Discrete Mathematics 368.115 Exercise sheet 4 for October 28, 2016

Solve 3 out of 5!

- (1) Design a deterministic finite automaton that recognizes the language L_1 that contains exactly those $x \in \{a, b, c\}^*$ that contain all three letters a, b, c, and have the additional property that the first occurrence of a comes before the first occurrence of b, and the first occurrence of b comes before the first occurrence of c.
- (2) Design a deterministic finite automaton that recognizes the complement of L_1 .
- (3) We say that $x_1x_2...x_m$ is a scattered subword of $y_1y_2...y_n$ if there are $w_0, ..., w_m \in A^*$ with $y_1y_2...y_n = w_0x_1w_1x_2w_2...x_mw_m$. Show that the set of all words in $\{a, b\}^*$ that do not have *aba* as a scattered subword is a recognizable language.
- (4) On a deterministic finite automaton M = (A, Q, I, J, R) over A, define two states q_1, q_2 to be *equivalent* $(q_1 \sim q_2)$ if for all $x \in A^*$, we have

$$\delta(x,q_1) \in J \Longleftrightarrow \delta(x,q_2) \in J.$$

- (a) Show that for all $a \in A$, we have $q_1 \sim q_2 \Rightarrow \delta(a, q_1) \sim \delta(a, q_2)$.
- (b) Give an example of a finite automaton such that for all $a \in A$, $\delta(a, q_1) \sim \delta(a, q_2)$, and $q_1 \not\sim q_2$.
- (c) Show that a final state can never be equivalent to a nonfinal state.
- (d) Give an example of a deterministic finite automaton with two nonequivalent final states.
- (5) On a deterministic finite automaton M = (A, Q, I, J, R) over A, define two states q_1, q_2 to be equivalent $(q_1 \sim q_2)$ if for all $x \in A^*$, we have $\delta(x, q_1) \in$ $J \Leftrightarrow \delta(x, q_2) \in J$. Since A^* is infinite, this definition does not immediately yield a procedure to decide whether two given q_1, q_2 are equivalent. Design an algorithm that decides whether $q_1 \sim q_2$. (The focus is not on the efficiency of this algorithm, but on its existence).