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Chapter 1

Words and Sets

This chapter confronts us with the most basic abstract structures:

e words (or strings), which represent the simplasteredstructures, and
e sets (or collections), which represent the simplesirderedstructures.

As we shall see, permutationis nothing but a word over an appropriately chosen
alphabet, while a&ombinationis just a subset of a finite set. It is natural to ask
why should one invent so complicated hames for such simple objects. Tierans
is simple. In the dark past of Discrete Mathematics the terminology used to be as
obscure as the ages that gave birth to it. Since the introduction of the nachesssu
permutatiorandcombinatiormathematics has gone a long way and brought many
simplifications, both in terminology and understanding of the phenomena.
Throughout the course we shall use the following notation

N=1{1,2,3,...} forthe set of positive integers,
No=1{0,1,2,3,...} forthe set of nonnegative integers, and
Ng ={0,1,2,3,...} U{eo}.

The sefNg is a usual extension dfp with the greatest elemest X+ 00 =04 x=
X-00 =o00-X=oo for all x e N, andx < o for all x € No. Also, we define the
factorial of an integein € Np as usual:

ol=1
n=1.2-....n, forn>1.
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1.1 Words

An alphabetis any finite nonempty set. Elements of an alphabeill be referred
to asletters and aword in Ais a string of symbols from. More precisely, avord
of length k over an alphabetis any tuple fromAX. We follow a simple convention
to omit commas and parentheses when writing words.

Example 1.1 Here are some words over an alphabet {a,b,n}: banana abba
aa, or simplyn. The first of the words has six letters, then comes a four-letter word,
a two-letter word and finaly a word with only one letter.

We also alow words with no letters. On any alphabet there is precisely one
such word called thempty wordand denoted by. It is a word with length 0. It
is important to note that words we deal with in this coursefarmal words that
is, strings of symbols to which no meaning is attached. So, from this pointwf vie
nbbaaais just as good a word dsmnana We shall leave the meaning of words to
other branches of science and treat words just as plain and simple stiriegers.
Let w be a word over an alphabAt The length ofw will be denoted byw|.
For a lettera € A, by |w|, we denote the number of occurencesudrfi w.

Example 1.2 Let A = {a,b,c,n} and letw = bananabe a word overA. Then
|w| =6, |W|a =3, |wW|p =1, |w|c = 0 and|w|, = 2.

There is not much structural theory behind such simple objects as wands. T
most exciting thing we can do at the moment is to try to count them.

Problem 1.3 Let A = {a3,a,...,an} be an alphabet withh > 1 letters and let
k € Ng be arbitrary.

(a) How many words witfk letters oveA are there?

(b) How many words witl letters ovelA have the property that all the letters
in the word are distinct?

(c) How many words oveh have the property that every letter frdxrappears
precisely once in the word?

Solution.(a) The set of all words of lengtk overA is justAX. Therefore, there are
precisely|AX| = |A|-...-|A| = n® such words. This is an instance of an important
~———

k
combinatorial principle:

The Product Principle: If Aq, ..., A, are finite sets, then
|Ar X ... X An| = |A1] ... |An].
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There is a less formal, but more useful way to see this. A word kiditers
looks like this:

1st 2nd 3rd kt h

There aren candidates for the first position,candidates for the second position,
..., h candidates for thith position:

1st 2nd 3rd kt h

n - n - n - - n
Alltogether, there ar@-n-...-n = n* possibilites.
N—_——

k
(b) Let us again take the informal point of view. Firstly, there aeandidates

for the first position, but onlyy— 1 candidates for the second position, since the

letter used on the first position is not allowed to appear on the second position

Then, there ar@ — 2 candidates for the third position since the two letters used

on the first two positions are a no-no, and so on. Finally, there will bgk — 1)

candidates for the last position:

1st 2nd 3rd kt h

n n-1 n-2 n—(k—1)
!

and putting it all together we gat (n—1)-...-(n—k+1) = nik)l possibilites.

Of course, this reasoning is valid as longkas n. If k > n no such word exists.

(c) If every letter fromA is required to appear precisely once in the word, then
the length of the word is and all the letters have to be distinct. This is a special
case of(b) wherek = n and there ara! such words. O

Words where letters are not allowed to repeat are cglidchutations of sets
Words where letters can appear more than once constitute another kiathui-p
tations — permutations of multisets — and we shall consider them in a separate
section.

Definition 1.4 A permutation of a set #s a word overA where every letter from
the alphabet appears precisely once in the worki-permutation of a set Avhere

k < |A|, is a word overA of lengthk where each letter from the alphabet is allowed
to appear at most once (and therefore, all the letters in the word are tistinc
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We shall now apply counting techniques discussed above to determinenthe nu
ber of all the subsets of a finite set. For aAdétt #2(A) denote thgpower-set of A
that is, the set of all the subsetsAuf

P(A) = {X: X CAL

Let|A|=nandA={a,...,an}. Then every subs@ of A can be represented by
a stringx (B) of 0's and 1's as follows:

0, a¢B,
B)=pi...pn, Where p=
X(B)=p1...pn pi {L 5 CB.
The wordy (B) is called thecharacteristic vectoof B. Words over the two-element
alphabet{0, 1} will be particularly useful in the sequel. So, we shall refer to them
as01-words

Example 1.5 Let A= {a,b,c,d,e, f} andB = {b,d,e}. Then x(B) = 010110
sincea¢ B, b€ B, c ¢ Betc. Clearly,x(2) = 000000 andy(A) = 111111:

la bcde f
/0 0 OO OO
B|{0O1 01 10
A/l 11111

Theorem 1.6 LetA be a finite set witln elements. Theh??(A)| = 2".

Proof. The mappingx : Z(A) — {0,1}" that takes a subset &f onto its char-
acteristic vector is a bijection, §¢(A)| and|{0,1}"| have the same number of
elements. We shall use this obvious but important fact on many occasiors in th
course:

The Bijection Principle: Whenever there is a bijection between two sets,
they have the same number of elements.

Therefore,| Z7(A)| equals the number of all words ové®,1} whose length
isn, so|Z(A)| =2". O

The following principle is a sort of a negation of the Bijection Principle:

The Pigeon-Hole Principle: Suppose thah andB are nonempty finite
sets such thaA\| > |B|. Then there is no injective mapping fralinto B.

The name comes from a simple observation concerning pigeons and holes: if
n+ 1 pigeons hide im holes, then there is at least one hole with at least two pigeons
init.
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Theorem 1.7 (Erdds, Szekeres 1935Every sequence &= mn-+ 1 distinct real
numbers has an increasing subsequence of lemgthl or a decreasing subse-
quence of length+ 1.

Proof. Let ay, ..., ax be a sequence &= mn-+ 1 distinct real numbers and as-
sume that it has neither an increasing subsequence of lengthnor a decreasing
subsequence of length+ 1. Then every increasing subsequenceagf..., ax

is of length< m and, similarly, every decreasing subsequenca;of.., ax is of
length< n.

For eachi let I;* denote the length of the longest increasing subsequence of
ai, ..., a that starts withg; and letl;” denote the length of the longest decreas-
ing subsequence dj, ..., a that starts witha;. This establishes a mapping
f:{1,....k} = {1,....ompx{1,....,n} i~ (I;",I7). Let us show thaf is in-
jective. Take any pair of indiceis# j. Thena # a;. If & < a; thenl;" > Ij+ S0
(i) = (" 10) # (17,17) = £(j). Similarly, if & > a;j thenl;” > 1;” and we again
concludef (i) # f(j). This shows that ## j implies f(i) # f(j) and thusf is an
injective map from &-element set into anchn-element set. Buk > mnand hence

by the Pigeon-Hole Principle no such injective map can exist. Contradictidn.

1.2 Sets

For historical reasons kaelement subset of amelement set is calledkacombination
of a set. The number ¢¢combinations of am-element set is denoted by

(E) [read: ‘n choos&].

The pronounciation comes from the fact that this is the number of ways tseho
k objects from a pool o identical objects. If we let

Pi(A) ={Be Z(A):[B] =k}

be the set of alk-subsets oA and if |A| = n, then, clearly,

(}) =17

n n! . n
: >0.Ifn> = ) =0.
Theorem 1.8 Letn,k > 0. If n > k then <k> Kn—K)! Otherwise <k> 0
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Proof. Letn > k and letA = {1,2,...,n}. Although sets seem to be simpler than
words due to the lack of structure, ordered structures (words in the$ aesalways
easier to count. Le¥i(A) be the set of ak-permutations oA and letf : #x(A) —
Zx(A) be the mapping defined by

f(anaz...a) = {a1,a,...,a}.
Sincef mapsk! different words froni#4(A) onto the same element 8¢ (A), e.g.

abcd bacd cabd dab
abdc badc cadb dac
acbd bcad chad dba
acdb bcda cbda dbc
adbc bdac cdab dca
adcb bdca cdba dcb

— {a,b,c,d},

we easily conclude that
1
PR = A

We know that the number d-permutations of am-element set i nﬂ!k)!, SO we
finaly obtain that
n 1 n!
(k) = 2R =

. n .
On the other hand, i > n then trivially W= 0 since am-element set cannot

have a subset with more tharelements. O

Problem 1.9 How many 01-words of lengtin+ n are there if they are required to
have preciselyn zeros and preciselyones?

Solution.Consider a seA={aj,ay, ..., ann} With m-+nelements. Then each 01-
word of lengthm+ n with m zeros andh ones corresponds to arelement subset
of A. Therefore, the number of such 01-words equals the numberetdment
subsets oA\, which is
m-+n
(")

Here is the other way to see this. Consider a string-efn empty boxes which are
to be filled bym zeros and ones:

18t ond 3rd (m+ n)th
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. . . /mMm+n
We can choosen boxes in which to write zeros |< :] > ways. Then the re-

mainingn boxes have to be filled by ones. O

Theorem 1.10 (a) <n> = <n : k> foralln>k > 0;

Kk
(b) <E> = <E: i) + (n; 1) for alln > k > 1 (Pascal’s identity).

Proof. (a) This follows by an easy calculation:

(ni k) ~(n— k)!(nn!— (n—K) (n—nli)!k! - <:)

Such proofs are usually calledigebraic proofs

Most combinatorial identities can be proven in another way: we find an ap-
propriate collection of objects and then count the elements of the collection in two
different ways. The resulting expressions have to be equal betiaisellection
is the same. Such proofs are usually calbednbinatorial proofs The principle
behind theis approach is called Double Counting:

Double Counting: If the same set is counted in two different ways, [the
answers are the same.

Let us provide a combinatorial proof of the same identity. Consider Ohsvor
n

k
of n in which to write zeros, so the number of the words under consideration is

of lengthn with preciselyk zeros. There ar ways to choosd places out

<E> On the other hand, we can first choase k places in which to write ones

in (n : k> ways, so the number of the words under consideratioénisn k>'

n n
Therefore, k) =\ln_k/)

(b) The algebraic proof of the Pascal’s identity is easy:

n—1 n—-1\ (n—1)! (n—1)!

<k—1>+( K >_(k—1)!(n—k)!+k!(n—k—1)!
B (n—1)! 1 1

" (k=1)!(n—k—1)! (n—k+k)

(n—1)! n  /n
~(k 1)!(n—k—1)!'k(n—k)_<k>
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The combinatorial proof uses another important combinatorial principle:

The Sum Principle: If Ay, ..., A, are mutually disjoint finite sets, then
A U...UA = [Ad] + ...+ |An].

Let S={1,2,...,n} be ann-element set. Clearly, the number loElement
(/N .
subsets |s<k> . On the other hand, attelement subsets &split into two classes:

those that contain 1, and those that do not. The numbleetdment subsets &

... N .
that contain 1 i K1 since we have to chooge- 1 elements from aftn—1)-

element se8 = {2,...,n}. The number ok-element subsets &that do not con-

. n n-1 n-1
by the Sum PrlnC|pIe<k> = <k— 1) + < ‘ ) ]

Due to the following important result the numbetsare often referred to as
binomial coefficients

. . n .
tain 1is K1 since now we have to choose klelements fron8. Therefore,

Theorem 1.11 (Newton’s Binomial Formula) For alln € No we have

@+b' =y (E) KDk

K=0
Proof. The proof proceeds by induction on The first few cases are trivial:

(a+b)0=1— (8)
(a+bl=a+b= <(1))a+ (Db

(a+b)? = a®+2ab+b? = <§> a®+ <i> ab+ <§> b?

Assume that the claim is true farand let us computéa+ b)™1. By the induction
hypothesis:

b n+1_ b) . b)" = b) - 4 n n—kbk.
(@b = (asb)-(@+b) = (a+b)- 3 (1)

After distributing the sum and multiplying we obtain:

n+1 2 /N n—k+1pk 2 /n n—Kpk+1
(a+b)™ =% e b+ > e b
k=0

k=0
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Next, we take out the first summand in the first sum and the last summand in the
second sum to obtain:

n—1 n
(a+b n+1 n+l+ ( ) n_k+1bk—|— < >an—kbk+1+bn+l
> 2\

and reindex the second sum, which is a standard trick:

n+1 n+1 n k+11k n—m+1pm n+1
(a+b) +Z<> b+Z( 1>a b+ b

Putting the two sums together we obtain:

(a+b)"t=a"ty i ((E) + (k & 1>> ah Tk pk 4 p
k=1 B

Finally, we apply the Pascal’s identity and wrap it up:
n+ A “lne 1y
(a+ b)n+l _ an+l+ Z n k+lbk+bn+l — Z an k+lbk.
&\ K

The combinatorial proof of the Newton’s Binomial Formula is based on a sim-
ple observation. Clearly,

(a+b)"=(a+b)-(a+b)-...-(a+b)

ntimes

so if one multiplies out and writes down the summands as words of lentfat
is, without the usuall abbreviations suchaasi-a = a3), one obtains all possible
words od lengt in lettersa andb. For example,

(a+b)* = aaaa+ aaab+ aaba+ aabb+- abaa+ abab+ abba+ abbb
+ baaa+ baab+- baba+ babb-+ bbaa+ bbab+- bbba+ bbbb

There are(E) words that abbreviate ta"kb¥ since this is the number of ways
we can choosk places forb (Problem 1.9). Therefora™ Kbk appear{D times

n
in the sum, whencga+b)" = % <E> a" Kbk, O
o
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n n n n\ .,
Theorem 1.12 <0> + <1> + <2> 4.+ <n> =2".

Proof. For the algebraic proof, just note that

2= (14+1)" = % (E) 1nkgk = % (E)

k=0 k=0
by the Newton’s Binomial Formula. The combinatorial proof is also not verg
plicated. LetA be an arbitratyr-element set and let us count the number of subsets
of A. According to Theorem 1.6 this number i% 2On the other hand, let us split
Z(A) into disjoint collections¥p, .71, ..., %h SO that¥# contains alkk-element
subsets oA. Clearly

|Z(A)| = |2+ |7 + ...+ |l

But, || = (E) according to Theorem 1.8. This concludes the proof. O

__9\n
Example 1.13 Show thatw

anm-letter alphabeA = {ay, ..., am} with the additional property that the number
of occurences of lettex; is even.

is the number of words of lengtiover

Solution. For each everk, 0 < k < n, the number of words of length over A

. . (/n
wherea; occursk times |s< )(m— 1)"%. Therefore, the number of words we

k

. . n
are interested in can be expressed as the sjm <k> (m—1)"K,

On the other hand, oven
(=2 = (1) -1 = 5 (~2(}]) (m-2)"*
whence
- (oo
ieven

This completes the proof.
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The Sum Principle states thgty U... UAn| = |A1| + ... + |An| wheneverA,
..., Ay are mutually disjoint finite sets. But, what happenaif ..., A, are not
mutually disjoint? In case af = 2 we know from the elementary school that

[ALUAL| = |Aa] +|A2] — [AL N A,
and it is also easy to see that in case 3:

|ALUAUAg| = |Ar] + |A2] + | Ag|
— AN Az — [Ar N Ag| — [A2 N Ag|
+ A1 NANAg|.

Theorem 1.14 (The Principle of Inclusion-Exclusion) Let A4, ..., Ay be finite
sets. Then

|AtU...UA = |A| + ...+ |A]
— |A1ﬂA2| — |A1ﬁA3| —.— |An,1ﬂAn‘
+ALNA N A+ [ALNANAY + ...+ |An2NAL1 N A

+ (D" AN AN .. NAY

Proof. The proof is by induction on. In casen = 1 the formula is trivial and we
have already seen that the formula is true in cas€ orn = 3. Therefore, assume
that the formula is true in case ofinite sets and let us consider the untiomaf 1
finite sets. Using the formula for the cardinality of the union of two sets:

’AlU...UAnUAn+1‘ = |(A1U...UN)UAn+1|
= [ArU...UAq| +[Ania| = [(AcU...UAR) NAn 11|
= |A1U...UAn + [Ans1] — [(AaN A1) U U (AN Ans)]

the proof follows straightforwardly by applying the induction hypothesis éwic
We first apply the induction hypothesis|iy U...UAy| and then tgA] U...UA]|
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whereA = AiNAn1:

AU UAGUAG ] = (1A 4.+ A

— |A1ﬂA2‘ — |A1ﬁA3‘ — . ’An_lﬂA;ﬂ
+]ALNANAg| + ...+ [An2NA1NAY|

+ (=) YA nAN... mAn|>

+ [Anta]

— (140 Al + -+ AN A
—[ALNA N AR 1 = = [An 1N AN An g
+...

+ (_1)”71‘A1HA2O .. ﬂAnﬂN+1’>

=[Ad]+ ...+ [An[+[Anya
— |A1ﬂA2‘ — ’AlﬂAg‘ — . ’AnmAn-&-l‘
+]ALNANAg| + ...+ [An—1 N AN Ant g

+(—1)”|A1ﬁAzﬂ...ﬂNﬂAn+1|,

which completes the proof. a

Corollary 1.15 LetAq, ..., A, be finite sets such that
AN CNAL = [AL N NA ]

wheneveriq, ..., ix arek distinct indices ands, ..., jx arek distinct indices,
ke {1,...,n}. Then

n n n
IALU...UA| = <1> |Ag| — <2>|AmAz|+ <3> IALNA2N Az —...

- (—1)”1<2> ALNAN...NA|
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Proof. By the Principle of Inclusion-Exclusion:

ALU...UAL| = [Adl+ ...+ A
—|A1ﬂA2‘ — |Alﬂ%‘ —.— ’An—lﬂA;ﬂ
+ |ANAN A3+ [ALNA2NALl + ...+ A2 N A1 N A

+ (=D)AL NAN. DAY
The assumption now yields:

n

Al ot ol = ()
n
|A1ﬂA2‘ +...+ ’An_lﬂAn’ = (2>‘A10A2’
n
|A1ﬂA2ﬂA3|+...+|An,2ﬁAn,1ﬂAn’ = <3>|A1QA20A3|

(=)™ HA AN NAY = (—1)”1<2> IALNAN...NAY

which completes the proof. O

A permutationa; ... a, of {1,...,n} is called aderangemenif a; # 1, a, # 2,
.., an # Nn. For example, 21453 is a derangemen{bf2, 3,4,5}, while 21354 is
not. LetD,, denote the number of derangementg if.. . n}.

(-1
K

n
Theorem 1.16 D, =n! - Zo
K=

Proof. Let Sbe the set of all permutations ¢1,...,n} and letA; be the set of all
permutationdd; ... b, € Swith bj = j. ThenAiU...UA, is the set of permuta-
tions of {1,...,n} which arenot derangements, when&g = |§ — [A1U...UAy|.
Clearly,|§ = n! while we computgA; U.... U Aq| using the Principle of Inclusion-
Exclusion. In order to do so, we have to complAg N...NA;, | for all choices
of indicesiy, ..., ik with iy <i» < ... <ix. Butthisis easyA; N...NA, is the
set of all permutationa; ... a, from Swith the property thag, =i, &, =12, ...,
aj, =ik, SO|Ai; N...NA;,| = (n—Kk)!. Using Corollary 1.15 we get

ALU...UAW| = i(—n“(E)(n—k)!

k=1
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whence
Dh=|9 —|ALU...UAy| =nl — Z(—l)“(E) (n—k)!
K=1
=Y (-1 k<n> n—k)!
> () (=K
which concludes the proof. O
1.3 Multisets

Two sets are equal if their elements are the same, or more precisely:
A=B ifandonlyif V¥x(xe€ A< xeB).

As a consequencéb,a,n,a,n,a} = {a,b,n}. We usually say that “in a set one can
omit repeating elements”. But what if weishto put several copies of an object
into a set? Well, we have to invent a new type of mathematical object.

Definition 1.17 Let A= {a;,ay,...,a,} be a finite set. Amultiset over Ais any
mappinga : A — Nj.

The idea behind this definition is simpler(ax) tells us how many copies of
ax we have in the multisetr. This is whya is sometimes called theultiplicity
function anda (ax) is themultiplicity of ax. In particular,a (ax) = 0 means thady
does not belong to the multiset, whitga,) = « means that we have an unlimited
supply of copies of.

A multiseta : A — Ny can be compactly represented as

a—< aa a ... an>
m M ... My
or, even more conveniently, as
{m-a;,mp-ag,...,My-an},
wherem; = a(a)), j € {1,2,...,n}.
Definition 1.18 A multiseta = {my-a;,My-az,...,My-an} isemptyif my =... =

m, = 0. The multisetr isfiniteif my,...,m, < . The number of elements of is
denoted bya| and we defineitbya| = 3 a(a).
acA

A multiseta = {my -a1,mp - ay,...,My- an} is asubmultisedf a multiset =
{ki-ag,ko-ap, ..., kn-an} if my <Kk;forall j.
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Example 1.19 Let A= {a,b,c}. Thena = {3-a,2-b,1-c} andf = {0-a,5-b,
-} are two multisets ovek. Clearlya is a finite multiset with 6 elements, while
B is infinite and|f| = . Botha andf are submultisets of = {«-a,5-b, - C}.
Also, B is a submultiset 0d = {1-a,-b,-c}, while a is not.

A word over a multisetr = {my -a3,my - az,...,M, - an} is any wordw over
A= {a,...,an} such thaw|y, < m; forall j.

Example 1.20 Let a = {3-a,2-b,2-n}. The following are some words over.
banana abba aa, butabbbais not. As another example, tafge= {1-a,-b}.
Then all these are words ovBr a, ab, abb, abbh and so on.

Problem 1.21 Leta = {m;-a,mp-ay,...,My-an} be a multiset and lé&tc Ny be
arbitrary.

(a) Supposem = mp = ... = m, = 0. How many words witlk letters overx
are there?

(b) Supposex is finite. How many wordsv over a have the property that
\W|a; = m; forall j?

Solution.(a) Since each letter comes in more than sufficiently many copies, it turns
out that the number of such words& Compare with Problem 1.@).

(b) Let N = |a] = m +...+m,. Then the words we are interested are of
lengthN:

1St 2nd 3rd Nt h

and each letten; occurs preciselyn; times. Let us now distribute the letters
from a. Out of N free places we can choogg places to put the copies af

in N ways:
my ys:

lst 2nd 3rd Nt h
a a a

Out of N — my remaining free places we can choosgplaces to put the copies of

a in (N_ml) ways:
> m, ;

lst 2nd 3rd Nt h
b a a a
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Out of N — my — m, remaining free places we can choasg places to put the

copies ofag in N=m—m ways, and so on. At the end, outlf—m, —mp —
...—my_1 remaining free places we can choasgplaces to put the copies af,
in (N—ml—mg—...—mn1> ways:
My
1st 2nd 3rd Nth
b a n a n a

Therefore, the number of words we are interested in is given by

() o) (T ™) ™ ™)

B N! ' (N—nmy)! o (N—m—mp—...—my_q)! _
m!(N—mg)! mp!(N—mg—mp)! " my!(N—mp—mp—...—my)!
N!
m!-mpl - oomy!’
where at the end we use the facttheE m +mp +... +m,. O

A permutation of a finite multiset = {my -a;,my- ay,...,My-a,} is any word
w over a such thatjw|s, = m; for all j. As we have just seen, the number of
permutations over a finite multisatis

( N )_ N!
My, My, ...,M, my!-mp!- oo omy!

whereN = m +nmp + ...+ my. Finding the number df-letter words for arbitrary
k and over an arbitrary multiset istarribly complicated problem and shall not be
discussed here.

We shall now prove an analogon on the Newton’s Binomial Formula in case a
sum of more than two expressions is raised to a certain power.

Theorem 1.22 (Multinomial Formula) For alln > 0 we have

n Iy | |
rateral =3 (0 e
I1,l2,...,Ik€Np 1,012,451k
l1+l2+...+lk=n
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Proof. The proof proceeds by induction &nln casek = 2 this is just the Newton’s
Binomial Formula given in Theorem 1.11, see Homework 1.12. Supposedhe th
orem holds whenever there are less thk@ummands whose sum we wish to raise
to then-th power and consider the case witlsummands. Then by the Newton’s
Binomial Formula

N /n
(ar+ap+...+a)" = (a+(@+. .+a)"= ¥ (Il>alll(a2+"'+ak)n_ll'
11=0

The induction hypothesis now yields

N /n n—I
(gt+ap+...+a)"= z (I >a'11 Z <| 1| )a'zzaLk
1,=0 1 l2,...,JkENg 2y--51k

|2+--<+|k:n—|1
n
n n—I; o |
== 14l2 k
_Z Z <I><I I>a1a2...ak
1,=0 |2,...7 kENp 1 2551k
lo+...+lk=n—I1
n
n oy Ak
=2 Z (I I I>a1a2...ak
11=0 Ip,....I[xeNg 1,12,...51k
|2+»--+|k:n—|1
n PP
= ata’z...ak.
Z (Illz... |k> 182 -8
I1,l2,...,Ik€Ng s 1L )
l1+lo+...+lk=n

The combinatorial proof is analogous to the combinatorial proof of Tmedré& 1.

