots, \xi_n$ so, dass $G * \xi_i \cap G * \xi_j = \emptyset$, und $G * \xi_1 \cup G * \xi_2 \cup \dots \cup G * \xi_n = X$. Alle Elemente η

in $G * \xi_1$ erfüllen $G * \eta = G * \xi_1$. Wir verwenden diese Eigenschaft, und rechnen:

$$\sum_{\xi \in X} \frac{|G|}{|G * \xi|} = \sum_{j=1}^{n} |G * \xi_n| \cdot \frac{|G|}{|G * \xi_n|}$$
$$= n \cdot |G|.$$

Die Anzahl der Elemente von F ist also $n \cdot |G|$. Wir erhalten also:

$$\sum_{g \in G} |\operatorname{Fix}(g)| = |G| \cdot n.$$

ÜBUNGSAUFGABEN 2.25.

- 1. Wir färben die Ecken eines regelmäßigen Fünfecks mit den Farben rot, blau, und gelb.
 - (a) Wieviele Möglichkeiten gibt es, die Ecken zu färben, wenn wir zwei Färbungen als gleich ansehen, wenn sie durch eine Drehung des Fünfecks ineinander übergeführt werden können?
 - (b) Wieviele Möglichkeiten gibt es, die Ecken zu färben, wenn wir zwei Färbungen als gleich ansehen, wenn sie durch Drehungen und eine Spiegelungen des Fünfecks ineinander übergeführt werden können. (Hinweis: es gibt jetzt 10 Symmetrieoperationen.)
- 2. Wir färben Flächen eines Würfels.
 - (a) Wieviele verschiedene Färbungen gibt es, wenn wir zwei Farben nehmen und zwei Färbungen als gleich betrachten, wenn sie durch eine Symmetrieoperation des Würfels ineinander übergeführt werden können. Dabei operiert auf den Flächen $\{1,2,3,4,5,6\}$ des Würfels die Untergruppe der S_6 , die von (4,2,3,5), (1,2,6,5), (3,1,4,6) erzeugt wird. Ihre Elemente entnehmen Sie dem folgenden Dialog mit GAP (steht für Groups Algorithms -Programming, ein in Aachen und St. Andrews entwickeltes, im wesentlichen frei verfügbares Gruppentheoriesystem [GAP, 1999]):

- (b) Wieviele verschiedene Färbungen gibt es mit 3, wieviele mit n Farben?
- 3. Auf wieviele verschiedene Arten können Sie die Ecken eines Quadrats mit drei Farben färben, wenn jede Farbe wirklich vorkommen soll? Dabei sind zwei

□.

Färbungen gleich, wenn sie durch eine Symmetrieoperation des Quadrats ineinander übergeführt werden können.

```
gap> G := Group ((1,2,3,4), (1,2) (3,4));'
Group([ (1,2,3,4), (1,2)(3,4) ])
gap> Size (G);
8
gap> AsList (G);
[ (), (2,4), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (1,4,3,2), (1,4)(2,3) ]
```

4. Auf wieviele verschiedene Arten können Sie die Ecken eines Quadrats mit drei Farben färben, wenn zwei Färbungen dann als gleich angesehen werden, wenn sie durch Vertauschung der Farben ineinander übergeführt werden können? Das Quadrat dürfen wir dabei nicht bewegen. Außerdem müssen bei einer Färbung nicht alle 3 Farben vorkommen. *Hinweis:* Sie brauchen eine neue Gruppenoperation. Es operiert jetzt die S₃ auf den Färbungen. Aber wie?

```
gap> G := Group ((1,2), (1,2,3));
Group([ (1,2), (1,2,3) ])
gap> AsList (G);
[ (), (2,3), (1,2), (1,2,3), (1,3,2), (1,3) ]
```

7. Kongruenzrelationen auf Gruppen

DEFINITION 2.26. Sei (G, \circ) eine Gruppe, und sei \sim eine Relation auf G. Diese Relation \sim ist kompatibel mit \circ , wenn für alle $g_1, g_2, h_1, h_2 \in G$ mit $g_1 \sim g_2$ und $h_1 \sim h_2$ auch

$$g_1 \circ h_1 \sim g_2 \circ h_2$$

gilt. Eine Äquivalenzrelation auf G, die kompatibel mit \circ ist, heißt Kongruenzrelation auf (G, \circ) .

Beispiel: Auf der Gruppe $(\mathbb{Z}, +)$ ist die Relation \sim , die durch

$$x \sim y :\Leftrightarrow 5 \text{ teilt } x - y$$

definiert ist, eine Kongruenzrelation.

ÜBUNGSAUFGABEN 2.27.

