KV Einführung in die Algebra und Diskrete Mathematik

Blatt 5

35. Sei (G, \circ) eine Gruppe. Zeigen Sie, dass das neutrale Element e dieser Gruppe eindeutig bestimmt ist. Zeigen Sie, dass es zu jedem Element $a \in G$ genau ein Element $\overline{a} \in G$ gibt mit

$$a \circ \overline{a} = \overline{a} \circ a = e$$
.

- 36. Sind folgende Mengen G eine Gruppe bezüglich der Verknüpfung " \circ "?
 - (a) $G = \mathbb{Q} \setminus \{-1\}$ und $a \circ b = a + b + ab$ für alle $a, b \in G$.
 - (b) G eine beliebige Menge mit $|G| \ge 2$ und $a \circ b = a$ für alle $a, b \in G$.
- 37. Sei (G, \circ) eine Gruppe mit $a \circ a = e$ für alle $a \in G$ (e ist das neutrale Element der Gruppe). Zeigen Sie, dass (G, \circ) eine kommutative Gruppe ist.
- 38. Überprüfen Sie ob die Gruppe (\mathbb{Z}_7^*, \cdot) zyklisch ist.
- 39. Sei (G, \circ) eine endliche Gruppe, dh. $|G| < \infty$. Zeigen Sie, dass es für jedes $a \in G$ eine natürliche Zahl $m \in \mathbb{N}$ gibt, sodass $a^m = e$. (Definition: Die kleinste natürliche Zahl n mit $a^n = e$ nennt man die Ordnung von $a \in G$.)