Problem 1.23 Let o = {0 -a;,0-ay,...,%-a,} be a multiset and lét € Ny be
arbitrary. How mank-element submultisets doashave?

Solution. If B = {x1-a1,%-az,...,X - an} is ak-element submultiset af, then
X1+ X2+ ...+ X, = k. Becauseax has an infinite supply of each of its letters, one
easily comes to the following conclusion:

Number ofk-element Number of solutions of
submultisets ofx X1+X%X+...+%X, =kin Ng

So, we have reduced the problem to counting nonnegative integer sslofiam
equation im unknowns. Although not at all straightforward, this problem is rather
easy to solve. Let

y:{(xlaXZv"an) € (NO)n:X1+X2+...+Xn:k}
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be the set of all the solutions of the above equatiomumknowns and let
W ={we {0,1}*""1: \wlo =kand|w|; =n—1}
be the set of all 01-words of lengk- n— 1 with preciselyk zeros andh— 1 ones.
Now define¢g : . — # as follows:
¢ (X1, %2,...,%)=00...0100...01 ... 1 00...0.
X1 X2 Xn

It is easy to see that is well defined and bijective. Thereforgy’| = |#/|, and

we know from Problem 1.9 thaw/| = k+E_ !

number ofk-element submultisets af. O

). This is at the same time the

A k-combination of a finite multiset is any k-element subset ofr. It is
againterribly complicated to find a number &fcombinations of an arbitrary mul-
tiset, but as we have just seen,dif= {0 -a3,0-ay,...,0-a,}, the number of

o L k+n—-1
k-combinations is given b( K >

Homework

1.1. For a real numbek, by |x| we denote the greatest integet x. E.g,
11.99] =1, [4] =4, ]0.65] = 0, while | -1.02| = —2.

Letn be an integer and a prime. Show that the greatdstuch that* | n!

is given by
3 [3] 3]
p p? Pl

The number 1000! ends with a lot of zeros. How many?
1.2. Show thaty in proof of Theorem 1.6 is a bijection.

1.3. Let A be a set of all 01-wordsv of length 2005 with the property that
|wjo = |w|1+ 1, and letB be a set of all 01-wordw of length 2005 with
the property thatw|; = |w|p+ 1. Show thatA| = |B|. (Hint: use the
Bijection Principle.)

1.4. Forn e N, let 7(n) denote the number of positive divisors of E.g,
1(12) = 6 since 1, 2, 3, 4, 6 and 12 are all positive divisors of 12. Let
n=pi*. p2..... pis be the factorisation of, where 1< p; < p < ... < ps
are primes. Prove that

T(n) = (1+ky) (14 k) ... (1+ks).
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(Hint: note that ifm| nthenm= p'll : p'22 -...-pls where 0< |; < k; for alli.)
1.5. Show that

() kioz"([l) =3
0 () () ()
(c) kik@) =n.-2"%

1.6. (a) Find lim Dn

n—e Nl
(b) Show thatD, =n-Dp_1+(—=1)", n> 2.
(c) Show thatD, = (n—1) - (Dp-1+ Dn—2), n > 3. (Hint: Use the fact
thatn! = (n—1) - ((n—21)! + (n—2)!); this is why the numberp, are
sometimes referred to asibfactorials)

1.7. Letb;...b, be a permutation of an-element sefA. Find the number of
permutationsy . .. a, of A having the property that; =~ by, ax # by, ...,

an 7 bn.
1.8. Show thatp defined in the solution to Problem 1.23 is a bijection.
11.9. What do you think, how do “usual” sets fit into the theory of multisets?

11.10. Define the notion of union and intersection for multisets. (Note that there
are several possibilities; choose any one you like). Pick a few of your
favourite set-theory identities such as

anNa=a auad=a

anNe = aug =a
anB=Gna auB=BUa
(anB)ny=an(Bny) (auB)Uy=auU(BuUy)

(@anp)uy=(auy)n(Buy) (aup)ny=(any)u(Bny)

and show that they hold for operations you have defined.

1.11. Find the number ok-element subsets dfl,...,n} which do not con-
tain adjacent numbers. For exampld,,5,7,13} is a good subset of
{1,...,15}, while {2,4,6,7} is not.

1.12. (a) Explain the relationship betwee(rﬂ) and (k nn_ k>'
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n n-1 n-1 o
(b) Show that(k,n—k) = (k— 1n_ k) + <k,n—k— 1) (Hint: this is
the Pascal’s identity in disguise.)

1.13. Letmy,...,m, € N be positive integers and &t = m; + ...+ m,. Show
that

() = e dim) (e 2
— + +...
m17m27"'7rrh ml_]-?rnZ?"'vrrh m17m2_17"'7rrh

(e 1)
+ .
mlarnZa"'arn’\_l

1.14. Provide a combinatorial proof of Theorem 1.22.

Exercises

1.15. How much memory can address a processor whose address bus is 32 bits
wide?

1.16. FORTRAN IV, being one of the oldest programming languages, had many
limitations. One of them concerned identifiers (words used to name vari-
ables and procedures). An identifier in FORTRAN IV consists of at most
6 symbols, where each symbol is a figure (0, 1, ..., 9) or an uppercas
letter of the English alphabet (A, B, ..., Z), with the exception that the
first symbol is obliged to be a letter. How many different identifiers can
one declare in FORTRAN IV?

t1.17. Show that there are infinitely many triples of positive integersn, k)
with the property tham! - n! = k! andm,n,k > 2.

1.18. LetA={ne N:1<n<999999 and the sum of digits afis 20}, and
B={neN:1<n<999999 and the sum of digits ofis 34}. Show that
|A| = |B|. (Hint: use the Bijection Principle.)

1.19. Two rooks on a chess board are said to be independent if they do rat atta
each other. In how many different ways can one arrangé. independent
identical rooks onto an x n chess board?

1.20. In how many different ways can one arrarige 1 independent identical
rooks onto am x mchess board, wherem > k?

1.21. In how many ways can students form a queue in front of a mensa so that
studentsA andB

(a) are next to each other in the queue?
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11.22.

1.23.
1.24.

1.25.

1.26.

1.27.

(b) arenot next to each other in the queue?

In how many ways can boysB;, ..., B, andn girls G, ..., G, form a
gueue in front of a mensa so tHa¢ is next toG; in the queueBs; is next
to Gy in the queue, .. .B; is next toG, in the queue?

Find the numbers of paif#\, B) of subsets of 1,...,n} satisfyingANB = &.

The round table has entered combinatorial practice at the time of King
Arthur and his Knights of the Round Table and has remained an important
combinatorial object ever since. Since there is no throne, the trick with the
round table is that two arrangements are indistinguishable if it is possible
to get one of them by rotating the other. For example, the following three
arrangements are indistinguishable:

a] €]
@Q@ @Q@ @Q@
o & Te &
In how many ways cam people be seated around a round table with
seats?

Theinteger gridconsists of all points in the plane with integer coordinates,

which we refer to agteger points y

Anincreasing pathn the integergrid * * * * * t ¢ * * * °
is a sequence of integer poirts,y1), . . . . . ], .
(X2,¥2), ..., (X, Yk) such thatforeach _ _ . . . {1 . ¢ o .
i€{l,...,k—1} we have: P S

o eitherx.i=x-+landyii=y, . .. .. e

PY 0rXi+1:Xianin+1:}/i+l- ° o—o—I e o o o o o o
Find the number of increasing pathSin e « o o o ¢ o ¢ o o o
the integer grid that start §0,0) and © o o o o ¢ ¢ ¢ o o o

end at(p,q), wherep,q € N.

Show that among any 10 distinct points chosen within a square of side 3
one can find two whose distance<isy/2.

Is it possible to fill the entries of amx ntable with integers-1, 0 and 1 so
that the sums of each row, each column and both diagonals are all distinct?
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1.28. Show that

1.29.

1.30.

1.31.

(a)() k<E i)foralln}k}l;
() (5w
@ () (0)+ (G (") @) (") =+ (1) 5)

(-
0 () () o () - () rnso
@ (6) () + (5= ()= (1)

forall k, j > 0. (Hint: use mathematical induction gp

|
N

(")

Find the number of 01-words of lengtim @vhich have the following prop-
erty: the number of zeros on the firsplaces equals the number of zeros
on the lash places.

(a) Using the fact that two points determine precisely one straingt line, find
the greatest number of straignt lines that can be drawn throggints in
a plane.

(b) Find the greatest number of diagonals a convex polygonmitrtices
can have.

(c) Let Ay, ..., Ay ben points on a circlen > 4, and draw all the line
segmentAAj, i # j. Find the greatest possible number of intersection
points of these line segments.

Find the number of increasing paths (in the integer grid) which go ffom
to Q and avoid line segmen#sB andCD.
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1.32.

1.33.

1.34.

1.35.

1.36.

1.37.

Find the number of permutatioregayazasas of {1,2,3,4,5} such that
lan—ap| # 1, |z —ag| # 1,|as — as| # 1 and|as — as| # 1.

n
Show thatz (—1)k<2> (n—k)" = nl. (Hint: Using Double Counting and
K=0

the Principle of Inclusion-Exclusion find the number of words of lermgth
over ann-letter alphabet where each letter from the alphabet appears in the
word.)

(a) Find the number of integer solutions of the equation
X1+X+...+%X =k

in n unknownsxy, Xo, ..., Xy Wherex > 1 for all i.
(b) Find the number of integer solutions of the equation

X1+Xo+...+ X1 =n—K

in K+ 1 unknownsxy, Xo, ..., Xkr1 Wherex; > 0, X1 > 0 andx; > 1 for
allie{2,...,k}.

Find the number of integer solutions of the inequatit- X2+ . .. + X, < K
in n unknownsxy, Xz, ..., X, wherex; > 0 for alli. (Hint: Sincek € Ny,
this inequality is equivalent to

X1+Xo+...+#X% =0 or Xg+X+...+% =1 or...
.or Xp+Xo+...+X =k

Find the number of solutions of each of thésel equations and then sum
up using 1.28e).)

An integer solutionxy, ..., X,) of the equation; +Xo+ ... + xa =k, k>

1, in n unknownsxy, Xo, ..., X, IS calledevenif x; is even. Otherwise

it is calledodd Show that the number of even solutions is greater than
the number of odd solutions, provided thag 3. (Hint: Show thatp :
(X1,%2,X3,...,X%) — (X1 — L, X2+ 1,Xs,...,%,) IS @n injective mapping from

the set of odd solutions into the set of even solutions and note that there
exists an even solution which is not in the imagepof

Find the number of integer solutions of the equation
X+y+z=0 (mod 3

wherex,y,z€ {1,2,3,...,3n}.
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1.38.

1.39.

1.40.

1.41.
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A sequence of numbesg, Xy, ..., X, iS nondecreasing i1 <x <... <
Xn. Find the number of nondecreasing sequengesy, ..., X, where
X €{1,...,k} for alli.

There aren knights sitting around a round table. Find the number of ways
to choosek of thosen knights in such a way that no two of the choden
knights are sitting next to one another. (Hint: pick a knighand then
split all the choices into two disjoint classes — those whetakes part,
and those wherA does not.)

Find the number oh-digit positive integersr(> 2) whose sum of digits
is 11.

n
Show that Z < ) e
I1,l2,....]k€ENg l1,12,..., Ik

l1+Hl2+...+lk=n



Chapter 2

Graphs and Digraphs

Graphs represent one of the most popular tools for modeling discret®piena
where the abstraction of the problem involves information about certairctsbje
being connected or not. For example, crossings in a city transportationl mode
are joined by streets, or cities in a country are joined by roads. We will exeamin
two types of such models: graphs which correspond to situations whetigeall
“roads” are bidirectional, and digraphdiectedgraphg where one-way “roads”

are allowed.

2.1 Graphs

A graphis an ordered paiG = (V,E) whereV is a nonempty finite set artglis an
arbitrary subset of ? = {{u,v} CV :u+ v}. Elements oW are calledvertices
of G, while elements o are callededgesof G. We shall often write/(G) and
E(G) to denote the set of vertices and the set of edg&s, @indn(G) andm(G)
to denote the number of vertices and the number of edg&s df e = {u,v} is
an edge of a graph, we say thaandv areadjacent and thate is incidentwith
u andv. We also say that is aneighbourof v. Theneighbour-set of ¥s the set
Ng(v) = {x € V(G) : xis a neighbour of}. Thedegree of a vertex,\denoted by
dc(Vv), is the number of edges incident¥o dg(v) = |Ng(V)|. If Gis clear from
the context, we simply writél(v) andd(v). By 6(G) we denote the least, and by
A(G) the greatest degree of a vertexGn A vertex with degree 0 is said to be an
isolated vertex A vertex of degree 1 is calledlaaf of G A vertex is said to be
even resp.oddaccording a®(v) is an even or an odd integer. A graphegular if
0(G) =A(G). In other words, in a regular graph all vertices have the same degree.
The graphs are called graphs because of a very natural grappcasentation
they have. Vertices are usually represented as (somewhat largey ipoenplane,

1
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S t _ visetitvor
izolovani .
&vor ovo nije Evor

Figure 2.1: An example of a graph

while edges are represented as (smooth non-selfintersecting) cuinieg jhe
respective vertices, so that adjacent vertices are joined by a curve.

Example 2.1 Fig. 2.1 depicts a graptG with V = {st,u,v,w,x,y,z} and

E={{t,u}, {u,x}, {u v}, {wy}, fw. v}, {v.x}, {vy} {vzh {x. v} {x 2}, {y,Z} }.
We see that

vertex\s t u v
50 L 35

w
2

hi<

X z
4 3

s00(G) = 0andA(G) = 5. Also,N(v) = {u,w,X,y, z}.

Example 2.2 Two black and two white knights are placed on & 3 chessboard

as in Fig. 2.2a). Is it possible to reach the configuration in Fig. 22 following
the rules of chess?

a A A

A
(@ (b)

Figure 2.2: Example 2.2
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1123
4 | 5] 6
71819

Figure 2.3: Solution to the problem in Example 2.2

Answer:No. Let us enumerate the fields of the chess board by 1, ..., 9 as in
Fig. 2.3(a). To this chess board we can now assign a graph {dith..,9} as the
set of vertices by joiningandj if an only if itis possible for a knight to jump from
to j following the general rules of chess. The graph is given in Fig(t2.3Clearly,
regular movements of a knight on thex3® chess board correspond to movements
of the knight along the edges of the graph in Fig. @B We see now that it is not
possible to start from the initial position of the knights given in Fig. @Band
reach the final position in Fig. 2.81) by moving one knight at a time along the
edges of the graph simply because the white knights separate the blactsknigh
Fig. 2.3(d), which is not the case in the initial position.

Theorem 2.3 (The First Theorem of Graph Theory) If G= (V,E) is a graph with
m edges, thefy oy &(v) = 2m.

Proof. Since every edge is incident to two vertices, every edge is counted twice in
the sum on the left. O

Corollary 2.4 In any graph the number of odd vertices is even.

Theorem 2.5 If n(G) > 2, there exist vertices,w € V(G) such thatv # w and
o(v) = d(w).

Proof. LetV(G) = {v1,...,Va} and suppose thai(v;) # o(vj) wheneveri # j.
Without loss of generality we may assume thé&t;) < (v2) < ... < d(vn). Since
there are onlyn possibilities for the degree of a vertex (0, 1, .n~ 1) it follows
thatd(v1) =0,d0(v2) =1, ...,0(wn) = n— 1. But thenv, is adjacent to every other
vertex of a graph, including the isolated vertgx Contradiction. O

A graphH = (W, E’) is asubgraphof a graphG = (V,E), in symbolsH < G,
if WCV andE’ C E. A subgraphH of G is aspanning subgrapif W =V(G).
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A subgraphH is aninduced subgraplf G if E' = ENW®. Induced subgraphs
are usually denoted bgW|. The edges of an induced subgraph®ére all the
edges ofG whose both ends are W. A set of vertice®V C V(G) is independent
if E(G[W]) = &, i.e. no two vertices iW are adjacent ir5. If A/BC E(G) are
disjoint, by E(A, B) we denote the set of all edges@whose one end is iA and
the other inB.

@O

Figure 2.4:K7, Cg andP;

A complete graph on n verticésr ann-clique is a graph witm vertices where
each two distinct vertices are adjacent. A complete graph\artices is denoted
by K. A cycleof lengthn, denoted byC,, is the graph witm vertices where the
first vertex is adjacent to the second one, and the second vertex to therthjrand
S0 on, the last vertex is adjacent to the firstp@th with n verticesdenoted by?,,
is a graph where the first vertex is adjacent to the second one, anattmelsertex
to the third one, and so on, and the penultimate vertex is adjacent to the last one
but the last vertex isot adjacent to the first. We say that the path withertices
has lengtm — 1. Fig. 2.4 depict&, Cg andPs.

Theorem 2.6 If 5(G) > 2 thenG contains a cycle.

Proof. Let x; ...Xc_1 X be the longest path i6G. Sinced(xc) > d(G) > 2, x has
a neighbouw distinct fromxg_1. If vi¢ {x1,..., %2} thenx; ... X1 X vis a path
with more vertices than the longest path, which is impossible. Thereferex;
for somej € {1,...,k—2} sox; ...xc are vertices of a cycle i®. O

GraphsG; and G, areisomorhic and we writeG; = G, if there is a bijec-
tion ¢ : V(G1) — V(Gy) such that{x,y} € E(G1) < {¢(x),¢(y)} € E(G2). For
example graph& andG; in Fig. 2.5 are isomorphic, whil& andG; are not.

Theorem 2.7 LetGy = G, and letg be an isomorphism betwe&1 andG,. Then
N(G1) = n(Gz), M(G1) = m(Gy) anddg, (X) = o, (¢ (X)) for everyx € V(Gy).
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G G Gy

Figure 2.5:G = Gy, butG # G1

The complemenbf a graphG = (V,E) is the graphG = (V,E) whereE =
V(@\ E. A graphG is selfcomplementarij G = G. Clearly,m(G) 4+ m(G) = (2) :

Lemma 2.8 LetG andH be graphs.
(a) G=H ifand only ifG=H.
(b) 05(x) = (N(G) — 1) — &(x) for allx e V(G).

Theorem 2.9 If G is a selfcomplementary graph withvertices them > 4 and
n=0,1 (mod 4. Conversly, for every integer > 4 such thah = 0,1 (mod 4
there exists a selfcomplementary graph witvertices.

Proof. Let G be a selfcomplementary graph wit> 4 vertices anan edges and let
n(n—1)

m=m(G). Thenm+m= 2) andm= msinceG = G. Therefore tn=

n(n—1 : . .
( 7] ). But mis an integer and andn— 1 are not of the same parity,

so4|nor4|n—1.

For the other part of the statement, for every integer 4 such than= 0,1
(mod 4 we shall construct a selfcomplementary gr&ah= (Vn, En) with n ver-
tices. It is obvious that we can takey = P, and Gs = Cs. Now let G, be a
selfcomplementary graph withvertices and constru@p. 4 as follows. Take four
new verticeg, u, v, w and put

i.e.m=

Vita =VaU{t,u,v,w}
Enta = EnU{{t,u},{u,v},{vyw}}} U{{t,x} : xe Vo JU{{w, X} : X € Vn},

see Fig. 2.6a). ThenGy 4 is given in Fig. 2.6(b) and it is easy to establish that
Gnia = Gpya. 0
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t

u

v

w
(a)

Figure 2.6: The proof of Theorem 2.9

(a) (b)
Figure 2.7:(a) A connected graphb) A graph withw =4

2.2 Connectedness and distance

A walkin a graphG is any sequence of vertices and edges v € Vo .. Vi1 & Vk
suchthag = {vi_1,v;} foralli € {1,...,k}. Note that an edge or a vertex may ap-
pear more than once in a walk. We say thiatthelengthof the walk. Ifvp # vk we

say that thavalk connectsyand . A closed wallis a walkvp €1 v1 ... Vik_1 & Wk
wherevp = v. Clearly, a path is a walk where neither vertices nor edges are al-
lowed to repeat, and a cycle is a closed walk where neither edges noeseatie
allowed to repeat, except for the first and the last vertex.

Lemma 2.10 If there is a walk inG that connects two vertices then there is a path
that connects them. Every closed walk of odd length contains an odd cycle.

We define a binary relatiofi onV(G) by x8y if x =y or there is a walk that
connectx andy. Clearly,0 is an equivalence relation 81 G) and hence partitions
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V(K) into blocksS,, ..., S. These blocks or the corresponding induced subgraphs
(depending on the context) are callednnected components G. The number

of connected components & is denoted byw(G). A graphG is connectedf

w(G) = 1. An example of a connected graph and of a graph with four connected
components are given in Fig. 2.7.

Lemma 2.11 SC V(G) is a connected component @fif and only if no proper
superse8 D Sinduces a connected subgraphof

Theorem 2.12 A graphG is connected if and only E(A,B) # & for every parti-
tion {A,B} of V(G).

Proof. (=) Let G be a connected graph afé,B} a partition ofV(G). Take any
ac€ Aandb € B. Now G is connected, so there is a path ..x that connects
andb. Sincex; = aandx, = b, there is a such thai; € A andx;,1 € B whence

E(AB) # @.
(<) Supposes is not connected and I1&, . .., S, be the connected compo-
nents. Then Lemma 2.11 yiel&S;, U2, Sj) = @. O

Theorem 2.13 At least one of the graph3, G is connected.

Proof. Suppose thab is not connected and I&, ..., S,, w > 2, be the connected
components o6. Let us show that any pair of vertices@is connected by a path.
Take anyx,y € V(G), x #y. If xandy belong to distinct connected components of
Gthen{x,y} ¢ E(G) and hencgx,y} € E(G), so they are connected by an edge.
If, however x andy belong to the same connected componel@,aayS, take any

j #iand anyze Sj. Thenx andz are connected by an edge@and so are and

z Thereforex z yis a path inG that connects andy. O

We see from the proof of previous theorem thabifs not connected, the@
is “very connected”. We shall now introduce a numerical measure tldtiesnus
to express such statements formally.

Thedistance @(x,y) between verticeg andy of a connected grap is de-
fined byds(x,x) = 0, and in cas& #,

ds(x,y) = min{k: there is a path of lengtkthat connects andy}.

Theorem 2.14 Let G = (V,E) be a connected graph. Théy,dg) is a metric
space, i.e. for alk,y,z € V the following holds:
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(D2) ds(x,y) =0ifand only ifx=y;
(D3) de(x.y) = dg(y.X); and
(D4) dG(X> Z) < dG(Xa y) + dG(ya Z)'

If Gis obvious, instead alg(X,y) we simply writed(x,y). Thediameter dG)
of a connected grapB is the maximum distance between two of its vertices:

d(G) =max{d(x,y) : x,yeV(G)}.

Example 2.15 (a) d(G) = 1 if and only if G is a complete graph.
n—-1
(b) d(Py) =n—1andd(C,) = L?J.

A graphG is bipartite if there is a partition{ X,Y} of V(G) such that every
edge inG has one end iX and the other iy, i.e. E(G) = E(X,Y). Therefore X
andY are independent sets. domplete bipartite grapls a bipartite graph with
partition {X,Y} of vertices such that its edges a pairs{x,y} with x € X and
yeY. If |X|=pand|Y| =g, the complete bipartite graph with the partitipxd,Y }
is denoted by 4. A star with n vertices, denoted b,, is a complete bipartite
graphKy 1. A bipartite graph, &34 and a staf;g are depicted in Fig. 2.8.

X

Kz 4 Sio

Figure 2.8: A bipartite graph, &3 4 and a stafS;g

Lemma 2.16 A graphG with at least two vertices is a bipartite graph if and only
if every connected component @fis either an isolated vertex or a bipartite graph.

Theorem 2.17 A graphG with at least two vertices is bipartite if and only@&
does not contain an odd cycle.

Proof. According to Lemma 2.16 it suffices to give the proof for connected graph
So, letG be a connected graph anfiG) > 2.

(=) Let G be a bipartite graph and suppdSecontains an odd cycle whose
vertices arev, Vo, ..., V1. SOV is adjacent tosiiq for all i € {1,...,2k} and
Voki1 is adjacent tavg. Let{X,Y} be a partition o¥ (G) showing thatG is bipartite,
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i.e. such thakE(G[X]) = E(G[Y]) = @. Now v; belongs taX orY, so assume that
v; € X. Thenv, € Y sincev, is adjacent to/;, andG is bipartite, and this forces
vz € X, s €Y and so on. We see that vertices with odd indices belonyg,to
So Va1 € X. But we havex; € X too, SOE(G[X]) contains{xy,Xak+1} which
contradicts the assumptid(G[X]) = .

(<) Supposés does not contain an odd cycle. Take any V(G) and define
Ao, A1, ... CV(G) as follows:

An= {xeV(G) :d(v,x) = n},

for n > 0. SinceG is connected, there is a path connectirtg any other vertex of
G, so each vertex db appears in at least one of thgs. TheAj’s are disjoint by

the construction and the fact tha{G) is finite now yields that there is asuch

that{Ao, A, ...,As} is a partition oV (G) andA; = @ for all t > s. Let

X=J A, and Y= JA
j even j odd

and let us show that botk andY are independent sets (B. Suppose that there
are verticex,y € X such thatx andy are adjacent. By the constructionXfthere
is an even path...x and an even paty...v. By chaining these two paths together
with the edgee = {x,y} we obtain a closed walk...x ey...v of odd length, so by
Lemma 2.10G contains an odd cycle, which is impossible.