1. Sei (G, \circ) eine Gruppe, und sei \sim eine Kongruenzrelation auf (G, \circ) . Seien $a, b \in G$ so, dass $a \sim b$. Zeigen Sie $a^{-1} \sim b^{-1}$.

Sei (G, \circ) eine Gruppe und sei \sim eine Kongruenzrelation Auf der Menge $G/_{\sim}$ aller Klassen modulo \sim definieren wir folgende Verknüpfung \odot .

$$g_1/_{\sim} \otimes g_2/_{\sim} := (g_1 \circ g_2)/_{\sim}$$
 für alle $g_1, g_2 \in G$.

Wir müssen nachweisen, dass \odot wohldefiniert ist. Dazu ist zu zeigen, dass $g \sim g'$ und $h \sim h'$ impliziert, dass $g \circ h \sim g' \circ h'$ gilt. Das gilt, weil \sim eine Kongruenz-relation ist.

Wir beschreiben jetzt alle Kongruenzrelationen auf einer Gruppe.

SATZ 2.28. Sei (G, \circ) eine Gruppe, und sei \sim eine Relation auf G. Dann sind folgende Aussagen äquivalent:

- 1. Die Relation \sim ist eine Kongruenzrelation auf G.
- 2. Es gibt eine Untergruppe (N, \circ) von (G, \circ) , sodass gilt:
 - (a) $\forall g \in G \, \forall n \in \mathbb{N} : g^{-1} \circ n \circ g \in \mathbb{N} \ (Normalteiler eigenschaft)$
 - (b) $\forall x, y \in G : x \sim y \Leftrightarrow x^{-1} \circ y \in N$

Wenn N die Trägermenge einer Untergruppe von (G, \circ) ist, die die Eigenschaft

für alle
$$g \in G$$
, $n \in N : g^{-1} \circ n \circ g \in N$

erfüllt, dann heißt N Normalteiler von (G, \circ) .

Beispiele:

- Sei $G=(\mathbb{Z},+)$, $N=\{5\cdot z\mid z\in\mathbb{Z}\}$. Dann ist N ein Normalteiler von $(\mathbb{Z},+)$.
- Sei (G, \cdot) abelsch. Dann ist jede Trägermenge einer Untergruppe ein Normalteiler von G.
- In S_3 sind folgende Untergruppen Normalteiler:

Es gilt $(132) \circ (12) \circ (123) = (13)$, daher ist die Menge $\{(), (12)\}$ kein Normalteiler.

Beweis von Satz 2.28: Wir zeigen zunächst die Implikation $(1) \Rightarrow (2)$:

Wir fixieren eine Kongruenzrelation \sim auf G. Wir behaupten, dass

$$N := \{ x \in G \mid x \sim 1_G \}$$

ein Normalteiler ist, und dass die Bedingung

$$(7.1) x \sim y \Leftrightarrow x^{-1} \cdot y \in N$$

erfüllt ist. Zunächst zeigen wir, dass N Trägermenge einer Untergruppe von (G, \circ) ist. Wir fixieren $x, y \in N$ und zeigen $x^{-1} \in N$. Wir wissen, dass $x \sim 1_G$ gilt. Da \sim eine Kongruenzrelation ist, gilt auch $x^{-1} \circ x \sim x^{-1} \circ 1_G$. Daher gilt $1_G \sim x^{-1}$ und somit auch $x^{-1} \in N$. Nun zeigen wir, dass auch $x \circ y \in N$ liegt. Wir wissen $x \sim 1_G$ und $y \sim 1_G$; also gilt $x \circ y \sim 1_G \circ 1_G = 1_G$, und daher liegt $x \circ y$ in N.

Um zu zeigen, dass N ein Normalteiler von (G, \circ) ist, fixieren wir $g \in G$ und $n \in N$ und zeigen $g^{-1} \circ n \circ g \in N$. Das Element $g^{-1} \circ n \circ g$ liegt in N, falls

 $g^{-1} \circ n \circ g \sim 1_G$ gilt. Wir wissen, dass $n \sim 1_G$ gilt. Daher gilt $g^{-1} \circ n \sim g^{-1}$ und $g^{-1} \circ n \circ g \sim 1_G$.

Nun zeigen wir, dass die Eigenschaft (7.1) ebenfalls erfüllt ist: wir zeigen zuerst die Implikation " \Rightarrow ". Wir fixieren $x, y \in G$ mit $x \sim y$. Dann gilt auch $x^{-1} \circ x \sim x^{-1} \circ y$, und somit liegt $x^{-1} \circ y$ in N. Für " \Leftarrow " fixieren wir $x, y \in G$ mit $x^{-1} \circ y \in N$. Es gilt dann $x^{-1} \circ y \sim 1_G$, und daher auch $x \circ x^{-1} \circ y \sim x \circ 1_G$, und somit $y \sim x$.

