Discrete Mathematics 368.115 Exercise sheet 1 for October 7, 2016

- 1. Design a deterministic finite automaton that recognizes $L = \{x \in \{a, b\}^* :$ the symbol before the last symbol is a $b\}$.
- 2. Design a nondeterministic finite automaton that recognizes $L = \{x \in \{a, b\}^* : \text{the symbol before the last symbol is a }b\}$, possibly with at most 3 states.
- 3. (cf. [1, p. 301]) Design a deterministic finite automaton that recognizes the set of strings over the alphabet $\{a, b\}$ containing at least two occurrences of two consecutive b's, overlapping permitted (e.g., the string bbb should be accepted).
- 4. Let $L \subseteq A^*$, and let $u \in A^*$. We define

$$u^{-1}L := \{ x \in A^* : ux \in L \}.$$

Let $a, b \in A, u \in A^*$. Show:

- (a) $b^{-1}(a^{-1}L) = (ab)^{-1}L$,
- (b) $u^{-1}(L_1 \cup L_2) = (u^{-1}L_1) \cup (u^{-1}L_2),$
- (c) $A^* \setminus (u^{-1}L) = u^{-1}(A^* \setminus L).$
- 5. Let L be a language that is recognized by a deterministic finite automaton with q states. Suppose that L contains no word with less then q letters. Show that L is empty.

References

 D. C. Kozen. Automata and computability. Undergraduate Texts in Computer Science. Springer-Verlag, New York, 1997.