The proof that is independent is analogous. Therefore, Bd#ndY are sets
of independent vertices. This shows tlaais a bipartite graph and one possible
partition of its vertices igX,Y}. O

Note that this theorem does not imply that bipartite graphs have to have.cycles
A graph with no cycles is a bipartite graph, and this follows from the theonece s
it hasno odd cycles

Let e be an edge and a vertex of a grapls. By G — e we denote the graph
obtained fromG by removing the edge, while G — v denotes the graph obtained
from G by removingv and all the edges @ incident tov. A cut-vertexof a graph
Gis a vertexv € V(G) such thatw(G—v) > w(G). A cut-edgeof a graphG is an
edgee € E(G) such thatw(G —e) > w(G). Cut-vertices and cut-edges are weak
points in the graph since removing one of these makes the graph split. Ifyitive
they look like this:

A B A B
e

a cut-edge a cut-vertex
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Theorem 2.18 Lete be an edge of a gragh. The following are equivalent:

(1) eis a cut-edge o5,
(2) there is a partitiogA,B} of V (G) such thaE(A,B) = {e};
(3) e belongs to no cycle d&.

Proof. We give the proof in cas€ is connected. If5 is not connected it suffices
to consider the connected componenGahat containg.

(2) = (1): If E(A,B) = {e} in GthenE(A,B) = @ in G—¢, soG—eis not
connected by Theorem 2.12. Therefa®#G—e) > 1= w(G).

(1) = (3): Suppose that appears in a cycle

C:VO(Tavlezvz .. Vke1 & Vo

of G. To show thatG — e is connected take an arbitrary pair of verticeg y.
SinceG is connected, there is a pdththat connects to y. If P does not contain
g, it is also a path inG — e that connectx to y. If, however,P containse, say
P=x...vpew...y, then remove from P and replace it witlC — e to obtain the
following walk:
W=X...Vo&W_1...V2 & V...V,
C—e

Fig. 2.9. Sincee appears once iR and once irC it follows thate does not appear
inW, soW is awalk fromxtoyin G—e.

X Vo e V1 y
& e

P

Vk—1 C \%)

Figure 2.9: The walkV

(3) = (2): Suppose thae = {a,b} belongs to no cycle ob and defineA and
B as follows: A= {a} U{x € V(G) : there is a path froma to x that does not pass
throughe} andB =V (G) \ A. If b¢ Bthenb € Aand there is a path fromto b that
does not pass through This path together witle forms a cycle that contains
Since there are no such cycles we hbweB. So,{A, B} is a partition oV (G) and
ee E(A,B). Suppose now that there is ene E(A,B), € # e, and lete = {a/,b'},
a € A b € B, Fig. 2.10. We will assume further thatZ & andb # b’ since these
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A B

Pa

Figure 2.10: A cycle that contaires

two cases follow by similar arguments. There is a fatk- a...a that does not

pass througte and there is a patRs = b'...b that does not pass through Now

these two paths together wighande formacycle a...a € b'...bea which
—— =

Pa Ps
containse. This contradiction shows th&(A,B) = {e}. O

Theorem 2.19 Letv be a vertex ofs. Thenv is a cut-vertex ofs if and only if
there is a partitiodA,B} of V(G) \ {v} such thaE(A,B) = @, E(A,{v}) # @ and
E(B,{v}) # 2.

Theorem 2.20 If e is a cut-edge o6 thenw(G—e) = w(G)+ 1. If vis a cut-
vertex ofG thenw(G —v) < w(G) + o(v).

Theorem 2.21 If G is a connected graph with at least three vertices afichis a
cut-edge, thefs has a cut-vertex.

Proof. Let e be a cut-edge o6. Then there is a partitiofA,B} of V(G) such
thatE(A,B) = {e} (Theorem 2.18). Le¢ = {a,b} and leta € A andb € B. From
n(G) > 3 it follows that|A| > 2 or |B| > 2, say|A| > 2. Since the graph is con-
nected,a has a neighbouc in A, Fig. 2.11. Now letA’ = A\ {a} and note that

B

Figure 2.11: The proof of Theorem 2.21



12 CHAPTER 2. GRAPHS AND DIGRAPHS

E(A,B) = g, E(A,{a}) # @ andE(B,{a}) # @. Therefore,ais a cut-vertex
according to Theorem 2.19. O

We have seen in Theorem 2.18 that a graph has no cut-edges if and only if
every edge belongs to a cycle. The analogous statement for cut-vestities
famous Whitney Theorem.

Theorem 2.22 (Whitney 1932)Let G be a connected graph with at least three
vertices. G has no cut-vertices if and only if any two vertices lie on a common
cycle.

Proof. (<) Since any two vertices andv lie on a common cycle, removing one
vertex from the graph cannot separat#om v, and hencé — x is connected for
all x.

(=) For the converse, suppose tf&has no cut-vertices. We say that two paths
uxz...Xv anduyi ...yjv connectingu to v are internally disjoint if{xs,...,x} N
{y1,...,¥1} = @. Now take anyu andv in G, u # v, and let us show by induction
ond(u,v) thatG has two intenally disjoint paths connecting@ndv. Clearly, the
two paths will then form a cycle containing baifandv.

Let d(u,v) =1 and lete = {u,v}. The graphG — e is connected by Theo-
rem 2.21 so there is a path@— e fromutov. This is also a path i and it is
internally disjoint from the trivial pathi v consisting of the edgeitself.

For the induction step, led(u,v) = k > 1 and assume th& has internally
disjoint paths connecting every pair of vertioey such that 1< d(x,y) < k. Let
ux ... Xk_1 Vthe a path of lengtk (i.e. one of the shortest paths that connect
to v). We haved(u,x_1) = k— 1, and hence by the induction hypothe&ishas
internally disjoint pathg® and Q joining u to xx_1, Fig. 2.12. Sinces — x_; IS

Figure 2.12: The proof of Whitney’s Theorem

connectedG — x_1 contains a pati that joinsu andv. If this path is internally
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disjoint from P or Q we are done, so assume tlishares internal vertices with
bothP andQ. Letz be the last vertex oR belonging toP U Q. Without loss of
generality we may assume that P. We now combine the subpath Bfjoining

u to z with the subpath oR joining z to v to obtain a path fronu to v internally
disjoint from the patlQ’ = Q € v where€ = {x_1,V}. O

2.3 Trees

A treeis a connected graph with no cycles. By Theorem 2.18 we see that every
edge of a tree is a cut-edge. Therefore, a tree is a minimal connectddwitap
the given set of vertices. The following theorem shows that in a way t@gsire
the essence of the property of being connected.
Recall that a spanning subgraph of a gré&ph: (V,E) is a graptH = (W,E’)
such thatWw =V andE’ C E. If H is a tree, we say thal is aspanning tree of G

Theorem 2.23 A graph is connected if and only if it has a spanning tree.

Proof. Clearly, if a graphG contains a connected spanning subrapthenG is

also connected. Therefore if a graph has a spanning tree, it is dedné®r the
converse, take any connected gr&hand construct a sequence of gras Gi,

Gy, ... as follows:Gg = G; if G; has a cycle, take any edgethat lies on a cycle

and letG;.; = G; — g, otherwise puG; 1 = G;. EachG; is a spanning subgraph of

G and eaclG; is connected since an edge that lies on a cycle cannot be a cut-edge
(Theorem 2.18). Moreover, & = Gi;1 thenG; = Gj for all j >i. Letmbe the
number of edges dB. Since we cannot remove more tharedges fromG, we
conclude thaG,.1 = Gm2. By construction of the sequence this means Gaty

has no cycles. Therefor€y,, 1 is a spanning tree . O

We will now show that each tree withvertices has1 — 1 edges and that each
two of the three properties listed below implies the remaining one:

e being connected,

¢ having no cycles, and

e m=n-—1.

Lemma 2.24 Each tree with at least two vertices has at least two leaves.

Proof. Let G be a tree witin > 2 vertices and lety, o, ...,V be the longest path
in the tree. Therk > 2 sinceG is a connected graph with at least two vertices.
If d(v1) > 1 thenvs has a neighboux distinct fromv,. If X is a new vertex, i.e.
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X ¢ {va,..., W}, then the patlx, v1, vz, ..., W is longer than the longest path in
G, which is impossible. If, howevek € {vs,...,Vv} thenG has a cycle, which

contradicts the assumption th@tis a tree. Thereforey; is a leaf. The same

argument shows that is another leaf. O

Theorem 2.25 Let G = (V,E) be a tree withn vertices andn edges. Then
m=n—1, and consequently,.y 6(v) =2(n—1).

Proof. The second part of the theorem follows from the First Theorem of IGrap
Theory, so let us show that=n— 1. The proof is by induction on. The cases
n=1andn = 2 are trivial. Assume that the statement is true for all trees with less
thennvertices and consider a tr€with nvertices. By Lemma 2.24 there is a leaf
xin G. According Theorem 2.19 the degree of a cut-vertex is at least twojsso
not a cut-vertex and henég— x is connected. Clearl¥; — x does not have cycles
(removing vertices and edges cannot introduce cycles} -sa is a tree with less
thann vertices. By the induction hypothesig,=n' — 1, wherem/ = m(G—x) and

n =n(G—x). Butm' =m—1 andn’ = n— 1 sincexis a leaf, whencen=n—1.0

Theorem 2.26 Let G be a graph with vertices anan edges. Ifim=n—1 andG
has no cycles theB is connected (hence a tree).

Proof. Suppose thatn = n— 1 and thatG has no cycles. Le%, ..., S, be the
connected components & Each connected component is a treepge=n, — 1
for all i, wherem = m(S) andn; = n(S). ThereforeS® m =5 n—wi.e.
m=n—w (sincem= Yy, m andn= S, n). Now,m=n-—1yieldsw=1,i.e.
G is connected. O

Theorem 2.27 Let G be a connected graph with> 2 vertices andn edges and
letm=n— 1. ThenG has no cycles (and hence itis a tree).

Proof. According to Theorem 2.23 the gragh = (V,E) has a spanning tree
H = (V,E’). SinceH is a tree Theorem 2.25 yielda(H) =n(H) —1=n—-1.
Assumptionrm= n— 1 now impliesm(H) = mand thus fronE’ C E we conclude
E' = E. ThereforeG =H and soG is a tree. O

Corollary 2.28 A connected graph with vertices andin edges is a tree if and only
ifm=n-—1.

We shall conclude the section by a result on the number of distinct treegsLe
first note that when counting structures we can count distinct strucameon-
isomorphic structures. For example, there are 16 distinct trees on aléonerst
set, but only two nonisomorphic, see Fig. 2.13. It is not surprising thattowy
nonisomorphic structures is more difficult.
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Figure 2.13: Sixteen distinct and only two nonisomorphic trees with four eartic

I
AP
N 0%

(®

@

Theorem 2.29 (Cayley 1889)There aren" 2 distinct trees wit vertices.

Proof. LetV = {1,...,n} be a finite set that serves as a set of vertices. The proof
we are going to present is due to H. PrdfeThe idea is to encode each tree on
V by a sequence of integefay, ...,an—2) and thus provide a bijectiog : 7, —
{1,2,...,n}"2, where.%, denotes the set of all trees ¥n

We first show how to construct the Prifer code of a tree.TLbe a tree with
the set of vertice¥. We shall construct a sequence of trég$ and two sequences
of integers, the codég;) and an auxiliary sequengb;). LetT; = T. GivenT;, let
bi be the smallest leaf of the tree (vertices are integers, so out of all intégers
appear as leaves we choose the smallest) aral et its only neighbour. Now put
Tir1 = T — bj and repeat until a tree with two vertices is obtained. The code of the
tree is now(ay, ay,...,a,-2). An example is given in Fig. 2.14. Thus, we have a
function¢ : 7, — {1,...,n}"? that takes a tree onto its Priifer code.

Conversely, given a sequenta, ...,a,_2) we can construct the tree as fol-
lows. ForSC {1,...,n} letmixS=min({1,...,n}\ S) denote the minimal number
not in S(mimimal excluded). Pufy, 1 = nand then construdt, by, ...,by_1 by

bi = m|X{a.|, . '7al"l—17b17 e '7bi—1}

IH. Priifer, Neuer Beweis eines Satzes liber Permutatipéenhiv der Math. und Phys. (3)
27(1918), 142-144
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@0@@@
®&—d ®? @ ® ®
b b: 2 5

i0 2 b: 256 3 63718
a: 4 . 4737 . 4737144
O—0—20D—>3—09 O—D—38—09 @»—09
6—3 ® ® STOP
bi: 25 bi: 256 37
. 47 9. 47371
O—D—38—9 D—38@—9

O—0—2D—4—9
®—O @ @ )
b: 256 b: 256371 ©—0 ®
3. 473 9. 473714 4737144

Figure 2.14: The Prifer code of a tree

(fori = 1 there are nd;’s in the set). For example in case (@ 7,3,4,1,4,4) we
haveag = 9 and:

by = mix{4,7,3,4,1,4,4,9} = 2

b =mix{ 7,3,4,1,4,4,9,2} =5
bs=mix{ 3,4,1,4,4,9,2,5' =6
by = mix{ 4,1,4,4,9,2,56} =3

bs = mix{ 1,4,4,9,2,5,6,3} = 7

bs = mix{ 4,4,9,2,56,3,7} =1

by = mix{ 4,9,2,5.6,3,7,1} =8
b = mix{ 9,2,5,6,3,7,1,8} =4

This process is called theconstruction procedursince, as we shall see, it pro-
duces a tree whose Prifer codé€as, . ..,an_2).

Let us show thaf{b;,a;} : 1 <i < n} is the set of edges of a tree. ilk |
then, by constructiorhj = mix{a;,...,an—1,b1,...,bi,...,bj_1}, sob; # b;. We
see that alb’s are distinct and smaller than= a,_1. Therefore{bs,...,bn_1} =
{1,...,n—1} and hencgbs,...,by_1,a,-1} = {1,...,n—1,n}. Moreover, ifi <
j thena; ¢ {by,...,b;} sinceb; = mix{a;,...,a;,...,8,-1,b1,...,bi_1}, so from
{by,...,bh—1,an1} = {1,...,n—1,n} it follows thata; € {bj;1,...,bn_1,80-1}.



2.3. TREES 17

To summarize,

aj € {bj+17 bj+27 R} bn—l; aﬂ—l} and

for all j.
bJ ¢ {aj+17 bj+17 aj+27 bj+27 ..y an-1, bﬂfl}v J (*)

To build the graph we start froffib,_1,a,-1} and then add edgedy,_»2,an_2},
{bn-3,an_3}, ..., {b1,a1} one by one. Frongx) it follows that at each step we
extend the graph by one new vertexand one new edgéb;,a;} that connects
the new vertex to an existing one. Therefore, the graph we obtain at this en
connected, and a connected graph witvertices andh— 1 edges has to be a tree
(Corollary 2.28). Thus, we have a functigh: {1,...,n}"~2 — .7, that takes a
code and produces a tree.

To complete the proof, we have to show tlfatand ¢ are inverses of one
another, i.,eg oy =idandy@o ¢ =id. We show onlypod =idi.e. @(¢(T)) =T
forall T € 7, (the other equality is left for Homework 2.10). For a tfigea vertex
v e V(T) is aninternal vertex Tif &r(v) > 1. Let in{T) denote the set of all
internal vertices of .

Take anyT € %, let (a,...,a,_2) be its Prifer code antb,...,b,_2) the
auxiliary sequence. At the end of the procedure of constructing thierRzdde
two vertices remain the the graph, the verdgx; = n and its neighbour whom we
denote byb,_;. Starting from(ay, ..., a,_1) the reconstruction procedure produces
a sequence of integehs, ..., b, ;. We will show thatb; = b{ for all i. Assume
also than > 3.

Sinceb; is adjacentt@ in T andn > 3, a; cannot be a leaf of soa; € int(T).
The same argument shows tretc int(T —by), ag € int(T — by — by), and in
general,giy1 € int(T —by — ... —b;). Since infT —v) C int(T) whenever is a
leaf of T andn(T) > 2, it follows that intT —by —... — b)) = {@i11,...,an—2}. In
particular, infT) = {as,...,an_2}. Since each vertex of a tree with at least two
vertices is either a leaf or an internal vertex we obtain that

V(T—bi—...—b)\int(T—by—... - by)
is the set of leaves oFf — by —... —b;. NowV(T —bs —...— b)) ={1,...,n}\
{bs,...,b} and i{T —b; — ... —by) = {&1,...,an_2}, SO the set of leaves of
T—-bi—...—Dbis

({1,...,n}\{bl,...,bi})\{a+1,...,an,2}:
={1,...,n}\{&t1,...,8-2,b1,...,bi}.

It is now easy to show thék = b by induction oni. As we have seey is a leaf of
T,soby € {1,...,n}\ {a,...,an_2}. Butb; is the smallest such integer, whence
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by =min({1,...,n}\{ay,...,an—2}) =mix{ay,...,an2} = bj. Assume thab; =
b’j forall j € {1,...,i} and consideb;, ;. Itis the smallest leaf iT —b; —...— by
so, with the help of induction hypothesis

bir1 =min({L,...,n}\{&+1,...,8-2,b1,...,b})
= mix{aj;1,...,an-2,b1,...,b} = mix{ai;1,...,a2,b},...,b} =bi 4

Therefore {a;,bi} = {a;,b{} for all i and the tree produced by the reconstruction
procedure id, the tree we started with. O

2.4 Digraphs

A digraphis an ordered paib = (V,E) whereV is a nonempty finite set and
is an arbitrary subset &f? such that(x,x) ¢ E for all x € V. Elements oV are
calledverticesof D, while elements ok are callededgesof D. We shall often
write V(D) andE(D) to denote the set of vertices and the set of edgds3, @nd
n(D) andm(D) to denote the number of vertices and the number of edgés of
Instead of(x,y) € E we often writex — y or x =V If x —y we say thai is a

predecessoof y andy is asuccessopof x. We also say that the eddg,y) goes
out of the vertexx and into the vertey. The number of edges that go outwiz
called theout-degreeof v and will be denoted by (v). The number of edges that
go intov is called thein-degreeof v and will be denoted by (v). Further, let,

Ip(V) ={xeV :x—v}, Op(V) ={xeV:v—x},

denote the set of predecessors and the set of successarsGiéarly, & (V)
lIo(v)| and 33 (v) = |Op(v)|. Thetotal degreeof a vertexv is dp(v) = & (V)
o5 (v) . If D is clear from the context, we simply wri@ (v), 67 (v), [ (v), O(
ando(v).

A sourceof a digraphD is a vertexv € V(D) such tha®~(v) = 0 andd " (v) >
0. A sinkof a digraphD is a vertexv € V(D) such thad~(v) > 0 andd*(v) = 0.

A back-edgen a digraphD is an edgéx,y) € E(D) such thatly,x) € E(D). If D
has no back-edges théfv) NO(v) = & for everyv € V(D).

If vis a vertex anck an edge of a digrapP thenD — e denotes the digraph
obtained fronD by removing the edge, while D — v denotes the digraph obtained
from D by removingv, the edges that go intoand the edges that go outwof

Digraphs also have a very natural graphical representation. Vedieeep-
resented as points in a plane, while an edge y is represented as a directed
curve (usually an arrow) going fromto y. Fig. 2.15(a) depicts a digraph with 10
vertices.

=+l
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Figure 2.15: Two digraphs

Theorem 2.30 (The First Theorem for Digraphs) Let D = (V,E) be a digraph
with m edges. ThelJ oy 0~ (V) = Syey 07 (V) =m.

DigraphsD; = (V1,E;) andD;, = (Vz, E») areisomorphidf there exists a bijec-
tion ¢ : V4 — Vo such thatx,y) € Eq if and only if (¢ (X), ¢ (y)) € E2. The bijection
¢ is referred to as @somorphismand we writeD1 = D».

The notions of the oriented path, oriented cycle and oriented walk in a di-
graph are straightforward generalizations of their “unoriented” vassid\n ori-
ented walkis a sequence of vertices and edge®; X1...Xk_1 & Xk such that
6 = (Xi-1,%). We say thak is thelength of the walk An oriented pathis an
oriented walk where all vertices and all edges are distinct.oAanted cycles
an oriented walk where all edges and vertices are distinct, with the excegjtion
Xo = Xk.

Theorem 2.31 Let D be a digraph with at least one edgeDIhas no sinks, then
it has an oriented cycle. Dually,IF has no sources, it has an oriented cycle.

A digraph isacyclicif it has no oriented cycles. Fig. 2.16) is an example of
an acyclic digraph.

Corollary 2.32 Each acyclic digraph with at least one edge has both a source and
a sink.
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Theorem 2.33 A digraphD with n vertices is acyclic if and only if it is possible
to arrange its vertices &$1, .. .,Vy) in such a way that, — vj impliesi < j.

Proof. («=) If such an arrangement of vertices exists then cle@ras no oriented
cycles.

(=) We use induction on. Casesr = 1 andn = 2 are easy. Assume that such
an arrangement of vertices exists for all acyclic digraphs with lessrihantices
and letD be an acyclic digraph withm vertices. If there is a vertex such that
o(v) = 0 putv; = x. OtherwiseD has at least one edge, so it has a source. Let
vy be any source dD. Now, D — v1 is again an acyclic digraph and by induction
hypothesis its vertices can be arranged into a sequeace.,vy,) in such a way
thatv; — vj impliesi < j foralli, j > 2. Sincel (v1) = @ andO(v1) C {vz,...,Vn},
itis easy to see thdt/, vy, ..., vy) is the required arrangement of verticeddof(J

A digraphD’ = (V',E’) is asubdigraphof a digraphD = (V,E) if V' CV and
E' CE. We writeD’ < D. ForSCV, thesubdigraph induced by 8 the digraph
D[F = (SSNE).

We say thatS C V(D) dominates Dif D[S has no edges and the following
holds: for everyx € V(D) \ Sthere is ars € Ssuch that eithes — xors—y — x
for somey € V(D).

Theorem 2.34 (Chvétal, Lovasz 1974)or every digrapfD there is a set of ver-
ticesSC V(D) which dominate®.

Proof. We use induction om = n(D). Forn=1 orn = 2 the claim is obvious.
Suppose the claim is true for all digraphs with less tharertices and leD be a
digraph withn > 3 vertices. Take anyc V(D) and letA=V (D) \ ({x} UO(x)). If
A= @ thenS= {x} dominateD. If, however,A # &, by the induction hypothesis
the digraphDI[A] has a set of verticeS C A that dominate®[A]. If there are no
edges inD[S U {x}| thenS= S U {x} dominatesD. Otherwise, there is ac S
such thatx —p zor z—p x. Fromz ¢ O(x) we conclude that —p X, s0S=S
dominatedD. O

There are two natural notions of connectedness for digraphs. ritsseatural
to be able to go from any vertex to any other vertex respecting the orienttion
the edges, but sometimes we might wish to be able to do the same thing regardless
of the orientation of edges.

A baseof a digraphD = (V,E) is a graphG = (V,E’) whereE’' = {{x,y} :
(x,y) € D}. A base of a digraph is obtained by replacing oriented edges of the
digraph by nonoriented edges, see Fig. 2.16. A digiapsweakly connected
its base is a connected graph. A digrdpls strongly connected for every pair
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Figure 2.16: A digraph and its base

of verticesx,y € V, x #y, there is an oriented path going fronto y, see Fig. 2.17.

strongly weakly connected not
connected (not strongly connected) connected

Figure 2.17: Two types of connectedness for digraphs

For disjointA,BC V(D) letE(A,B) = {(x,y) € E(D) : x€ Ay € B} be the set
of all edges oD that go from a vertex i\ to a vertex inB.

Theorem 2.35 A digraphD is weakly connected if and only E(A,B) # @ or
E(B,A) # & for every partition{ A,B} ofV (D).

A digraphD is strongly connected if and onlyH(A,B) # @ andE(B,A) # &
for every partition{A,B} ofV (D).

Proof. We shall prove the second part of the theorem.
(=) Let D be a strongly connected digraph and{latB} be an arbitrary parti-
tion of V(D). Take anya € A and anyb € B. The digraplD is strongly connected,
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so there exists an oriented path fr@nto b. Sincea € A andb € B, the path has
to cross fromA into B at some point, so there exists an edge/) along this path
such thak € A andy € B. ThereforeE(A,B) # @. Similarly, E(B,A) # @.

(<) Take anyx,y € V(D), x #y, and let us show that there is an oriented path
fromxtoy. LetA= {x}u{ve V(D) : there is an oriented path frorito v}. We
wish to show thay € A. Suppose this is not the case andBet V(D) \ A. Then
y € B and soB # @. Now, {A B} is a partition ofV (D) and by the assumption
E(A,B) # @. This means that there isvac A and aw € B such thatv — w. But
v € A means that there is an oriented path froto v, sov — w implies that there
is an oriented path fromto w ¢ A. This contradiction shows thgtc A and hence
there is an oriented path frortoy. O

Every connected grapB = (V,E) can be turned into a strongly connected di-
graphD(G) = (V,E’) whereE’' = {(x,y) : {x,y} € E}, that is, by replacing each
edge{x,y} of G by a pair of edges$x,y), (y,x). Therefore, each connected graph
is a base of some strongly connected digraph, possibly with back-e@igedol-
lowing theorem shows that this is not the case if we forbid back-edges.