Jetzt zeigen wir die Implikation: (2) \Rightarrow (1): Sei N ein Normalteiler von G und \sim definiert durch

$$x \sim y \Leftrightarrow x^{-1} \circ y \in N$$
.

Wir müssen zeigen, dass \sim eine Kongruenzrelation ist. Dazu fixieren wir $x_1, x_2, y_1, y_2 \in G$ mit $x_1 \sim x_2$ und $y_1 \sim y_2$. Zu zeigen ist $x_1 \circ y_1 \sim x_2 \circ y_2$, d.h.,

$$(x_1 \circ y_1)^{-1} \circ x_2 \circ y_2 \in N,$$

also

$$y_1^{-1} \circ x_1^{-1} \circ x_2 \circ y_2 \in N.$$

Wir haben ein $n \in \mathbb{N}$, sodass $x_1^{-1} \circ x_2 = n$. Dann ergibt sich

$$y_1^{-1} \circ x_1^{-1} \circ x_2 \circ y_2 = y_1^{-1} \circ n \circ y_2$$

= $y_1^{-1} \circ n \circ y_1 \circ y_1^{-1} \circ y_2$.

Der letzte Ausdruck liegt in N.

Wenn (G, \circ) eine Gruppe und N ein Normalteiler von (G, \circ) ist, dann ist $\sim_N := \{(x,y) \in G \times G \mid x^{-1} \circ y \in N\}$ eine Kongruenzrelation von (G, \circ) . Die Faktorgruppe $(G/\sim_N, \odot)$ schreibt man auch einfach als G/N. Die Gruppe G/N heißt Faktorgruppe von G modulo N.

SATZ 2.29. Seien (G, \cdot) und (H, \cdot) Gruppen und sei $\varphi : G \to H$ ein Homomorphismus. Dann ist ker $\varphi = \{x \mid \varphi(x) = 1_H\}$ ein Normalteiler von G. Außerdem gilt für alle $x, y \in G$, dass $x^{-1} \cdot y$ genau dann in ker φ liegt, falls $\varphi(x) = \varphi(y)$.

Für einen Gruppenhomomorphismus φ von (G,\cdot) nach (H,\cdot) bezeichnen wir mit im φ die Menge $\{\varphi(g) \mid g \in G\}$. Die Menge im φ ist dann Trägermenge einer Untergruppe von (H,\cdot) , und es gilt folgender Satz:

SATZ 2.30. Seien (G, \cdot) und (H, \cdot) Gruppen und sei $\varphi : G \to H$ ein Homomorphismus. Dann ist die Gruppe $(\operatorname{im} \varphi, \cdot)$ isomorph zur Faktorgruppe $G/\ker \varphi$.

SATZ 2.31 (Satz von Sylow). Sei p eine Primzahl, sei $a \in N$, und sei $m \in \mathbb{N}$ so, dass ggT(p,m) = 1. Sei G eine Gruppe mit $p^a \cdot m$ Elementen. Dann hat G eine Untergruppe mit p^a Elementen.

Beispiel: Jede 12-elementige Gruppe hat eine Untergruppe mit 4 Elementen.

Literaturverzeichnis

[Buchberger, 1982] Buchberger, B. (1982). Algebraic simplification. In Buchberger, B., Collins, G., and Loos, R., editors, Computer algebra – symbolic and algebraic computation, pages 11–43. Springer-Verlag Wien.

[Euklid, 1991] Euklid (1991). *Die Elemente*. Wissenschaftliche Buchgesellschaft, Darmstadt. Buch I–XIII. [Book I–XIII], Based on Heiberg's text, Translated from the Greek and edited by Clemens Thaer.

[GAP, 1999] GAP (1999). GAP - Groups, Algorithms, and Programming, Version 4.1. The GAP Group, Aachen, St Andrews. (http://www-gap.dcs.st-and.ac.uk/~gap).

[Knuth and Bendix, 1970] Knuth, D. E. and Bendix, P. B. (1970). Simple word problems in universal algebras. In *Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967)*, pages 263–297. Pergamon, Oxford.

[Lidl and Pilz, 1998] Lidl, R. and Pilz, G. F. (1998). Applied abstract algebra. Springer-Verlag, New York, second edition.

[Remmert and Ullrich, 1987] Remmert, R. and Ullrich, P. (1987). *Elementare Zahlentheorie*. Birkhäuser Verlag, Basel.

[Rivest et al., 1978] Rivest, R. L., Shamir, A., and Adleman, L. (1978). A method for obtaining digital signatures and public-key cryptosystems. *Comm. ACM*, 21(2):120–126.

[Rotman, 1998] Rotman, J. (1998). Galois theory. Springer-Verlag, New York, second edition.