UE Einführung in die Algebra und Diskrete Mathematik KV Algebra und Diskrete Mathematik

8. Übungszettel, 13. Mai 2013

- 1. Sei G eine Gruppe, $q \in G$. Zeigen Sie mindestens 2 der folgenden 4 Sätze.
 - (a) Durch $k \mapsto gkg^{-1}$ wird ein Automorphismus von G definiert.
 - (b) Für jede Untergruppe K und jedes $g \in G$, ist gKg^{-1} wieder eine Untergruppe, und K ist genau dann normal, wenn für alle g gilt: $gKg^{-1} = K$.
 - (c) Ist K die einzige Untergruppe der Ordnung |K|, dann ist K normal.
 - (d) Ist K eine Untergruppe des Zentrums, dann ist K normal; insbesondere ist Z(G) stets normal.
- 2. Wählen Sie 17 und 11 als "große" Primzahlen, und verschlüsseln und signieren Sie damit eine Nachricht Ihrer Wahl.
- 3. Finden Sie alle Lösungen von

$$x \equiv 0 \pmod{3},$$

 $x \equiv 1 \pmod{7}.$

- 4. Sei $f = x^6 + 3x^5 + 4x^4 + 6x^3 + 6x^2 + 3x + 3$, $g = x^2 + x + 2$. Berechnen Sie f + g, Gd(f g), $Gd(f \cdot g)$ und bestimmen Sie Polynome q, r, mit Gd r < Gd g sodass $f = q \cdot g + r$. Ist g ein Teiler von f? Lösen Sie die Aufgabe sowohl unter der Annahme $f, g, q, r \in \mathbb{Z}[x]$ als auch $f, g, q, r \in \mathbb{Z}_5[x]$. Vergleichen Sie die Rechnungen auch mit der Division von 1346633 durch 112.
- 5. Finden Sie Polynome r und s, sodass

$$r \cdot (x^2 + 1) + s \cdot (x^3 - 1) = 1.$$

Lösen Sie das Problem sowohl für Polynome in $\mathbb{Z}[x]$ als auch $\mathbb{Z}_2[x]$.