Theorem 2.36 A connected graplec with at least two vertices is a base of a
strongly connected digraph with no back-edges if and on®/ liias no cut-edges.

Proof. (=) Let G = (V,Eg) be a base of a digragh = (V, Ep) and suppose that
G has a cut-edge = {u,v}. Then by Theorem 2.18 there is a partitiph, B} of
V such thaEg(A,B) = {e}. SinceD has no back-edges then eitl{arv) € Ep or
(v,u) € Ep, but not both. Therefore, eith&g (A,B) = @ or Ep(B,A) = @. In any
caseD is not strongly connected by Theorem 2.35.

(<) Let G = (V,E) be a graph with no cut-edges and &t V be a maximal
set of vertices such th&|[S is a base of a strongly connected digrdp($) with
no back-edges. Let us show ti&~ @. Note first thatG contains a cycle@ has
no cut-edges, so by Theorem 2.18 every edg® b&longs to a cycle; hence there
is at least one cycle iB). Take any cycleC in G, orient its edges to obtain an
oriented cycle and orient the remaining edge&ix (C)] arbitrarily. We thus ob-
tain a strongly connected digrapt{C) with no back-edges whose bas&l/ (C)].
Therefore, there exists a s8tC V with at least three vertices such ti@S] is a
base of a strongly connected digraph with no back-edges, so the maxichadet
cannot be empty.
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Let us show thaB=V. Suppose to the S V\S
contrary thatSc V, i.e.V \ S# @. SinceG
is connected we havg(S,V \ S) # &, so take

anye= {u,v} such thau € Sandve V\S

There are no cut-edges (& so according to
Theorem 2.18 the edgebelongs to a cycle
in G. Letvw; ...w be a part of the cycle that

belongs toV \ S and letwy, 1 be the vertex

that followswy on the cycle. By assumption,

Wi 1 € S. Now orient the edges on the path

UVvw ... W W, 1 to obtain an oriented path that goes fraro w1 and attach the
path to the digrapB®(S). Orient the remaining edges G[SU {v,wx, ... wy}| arbi-
trarily. The digrapHD’ obtained this way is strongly connected, has no back-edges
and its base i&[SU {v,w1,...w}| whose set of vertices is a proper superse.of
This contradiction shows th&=V, i.e. thatG is a base of a strongly connected
digraph with no back-edges. d

2.5 Tournaments

A tournamentis a digraphT = (V,E) with

the property that for each pairy € V, x £,
either(x,y) € T or (y,x) € T. Equivalently, a
tournament is a digraph with no back-edges
whose base is a complete graph. Tourna
ments (as digraphs) appear as models of tour-
naments (as sprot events) where no match
ends in a draw; each arrow then represents
one match and goes from the vertex repre-
senting the winner to the vertex representing
the loser.

A tournament withn vertices has<2> edges and " (v)+ &~ (v) =n—1 for

each vertew. Therefore, it has become customary to consider o). When
working with tournamentsy " (v) is called thescoreof v and denoted bg(v). A
tournament igransitiveif x — y andy — zimpliesx — zwhenevelx, y andz are
three distinct vertices of the tournament.

Theorem 2.37 Let T be a tournament with vertices. Then the following are
equivalent:
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(1) T is an acyclic tournament;
(2) T is a transitive tournament;
(3) the scores of vertices hare0, 1, ...,n— 1.

Proof. (1) = (2): SupposeT is not a transitive tournament. Then there exist
distinct verticesx, y and z such thatx — y andy — z butx 4 z. SinceT is a
tournamentx 4 z means that — x and we obtain a cycle —y — z— x.

(2) = (3): The proof is by induction om. Casesn = 2 andn = 3 are trivial.
Suppose that in each transitive tournament Wwithn vertices the scores of vertices
are0, 1, ...k—1and lefT be a transitive tournament withvertices. Let; be the
vertex of T with maximal score and let us show trsit;) = n— 1. Suppose that
there is a vertex such thax — v;. Then due to transitivity; — zimpliesx — z
and hence(x) > 1+ s(v1) > s(v1), which is impossible. Thereforg; — x for all
x# vi and hences(v;) = n—1. It is easy to see that — v; is again a transitive
tournament and by the induction hypothesis the scores of its vertices hre.0,
n— 2. Therefore, the scores of verticeslirare 0, 1, ...n—2,n— 1.

(3) = (1): The proof is again by induction amand the cases= 2 andn=3
are trivial. Suppose that each tournament With n vertices and with scores 0, 1,

.,k—1is acyclic and leT be a tournament with vertices and scores 0, 1, ...,
n—1. Letv be the vertex off whose score ia— 1 and letC be an oriented cycle
in T. SinceT —vis a tournament with scores 0, 1, .n~ 2, itis acyclic according
to the induction hypothesis 86(C) V(T —v). ThereforeC has to pass through
v. On the other handy(v) = n— 1 means that — x for everyx = v so no cycle in
T can pass through Contradiction. O

Corollary 2.38 Two transitive tournaments are isomorphic if and only if they have
the same number of vertices.

Theorem 2.39 Every tournament with at lea®t 1 verticesk > 2, has a transitive
subtournament with at ledstvertices.

Proof. The proof is by induction ok. If k=2 the O(v)

tournament has at least two vertices and hence at Ieast

one edge, and each edge- y is a transitive tourna-

ment with two vertices. Assume the claim is true for

all integers less thak and consider a tournameﬂit v

with at least #1 vertices. Take any € V(T Then \
V(T)=1(v)U{v}UO(v), so one of the sels{v

has at least'2? vertices. Without loss of generallty

we can assume th&D(v)| > 242, Inductioin hypothesis now yields that there is
a transitive subtournameiit of T[O(v)] with at leastk — 1 vertices. The’ to-
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gether withv induces a transitive subtournamentloivith at leask vertices. [

A kingin a tournamenT is a vertexv € V(T) such thafv} dominatesT. This
means that for every# v eitherv — x orv — y — x for somey € V(T).

Theorem 2.40 Each tournament with at least two vertices has a king.

Proof. Let v be a vertex off whose score is maximal and X

let us show that is a king. Suppose to the contrary tlat

is not a king. Then there is an# v such thaty 4 x and y2
noy € V(T) satisfiessr — y — X. SinceT is a tournament,

vV 4 X meanx — Vv, while the other condition means that

if v— ythenx—y. But thens(x) > 1+ s(v) > s(v), which V1
contradicts the maximality cf(v). o Vv
Homework

2.1. An automorphsnof a graphG is every isomorhismg : V(G) — V(G)
from the graph onto itself. By A(GG) we denote the set of all the auto-
morphisms ofG.

(a) Show that(Aut(G), o) is a group.
(b) Describe AutK,), Aut(S,) and AutP,) for n > 3.

(c) Show that AutG) = Aut(G).

2.2. (a) Show that for every > 6 there exists a grapB with n vertices such
that|Aut(G)| = 1.

(b) Show that for everk > 2 and everyn > k+ 3 there exists a grapB
with n vertices such thgAut(G)| = k!.

2.3. Prove Lemma 2.10.

2.4. Prove Theorem 2.14.

2.5. If Gis not connected show thd{G) < 2. (We know thaG is connected).
2.6. Prove Theorem 2.19.

2.7. Prove Theorem 2.20.

2.8. Show that a graph is a tree if and only if each pair of distinct vertices of of
the graph is connected by a unique path.

2.9. Find the number of distinct spanning trees<gf
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2.10. Complete the proof of Theorem 2.29 by showing thaty = id.

2.11. Prove Theorem 2.31.

2.12. In the distant land of Xy¢ there arecities some of which are connected
by roads, but still it is possible to reach each city from every other city by
traveling along the roads (and possibly passing through some other cities).
The Evil Magician who rules the Xy¢ would like to terrorize his people by
making each road a one-way road in such a way that after leaving a city it
is impossible to get back. Show that it is possible to do such a thing.

2.13. Prove the first part of Theorem 2.35 (the characterization of weakemin
edness).

2.14. Prove Corollary 2.38.

2.15. Atournamentigegularif s(x) = s(y) for all xandy. Show that in a regular
tournament each vertex is a king.

Exercises

2.16. Let G be a graph wit vertices andn edges. Show that(G) > %m

2.17. Which of the following integer sequences can be a sequence of defrees
vertices of a graph?

(@) (1,2,2,4,5,6,7);
(b) (1? 17 2’ 27 2’ 37 3)’
(c) (1,1,3,3,3,3,5,6,8,9).
12.18. Show that there are
(a) 2(2) distinct graphs with vertices;
n-1
(b) 2( 2) distinct graphs witi vertices such that the degree of each vertex
in the graph is even.

2.19. Let G be a graph witd(G) > 2. ThenG contains a path of length 5(G)
and a cycle of lengtl: 6(G) + 1.

2.20. Let G be a bipartite graph (not necessarily a complete bipartite graph!)
with n vertices andn edges. Show thah < %nz.

2.21. By a(G) we denote the maximum carinality of an independent set of ver-

tices inG. Show that a grapks is bipartite if and only if every subgraph
H of G satisfiesa (H) > 3n(H).
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2.22.

2.23.

2.24,
2.25.

2.26.
2.27.

2.28.

2.29.

2.30.

2.31.
2.32.
2.33.

2.34.
2.35.

A k-dimensional hyperculie a graphQy = (Vk, Ex) whereV is the set of
all 01-words of lengtlk anda; ... ax, b1 ... by € Vi are adjacent if and only
if the two words differ at exactly one place. For examplek # 4 then
0101 and 0001 are adjacent@ while 0101 and 0000 are not.

(a) Find the number of vertices and the number of edgegyof
(b) Show thatQ is bipartite.
(c) Show thatQy is connected and find(Q).

Show that for every even > 6 there exists a connected regular graph of
degree 3 with vertices and with no trianlges.

Show that if6(G) > %n(G) thenG is connected and(G) < 2.

Show that for every grap@ there exists a regular graph such thaiG is
an induced subgraph éf andA(G) = A(H).

Show thatd(G) = (n(G) — 1) — A(G) andA(G) = (n(G) — 1) — 3(G).
Show the following:
(a) If Gis connected and(G) > 3 thenG is connected and(G) < 3.

(b) Every selfcomplementary graph with at least two vertices is con-
nected and Z d(G) < 3.

Suppose that the degree of every vertex in a connected @gapleven.
Show thatw(G —v) < 36(v) for all v e V(G).

Let G = (V,E) be a connected graph withvertices and let be an arbi-
trary vertex ofG. Show thatZ/d(u,x) < (2)
Xe
Let G be a connected graph with at least two vertices. ShowGHzds at
least two vertices that are not cut-vertices.
Show that ifv is a cut-vertex of5, thenv is not a cut-vertex of.
Show that each tre@ has at leasA(G) leaves.
Let T be a treeA = A(T) and fx the number of vertices i of degreek.

A
Show thatf; =2+ % (k—2) .
K=3

Find all treesG such thaG is a tree.

For everyn > 4 find a graphG with n vertices such that for eadhe
{2,...,n—2} there is a spanning tree Gfwhose diameter ik.
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2.36.

2.37.

12.38.
12.39.

12.40.

12.41.

2.42.

2.43.

2.44.
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Note first that each tree is a bipartite graph since no cycles means no odd
cycles. Let{X,Y} be a partition of the vertices of a trdewhich demon-
strates thal is a bipartite graph and assume thét = |Y| 4 p for some

p > 0. Show thalX contains at leagt+ 1 leaves ofT .

A forestis a graph whose connected components are trees. Sho® that
aforestif and only i15(H) < 1 for all induced subgraphs of G.

How many nonisomorphic spanning trees des have?

Show that each spanning tree of a connected graph contains all @g-edg
of the graph.

A blockof a connected grap®B is a maximal set of verticeSC V(G) such
thatG[g has no cut-vertices (that is,& O SandG[S] has no cut-vertices
thenS = 9).

(a) Show that any two blocks of a graph have at most one vertex in com-
mon.

(b) Let By, ..., Bk be blocks ofG and let%s be the graph with vertices
{1,...,k} wherei is adjacent tg if and only ifi # j andB; andB; have a
nonempty intersection. Show thas is a tree.

LetD = (V,E) be a weakly connected digraph. A strongly connected com-
ponent ofD is a maximal set of verticeSC V such thaDI[] is strongly
connected (thatis, 8 O SandD[S] is strongly connected the®i = S).

(a) Show thatSN'S = @ wheneveiSandS are distinct strongly connected
components ob.

(b) Let SandS be distinct strongly connected componentDof Show
that if E(S,S) # @ thenE(S,S) = .

(c) Let S, ..., & be strongly connected componentsdfand let.p
be the graph with verticegl, ... k} wherei — j if and only ifi # j and
E(S,Sj) # @. Show that#p has no back-edges and its base is a tree.

Show that;(é+ (V)% = Z/(cS*(v))2 in every tournamerit = (V,E).
ve

ve

A tournament igegular if s(x) = s(y) for all x andy. Show that for each
odd integen > 3 there exists a regular tournament witkiertices.

K k
Scoress) < £ < ... < & of atournament satisfy ZLS = <2> for every
i=

ke {1,...,n}. Show thafT is an acyclic tournament.



Chapter 3

Eulerian and Hamiltonian graphs

In this chapter we deal with two important classes of graphs:

e Eulerian graphs, which are graphs with the closed walk in which each edge
occurs precisely once; and

e Hamiltonian graphs, which are graphs with the cycle in which every vertex
occurs precisely once.

We present an easy characterisation of Eulerian graphs and disvesal sieces-
sary and sufficient conditions for a graph to be Hamiltonian. The facthiea¢ is
no “easy” and “useful” characterisation of Hamiltonian graphs is justifigthle
discussion at the end of the chapter where we argue that checkinglém#tonian
cycle in a graph is an NP-complete problem.

3.1 Eulerian graphs

The famous Swiss mathematician Leonhard Euler was visiting the city of Kénigs-
berg in the year 1735. Kdnigsberg was a city in Prussia situated on thelPreg
River, which served as the residence of the dukes of Prussia in thedtiary.
(Today, the city is named Kaliningrad, and is a major industrial and commercial
center of western Russia.) The river Pregel flowed through the citythat in its
center was an island, and after passing the island, the river broke intpat&
Seven bridges were built so that the people of the city could get from areq
another. A map of the center of Kénigsberg in 1735 looked like this:

1
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KONINGSBERGA

A favorite pastime for visitors to the city was to try to cross each of the bridges
of Konigsberg exactly once. Euler was told by some people that it was inpm®ss
and by others that they doubted whether or not it could be done. Noelimwdd
it was possible. Eventually, Euler realized that all problems of this fornidcou
be represented by replacing areas of land by vertices, and the btidged from
them by edges of a graph such as:
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The problem now becomes to draw this picture without tracing any line twice
and without picking the pencil up off the paper. All four of the vertices ia th
above picture have an odd degree. Take one of these vertices,esay te ones
of degree three. We could start at that vertex, and then arrive anel leter. But
then we can't come back. So, every vertex with an odd degree has tithbe e
the beginning or the end of the pencil-path and thus we can have at mostitivo o
vertices. Therefore it is impossible to draw the above picture in one péralies
without tracing some line twice.

This is the first recorded problem in graph theory, and W. Tutte, himself a
prominent graph-theorist, decided to celebrate the problem with a poem:

From Konigsberg to Konig's book
by William T. Tutte

Some citizens of Koenigsberg
Were walking on the strand
Beside the river Pregel

With its seven bridges spanned.

O, Euler, come and walk with us
Those burghers did beseech
We'll walk the seven bridges o’er
And pass but once by each.

“It can’t be done” then Euler cried
“Here comes the Q.E.D.

Your islands are but vertices,
And all of odd degree.”

We shall now go for a more formal treatment of this and similar problems. We
shall first solve the general problem in case of oriented graphs, andrifer the
solution in case of undirected graphs.

Definition 3.1 A trail in a graph is a walk in which edges are not allowed to repeat.
An Eulerian trailin a graph is a trail that contains each edge of the graph precisely
once. A graph is said to lfeulerianif it contains a closed Eulerian trail, Fig. 3.1.

Definition 3.2 Analogously, aroriented trailin a digraph is an oriented walk in
which edges are not allowed to repeat. Bulerian trail in a digraph is an oriented
trail in the digraph that contains each edge of the digraph precisely Ardigraph
is said to beEulerianif it contains a closed Eulerian trail.
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@ (b) ©

Figure 3.1:(a) A graph with no Eulerian trail(b) a non-eulerian graph with an
Eulerian trail;(c) an Eulerian graph

Lemma 3.3 LetD be a digraph with no isolated vertices and with the property that
&~ (v) = 87 (v) for everyv € V(D). Then every vertex oD belongs to a closed
oriented trail inD.

Proof. LetW =v e X1...& X« be the longest trail ifb that
starts withv and let us show thag = v. Suppose to the con-
trary thatxx # v and assume thai appeard > 1 times on
the trailW. Each appearance & onW engages one edge
that leads intog and one edge that leads out®f except for ¥
the last appearance gf that engages one edge leading into
Xk. ThereforeW containsl edges leading inte, andl — 1
edges leading out of. Sinced™ (x) = 8" (x), there exists u

an edge? = (X, u) € E(D) that does not appear W. Now,

Ve X:...6 X € uis atrail that starts fromr longer thatV. Contradiction. O

Theorem 3.4 LetD be a digraph with no isolated vertices. THerms an Eulerian
digraph if and only ifD is weakly connected and(v) = &*(v) for everyv €
V(D).

Proof. (=) Let D be an Eulerian digraph with no isolated vertices and consider
a closed Eulerian tralWVv in D. Walking alongW we can start from any vertex

in D and reach any other vertex i which shows thabD is strongly, and hence
also weakly connected. The tr&f can be partitioned into oriented cycl€s,

..., C¢ in such a way that every edge i belongs to exactly one of the cycles
(Homework 3.1). Each vertex @ appears oW, so each vertex belongs to at
least one of the cycles. Now, ¥ V(D) lies on exactlyl of these cycles, then

o~ (v) =1 = d7%(v) since every edge i belongs to precisely one of the cycles
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C1, -..,Ck, and each of the cycles “absorbs” one edge that goes entol one edge
that goes out o¥.

(«) Take anyv € V(D). According to Lemma 3.3/ belongs to some closed
oriented trail inD. LetW be the longest closed oriented trailinthat containy
and let us show that/ is an Eulerian trail irD.

Suppose thatV is not an Eulerian trail irD, i.e. E(W) C E(D). If V(W) =
V(D), take anye = (u,v) € E(D) \ E(W). If V(W) Cc V(D) then{V(W),V (D) \

V (W)} is a partition ofV (D) and sinceD is weakly connected there is an edge
e=(u,v) € E(D) \ E(W) such thatu € V(W) andv € V(D) \ V(W) (or the other
way around; the proof is analogous). In any caseSlee the weak connected
component oD — E(W) that contain®. SinceW is a closed trall, it is easy to see
thatdg (v) = & (v) for everyv € V(S). Hence, by Lemma 3.3 there exists a closed
trail W’ in Sthat containai. SinceE(W') C E(S) C E(D) \ E(W), it follows that
E(W)NE(W) =&, so glueingV andW’ atu provides a trail that containsand
which is longer thaiwv. Contradiction. O

The characterisation of Eulerian graphs is similar, and the proof goeg tden
same guidelines as in case of digraphs.

Theorem 3.5 Let G be a graph with no isolated vertices. THeris an Eulerian
graph if and only ifG is connected and each vertex®fs even.

Proof. Analogous to the proof of Theorem 3.4. d

It is now easy to characterize noneulerian graphs that contain an Eutexila
(which therefore cannot be a closed Eulerian trail).

Theorem 3.6 Let G be a noneulerian graph with no isolated vertices. TBéras
an Eulerian trail if and only if it is connected and has precisely two odd estic

Proof. (=) Let W be an Eulerian trail irG. SinceG is not EulerianW is not
closed. Denote the vertices it starts and ends withulaydv. Introduce a new
vertexx ¢ V(G) and two new edge§x, u}, {x,v}, and apply Theorem 3.5.

(<) Letuandv be the odd vertices i®. Introduce a new vertex¢ V(G) and
two new edgeg$x,u}, {x,v}, and apply Theorem 3.5. O

Finally, we conclude the section with another characterization of Euleragphgr

Theorem 3.7 Let G be a connected graph. Thérnis Eulerian if and only if every
edge ofG belongs to an odd number of cyclesGn



6 CHAPTER 3. EULERIAN AND HAMILTONIAN GRAPHS

Proof. We start by proving an auxiliary statement.

Claim. LetG be a connected noneulerian graph with an Eulerian trail and let
andv be the only two odd vertices iG. Then the number of trails that startuat
end inv and wheres appears only once (i.e. at the end of the trail) is odd.

Proof. The proof is by induction om(G). The claim is true for connected
noneulerian graphs with an Eulerian trail that have 1, 2 and 3 edgepoSeithe
claim holds for all such graphs with m edges, and le6 be such a graph witm
edges. Furthermore, letandv be the two odd vertices i6, letk = &(u) and let
X1, ..., % be the neighbours af. Forj e {1,... k} letej = {u,X;} and letT; be
the set of all the trailsi g x; ... v with the property thav appears only at the end
of the trail. ThenTyU...UTy is the set of all the trails we are considering and we
have to show thafT;|+ ...+ |Ti| is odd. Sincek is odd, it suffices to show that
every|T;| is odd.

Take anyj € {1,...,k} and letG; = G—e;. The degree dfiin Gj is even, SK;
andv are the only odd vertices i@;. This is why they have to belong to the same
connected component &j. The number of edges in this connected component is
strictly less thamnm, so by the induction hypothesis the number of trails that start at
Xj, end invand contairv only once is odd. Itis easily seen that the number of such
trails equalgT;|, and hencgT;| is also odd. This completes the proof of the claim.

Let us now go back to the proof of the theorem.

(<) Let G be a connected graph that is not Eulerian. Tiehas an odd
vertexv. For an edge incident tov let c(e) denote the number of cycles @Gthat
containe. Since each such cycle contains two edges that are adjacenh&osum
SveeC(€) is even (= twice the number of cycles that pass throdgiBut 5(v) is
odd, so this sum consists of an odd number of summands. Thereforef tre
summands has to be even, and thus there exists aneaaltjacent tos such that
c(e) is even.

(=) Let G be an Eulerian graph and let= {u,v} € E(G) be arbitrary. Ac-
cording to Exercise 3.1%is not a cut-edge, s@ — e is connected. Henc& — e
is not Eulerian, but has an Eularian trail. Let this trail statt ahd end irv. The
Claim now yields that there is an odd number of trails that staut ahd inv and
containv only once. IfSis one such trail which is not a path, th8gontains some
vertex more than once (for otherwiSavould be a path). Lety; be the first vertex
in Sthat appears more than onceSand letwie . 1Wi1...€jw; = w; be the short-
est cycle inSthat containsv;. “Mirroring” the cycle within Sproduces a new trail
S having the same properties &s

S: uewi...Wig 1Wiy1 ... € Wj...Ws 165V

S: uewi...Wj € ... Wii1€41Wi...Ws 165V



3.2. HAMILTONIAN GRAPHS 7

Therefore, trails that start at, end inv, containv only once and are not paths
appear in pairs. Hence, the number of such trails which are not patheris ev
But, we know that there is an odd number of trails with these properties,oghen
follows that the number of paths connectingndv in G — eis odd. Each of the
paths together witk builds a cycle inG that contain®. Thereforeg belongs to an
odd number of cycles. O

3.2 Hamiltonian graphs

Sir William Rowan Hamilton, who was Astronomer Royal of Ireland, invented in
1857 a puzzle called@he Travellers Dodecahedron or A Voyage Around the World
It is not a true dodecahedron but is a “schematic” of a dodecahedrannmoden
“mushroom”.

The 30 edges represent the only roads that one is allowed to pass along a
visits the 20 vertices that represent cities. Two travellers were supposed off
visiting the cities: the first was supposed to pose a problem and start thieytour
visiting four cities that belong to the same face of the dodecahedron. Therpla
posing the problem then returns home and the other continues to travetiahmu
world trying to visit all the remaining cities only once, and eventaully return home
The silk cord that accompanied the puzzle was used to mark the voyageuasnd th
prevent the voyager from visiting a city more than once.
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Until recently, only information we had ofhe Travellers Dodecahedramas
its description in a chapter on Hamilton’s Game in volume 2 of Edouard Lucas’
Récréations Mathématiquesd another mention in the 3rd edition of Ahrens’
German work on Recreational Mathematics. But then an example was redpve
complete and in almost new condition.

In graph-theoretic terms the puzzle boils down to finding a spanning cycle of
the incidence graph of a dodecahedron. The graph shown in Fig. 3.gléme
projection of a dodecahedron and we outlined a spanning cycle in this.grap

Definition 3.8 A Hamiltonian pathin a graph is a path that contains all vertices of
the graph. AHamiltonian cyclen a graph is a cycle that contains all vertices of
the graph. A graph is calledamiltonianif it has a Hamiltonian cycle.

