UE Einführung in die Algebra und Diskrete Mathematik KV Algebra und Diskrete Mathematik

9. Übungszettel, 28. Mai 2013

- 1. Zerlegen Sie $x^5 + 2x^4 + 4x^3 + x + 4 \in \mathbb{Z}_5[x]$ in quadratfreie Faktoren (mittels Ableitung und ggT).
- 2. Zerlegen Sie $x^4 + 2x^3 + 2x + 2 \in \mathbb{Z}_3[x]$ in irreduzible Faktoren (mittels Berlekamp-Algorithmus).
- 3. (a) Bestimmen Sie den Exponent von $f = x + 5 \in \mathbb{Z}_7[x]$. Ist f maximalperiodisch?
 - (b) Finden Sie ein irreduzibles Polynom in $\mathbb{Z}_7[x]$, dessen Grad größer als 5000 ist.
- 4. Sei $g = x^3 + x^2 + 2x + 2 \in \mathbb{Z}_3[x]$.
 - (a) Welche Vielfachheit hat 2 als Nullstelle von g? Hat g weitere Nullstellen? Wenn ja, mit welcher Vielfachheit?
 - (b) Geben Sie ein Polynom $h \in \mathbb{Z}_3[x]$ mit $h \neq g$ an, sodass $\bar{h} = \bar{g}$.
- 5. (a) Die formalen Potenzreihen $(\mathbb{Z}_p[[x]]\setminus \{\mathbf{o}\}, \cdot)$, bilden ein kommutatives Monoid. Zeigen Sie, dass die Kürzungsregel gilt.
 - (b) Finden Sie durch unbestimmten Ansatz eine formale Potenzreihe $\sum_{i=0}^{\infty} a_i x^i$ über \mathbb{Z}_p , sodass

$$(1+x)\cdot\left(\sum_{i=0}^{\infty}a_ix^i\right)=1$$

gilt. (Beweis für für die zweite Aussage in Satz 17.4 b)