In comparison with Eulerian graphs, Hamiltonian graphs are much more hard
to grasp. There is no “useful” characterisation of Hamiltonian graphsvaershall
see in the next section that there is a justification for this: deciding whethrapha g
is Hamiltonian is one of the most complicated computational problems. We will
actually show that this decision problem is NP-complete (for the moment, think of
this as “extremely hard”).
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Figure 3.2: A solution to The Travellers Dodecahedron is a spaning cf¢heo
incidence graph of the dodecahedron

Theorem 3.9 LetG be a Hamiltonian graph arml + SC V (G) a nonempty set of
vertices ofG. Thenw(G—9S) < |S.

Proof. Let C be a Hamiltonian cycle 06. Thenw(C—9) > w(G— S) since
G — Shas more edges th&— S, and they might connect some of the connected
components o€ — Stogether. On the other hand, it is easy to seedh{@— S) <
|S. Thereforew(G—9) < |S. O

Theorem 3.9 is useful when it comes to showing that a grapletislamilto-
nian.

Corollary 3.10 Hamiltonian graphs have no cut-vertices and no cut-edges.

Proof. If vis a cut-vertex of a grap® thenw(G —v) > 2 > |{v}|. Theorem 3.9
now implies thaiG is not Hamiltonian. We leave the cut-edges as Homework 3.5.
O

We have already mentioned that there is no “useful” characterisationrofiHa
tonian graphs. However, it is generally accepted that the best chazatiten of
Hamiltonian graphs was given in 1972 by Bondy and Chvatal who genedasiar-
lier results by G. A. Dirac and O. Ore. The idea behind their result is thedghg
is Hamiltonian if enough edges exist.

If u,v are nonadjacent vertices & ande = {u,v}, then byG + e we denote
the graph obtained by adding the edge G.
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The closure of a grap@ is a graph on the same set of vertices constructed as
follows. Define a sequence of grapB@s, G, ..., byGy = G and

Gi+e, wheree¢ E(G;) joins two nonadjacent vertices

Gii1= u,v € V(G;) such thatg, (u) + dg, (V) > n(Gj),

Gi, if no such pair of vertices exists

Since we leave the set of vertices fixed and add new edges whenegérlppthere
exists & such thatGy = Gy j for all j > 1. Then the grapl®y is called theclosure
of G and denoted by (G).

Theorem 3.11 (Bondy, Chvatal 1972)A graphG is Hamiltonian if and only if
cl(G) is Hamiltonian.

Proof. If G is Hamiltonian, then so is @G) sinceE(G) C E(cl(G)). For the
converse, suppose th@tis not Hamiltonian but that ¢G) is Hamiltonian. Then
there exists a grap8; in the sequencé = Gy, Gy, ..., Gk = cl(G) defining c(G)
such that; is not Hamiltonian and; ; is Hamiltonian. LeiG;, 1 = G; + ewhere
e= {u,v}. Then by the construction,andv are not adjacent anii, (u) + g, (V) >
n.

SinceG; + e is Hamiltonian andG; is not, it follows that each Hamiltonian
cycle inG; + e passes through. Take any Hamiltonian cycl€ in G; +e. Then
e € E(C) and hence& — e is a Hamiltonian pathu = x; X2 ... Xp—1 Xqp = Vin G;.
Now it is easy to see thatifis adjacent tj for somej > 1 thenv is notadjacent
to xj_1 for otherwise we would have a Hamiltonian cycleGn

T > T

uU=X1 X2 Xj—1 Xj Xpn—1 Xp=V

Therefore, ifdg, (u) = kthendg, (v) < n— (1+K) sincevis not adjacent to itself,
nor is it adjacent to predecessors of kneeighbours ofl. Hencedg, (u) + dg; (V) <
n—1. Contradiction. O
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Corollary 3.12 LetG be a graph with vertices.

(a) If 5(u)+6(v) > n wheneveu andv are distinct, nonadjacent vertices®f
thenG is Hamiltonian. (O. Ore 1960)

(b) If &(u) > g for allu € V(G) thenG is Hamiltonian. (G. A. Dirac 1952)

All these statements have their analogues for digraphs. We shall, howveagr
only tournaments to show how very special digraphs they are.

Definition 3.13 A Hamiltonian pathin a digraph is an oriented path that contains
all vertices of the digraph. Adamiltonian cyclein a digraph is an oriented cycle
that contains all vertices of the digraph. A digraph is calailtonianif it has a
Hamiltonian cycle.

Theorem 3.14 (Rédei)Every tournament has a Hamiltonian path.

Proof. The proof is by induction on the number of vertices in the tournament. The
statement is easily seen to be true in case of tournaments with 2 and 3 vertices.
Assume now that every tournament with less timavertices has a Hamiltonian
path, and leT be atournament omverticesV (T) = {x1,...,%}. By the induction
hypothesisI’ =T —x; has a Hamiltonian patk, Xi, ... X;,. If Xg — X, orxi, — X,

the Hamiltonian path of’ easily extends to a Hamiltonian path®f If, however,

X1 A %, andx, /4 X, thenx;, — X1 andx; — X;,. It is easy to see that there exists
anssuch thak, — X — X,

X1
Xi2 Xis Xis+1 Xin
SOXi, ... Xig X1 Xig,, --- Xi, IS @ Hamiltonian path foT . O

Theorem 3.15 A tournament is Hamiltonian if and only if it is strongly connected.

Proof. (=) If a tournament is Hamiltonian, then walking along the Hamiltonian
cycle we can get from every vertex of the tournament to every otheudilence,
the tournament is strongly connected.

(<) Let T be a strongly connected tournament. THeis not transitive and
hence contains an oriented cycle. Cet Xg — X1 — ... — Xk — Xg be the longest
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oriented cycle il and let us show that(C) =V(T). Suppose to the contrary that
V(C) cV(T). Then{V(C),B} is a partition otV (T), whereB=V(T)\V(C). If
there exists € B such thaE(V(C),{y}) # @ andE({y},V(C)) # @ then there
exists an index such that — y — X, 1:

andxpg — ... > X > Y— X11— ... = X — Xo IS an oriented cycle i which is
longer tharC. Contradiction.

Therefore, for eacly € B eitherE(V(C),{y}) = @ or E({y},V(C)) = @. Let
Y={yeB:EV(C),{y}) =o}andZ={ze B: E({z},V(C)) = @}. SinceT is
strongly connected it follows that # @, Z # & andE(Z,Y) # 0. Takez € Z and
y €Y such thaz — y. FromE(V(C),{y}) = @ it follows thaty — x; for all i.

z
X0 X1 Xk
'y

Similarly, x; — zfor all i, soxg —z— Yy — X1 — ... — Xk — Xg iS an oriented cycle
in T and it is longer thal€. Contradiction. Therefore/(C) =V(T), soT is a
Hamiltonian tournament. O

A careful analysis of the previous proof reveals that we can actuatlyepr
much more.

Theorem 3.16 (Camion 1959)Let T be a Hamiltonian tournament with ver-
tices. For every vertexc V(T) and evenk € {3,...,n} there exists an oriented
cycle of lengttk that contains.
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3.3 Complexity issues

In this section we consider the computational complexity of deciding whether a
graph has a Hamiltonian cycle. We show that this decision problem not didy fa
into theNP complexity class, but that it is &#P-complete problem, i.e. a paradigm

of anNP-hard problem.

The notion of an algorithm- "effective procedure”) was recognised as one of
the essential notions in mathematics as early as 1928 when D. Hilbert anckW. Ac
ermann published their influential booklet “Grundziige der theoretiscbgik” in
which they posed a problem of finding an algorithm (whatever that might jnean
which decides whether a first-order sentence is a consequence ofidinesaof
arithmetic. At that time there was no formal notion of an algorithm, so the problem
was actually twofold: on the “philosophical” level it was required to intrasltiee
precise definition of an algorithm, while on the mathematical level the definition
should have been used in solving the particular problem of mathematical logic.
The problem (both on the philosophical and the mathematical level) was imdepe
dently solved in 1936 by A. Church and A. Turing. Although Churchsison
was published a few months ahead of Turing’s, the approach taken Bbyrihg
is more intuitive, and constitues a basis of what is today known as Computability
Theory.

We shall not present a formal definition of a Turing machine. For oyrques
it suffices to say that during machineis a mathematical model of a computer
program written for a modern computer with infinite memory. Since computers
actually operate on finite 01-words we shall teéke= {0,1} as the alphabet in
which to carry out our considerations. ¥t denote the set of all finite 01-words,
together with the empty worel By |w| we denote the length ef € *. A language
is any setZ C * of 01-words. In particular, for every graghthere is a 01-word
(G) representing the graph, so we also have the langdagd (G) : Gis a graph.

A computer progranf can take any Ol-word as its input, but may fail to
produce an output. Hence, each computer proghacorresponds to a function
A:3* — 5*U{eo} such that

u, Atakesw as its input and after a finite number of computation
A(w) = steps stops and printsas a result;

oo, A never stops on input.

For a computer prograrm and a wordwv € 2* let

ta(W) = n, Atakesw as its input and stops aftarcomputation steps;
A7 Y%, Anever stops on inpwt.
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A computer progranA runs in polynomial timef there exists a positive integér
such thata(w) = O(|w|¥) wheneveA(w) # oo,

The complexity classP. A language?’ C X" is decidablef there exists a com-
puter programA such thatA: * — {0,1} and

L ={wez":AWw) =1}

(Note that the computer program which decides a language stops on &k inpu
and outputs 0 or 1.) The languagé C * is decidable in polynomial timé there
exists a computer prografwich runs in polynomial time such thAt =* — {0,1}
and.Z = {we =* : A(w) = 1}.

Definition 3.17 The complexity clas® consists of all languages ovEr= {0,1}
that are decidable in polynomial time:

P={% CX: Zis decidable in polynomial time

Equivalently, the complexity clagsconsists of all problems that can be solved
in polynomial time. Indeed, given an probleépit suffices to encode each instance
| of the problem by a 01-word) and consider the languagey = {(I) : | is an
instance ofQ}. Then each instandeof the problem can be solved in polynomial
time (where the degree of the polynomial does not depend on the instaacel) if
only if Zq is decidable in polynomial time. For example, the problem of deciding
in polynomial time whether a graph is connected corresponds to polynomial de
cidability of the languageZtonn= {(G) : G is a connected graghFor some other
problems the transformation problers | languagemay not be so obvious.

The complexity classNP. Instead of requiring a computer program to solve a
problem, we might only wish to pull a solution out of a sleeve and verify that the
solution is indeed a solution to a problem.vArification algorithmis a computer
programA with two inputs such thal: £* x = — {0,1}. If there exists a posi-
tive integerk such thata(p,s) = O((|p| + |s))¥) for all p,s < =* we say thai is
a polynomial verification algorithm A language.? is verified by a verification
algorithmA if

Z={pez:3scz* (A(p,s) =1)}.

A language? C >* is verifiable in polynomial tim# there exists a positive integer
c and a polynomial verification algorithé such that

£ ={pes*:3sez*(]s| <|p|°andA(p,s) = 1)}.
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Definition 3.18 The complexity clasBlP consists of all languages ovEr {0, 1}
that are verifiable in polynomial time:

NP = {¥ C ¥*: Z s verifiable in polynomial timg.

Equivalently, the complexity clag¢P consists of problems for which it is easy
to check whether what we claim to be a solution is indeed a solution. For example
Zham = {(G) : G is a Hamiltonian graphis in NP since given a grapfs and a
sequence of vertices, ..., X, itis easy to check whethey, .. ., X, is a Hamiltonian
cycle of G.

Theorem 3.19 P C NP.

Proof. Take any.# € P. Then.Z = {w e £* : A(w) = 1} for some computer
programA that decides? in polynomial time. Now take a verification algorithm
B:3* x £* — {0,1} so thatB(p,s) = A(p). ThenB clearly verifiesZ in polyno-
mial time, so.¥ € NP. O

The exact relationship betwe&handNP is still unknown. It is strongly be-
lieved thatP # NP, but we still haven't got a proof. The problem is actually so
important that the Clay Mathematics Institute is offering a USD 1,000,000 prize fo
the correct solutiof. Apart from the prize, the importance of the problem is also
reflected by the fact that the security of RSA, the most widely used cigystem,
depends orP # NP. If it turns out thatP = NP the security of all transactions
based on RSA, PGP and the such will be broken and many aspects otoynlay
life would have to change.

Polynomial reducibility and NP-completeness. We say that a languag&’ C
2* is polynomially reduciblgo a language?> C >*, and write.#1 < %>, if there
exists a computer programwhich runs in polynomial time such that: ¥* — >*
and

we % ifand only if K(W) € .%.

Intuitively, regarding polynomial-time as “easy”, this means: if there is a gBlyn
mial reduction from%; to .%%, then_.#; cannot be harder thaff,.

Theorem 3.20 If £ € P and.¢’ <, £ thenZ' € P.

Lhttp://www.claymath.org/millennium/P_vs_NP/
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Proof. If Ais a computer program that decidgé in polynomial time, and iB
is a computer program that reducgs to .Z in polynomial time, therBo Ais a
computer program that decideg4’ in polynomial time, so¥” € P. O

Definition 3.21 A language? C >* is NP-hardif ¢’ <, £ for every.Z”’ € NP.
A language? C >* is NP-completef it is NP-hard and belongs tNP.

An NP-complete problem is a paradigm of BiP-problem. Moreover, if one
of them happens to be ithenP = NP:

Theorem 3.22 Let ¥ be arNP-complete language. 1¥ € P thenP = NP.

Proof. Suppose thatZ is anNP-complete language such that € P. Take any
Z" € NP. Since.Z is NP-hard, it follows that?” <, # and thusZ”’ € P by
Theorem 3.20. This shows thidP C P. O

The first hands-oMNP-complete problem was discovered in 1971 by S. Cook.
A Boolean formulas a formula built up from Boolean variables, ..., x, (each
of which can take the valuarue or falsg and Boolean connectives A andv. A
Boolean formuleF (xq, . ..,X,) is said to be in @onjunctive forn(CF for short) if
it has the form

F(X1,..., %) =Ci(X1,. .-, %) ACa(X1, ..., Xn) A ... ACK(X1, ..., Xn)
where each claugg(xi, ..., xn) is a disjuction of literals
Ci(Xt,-- -, %) = (it V02 V... Vlim)

and each literal;j is a variablex;; or a negated variablex;;. It is a well known
fact from Boolean logic that every Boolean formula is equivalent to a Gél&an
formula.

A Boolean formulaF (xg,...,X,) is satisfiableif there exists an assignment
T:{X1,...,%} — {true,false} of truth values to variables such theF) = true,
that is,F evaluates tdrue under the assignmemnt Let us fix a systematic way
of encoding CF Boolean formulas by 01-words and(fe} denote an encoding
of F. Let us denote the language that corresponds to satisfiable Booleauldsr
by SAT:

SAT= {(F) : F is a satisfiable CF Boolean formgla

Theorem 3.23 (Cook 1971)SATis NP-complete.
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Now that we have an explicitdP-complete problem, it gives us a strategy to
show that other problems are alsif*-complete: if anNP-complete problem is
polynomially reducible to some other problem, this new problem also has to be
NP-complete.

Theorem 3.24 If ¥ is anNP-complete language and#’ € NP has the property
that.Z < 2" then.’ is alsoNP-complete.

Proof. This is an immediate consequence of the fact thats transitive. O

Therefore, in order to show that finding a Hamiltonian cycle in a graph is an
NP-complete problem, it suffices to show tf&ATis polynomially reducible to it.
In this particular case, working with digraphs turns out to be easier thakingp
with graphs, so we introduce the two languages:

e HAMG= {(G) : G is a Hamiltonian graph which is a 01-language that en-
codes Hamiltonian graphs, and

e HAMD = {(D) : D is a Hamiltonian digraph which is a 01-language that
encodes Hamiltonian digraphs,

and carry out the proof in two steps:
o we first show thaHAMG <, HAMD andHAMD <, HAMG; and then

e we show thaBAT <, HAMD.

Lemma 3.25 HAMG < HAMD andHAMD <, HAMG.

Proof. For every graptG = (V,E) let Dg = (V,E’) denote the digraph with the
same set of vertices whose set of edges is

E'={(uv) €V2:{u,v} €E}.

Clearly, there exists a polynomial algorithm that convé@sto (Dg) and it is easy
to see thats is a Hamiltonian graph if and only iDg is a Hamiltonian digraph
(Homework 3.11). ThereforéJAMG < HAMD.

Now, letD = (V,E) be a digraph and l&bp = (V/,E’) be a graph constructed
from D as follows. For eacl € V we add three vertice®, v!,v? to V' and two
edges{\°,v!} and {v},v?} to E’ replacing thus each vertex & by a path of
length 2 inGp. Moreover, for each edgg,v) in E we add an edgéu?,\°} to
E’. An illustration of this proces is given in Fig. 3.3. Clearly,| = 3|V| and
|E’| = |E| +2|V|, so the reduction is polynomial. It is also easy to see Ehat a
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Vv
u X
W
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u X
W wow W

Figure 3.3: Two digraphs and their associated graphs

Hamiltonian digraph if and only i6Gp is a Hamiltonian graph (Homework 3.11).
Therefore HAMD <, HAMG. O

Theorem 3.26 HAMG is NP-complete.

Proof. According to Theorem 3.24 it suffices to show tB&T<, HAMG. We shall
actually show thaBAT <, HAMD and then us¢lAMD <, HAMG established in
Lemma 3.25. Therefore, for every Boolean formblgy, ..., X,) in CF we have to
construct a not too complicated digraph such thaf is satisfiable if and only if
Dr has an oriented Hamiltonian cycle.

LetF(xs,...,X,) be a Boolean formula given in its conjunctive form:

F(Xty.--%) =C1(X1,. .., %) AC2(Xa,y -+ s Xn) A v o ACK(X1, -+ -y Xn)-
Recall that each claugg(xy, ...,X,) is a disjuction of literals

Gi(X1,... %) = (it V62 V... Vliim)

and each literal;j is a variablex;; or a negated variablex;j. We construct a
digraphDg with 2nk+ k vertices as follows. For each variablewe have R
verticesui, Vi1, Ui2, Vi2, ..., Uik, Vik, and for each clausg we have a vertex;.

The verticedu;j, vj; are connected by edges as in Fig. 3.4. We choose a direction,
say from left to right, and say that thatevaluates tdrue if we traverse vertices
that correspond tg; in that direction, while it evaluates to false if we traverse the
vertices that correspond #in the oposite direction.
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X1 —

Xo —

Xn —

Figure 3.4: The construction of the digraph, Part I: vertices that correspond to
variables
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Figure 3.5: The construction of the digraphk, Part Il: vertices that correspond to
clauses

Next, we describe how to connect vertices that correspont to claugedittes
that correspond to variables. If a variabjeappears in a claugg; and it is not
negated irC;, we add the edges; — c; andc; — vjj. If, however,; is negated
in C; we add the edgeg; — c¢j andc; — ujj. So, if a variable is not negated
in a clauseC; we add edges that go “in the direction of truth”.x/fis negated in
Cj, we add edges that go “in the direction oposite of truth”. An example is given
in Fig. 3.5 (for clarity, the figure indicates only the edges incident to vertitats
represent clauses; edges connecting to vij’s have been omitted). The digraph
in Fig. 3.5 corresponds to the boolean formixy, X2, X3,X4) = C1 ACo AC3 where
C1=X1 VX2V Xq, Cy = =% V X3 andCsz = —x1 V X3. The full graph that represents
F is given in Fig. 3.6.

Itis easy to see that this construction can be carried out in polynomial tinhe. Le
us finally show thaf is satisfiable if and only iDg has an oriented Hamiltonian
cycle. Recall that traversing a row of vertices that corresponds ftom left to
right meansrt (x;) = true while traversing from right to left meangx;) = false
The idea is that an oriented Hamiltonian cycle through the digraph represents
assignment of truth values to the varialyes. . . , Xn.

Assume the formul# is satisfiable by some truth assignmentChoose one
true literal in each clause, traverse the graph moving across eachle8ggiath
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X1 —

Xo —

X3 —

21

Figure 3.6: The digrapg for F(x1,X2,X3,X4) = (X1 V X2 V Xq) A (—%2 V X3) A

(—|X1 V X3)
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in the appropriate direction, and take a diversion to a clause-nodedbrligzral
chosen above. This oriented path is a Hamiltonian cycle.

Conversely, suppose there exists an oriented Hamiltonian EyieDg. Then
H traverses each variableSs row either from left to right or from right ftoaled
thus determines an assignment of truth valués variables. Each clause-node is
visited by a side-trip from a variable row. This variable corresponds taediteral
in the clause. Hence, each clause evaluatésigoundert and hencea (F) = true,

i.e.F is a satisfiable formula. O
Homework
3.1. Let D be an Eulerian digraph. Prove that each closed Eulerian tr&il in

3.2.
3.3.
3.4.

3.5.
3.6.

3.7.

3.8.
3.9.

3.10.

can be partitioned into oriented cycles in such a way that every edge of
belongs to exactly one of the cycles. (Hint: use induction on the length of
the trail.)

Prove Theorem 3.5.
Complete the proof of Theorem 3.6.

There are five regular polyhedra: tetrahedron, hexahedron, estria
dodecahedron and icosahedron (Fig. 3.7). Which of them could tere b
used instead of the dodecahedron in the Hamilton’s Voyage Around the
World puzzle?

Complete the proof of Corollary 3.10.

Prove Corollary 3.12. (Hint: fofa) show that dIG) is a complete graph
and use the Bondy-Chvétal Theorefh) follows from (a).)

(Ore 1960) LeG be a graph with vertices. Ifd(u) + d(v) > n—1 when-
everu andv are distinct, nonadjacent vertices®@thenG has a Hamilto-
nian path. (Hint: add a new vertex @and connect it by an edge to every
vertex ofG; show that the new graph is Hamiltonian using a similar result
for Hamiltonian graphs.)

Show that a transitive tournament has exactly one Hamiltonian path.

Show that each tournament which is not strongly connected can be turned
into a strongly connected tournament by changing the orientation of only
one edge.

Prove Theorem 3.16. (Hint: induction &using the fact that a Hamilto-
nian tournament is strongly connected; ket 3 show thaE(O(v),1(v)) #
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HE

Figure 3.7: The five regular polyhedra

@, for the induction step modify slightly the idea used in the proof of The-
orem 3.15.)

3.11. Complete the proof of Lemma 3.25 by showing that
e G is a Hamiltonian graph if and only D¢ is a Hamiltonian di-
graph; and

e D is a Hamiltonian digraph if and only &p is a Hamiltonian graph.

Exercises
3.12. (a) For eachn > 2 give an example of a graph withvertices which is
neither Eulerian nor Hamiltonian.

(b) For eachn > 3 give an example of a graph withvertices which is
both Eulerian and Hamiltonian.

(c) For eact > 4 give an example of a Hamiltonian graph witlertices
which is not Eulerian.
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3.13.
3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.
3.21.

CHAPTER 3. EULERIAN AND HAMILTONIAN GRAPHS

Figure 3.8: Exercise 3.19

(d) For eachn > 5 give an example of an Eulerian graph witlvertices
which is not Hamiltonian.

Prove that an Eulerian graph with no isolated vertices has no cut-edges.

For a digraptD and a set of edgds C E(D) letW be the set of all vertices
of D incident to an edge iR and letD[F]| = (W, F) denote thesubdigraph
of D induced by F

Let D be a weakly connected digraph. Prove thas Eulerian if and only
if there exists a partitiodF, ..., K} of E(D) such that eacB[F] is an
oriented cycle.

Let A be a finite set with at least three elements.\Oa Z(A)\ {&,A} as
a set of vertices we define a gra@tas follows: two proper subseXsand
Y of A are adjacent if and only X C Y orY C X (i.e., if and only if one
of them is a proper subset of the other one). Show @hat an Eulerian
graph.

Let G be an Eulerian graph with no isolated vertices and w{i&) odd.
If A(G) < [ 5] show thaiG is an Eulerian graph.

Let G be a connected Eulerian graph with no isolated vertices and with
n(G) odd. Ifd(G) > 3 show thaiG is an Eulerian graph.

Let G be a connected graph withkk ®dd vertices. Show th&(G) can be
partitioned intok edge-disjoint trails.

Is it possible to partition the edge-set of the graph in Fig. 3.8 into five
edge-disjoint paths of legth 87

Which of the graphs in Fig. 3.9 are Hamiltonian?
(a) Let G be a bipartite Hamiltonian graph and IgX,Y} be a partition
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(a

)
(b) (©) (d)

Figure 3.9: Exercise 3.20

of the set of its vertices that demonstrates tBds bipartite. Show that
IX] = 1¥].

(b) Is the graph in Fig. 3.10 Hamiltonian?

3.22. A vertex cover of a grapls is a set of vertice8v C V(G) such that every
edge inGis incident to a vertex froilV. Show that ifG has a vertex cover
W such thatw/| < 2n(G) thenG is not Hamiltonian.

3.23. Let G be a graph witm vertices andn edges such thah > (”51) +2.
Show thaiG is a Hamiltonian graph.

Figure 3.10: Exercise 3.21
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3.24.

3.25.
3.26.

3.27.

13.28.
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Show that the complement of a regular disconnected graph is a Hamilto-
nian graph.

Show that a hypercube of dimensikp: 2 is a Hamiltonian graph.

Show that every strongly connected tournament with 4 vertices con-
tains a vertex such that after changing the orientation of all the edges
incident tov we again obtain a strongly connected tournament.

Show that a strongly connected tournament witk: 3 vertices has at
leastn — 2 oriented triangles. (An oriented triange is an oriented cycle
of length 3.)

Lets; < <... < s be the scores in a tournameéntwith n vertices. If
Sh—s1 < 5, show thatT is a Hamiltonian tournament. (Hint: show that
Sj—s < 5 whenevei < j and conclude thal is strongly connected.)



Chapter 4

Introduction to Clones

Boolean logic (or propositional logic as we prefer to call it) is named aftergse
Boole, a professor at University College Cork, who first thoughtidba algebraic
system of logic in the chapter “Of Hypotheticals” of his 1847 book “The Math
matical Analysis of Logic”.

The ideas of George Boole (that can be traced back to Leibniz, actuairg) h
reached their final form in the formalisation of mathematical logic at the begjnnin
of the 20th century, which, among other things, lead to the clear distinctiorebatw
the syntaxand thesemanticsof logical systems. In case of Boolean logic, the
syntactic part consists of propositional formulas, while the semantics isdaecbv
by Boolean functions, e.qg.

f(p,q,r)
0

pV(gQA-T) VS.

P RPPFPPFPOOOOT
PP OOPFRPF OO
P OPFRPOPFRPORFrO-—-

PR RPRRLRORO

It is an easy obsetvation that every Boolean functf@ry,...,X,) in n un-
knowns which is not identically equal to 0 can be represented by a formtie o
propositional calculus as follows:

fxe,....%) =\  XEALAXD

£1,...,&n:
f(e1,....6n)=1

1
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where

x¢ is a replacement fo{X ff e=1
-x if e=0.

(If f is identically equal to O theffi(xq,...,X)) = X1 A =X1.) Therefore{A,V,—}
is acompleteset of Boolean operations in the sense that every Boolean function
can be “obtained froM A, V,—}" using superpositions and usual manipulation of
variables.

Are there any other complete sets of Boolean functions? Well, cl¢axly },
{—,V} and{—,=} are complete.

It is usually tedious but easy to show that a certain set is complete. But how
can one show that some set of Boolean functiommoizomplete?

Example 4.1 (a) {A,V} is not complete: since®0= 0V 0= 0, every functionf
that can be obtained from these two functions also fulfi(8,...,0) = 0. There-
fore, — cannot be obtained from andV.

(b) {=} is not complete: since £ 1= 1, every functionf that can be ob-
tained from this function has the property that, ..., 1) = 1. Therefore;- cannot
be obtained from=-.

(c) {—,<} is not complete. To see this, note that =1+ x andx < y =
1+x+y, where+ is the addition irGF (2). Now it is easy to show that if a function
f can be obtained from and< thenf (xg,...,X,) =b+aiXi +...+anx, for some
b,as,...,a, € {0,1}. On the other hand Ay is not of this form, s —, <} is not
complete.

Problem 4.2 (a) Make precise the meaning of the phrase “a function can be ‘ob-
tained’ from a set of functions”.
(b) Given a set of functionB, decide whethelf is complete.

Our major reference for general clone theory is [48], and we rely6dh flor
the applications of clone theory in universal algebra. The section draabslones
follows the idea presented by B. Csakany in his addendum to the Hundamesa
lation of “A course in universal algebra” by S. Burris and H. P. Sapkanavar [15].
Most unreferenced statements in this text can be found (in this or a simifaj for
in one of the three books.

4.1 Clones

Throughout this textA is a finite set with at least two elements. I@Sf‘) =A"bea
set of alln-ary operations oA, n > 1, andOa = Up>1 ﬁ,&”) be the set of all finitary
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operations orA. The arity of an operatiorfi is denoted by dif). ForF C O let
FO=Fnol.
Let 77" denote tha-th n-ary projection

Tl‘:n(X]_,...,Xi,-..,Xn):Xi

and letla denote the set of all projections of all finite arities An Let f €
ﬁ&”) anddsi,...,gn € ﬁ}{“). The superposition of f andg...,0, is an operation
h= f(gi,...,0n) of arity mdefined by

h(X1,...,Xm) = F(91(X1,-- -, Xm), -+, On(X1, ..., Xm))-
Definition 4.3 A setC C 0, is called aclone of operations on A&
e MaCC, and

e for eachf,gi,...,0n € C such that arf) = nand afg;) = ... = ar(gn), we
havef(gi,...,gn) €C.

The legend says that the narmkene came around 1936 from Marshall Hall
(1910-1990) as a convenient abbreviation for thesed oné The requirement
that the clone contain projections makes it easy to formalise “usual manipglation
with variables” as the following examples show.

Example 4.4 LetC be a clone and(x,y,zu,v) € C. Then

f(y’y7y7x7x) EC Since f(y?y?y’x’x) = f(l-lg’ 71?’ I-Ig’ I-If’ I-If)(x7y7z7u7v)7
f(zxuyVv)€C since f(zxuyV)= (18, m,m, B, %)(XY,2U,V).

It is obvious that the intersection of an arbitrary family of clones is a clone.
So for anF C 0, let CIn(F) denote the least clone that contaks This clone
is said to begeneratedby F. A cloneC is said to befinitely generatedf C =
CIn({fy,..., fa}) for somef; € Oa. Now it is easy to show:

Theorem 4.5 LetF C Op and let# be an algebraic type such tHat= (A F) is
of type.Z. Theng € CIn(F) if and only if there is anZ -termt such thaty = tA.

Theorem 4.6 All clones of operations on a finite sAtform an algebraic lattice
£ under set inclusion. The least element of the lattidé sthe greatest element
is Op, and the lattice operations are given by:

/\Ca :mCa, aﬂd \/Ca :Cln(UCa)
a a a a



4 CHAPTER 4. INTRODUCTION TO CLONES

The last theorem tells us that it is possible to introduce and algebraic s&uctur
on Oy in such a way thaC C O, is a clone if and only if it is a subuniverse of
the algebra. Presenting such an algebra explicitely is easy. Considetltinérig
four operations 0@x:

e for f € 0" andg e O\ let

(f *g)(xla---)Xernfl) — f(g(xla~--aXn)aXn+1a~-me+nfl);

o forfecolletif=1f=Af=f

o for f e 0™ n>2, let

-
~~

() (X, X2, .-+, Xn) = F(Xo, ..., Xn, X1)
(TF)(X1, %2, X3, ..., Xn) = F(X2,X1,X3,...,%n)
(AF) (X1, %2, .., Xn—1) = F(Xa, X1, X2, .+, Xn—1)-

The algebrd Oa, *,{, T, A, nf) is referred to as thdlal'cev algebra

Theorem 4.7 A setC C Oy is a clone if and only if it is a subuniverse of the
Mal’cev algebra.

Definition 4.8 A setF C 0, is completef CIn(F) = 0.

Now that we have firmly established the terminology, we can finally start look-
ing for a completeness criterion. First, one can easily show that

Proposition 4.9 A setF C Oa is complete if and only iF ¢ C for every clone
C # On.

Needless to say that this criterion is pretty useless. We are going to turn it
into a much more usefull criterion by focusing of some vepgcialclones. The
structure of the lattice of clones given in Theorem 4.6 suggests that the lattice
clones could be dual-atomic, which actualiythe case The key argument is the
following statement due to Yablongki

Theorem 4.10 (Yablonski 1958, [66]) LetC be a clone on a finite set. Theénis
finitely generated if and only if there exist maximal subclone€ oévery proper
subclone o€ is contained in a maximal subclone®@fand maximal subclones of
C are finite in number.
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The proof of this theorem requires some preparation H.€t& andg € ﬁg‘)
for some integen > 1. We say thaan operation g preserves operations fromfF
o(f1,..., fn) € F wheneverfy,. .., f, € F are of the same arity.

Lemma4.11 Letn > 1 be an integer, Ie€ be a clone and IeE c C(". There
exists at most one maximal subcldbeof C such thab™ = F.

Proof. Let D be a maximal subclone @f such thaD™ = F and let us show thdd
has to be unique. L& (F) be the set of all operations @ithat preserve operations
from F and let us show thdd = R-(F).

It is easy to see thd:(F) is a clone and thdd C R-(F) C C. SinceD is a
maximal subclone o€ it follows that eitherD = R;(F) or Rz(F) = C. Suppose
thatP-(F) = C and let us show that this leads to a contradiction. TakefangZ(".
Thenf € C=PR:(F), sof preserves operations frof According to the choice
of D we have thaF = D", soF containsrt, ..., 15, Now, f preserves operations
fromF, sof(n,..., ) € F,i.e.f € F. This shows tha€™ C F — contradiction.

Therefore P (F) # C and the maximality oD now yieldsR:(F) = D, which
shows thaD is uniquely determined bly. O

Let us now go back to the proof of Theorem 4.10.

Proof. (of Theorem 4.10)<) Let D4, ..., Dx be maximal proper subclones of
C. Take anyf; € C\ Dy, ..., fy € C\ Dk and letF = {fy,..., fx}. FromF CC
it follows that CIn(F) C C. Now, if CIn(F) C C, then it is a proper subclone Gf
and, by assumption, it is contained in a maximal subclor@ shyD;. But, this is
not possible, sinc& € CIn(F) \ D;. Therefore, CI(F) =C.

(=) Assume thaC is finitely generated, sag; = CIn({ f4,..., fx}). SinceC
is finitely generated, it follows immediately that the union of every chain of@rop
subclones o€ is again a proper subclone Gf so by Zorn’s Lemma, we get that
maximal subclones df exist and that every proper subclonegXi contained in a
maximal subclone of.

Let us now show that there are only finitely many maximal subclon€s bét
ni = ar(fi), N=max{ny,...,n}, let.# be the set of all maximal subclones®f
and consider the mapping

o:.u — 2(0N): D DN,

Since CIHC(N)) = C it follows thatD™N) c CN) for everyD € .#. Lemma 4.11
now imples that is injective, so|.Z| < \L@(ﬁﬂ\')) , and@(ﬁﬂ\')) is a finite set
due to the fact thaA is finite. O
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Theorem 4.12 O a is finitely generated.

Proof. If |A] =2 we have seen at the very beginning that is finitely gener-
ated. FoilA| > 3 we follow the straightforward idea of Werner and Wille. Fix two
distinct elements fromh and call them 0 and 1. Farc Alet

1, x=a
ca(X)=a, and X)=<¢ "
a(X) Xa(X) {O, X£a
Choose binary operations, - € 6"9 sothat O+ x=x+0=0,x-0=0andx-1=Xx
forall x € A. Then it is easy to see that

f(X1,..., %) = Z Ct(ay,....an) (X1) - Xay (X1) - Xap(X2) - - - - Xan (%n)-

Note that+ and- need not be associative, and that the representation is valid re-
gardless of the actual order of taking sums and taking products.

Therefore g can be generated by the following finite set of functiops; - } U
{ca:ac A}U{xa:acA}. O

Corollary 4.13 & has maximal subclones, they are finite in number, and every
proper subclone af is contained in one of the maximal subclones.

Definition 4.14 Maximal subclones of’s are callednaximal clones on A

Finally, we come to a much better completeness criterion, which tells us that
in order to prove that a sé& is complete, it suffices to check only finitely many
clones. Nevertheless, the result needs some more refinements.

Theorem 4.15 A setF C Oa is complete if and only iF & C for every maximal
cloneC onA.

We shall conclude this section by two important completeness criteria. The
Stupecki completeness criterion says that all unary operations togettieamv
essential operation (to be defined shortly) constitute a complete set. Thertheo
of Webb, on the other hand, shows that there exist one-element cormgikete s

We say that an operatioh e ﬁ,&”) depends on its i-th argumeiitthere exist
a,b,cy,...,C_1,C1,...,Ch € Asuch that# b and

f(cy,...,C-1,8Cit1,...,Cn) # f(C1,y...,Cim1,b,Ciy1,...,Cn).

An operationf is essentialif it is surjective and depends on at least two of its
arguments. Let ifif ) = f(A") denote the set of images &f
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Lemma 4.16 (The Main Lemma of Yablonski, 1958 [66]) Assume thaf € Oa
depends on at least two arguments and letar(f).

(a) If |im(f)| > 3 then there exisX, ..., X, C A such thatX| < 2 for all i,
and|f(Xy, ..., %n)| = 3.

(b) If [im(f)| = k> 3 then there exisXy, ..., X, C Asuch thatX;| < k—1 for
alli, and|f(Xq, ..., Xn)| =k

Proof. Without loss of generality we may assume tialepends on the first two
arguments.

(a) Sincef depends on the first argument, there eajst, by, ...,by € Asuch
that

f(a,by,....bn)=p
f(a,by,....bn) =q#p.

Case 1: fa,A,...,A) # {p,q}. Sincef depends on the second argument we
have|f(a,A,...,A)| > 2, so there exists anc f(a,A,...,A)\ {p,q}. Choosec,,
...,Ch € Aso that

f(a,cz,...,Cn) =T.
Now letX; ={a,a'}, Xo = {bp,C2}, ..., Xn={bn,Cn}. Clearlyp,q,r € f(Xy,...,Xn)
so|f(Xi, ..., Xn)| = 3.

Case 2: fa,A,...,A) ={p,q}. From|im(f)| > 3 we know that there is an

r ¢ {p,q} andcy,...,cy € Asuch that

f(cy,C2,...,Cn) =T.

By the assumptionf(a,cy,...,cn) € {p,q} so without loss of generality we may
assume that
f(a,cp,...,Cn) = p.

But f(a,A,...,A) = {p,q} whence follows that there exid, ...,d, € A so that
f(a,dy,...,dn) =Q.

Now letX; ={a,c1}, Xo ={cCp,d2}, ..., Xn={Cn,dn}. Clearlyp,q,r € f(Xa,...,Xn)
so|f(Xg, ..., Xn)| = 3.

(b) Letim(f) = {au,...,a}. According to(a) there exist, ...,Y, C Asuch
that|Yi| <2 and|f(Y1,...,Yn)| > 3. Letag,ap,a3 € f(Y1,...,Yn). For eachj > 4
choosed}, ..., b} € Aso that

f(bl,....bl) =a;.
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PutX =Y,u{b}...,b, i € {1,...,n}. Then clearly|X;| < k—1 for all i and
f(X1,..., %) =im(f). O

Theorem 4.17 (Stupecki 1939, [57])Let |A| > 3 and letF C 0. If F contains an
essential operation andﬁ,&l) C F, thenF is complete.

Theorem 4.18 (Webb 1935, [64])LetA={0,1,...,k—1} andxTy=max(x,y) +
1, where+ denotes addition mad Then{1} is a complete set of operations.

Proof. Let s(x) = x T x = x+ 1. Then magx,y) = <"1(x1y). Next, we can obtain
constant maps as ‘
ca(X) = S (max{s! (x) : j € A}),

and characteristic functions as

0, X+#£a

Xa(X):S(maX{Sj(X):j eAanda+j7ék—1}):{k_1 X=a

Next, _
= (k—1) —x=max{s“ ! (max(x;(x), ) : j € A}

and

min(x,y) = maxx,y).
The statement now follows by the same argument as in the proof of Theot@m 4
where we let max play the role gf, min the role of andk—1therole of 1. O

Definition 4.19 A Sheffer operatioris any operationf € & such that{f} is a
complete set.

Sheffer operations were named after H. M. Sheffer who in 1913 disedva
Sheffer operatiox 1y = —(xAy) on{0,1} (see [56]). We see now th&ta has a
Sheffer operation whenevéris a finite set with at least two elements.
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4.2 Galois connections

We have seen that in order to show that a certain set of operations is ¢entple
suffices to show how to produce operations from some other completeogrtra-
tions. But how does one show that a certainFsef functions isnotcomplete? The
idea is to find a properti? which is preserved under superpositions, to show that
every operationf € F has the property, and to find an operatiog which does
not have the property. They¢ Cin(F) (since, by the choice d?, every operation

in F has the propert?) andF is not complete.

Example 4.20 (a) LetA={1,...,n} and let mir{x,y), maxx,y) denote the usual
binary minimum and maximum operations on integers. To show{timat, max}

is not complete, if suffices to note that ninl) = max(1,1) = 1 and hence for
every f € CIn(min,max) we havef(1,...,1) = 1. On the other hand, the constant
mapc,(x) = n does not have this property.

(b) LetA={0,1,...,p— 1} wherepis an odd prime and let be the addition
mod p. Let~ x=1+x and let us show thaf~,+} is not complete. For every
f € CIn(~,+) there area,...,an,b € A such thatf (xa,...,X,) = agx1 + axXo +
...+ anXn + b whence follows that migt CIn(~,+).

The standard approach is to encode properties by finitary relations and th
interpret “f has property?” by “ f preserves (an appropriately chosen relatywh)

Letg%’gh) = 2(A") denote the set of ali-ary relations or and let%x = Uh>1<%’£h)

be the set of all finitary relations o If p € z%,&h) andp # @, we write afp) = h.
We take af@) = 0.

Definition 4.21 An operationf @&”) preserves relationp € (%’(Ah) if

ar1 app an f(a11,a12,...,a1n)

az1 ago agn o f(az1,a22,...,an)
lep || €pos| .| €pimplies . €p,

ant anp ann f(an1,@n2,-- -, ann)

or, equivalently, ifp is a subuniverse ofA, f)". We also say thap is aninvariant
relation of f.

Example 4.22 (a) Let < be a partial order oA. Then “f preserves<” is equiva-
lent to the fact thaf is monotonous with respect .

(b) “f preserveqa}” is equivalent tof (a,...,a) = a.

(c) If € is an equivalence relation dhthen “f preserveg” is equivalent toe
being a congruence @A, f).
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Let O andR be nonempty sets and IptC O x R be a binary relation. Define
0 :2(0)— Z(R)andp : Z(R) — 2(0) by

D(F)={reR:VfeF (fpor)} and P (Q) ={fec0:vreQ(fpr)},

whereF C O andQ C R. Then the pait(ﬁfﬁ) is called theGalois connection
between#?(0) and £ (R) with respect tq. The proof of the following theorem
can be found e.g. in [40]:

Theorem 4.23 Let(ﬁ, <§) be a Galois connection betweéf(O) andZ”(R) with
respect t, and letF, Fi,F, € 22(0) andQ,Q1,Q2 € Z(R).
(1) If FL C Fp thenp (F1) 2 P ().
If Q1 C Qo then’p (Qu) 2 P (Q2).

(2 FC (P (F)) andQC B (P (Q)).
(3) B(F) =7 (P (F(F))) andp (Q =P (P (P (Q).

(4) Lo = {<§(Q) :QCR} andLg = {ﬁ(F) : F C O} are dually isomorphic
complete lattices with respect . The dual isomorphisms are

ﬁZLo—>LR and %ZLR—>L0.

The relation “... preserves...” generates a Galois connection betoge
erations and relations and the corresponding operﬁomd% are commonly
denoted by PdD and InviF, Q C %#a, F C Oa:

PolQ = {f € Oa: f preserves everg € Q}
InvF = {p € Za: everyf € F preservep}.

It is easy to show that PQlis a clone of operations for evefy. But the converse

is also true. Before we move on to the proof, let us introduce some more motatio
Let X1, ..., Xn be tuples understood as column-vectors. Théexy,...,Xs) is a
column-vector obtained by applyirfgto the rows of the matrifx; ...xq], i.e.

a1 ain f(a11,a12,...,a1n)

, az1 azn f(azg, az2,...,an)
if X1= X = then f(Xg,...Xn) = .

am ann f(@n1,an2, - . .,ann)
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a a a a al |al] |a a
a a a b al |al| |a b
: s AN E :

zZ z z...Y¥ z| |z |z y
zZ z z .. 2z z| |z] | Z] 1 Z]
Tt

X1 X2 X3 ... Xp

Figure 4.1: The special relation from the proof of Theorem 4.24

Theorem 4.24 (Bondatuk, Kaluznin, Kotov, Romov 1969, [8]) LetC C Oa. The
following statements are equivalent:

(1) Cis a clone.
(2) C=PolQ for someQ C 0.
(3) C=PolInvC.

Proof. (3) = (2) = (1) is easy. In order to showl) = (3) it suffices to show
PolInvC C C since the other inclusion is true for any Galois connection. Take any
g € PolInvC and letn = ar(g). We shall now construct a special relation of arity
|A|". List all n-tuples fromA" in lexicographic order, denote the column-vectors
by X1, ...,Xn, Fig. 4.1, and let

6n(C) = {f(x1,...,Xn) : f €C}.

SinceC is a clone, it is easy to show thé(C) € InvC, sog preserves,(C).
Now, X1,...,Xn € 6n(C) sincer,...,m;, € C, so from the fact thay preserves
6n(C) it follows thatg(xi,...,Xn) € 61(C). Therefore, there is ah € C such that
0(X1,...,Xn) = f(X1,...,Xn) and from the construction of, ..., X, it follows g =
feC. O

Corollary 4.25 LetF C O.
(a) CIn(F) = PolInvF.
(b) Ifevery f € F preserves a relatign then everyf € CIn(F) preservep.

Galois closed sets on the relational side are somewhat more complicated. It is
possible to define closed sets of relations using “trivial” relations andureggent
that the set be closed with respect to certain “superpositions”, but thisagh is
less usual. Later on, we shall treat relational clones in a more standgrchgva
subuniverses of a certain algebraani.
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We start with the trivial relations. Let> 1 and lete be an equivalence relation
on{1,...,n}. Thenthe n-arye-diagonalis the following relation:

Of ={(X1,..., %) € A" Vi, j ((i,]) ee=Xx =X}

Let &y = @ be thezero-ary diagonahnd letAa denote the set of all diagonals on
all arities> 0.

Example 4.26 Let 123 denote the equivalence relation{dn 2, 3} with two blocks,
{1,2} and{3}. Thend2?® = {(x,x,y) : X,y € A}.

Let1,p, 0 € Za be relations such that@r) = ar(p) +ar(o), lett be an integer
andf: {1,...,t} — {1,...,m+n} be a mapping whemn = ar(p) andn = ar(o).
We define thef-superposition of with p and o denoted by(1, p, g]; as follows:
[1,0,9]t =[1,9,0]; =[9,9,9]s =2 andincasen>1,n > 1 we let

[T,0,0]¢ = {(X¢ (1), X¢(2)5 - - -+ X 1)) €A1 (X1, %2, ..., Xmin) € T,
(X]_,...,Xm) €p and(Xerla---’Xern) € U}

Definition 4.27 A relational clone on As any seQ C % such that
e ApnCQ,and

e If 7,p,0 € Zasuchthatair) =ar(p)+ar(o), thenforeveryf : {1,...,t} —
{1,...,m+n}, wherem= ar(p) andn = ar(o), we havet,p, o]s € Q.

It is easy to see that the intersection of an arbitrary nonempty family of rela-
tional clones is again a relational clone. Therefore, for e@fy Za there exists
the least relational clone that contai@s We say that thiselational clone is gen-
erated by Qand denote it by C(Q).

In order to present more conventional descriptions of relational clevekave
to introduce several operations on relations:

o forpec ,@/&m) ando € %,&”) we define theelational productx and therela-
tional compositiorv by

px0={(Xt,- -, XmY1,---,¥n) : (X1,.--,%Xm) € p and(ys,...,yn) € 0}
poo ={(X1,... . Xm-1,Y2,---,¥n) : 32€ A((X1,...,Xm-1,2) € p and
(ZaYZw-an) € 0)},
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° forpe%f) orp:@Ieth:rp:Ap:p;forpe%(”),n>2, let

{p ={(X1,%2,..., %) : (X2,...,%n,X1) € P},
TP = {(X1,X2,X3, - -, Xn) : (X2,X1,X3,...,%) € P},
Ap = {(X1>X27 .. '>Xn*1) : (X17X17X27' .. ,anl) S p}>

be thecyclic permutation of variablesransposition of the first two variables
and theidentification of the first two variablesnd

o for p € 2\ withn> 2 andi, j € {1,...,n} such thai < j let

Aij(P) ={(Xts- s Xy oo, Xj=1, Xj 15 -5 X%n) T (X1, ., %) € p andx; = X; }

denote the variation af\ that operates on arbitrary two coordinates;
e forp e f%’,&”) and any mapping : {1,...,m} — {1,...,n}, let

pre(p) = {(Xs (1), X¢(2)-- - Xt (m)) - (X1,-.-, %) € P}

denote thef-projectionof p. We shal often write simply pr ; e.g.
1 2 3
pl‘522(p) {(XS,XZ,XZ) (X17X27X37X47X5) € p} Wheref - < 5 2 2 > )

Theorem 4.28 LetQ C Za. The following are equivalent:

(1) Qis a relational clone;

(2) Ap C Q andQ is closed with respect to intersection of relations of the same
arity, relational products ant-projections; and

(3) Q is a subuniverse of the algett#a,0,{, T, 632‘3)

Proof. (1) < (2): Note that[t,p,0]: = pr;(tN(p x 0)). On the other hand,
pre(p) = [A" p,Al¢,, wheren = ar(p) and f’: {1,...,t} — {1,....,n+1} is
given by f'(i) = f(i); p x o = [A™™, p,0liq, Wheren = ar(p) andm = ar(0);
andpno = [pxA,g,Aly, wheren=ar(p) andf’: {1,...,n} — {1,...,n+1}is
given by f/(i) =i

(2) = (3): Unary operations are eazg(p) = Pruz n-1(P), T(P) = Pl213.n(P)
andA(p) = prys. n(pménzm ‘”) As foro letn=ar(p), m=ar(o) and lete be
the equivalence relation di, . ..,m+n} whose only nontrivial block ign,n+1}.

Thenpoo = prl.‘.n—l,nJrz.‘.n+m(5r$+mﬁ (px0)).
(3) = (2): Note first that compositions @ andt can achieve any permutation

ofvariables. Nows*2%0 77 (512%) = 5123 AZ3(512%) = 1B andAA (512%) =
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51 =A Thenp x 0 = pod,2** o, Aop omits the first variable op, while

33230 p doubles the first variable gf. It is easy but rather technical to show that
using the last three operations we can get all the diagonals and alidregections.
Next we note that each; ; can be obtained frong, T andA. Finally, if p and

o are relations of aritn thenp N o = Anpni1ln-1ni1- .- Donr1ling1(p X 0)
which completes the proof. O

The proof of the following theorem is due to Bondak, Kaluznin, Kotov and
Romov (1969) and independently Geiger (1968).

Theorem 4.29 (Geiger 1968, Bondauk, Kaluznin, Kotov, Romov 1969, [25, 8])
LetQ C Za. The following statements are equivalent:

(1) Qs a relational clone.
(2) Q= InvF for someF C Za.

(3) Q=InvPolQ.

Proof. (3) = (2) = (1) is easy. Let us shoWl) = (3). ClearlyQ C InvPolQ
since this is true for every Galois connection. Let us show that INQR0DR. Let
C = PolQ and let us first show tha,(C) € Q for all n > 1, where6,(C) is the
relation defined in the proof of Theorem 4.24. Recall also the vetors. ., X,
from the definition 0fg,(C), letq= |A|" and let

Vo= {n €Q:ar(n) =gandn 2 {Xg,...,Xn}}.

It is obvious thaty, € Q sinceQ is closed with respect to finite intersections. We
are going to show tha&,(C) = y, whencef,(C) € Q follows immediately.

First, 6,(C) C y» sincexy, ..., Xa € Yh and y;, is preserved by every € C
(C=PolQ, so In\C = InvPolQ 2 Q > y»). Assume thaB,(C) C y,, take any
r =(Ug,...,Ug) € ¥\ 6r(C) and considen; defined bygy (X1,...,Xn) =r. From
r ¢ 6,(C) it follows thatg, ¢ C = PolQ, so there is @ € Q such thag, does not
preservep. Therefore, there exist, ...,yn € p such thag, (y1,...,yn) ¢ p. Let
m=ar(p) and consider the tuplesx y; of lengthg+ m(obtained by concatenating
X; andy;) as columns of afiq+ m) x n-matrix, Fig. 4.2. LetX be the topg x n-
submatrix formed by, ..., Xn and letY be the bottonm x n-submatrix formed
by v1, ..., yn. Since the rows oK areall posssible fuples of elements from
A and rows ofY aresome rtuples of elements of, every row ofY appears as
a row in X. Assume that thg-th row of Y appears as thej-th row of X. Let
¢ be the equivalence relation dd, ...,q+ m} generated by the paifk;,q+ j),
j€{1,...,m}, and let

P =pr oS5 imN (Yaxp)).
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Figure 4.2: The proof of Theorem 4.29

Clearly,p’ = [5§+m, ¥, P)1.q € Qandp’ C yn. On the other hand, from x y; €
05 :mN (Y x p) it follows thatxy, ..., X, € p’.

Let us show that ¢ p’. Sinceg (X1,...,Xn) = (Ut,...,Uq) and since thg-th
row of Y is equal to thén;-th row of X it follows thatg, (y1,...,Yn) = (Uny,---,Un,)
and by the choice of1, ..., yn we have(up,...,un,) ¢ p. Now, if r € p’ then
(U1,...,Ug,Uny,...,Un,) € ¥h x p, whence follows(up,, ..., Un,) € p, which is im-
possible. Sor ¢ p’.

Thereforey € y,\ p’, whencep’ C y,. But this is impossible sincg, is con-
structed as the least relation@that containg, ..., Xn. This shows, = 6,(C)
and thust,(C) € Q.

Finally, let us show that InvP@ C Q. Take anyo € InvPolQ, letn = |0]|
andt = ar(o). Write all tuples ino as column vectors and denote this matrix
by M. The rows of matrixX (Fig. 4.2) are all possible-tuples of elements of
A, so there are indices,...,i; € {1,...,q} such that th&-th row of M is equal
to theig-th row of X, k € {1,...,t}, soo = pr,_; ({X1,...,Xn}). Let us show
that 0 = pr;, ; (6(C)). Since{xy,...,xn} C 6n(C) it immeditaly follows that
0 =pri, i, ({X1,-..,%n}) € pr, ;i (6x(C)). To show the other inclusion, take any
(V1,...,\) €pri, i, (6n(C)). Thenthereis @ = (z,...,Z) € 6,(C) such that, =

Vi, ...,Z, =W. Butz= f(xq,...,X,) for somef €Csoz, = f(xlij,xzj,...,xnij),
wherexj = (Xj1,...,Xjq). Sincea = pri, i, ({X1,...,Xn}) it follows that (xy, ...,
X1i )y -« +» Xnigs - -+ Xni) € 0. Now f € Cando € InvC imply that f preserves,

so(vi,...,\) = (%,,...,2,) € O.
Therefore,g = pr;,_; (6,(C)). Since6,(C) € Qwe haves = pr;, ; (6(C)) €
Q. This completes the proof that Inv FpkE= Q. O

Corollary 4.30 ClIr(Q) = InvPolQ.
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Figure 4.3: The lattice of clones di®,1} (E. Post)

4.3 On the number of clones

Emil Post classified all possible clones @ 1}, and hence in a natural sense all
possible 2-valued propositional logics. His work was first presente®20 ks
an addendum to his Ph. D. Thesis, and it was finally published in the Dook
valued lterative Systems of Mathematical Lodgicinceton, 1941 (see [49]). The
classification of E. Post was presented in a more modern notation by Rohynd
[35]. The lattice of clones on a two-element set is given in Fig. 4.3. Amongroth
things, it explicitely shows that there are countably many clones of opesation
Aif |Al = 2.

Yu. I. Yanov and A. A. Muchnik showed in 1959 that in case of a finitenggt
|A| > 3 the number of clones is continuum.

Theorem 4.31 (Yanov, Muchnik 1959, [67])Let A be a finite set with at least
three elements. Then the number of clone#\as continuum.

Proof. Since clones are special subsets of the countably infinit&sét follows
immediately that. #a| < c. To show that we have an equality, it suffices to construct



4.3. ON THE NUMBER OF CLONES 17

a family of clones with continuum elements.
Let0,1,2 € Abe three distinct elements Afand for eacm > 3 definef, € ﬁ’,&”)

andpn, a, € 7\ by

on=1(1,22,...,22),(2,1,2,...,2,2),...,(2,2,2,...,2,1)},

1, (X1,---,%) € On
0, otherwise,

fn(xl,...,xn):{

Pn= OnU{(X1,...,X%) € {0,1,2}": Ji (x =0)}.

Let us first show thaf, ¢ Pol{pn} and thatf, € PoK p,} whenevek # n. The first
part of the claim is easy:

2 ... 2 2N
1 2 M
2 1 2 2 4
2 2 2 1 2 B
2 2 2 2 1 Mg
Mm M M m m R
© © © © © °
As for the second part of the claim, assume thatn and take anxi, ..., Xk € pn.
If at least one of the;’s has a zero coordinate, thég(xi, ..., Xx) also has a zero
coordinate and henc&(xy, ..., Xk) € pn. If, however,xs, ..., Xk € g, then at
least one of the rows will consist of 2's arfg(x1, ..., Xx) will again have a zero

coordinate, ensurinéc (X, . .. ,Xk) € pn- E.g., ifk=3 andn = 4 this situation may
be illustrated by

122581
212 8
2 218 1
2 2 2 8 9
o m
xxE 0©

Finally, letk > nand take anyy, ..., Xk € pn. It at least one of th&;’s has a zero
coordinate, then as in cagke< n we conclude thafy(x, ..., Xx) also has a zero
coordinate and hencg(Xy, . ..,Xk) € pn. If, howeverx;, ... Xk € g, then at least
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one of the rows will contain at least two 1's affig(x1, ..., Xx) will again have a
zero coordinate, ensuring(xs, . ..,Xk) € pn. E.Q., ifk=5 andn = 4 this situation
may be illustrated by

122 2 281
21 2 2 2% 1
2212 1% ¢
2 221 2% 1
] m
X X X X X ©
L N WA~ O

We are now ready to complete the proof. lkét= {f3, fs,...} be the set of
functions we have just constructed and defne”(H) — Za by ¢ (F) = CIn(F).
Let us show tha# is injective. SupposE; # F, for someF;,F, C H, but CIn(F;) =
CIn(F,). SinceF; # F,, there is am > 3 such thatf, € F; \ R, (or the other way
around). So,f, € F; C CIn(F;) = CIn(F,). Since f, ¢ F, we have that every
g € F, preserveg,. Therefore, everg € CIn(F,) preserveg, and consequently
fn € CIn(F,) preservegy — contradiction.

This shows thap is injective and henceZa| > |Z(H)| =c. O

4.4 Minimal clones

A cloneC is called aninimal clonaf C # NMa andD C CimpliesD=MaorD=C
for every cloneD. Minimal clones are atoms ity and it is easy to see that every
minimal clone is of the form Clff ) for somef € O\ MNa.

We are going to show that on a finte set every clgnda contains a minimal
clone and that there are finitely many minimal clones. We also show that all mini-
mal clones split into five types. We start by introducing some terminologyol$-
merof an operatiorf is every operation that can be obtained frofoy identifying
certain variables. Note thdtis nota polymer of itself: in order to obtain a polymer
onehas toidentify at least two variables. For examptgx,y) = f(x,y,x,y) is a
polymer of f. A ternary operatiorf on A is called amajority operationif

f(a,ab) = f(a,b,a) = f(b,a,a) =a,
and aminority operationif
f(a,a,b) = f(a,b,a) = f(b,a,a) =b,

foralla,b e A. Forn> 3 andk € {1,...,n}, ann-ary operationf is called ak-th
n-ary semiprojectiofif it is not a projection, but

f(a,...,an) = &
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whenevery, ..., a, € A have the property thafay,...,an}| <n.

Lemma 4.32 Gwierczkowski 1960, [58])Let f be ann-ary operation oA and
n > 4. Thenf is a semiprojection if and only if every polymer bfis a projection.

Proof. (=) Obvious.
(<) First let us note that

(X0, Y, Y, Xa, -, %) € {15151 o f(Y,%, X3, Y, s, ..., %) ¢ {11, 1)

(Suppose to the contrary that, e.f(xa,Y, Y, X4, ..., Xn) = ré‘*l andf (y,x2,Xs, Y, Xs,
coXp) = r@‘l. Thenf(zy,y,zXs,...,X,) would at the same time have to be the
first and the second projection, which is impossible.) So, without loss afrgen

ity we may assume thdt(xy,y,y, X4, ..., Xn) = TQ_l, i.e. (X1, Y, Y, X3, .., Xn) = X1.
Now takei, j € {2,...,n} such thai < j and consider

f(X17 o 7Xi—17y7 Xi-l-l) oo 7Xj—17y7xj+17 s 7Xn)- (41)

We know that it is a projection and sindéxy,y,Y,...,Y) = X1, the polymer (4.1)
has to be the first projection. Using this fact one now easily shows that

f(ya)(z""axiflaaniJrla"'aXn)

is again the first projection, for alie {2,...,n}. Thereforef is a first semiprojec-
tion. d

Theorem 4.33 (Rosenberg 1986, [52]Every cloneC £ M a contains an operation
which belongs to one of the following five classes of operations:
(1) a nonidentical unary operation;
(2) a binary idempotent operation which is not a projection;
(3) a majority operation;
(4) a minority operation;
(5) a semiprojection.
Proof. Take an operatiori € C\ N4 of the least possible arity and let=ar(f).
If n=1 we have case (1). Otherwise,nf> 2 the choice off implies that all

polymers off have to be projections. So,rif= 2 we have case (2), while in case
of n > 4 Lemma 4.32 yields thdt is a semiprojection (case (5)).



20 CHAPTER 4. INTRODUCTION TO CLONES

Finally, letn = 3. Since all polymers of are projectionsf (x,x,y), f(X,y,X)
andf (y,x,x) are either? or 1, so we have eight cases to consider. Five cases are
straightforward:

f(X, X, y) =X f(X7 Y, X) =X f(y> X, X) =X. case (3)

f(X, X, y) =Y f<X7 Y X) =Y f(y7 X X) =Yy case (4)

fOOxy) =% f(xy,x)=xf(y,x,x)=y: afirst semiprojection
fxy) =% f(xy,x)=y, f(y,x,Xx)=x: asecond semiprojection
foxy) =y, f(xy,x)=x f(y,x,x) =x: athird semiprojection

In the remaining three cases (possibly after a permutation of variablesjptaias
an operation that satisfies

f(X>X7y) = f(y,X,y) = f(y,X,X) =Yy
but theng(x,y,z) = f(x, f(x,y,2),2) is a majority operation (case (3)). O

Corollary 4.34 For every minimal clon€ we have that = CIn(f), wheref is an
operation that belongs to one of the five classes of operations listed inefhda33
and minimal clones are finite in number. Moreover, every clogell contains a
minimal clone,

Proof. Let C be a minimal clone and left € C be an operation whose existence is
guaranteed by Theorem 4.33. Then @InC C and sincef ¢ M4, the minimality
of Cyields CIn(f) =C.

To show that there are finitely many minimal clones/Ait suffices to show
that each of the classes (1)—(5) in Theorem 4.33 is finite. Classed)Brg ob-
viously finite. As for class (5), note that ffis a semiprojection then @fr) < |A|
(a semiprojection of arity- |A| would have to be a projection, which by definition
iS not a semiprojection).

For an arbitrary clon€ # N4 take f € C as in Theorem 4.33 and let us define
a sequence of clones and operations as foll@ys= C, fo = f, and

e if CIn(f;) is a minimal clone, le€i;1 = C; andfi;1 = fi;

e if CIn(f;) is not a minimal clone, choo$&, 1 such thafl # Ci;1 C CIn(f;)
and takef;, 1 € G, 1 as in Theorem 4.33.

Then
e eitherCy D CIn(fg) D CIn(f1) O ... D CIn(fx) = CIn(fir1) =. .. for somek,
e orCy D CIn(fp) DCIn(f1) ... D CIn(fj) O...



4.5. MAXIMAL CLONES 21

In the former case Clfy) is a minimal clone contained i@y = C, so in order to
somplete the proof it suffices to show that the latter case cannot occpposel
that CIn(f;) C CIn(fj) wheneveii < j. Thenf; # f; for all i # j whence follows
that there are infinitely many operations that belong to the classes (1)(bg 0t
rem 4.33. But we have shown in the previous paragraph that eachfofdlodasses
of operations is finite. Contradiction. O

The results presented in Theorem 4.33 and Corollary 4.34 have beendad pa
folklore for quite some time, and can be traced back to [17]. There are minimal
clones that belong to each of the five types, as the following example shows.

Example 4.35 (1) Take an idempotent unary operatibnwhich is not identity.
Then CIr(f) is a minimal clone.
(2) Let A be a semilattice operation @ Then Clr{A) is a minimal clone.
(3) CIn(d) is a minimal clone ifd is a dual discriminator oA, i.e.,

d(xy,2) = {X’ =y

z, otherwise.

(4) If (A,+) is an abelian group of exponent 2 af(k,y,z) = x+y+ z then
CIn(f) is a minimal clone.

(5) Letn = |A] > 3. Then Clrl,) is a minimal clone, wheré, is ann-ary
operation defined by:

Xn, {Xt,-., %} =A
In(X, - %) = {xl, otherwise.
Theorem 4.36 (Rosenberg 1986, [52]L.et C be a minimal clone generated by a
unary operatiorf. Thenf #ida and eitherf? = f or there is a prime numbey
such thatfP = idp.
LetC be a minimal clone generated by a minority operationThen there is
an abelian groupA, +) of exponent 2 such thd(x,y,z) = x+y+z

4.5 Maximal clones

We already know that there are finitely many maximal clones on a finite setand th
every proper subclone @f, is contained in a maximal clone. In this section we ad-
dress one of the deepest and most influential results of clone theRnsénberg’s
classification of maximal clones. We start with a special case.
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Theorem 4.37 (Yablonski 1958, [66]) Let|A| =k and letia = {(xq,...,%) € AX:
Ji # j (% =Xj)}. ThenPol{ia} is the set of all nonessential operations. It is a

maximal clone, and it is the only maximal clone that contszil,ﬁ]ﬁ.

Proof. A nonessential operations is either essentially unary, of nonsurjedtive.
easily seen that both essentially unary and nonsurjective operatioserme,
whence follows that P§la} contains all nonessential operations. Let us show that
every operation in Pgla} is nonessential.

Suppose to the contrary that Pol} contains an essential operatibrand let
A={ay,...,a}. Then according to the Main Lemma of Yablorigkil6 there exist
X1,..., % C Asuch thatX;| < k—1foralli andf(Xy,...,X,) = A. Therefore, for
eachi € {1,...,k} there exist € Xy, ...,X" € X, such that

fOd,... X" =a.
Forxt=(x,....5x¢),....x"=(x,...,x0) we havex!,...,x" € iasince{x,,..., X} C
X; and|X;| < k— 1. On the other hand,(x!,...,x") = (a1, ...,a) ¢ Ia, SOf does
not preservea. This completes the proof that Rod} is the set of all nonessential
operations.

It is now very easy to show that Heh} is a maximal clone. Take anfy €
Op\Polia}. Thenf is an essential operation and Citi} UPoKia}) = Oa by
the Stupecki completeness criterion (Theorem 4.17). The clonf Botlearly
contains all unary maps, and Lemma 4.11 ensures that no other maximal clone
containsﬁ,&l) : O

For the general case, let us first show that each maximal clone is completely
determined by a single relation.

Proposition 4.38 (Kuznecov 1961, [32])a) If PolQ = &a thenQ C Ap.
(b) A cloneC # Ca is a maximal clone if and only i€ = PoKp} for every
p € InvC\ Aa.

Proof. (a) Take anyp € Q and letn = ar(p). Without loss of generality we may
assume that there are no systematically repeated coordingigsen

~3i,) (i # § andV(xy,...,%) € p (X = X;))
for otherwise we can safely remove systematically repeated coordinatbtato o

p" with the property Pdlp} = Pol{p'}. Therefore, for every, j € {1,...,n} such
thati < j there exists an'! = (x/,...,x1) € p such thatg’ # x/. Take arbitrary
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a1,...,a) € Aand any magf € 0x of arity () which satisfies the following:

12 13 nn-1y

f(xl X7y Xg )_a-l
12 13 nn—1

f(X3%, %%, ..., %" ) =ap

12 13 nn—-1y __
fOG5%> ..., X" ) =an

Note that this requirement makes sense because each fg)-toples in the list
above differs at at least one place. Since{Pdl= 0, this f preservep so from
xl ¢ p for all i, j it follows that (ay,...,an) € p. But (ay,...,a,) was arbitrary,
sop = A" € Aa.

(b) First note that InC contains a nondiagonal relation whene@ O,
since otherwise one has I6BvC Ay whenceC = PolInvC D PolAx = O, which
contradicts the fact th&t is a proper subclone @fa.

(=) Let C be a maximal clone and take apyc InvC\ Aa. Then Po{p} D
PolInvC =C. Since(a) implies that Po{p} # &, maximality ofC yields Pof{p} =
C.

(<) Suppos&€ # O is not a maximal clone. Then there is a maximal clivhe
such thaC c M. Take anyp € InvM\ Aa. Thenp € InvC since I'n\C 2 InvM 3 p,
butC # PoKp} sinceC ¢ M = PoKp}. O

In particular, each maximal clond takes the form Pgjp} for a nondiago-
nal relationp. One of the most influential results in clone theory is the explicite
characterization of the maximal clones, obtained in 1970 by |. G. Rosgabkéhe
culmination of the work of many mathematicians. It is usually stated in terms of
the following six classes of finitary relations én(the so-calledRosenberg rela-
tiong). For anf € o, let f* denote thén+ 1)-ary relation orA called thegraph
of f:

f={(X1,..,Xn, F(X1,..., X)) I X1,..., % € A}.

(R1) Bounded partial orders.These are partial orders ghwith a least and a
greatest element.

(R2) Nontrivial equivalence relationsThese are equivalence relations Amlis-
tinct from 832 = {(x,x) : x € A} andA2,

(R3) Permutational relations.These are relations of the form* wherea is a
fixpoint-free permutation of with all cycles of the same prime lenggh

(R4) Affine relationsAn affine relations a relation of the fornf*® wheref (x,y,z) =
x—y+ zfor an elementary abeligorgroup (A, +) onA.
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(R5) Central relations.All unary relations are central relations. For central rela-
tions of arityh > 2 the definition is as follows. The relatignis said to be
totally symmetrigf (xq,...,%n) € p implies (Xy1), - .-, Xqn)) € p for all per-
mutationsrt, and it is said to béotally reflexivef (xi,...,xn) € p whenever
there ard # j such thai; = xj. A c € Ais centralif (c,Xo,...,x,) € p for
all Xo,...,%n € A. Finally, p # A" is calledcentral if it is totally reflexive,
totally symmetric and has a central element.

(R6) Regular relationsLet® = {64,...,6n} be a family of equivalence relations.
We say thal is anh-regular familyif every 6 has preciselh blocks, and
additionally, ifB; is an arbitrary block o8, i € {1,...,m}, then\"; B # @.

An h-ary relationp # A" is said to beh-regularif h > 3 and there is ah-
regular family® such that(xi, ..., xs) € p if and only if for all 6 € © there
are distinct, j with (x;,x;) € 6.

Theorem 4.39 (Rosenberg 1970, [51]A cloneM is maximal if and only if there
is a relationp from one of the classes (R1)—(R6) such tiat PoKp}.

The proof of Rosenberg’s theorem is very complicated. The shonestrk
proof comes from Quackenbush [50] and it is still rather complicated.skb&h
of the proof that we are going to present follows the track of the Qudntisiris
proof and relies on two nontrivial facts which we shall not prove. Rebat a
finite algebra(A, F) is calledquasiprimalif CIn(F) = PolQ whereQ = {h* : his
an isomorphism between subalgebrag/AfF)}. recall also that a finite algebra
(A F) is quasiprimal if and only if CI(F) contains a discriminator (Pixley [45]).

Proposition 4.40 (a) (Quackenbush [50]) F Z PoKp} for every Rosenberg re-
lation p, thenCIn(F) contains a Mal’cev operation.

(b) (McKenzie) If(A,F) is a simple finite algebra which has no proper subalge-
bras and which has a Mal’cev term operation, th&rF) is quasiprimal, or there
is an elementary abeliap-group (A,+) with the following property: for every
f € F there are am € A and endomorphisne of (A, +) such thaff (Xa,...,%n) =
a(x1)+...+ &) +a

Proof. (of Rosenberg’s theorem

(<) This direction is somewhat easier. We have to show thafdols a
maximal clone for every Rosenberg relation We shall demonstrate main ideas
in case of relations from (R1).

The strategy will be as follows. Led be a Rosenberg relation and @t=
Polp}. According to Proposition 4.38) we obtainC # O, so by the statement
(b) of the same proposition it suffices to show that for everg InvC\ Ay we
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haveC = Poo}. And this is equivalent to showing that for evesyc InvC\

Aa we havep € Clr(o). (To see this, note that fro@ = Pol{ o'} it follows that
InvC = InvPo{o} = ClIr(g) andp € InvC now yieldsp € Clr(o); conversely,
if p € CIr(o) thenC = Pol{p} O Po o}, while from o € InvC it follows that
Po{o} D C)

Let < be a bounded partial order énwith the least element 0 and the greatest
element 1. LeC = PoK<}, take anyo € InvC\ Ax and let us show thate
ClIr(o). Without loss of generality we may assume that there are no systematically
repeated coordinates o i.e.

=i, j (i # jandV(Xy,...,%)) € 0 (X =Xj)).

Suppose first that there exssg t such that pg (o) C<. Letus show that gf(o) =<.
Leta< b, take any(ps,..., pn) € 0 such thatps < p; and definef by

<
F(x) = {a’ XS Ps

b, otherwise

Clearly f € PoK<}, sof preservesr as well. Thereforé f(pi),...,f(pn)) € O
and hencéa, b) € pry (o). This shows<= pry(0o) € Clr(0).

Suppose now that for every+# t we have pg(o) < and let us show that
this leads too = A". Let |g| = mand denote the elements afby (pi1,-. ., Pin),
ie{l,...,m}. Foreveryje {1,...,n} letxj=(pyj,...,Pmj), Fig. 4.4. Take
arbitrary(qy,...,qn) € A" and definef by

d, (Yi,---,Ym) =X
f(y1,....ym) =< 0, there exists g such thaiyi, ...,Ym) < X;
1, otherwise

The assumption p(o) Z< for all s#t means that alk;’s are incomparable,
so f € Po{<}. Therefore,f preservess as well, whencéqs,...,qn) € 0. But
(01, ---,0n) Was chosen arbitrarily, so = A".

(=) We now know that Pdlp} is a maximal clone for every Rosenberg re-
lation p. Suppose there is a maximal clo@ewhich is not of the form Po{p}
for a Rosenberg relatiop. ThenC Z Pol{p} for every Rosenberg relatiop,
so by Proposition 4.40a), C contains a Mal’cev operation. In particular, since
C Z Po{p} wherep is an equivalence relation it follows théf, C) is simple,
while C Z Pol{p} wherep is a central relation implieéA,C) has no proper subal-
gebras. Then by Proposition 4.40) it follows that (A,C) is quasiprimal, or that
there is an elementary abeligrgroup(A, +) such that for every € F there are an
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f
X1 = P11 P21 .- Pm — O
f
X2 = P12 P22 ... P2 — Q2
f
Xn = Pmn Pn --- Pmn — On
m m m
Q Q Q

Figure 4.4: The proof that PpK} is a maximal clone

a< Aand endomorphisme of (A, +) andf (xq,..., X)) = &(X1) +...+ &%) +a.
The latter possibility would impl{ C PoK (x—y+2z)*} which contradicts the fact
thatC Z PoK p} for every Rosenberg relatigm Therefore(A,C) is quasiprimal.

We are going to show tha@#,C) is primal, by showing that A¢A,C) = {id}
(Proposition 4.4Qc)). Take anyp € Aut(A,C). LetB be the set of all fixpoints of
¢. SinceB is a subalgebra dfA,C) and(A,C) has no proper subalgebras, we get
B= o orB=A. Thereforeg = id or ¢ has no fixpoints. Assumg # id. Then¢
has no fixpoints. Lek be the length of the shortest cyclegfand let

(all...alk),...,(anl...ank)

be all the shortest cycles @f. Then{ai1,...,a,...,an1,...,an} IS the set of
all the fixpoints of¢* ¢ Aut(A,C) and henceayy,...,aik,---,an1,---,ank; = A
Fromk > 1 it follows that there is a prim@ such thatkk = pm for somem. But
theny = ¢™M is a fixpoint free automorphism ¢, C) of orderp, and henc€ C
Pol ¢*} — a contradiction.

Therefore,(A,C) is primal, i.e.,.C = &, which contradicts the fact th&tis a
maximal clone. O

4.6 Describing clones by relations of bounded arity

Our next goal is to characterize clones uniquely determined by their intaga
lations of arity at mosk. Letg ¢ @’(”), F C Ox and letk be a positive integer.
Suppose that for everg C A" such that|S| = k there is anf € F(" such that
gls= f|s. Then we say thag can be k-approximated by.A_et Log(F) denote
the set of allg € & that can bek-approximated byr. We say that a clon€ is
k-locally closedf C = Lock(C).

Lemma 4.41 For every clon€ and everyk > 1, Loc(C) = PolInv¥ C.
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Proof. (C) Take anyg € Loc(C) and let us show tha € PolInv¥C. Letn =
ar(g). Take anyp € Inv¥C and anyxy,...,xn € p. Let X = (Xi1,...,Xk), | €
{1,...,n}. Form newn-tuplesy; = (X1j,...,%j), j € {1,...,k}, and letS= {y;,
e ,yk}.

Y1 — X1 X1 ... Xm
Y2 — X2 X2 ... Xn2
Yk — Xk Xk ..o Xnk
7
X1 X2 ... Xp

Sinceg € Loc(C) there is anf € C" such thatg|s = f|s, i.e., g(X1,...,Xn) =
f(X1,...,Xn). Now, f e Candp € Inv¥'C means thaf (x,...,X,) € p. Therefore,
0(X1,...,Xn) € p. This shows thag) preservep, and since was arbitrary, we get
g e Polinv¥C.

(D) Take anyg € PollInv¥C and let afg) = n. Let S= {yi,...,yx} C A"
be anyk-element subset 0" and let us show that there exists e C" such
thatgls = f|s. Lety; = (X4j,..-,%nj), J € {1,...,k}, and form the tupleg; =
(Xi1,.--,%K), 1 € {1,...,n}, as in the diagram above. Finally, let

0 ={f(xs,...,xn): f eCM}.

Clearly, 8 € Inv(¥ C, sog preservedd. Thereforeg(xy,...,xn) € 6, whence fol-
lows that there is af € C(") such thag(xy, ..., Xn) = f(Xg,...,Xn). Butthis means
thatg|s = f|sand thug € Lock(C). O

Theorem 4.42 (Szabo 1978, Pdschel 1979 [59, 4&J¢tC be a clone and lét be
a positive integer. Then the following are equivalent:

(1) Cisk-locally closed;
(2) C=PolQ for someQ C 748 ;
(3) C=PolInvkC.

Proof. (3) = (2) is trivial.

(2) = (1): LetC =PolQfor someQ C %’/&"). To show tha€ is k-locally closed
it suffices to show that Lq€C) C C, for the other inclusion is trivial. But the proof
that Log(C) C PolQ is analogous to the proof of inclusiga ) in Lemma 4.41.

(1) = (3): C = Loc(C) sinceC is k-locally closed, and LagC) = PolIn¥k C
according to Lemma 4.41. d
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We shall now present the famous Baker-Pixley theorem which states that a
clone is uniquely deretmined by iksary invariant relations whenever it contains a
special operation. An operatidnof arity > 3 is called anear-unanimity operation
if

FOLX X, X X) = TGV, X X X) = .oo = FOCX X, ... X Y) =X

forall x,y € A.

Theorem 4.43 (Baker, Pixley 1975, [3])Let k > 2 and suppose that a clofe
contains arik+ 1)-ary near-unanimity operation. Thén= PolInv® C.

Proof. Let v € CktD be a near-unanimity operation and let us show that
PolInv¥) C C PolInvC since the other inclusion always holds.

Take anyf e PolInV¥ C, any positive integen and anyp € Inv(V C. If h=k
we trivially have thatf preserves. If h < k it suffices to note thap x AN e
Invi¥ C and thatf preservew if and only if f preservep x AN, Finally, as-
sumeh > k. For every sequence of indices<li; < ... <is< hletp, i, =
pr,, i.(p). By the assumptionf preserves everp,_ ;. Let us show that then
f has to preservp. We demonstrate the main idea by considering a special case
of k= 2. Let us start by showing thdt preserveg; for all i < j <I. Take
any (Ug,Vi,Wi),...,(Un,Vn,Wn) € piji and letu= f(ug,...,un), v= f(vy,...,Vn),
w = f(wg,...,w,). Sincef preservessj, pi andp; we have thatu,v) € pjj,
(u,w) € py and(v,w) € p;. Butpij, oy andp; are projections opjj, so there
existx, y, z€ A such that

(Wv.x) € piji,  (WY,W) € piji, (ZVW) € piji -
Now, v € C preserves all relations in lilt&vand in particular it preservgs; so
(V(U,U,2), V(W Y, V), V(X W, W)) = (U, V, W) € piji .

This shows thatf preserves alfpj;. Next, let us show thaf preservespijim
foralli < j <| <m. Take any(ui,vi,Wi, p1),..., (Un,Vn,Wn, Pn) € Bijim and let
u= f(uy...,un), v= f(vi,....vn), w= f(wyg,...,Wn), p= f(p1,...,Pn). Since
f preservespiji, pijm and pym we have that(u,v,w) € pij, (u,v,p) € pij and
(U,W, p) € Pim. But piji, pijm and pim are projections opjjim, so there exisk,
y, z€ Asuch that

(U,VaW>X) € pijlma (U,V,y, p) € pijlma (U, Z,W, p) € plj|m>
whence

(v(u,u,u),v(v,v,2),v(W,y,W), V(X, p, p)) = (U,V,W, P) € Pijim-
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Now, using induction ors we can show thaf preserves, ;. for all 1 <i; <
... <lis< h, and hencd preservep = p12_n. Therefore,f € PolinvC = C and
this completes the proof. 0

Corollary 4.44 LetC be a clone that contains a near-unanimity operation. Then
the order-filterrC = {D C O : D is a clone and D C} is finite.

Proof. Let v € C be a near-unanimity operation and let ar(v). Thenv € D
for everyD € 1C, soD = PolIn¥¥ D for everyD € 1C and hence the mapping
¢ :1C— 2(#Y) given by (D) = Invi¥ D is injective. Since?(ZY) is finite,
1C is also finite. O

Corollary 4.45 Every clone containing a near-unanimity operation is finitely gen-
erated.

Proof. Let C be a clone and let € C be a near-unanimity operation. Lt=
CIn(v). If C= N we are done. Assume, therefore, t@ab N. According to
Corollary 4.44 the order-filtet N is finite, so the intervalN,C] is also finite, say,
[N,C] ={N,Dy,...,D,C}. Foreveryi € {1,...,k} choose an arbitrarf; € C\ Dj,
chooseg € C\ N and letF = CIn(v, g, f1,..., fx). Clearly,N CF C C andF ¢
{N,Ds4,...,Dx}. ThereforeF = C and thu<C is finitely generated. O

4.7 Primitive-positive clones

There is another important Galois connection this time between operatiofis on
We say thabperations fe 6" and ge ¢\™ commutef (see Fig. 4.5):

f(g(a117a127"'7a1m))'"7g(an17aﬂ27"'7aﬂm)) -
- g(f(a1173-217-~7an1)7~-7 f(almaaZma--~7anm))~

It is easy to see that the following statements are equivalent:
f commutes witlg < f € Po{g*} < g € Pol{ f*} < g commutes withf.

The binary relation “... commutes with ...” afiy generates a Galois connection
where the operator? andﬁ are the same and usually denoted(by)*. The
closure operator i& — F** and the Galois closed sets are of the fd¢fn They
are usually referred to dcentralizersbicentrally closed setsr primitive-positive
clones(the last name is due to Stanley Burris).



30 CHAPTER 4. INTRODUCTION TO CLONES

g
aij; a2 ... am | — b1
g
dp1 A2 ... Am| — b2
% b
anl 92 ... Am|—~ Dn
£l fl ... 1l fl
Ci C ... Cm S 9

Figure 4.5: Commuting operations

Proposition 4.46 (a) LetF C 0a and letF* = {f*: f € F}. ThenF* = Pol(F*).
(b) For every primitive-positive clon@ of operations o\ there is an algebra
A on A such tha€ = | J,-; hom(A",A).

Proof. (a) is just a reformulation of the definitions. As f@), letC be a primitive-
positive clone. Theil€ = F* for someF C Oa. It is easy now to see th& =
Uns>1hom(A", A) whereA = (AF). O

As we have seen from Theorems 4.7 and 4.28, both clones of operatidns a
relational clones are subuniverses of algebras of the same typethicdmes we
have a binary “composition”, two operations that permute variables, ceratpn
that identifies variables and a constant. So, starting from a set of oper&tio
one can first produce a clone CH) and then interprete it as a set of relations
CIn(F)*, or one can immediately tre&tas a set of relations® and then produce
the relational clone C(F*), Fig. 4.6. A question arises: what is the relationship

F (_). Fo

le lCImﬁ;\

cinF) s cinFys 2 cirFn oy,

Figure 4.6: CIitF)* versus CI(F*)

between the two sets of relations? Clearly,(EN) contains relations that are not
graphs of operations, but what if we compare (Eljf and CI(F*) N 02? The
following easy lemma deals with the general case.

Proposition 4.47 For everyF C 0 we haveCIn(F)* C CIr(F*)n O;.

Proof. Having in mind Theorems 4.7 and 4.28, it suffices to note thaf(if jar 2
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then( «9)* = (g") o (1*), ()" =Phhaz..n1ara(F7), T(F)* =T(F), A(F)* =
A(f*) and(12)" = 5;%. O

We are now going to show that GIr)* = CIr(F*) N 0} if and only if CIn(F)
is a primitive-positive clone.

Lemma 4.48 LetF C Oh.
(a) (Pol(F*))* =InvF N O3.
(b) (F**)* =ClIr(F*)Nn0O;.
(c) CIr(CIn(F)*) = CIr(F*).
(d) If C=CIn(F) thenF** = C**.

Proof. (a) Take anyg® € (Pol(F*))*. Theng € Pol(F*) if and only if g commutes
with every f € F if and only if everyf € F preserveg® i.e.,g* € InvF.
(b) SinceF* = Pol(F*) we haveF** = Pol(Pol(F*)*), so

(F**)* = (Pol(Pol(F*)*))".
LetC = Pol(F*). Then according t¢a),
(F*™)* = (Pol(C*))® = InvCN & = InvPol(F*) N &4 = CIr(F*) N Op.

(c) Inclusion2 is obvious and follows from CliF) O F. For the other inclu-
sion, note that CIfF )* C CIr(F*) according to Proposition 4.47, so GQn(F)*) C
Clr(CIr(F*®)) = ClIr(F*).

(d) (C*)* =CIr(C*)N O = CIr(CIn(F)*) N O = CIr(F*) N O = (F*™)°.
ThereforeC** = F**. O

Theorem 4.49 LetF C Oa. ThenCIn(F) is a primitive-positive clone if and only
if CIn(F)* =ClIr(F*)n 3.

Proof. (=) LetC = CIn(F) be a primitive-positive clone. Theb= C** and
CIn(F)*=C* = (C™)* =CIr(C*)n0x =CIr(CIn(F)*)nOx = ClIr(F*) N OR,

by (b) and(c) of Lemma 4.48.
(<) LetC = ClIn(F). According to Lemma 4.48 and the assumption:

(C*™)* = CIr(C*) N &% = CIr(CIn(F)*) N &% = CIr(F*) N &4 = CIn(F)* = C*.

Therefore(C**)* =C*, i.e.,C** = C and henc€ is a primitive-positive clone]
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There is another description of primitive-positive clones that justifies theena
Recall that gorimitive-positive formula over a languagé U% U 2, where.% is
a set of function symbol&’ is a set of constant symbols a#lis a set of relation
symbols, is a formula of the form

Iy IX2. .. X (AL A ... AQk)

wherea; areatomic formulasthat is, either formulas of the forQ(vy,...,vy)
for someQ € 2 and some variables, or an equalityt(vs, ...,Vn) = S(V1,...,Vn)
wheret ands are(.# U%)-terms.

Let F be a set of operations such th#t F) is an.%-algebra. An operation

ge ﬁ&”) is primitive-positive definable over For pp-definable, for short) if there
is a primitive-positive formula (xs, . .., X, y) over.Z such that

d(ag,...,an)=b ifandonlyif (AF)E ¢a,...,anD]

for everyay,...,a,,b € A Thenitis easy to show the following statement:

Proposition 4.50 LetF C Oa. The set of all operations that are pp-definable over
F is a clone of operations ok

We are now ready to show that primitive-positive clones are precisely the
clones of pp-definable operations.

Theorem 4.51 (Kuznecov)LetF C Oa. ThenF** = {g € Oa: g is pp-definable
overF}.

Proof. (2) Supposeh € Op is pp-definable oveF. Then there is a primitive
positive formulag over.# that defined, i.e.

h(x1,...,X,) =y ifandonlyif (AF)E@(X,...,%n,Y).

Let X = (X1,...,%), A = (A/F) and let¢” denote the interpretation gf in A.
Clearly,¢” = h*. Without loss of generality we may assume that

¢(xy) =(F2)

(fi (vav Z) =0 (X’yv Z))

[>o

for appropriately chosefi, g; € C = CIn(F). Let us show thap” € CIr(C*). From
fi,gi € Citfollows thatf®, g’ € C*, sof® x g’ € CIr(C*) for all i. For appropriately
chosen diagonald and mappings; we have

(fi(x,¥,2) = 6i(x,%,2))" = prg, (&N (f7 x gF)) € Cr(C*).
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Next, we have

S A S
</\(fl (Xuy) Z) =0 (vaa Z))) = ﬂ prai (& m(fi. X gl.)) € Clr(c.)u
i=1

i=1
and thus

=Ple.g (ﬂ Pre, (& N (f XQF))) e CIr(C*)

for appropriately choseéy, ..., &. This shows that® = ¢ € CIr(C*). Therefore,
he C* =F*,

(€) Take anyh € C*. Then f*® € (C*)* = CIr(C*) N &3. The proof now

follows from Theorem 4.28 having in mind that operationg, 7, A andélz‘3 can
easily be represented by primitive-positive formulas. O

Therefore, only some very special clones are clones of pp-defifiaitéons.
Actually, we shall show that there are only finitely many such clones on a finite
set. The situation with relational clones, however, is significantly differevdry
relational clone is a clone of pp-definable relations.

LetQ be a set of relations such th@, Q) is a2-relational structure. A relation
pe 92/&”) is primitive-positive definable over (@r pp-definable, for short) if there
is a primitive-positive formula (x1, ..., X,) over £ such that

(a1,....a) €p ifandonlyif (AQ) dlay,...,an
forall a,...,ap € A
Theorem 4.52 LetQ C %a. ThenClIr(Q) = {p € Za: p is pp-definable oveR}.

Theorem 4.53 (Burris, Willard 1987, [16]) For any fintite se®\ there are only
finitely many primitive-positive clones.

Proof. Let (A,F) be an algebra of type#. We say that a relatiop € %,&4) is
definable by a principal congruence formula w.AtF) if there is a principal con-
gruence formulap such that

(a,b,c,d)ep ifandonlyif (AF)=yab,c,d],

foralla,b,c,d € A.
Now letA; = (A,F1) be an algebra of typ&; andA, = (A, F,) an algebra of
type .%#,, and assume that the following two conditions hold:
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Q) pe %’&4) is definable by a principal congruence formula wAistif and only
if p is definable by a principal congruence formula wArt and

elJ_ " is a term function o algebrdq if and only if f is a term
@ feUt ol f f algebra; if and only if f
function of algebra».

Then we are going to show that hoat, A1) = hom(AK, A,), for everyk > 1.

Letk > 1 be arbitrary and let us first show that (1) implies C&f) = Con(A¥).
Clearly, it suffices to show that the principal congruences coincidde8®;(c,d)
be a principal congruence @1‘{ generated by, d € A¢. Then there is a principal
congruence formulg such that

(a,b) € @1(c,d) ifandonlyif AX|=y[ab,c d].
Since principal congruence formulas respect homomorphisms we have tha
A1 = Ylag,bg,ca,di], ... A1 = Wlak, by, Ck, di,
wherea= (ay,...,&), ...,d = (dy,...,dx), so the 4-ary relation
p={(ab,cd)cA*: A1 = w[ab,c,d]}

contains the quadruplésy, by, cy,ds), ..., (a, bk, Ck, dk). But p is obviously de-
finable by a principal congruence formula w.At, so according to (1p is defin-
able by a principal congruence formual w.At. Let { be a principle congruence
formula which define w.r.t. A2. Then

Az = Pilag, by, c1,dh],. .., Az = Pilak, b, C, di],

whence follows that\§ = @j[a,b,c,d]. Therefore,(a,b) € ©;(c,d). This con-
cludes the proof that CgA%) = Con(A¥).

Now, take anyp € hom(AX A;) and assume that ¢ hom(AX, A,). From¢ ¢
hom(AK, A1) it follows that kerp € Con(AK) = Con(AX), while ¢ ¢ hom(Ak, A,)
means that there is a function symbof .%, and somaeu, ...,us € Ak such that

O (FA%(Us,...,Us)) # FA2( ()., $(Us)). (4.2)

Let g be a term obtained froni by identifying variablesg andx; if and only if

¢ (u) = ¢ (u;). In order to make it easier to follow the proof, we proceed by taking
an example. Les =5 so thatf depends on 5 variablegx,y,z, v,w) and assume
that¢ (uz) = ¢ (us) and@ (uz) = ¢ (us). Then

ax,y,2) = f(xy,2,2y).
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ThenfA2(¢(uy),..., ¢ (us)) = g*2(d(ui,),...,¢(u;,)) for appropriately chosen in-
dicesiy, ..., it. In our example this means th&f2(¢ (ur), ¢ (U), P (U3), ¢ (us),

¢ (us)) = 0"2(¢ (u1), @ (U2), ¢ (us)). Note that afg) = [im(¢)| < |A].

Next let us show that

(A5, Us)) = B (@ E(Uiy ., U)). (4.3)

We again take a look at the example. Sirice,u;) € kerd, (up,up) € kerg,
(us,Us) € kerg, (us,u3) € ker@, (us,Up) € kerg and since kep € Con(A) we
have that

(F4%(uz, Up, Us, s, Us), FA%(ug, Up, Us, Us, Up)) € kerd

k k
(fAz(ula Uz, U3, Ug, U5), gAz(ulv uz, Ug)) € kerd’a

so ¢(FA%(uy,...,Us)) = o (gPe(ui,...,u;)). Equations (4.2) and (4.3) together
with the definition ofg imply that

O (02U, ) # G2(B (), B (W) (4.4)

Sinceg” is a term function ofA, of arity < |A|, from assumption (2) it follows
that there is a#;-termh such thath®t = g*2. From (4.4) if now follows that

B, ) # PP (W) B (u),

which contradicts the fact thgt € hom(A¥ A1) andh is an.#;-term. This com-
pletes the proof that assumptions (1) and (2) imply haknA;) = hom(AK A,).

For a primitive-positive clon€ let y be the set of all 4-ary relations ok
definable by principal congruence formulas w(&,C) and lettc be the set of alll
term functions of(A,C) of arity < |A|, and define the mag by ®(C) = (&, 1c).
SinceC = Un>1 hom((A,C)", (A,C)), the above discussion actually shows téat
is an injective mapping. Since there are only finitely many possibilities to gaose
andtg, it follows that there are only finitely many primitive-positive clonesfof]

4.8 Abstract clones

Each cloneC can be understood as a structure with countably many la/éts
c@, ...,cW, ..., substitution operatiors] : C" x (C®)" — ¥ and distin-
guished elements, ..., i of each layeC". An abstrast setting to express this
point of view is that of multisorted algebras.
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Let Sbe a nonempty set called tlset of sorts An S-set(or amultisorted sét
is any family (As)ses. A multisorted sef = (As)scs is asubset ofa multisorted set
B = (Bs)ses, in symbolsA C B, if As C Bs for all se S. An S-function f: A— B
betweenS-setsA = (As)ses andB = (Bs)scs is any family of mapgfs)ses such
that fs : As — B is a (usual) mapping for ab € S An Sfunctionf : A— B is
bijectiveif all fs's are bijective. ArS-equivalence relatiofl = (6s)scs 0n anS-set
A= (As)scs is anSset(0s)scs such thatbs is an equivalence relation o for all
s€ S By A/6 we denote th&set(As/Bs)scs.

For a string of sortsv = (sq,...,%) € S'and a sork € S, a(w, S)-operation
(or amultisorted operationon (As)scs is any mappingf : A, X ... x Ag, = Ag,.
In that casew is said to be thearity of f. If w= () is the empty string of sorts,
then a((),s)-operation is just an element é§,. Therefore,((),sy)-operations
correspond to constants of segt

An S-signatures a setX of pairs (w,s) wherew is a string of sorts frong
ands e S For a signatur&, a Z-multisorted algebras a pair(A,F) whereA =
(As)sesis anS-set andr is a set of multisorted operations érsuch that for every
o = (w,s) € X there is exactly onéw, s)-operationf, € F and there are no other
multisorted operations iR.

Let (A,F*) and (B, F®) be Z-multisorted algebras and lat: A — B be anS
function. Therh is aZ-homomaorphisnif

hSo(fé(alv ...,an)) = fUB(hsl(al)7' -, hs,(an))

for everyo = ((s1,...,%),%) € Zand alla; € A5, 1 <i < n. A Z-isomorphismis
a bijectiveZ-homomorphism. We say théB, FB) is aZ-subalgebraof (A, FA) if
BC Aand

f8(by,...,bn) = fX(by,...,by)
for everyo = ((s1,...,%),%) € Z and allb; € Bs, 1 <i < n. An Sequivalence
relationd on A is aZ-congruencef (A, FA) if forall o = ((s,...,%),%) € Z,

(alabl) € 6317 R (anybn) € 6Sn
implies
(fXay,...,an), f2(b1,...,bn)) € B,

If 8 is aZ-congruence ofA F*) then theS-setA/@ is the carrier of &-algebra
whose operations are defined by

f2/%(a1/6s,,...,a0/6s) = fA(aq, ..., an) /65,

whereo = ((s1,...,%1),%) € Z. This algebra is referred to as tFector algebra
and denoted also b#/6. One can now show that all the facts from universal
algebra easily carry over to multisorted algebras.
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Definition 4.54 An abstract clonds a multisorted algebra whose carrier isfn
set (An)nen, With operationsS] of signature((n,k,...,k),k), and with constants
N——

n
€' € Ay, 1<i < n, which satisfies the following identities for all reasonable choices
of i, k, mandn:

(AC1) S(f.€e,....e)) =T,
(AC2) )€\ fy,...,f,) = f;, and

(AC3) S(SU(f,01,--,0n),h1,...,0) =
:S;,'.l(f,gfn(gl,hl,...,hk),...,gfn(gn,hl,...,hk)).

Example 4.55 (a) Clearly, every clone of operatioi@sis an abstract clone. The
carrier of the algebra kC(")nc, the operations] are given by§)(f,g1,...,0n) =
f(91,...,0n) and the constants aegg = 11"

(b) There are abstract clones that are not clones of operations. Wevitart
a straighforward example. Le¥ be an algebraic type, let, = {Xq,...,Xn},
n e N, be an increasing chain of finite sets of variablesXet |J,-, X, and let
T2 (Xn) denote the absolutely fre#-algebra over the set of variabl&g. Then
Termz (X) = (T2 (Xn) )nen is the carrier of an abstract clone whose constants are
given by = x; and the superposition operations are given by substituting terms
for variables. Note that ifA = (A,F) is an.#-algebra and : .# — F is the
interpretation of operation symbols, thenextends to a clone homomorphism
1#: Termz (X) — CIn(A), where CIrfA) denotes the clone of term-operations of
the algebra.

(c) Finally, there exist abstract clones which are not just clones of opesdtio
a fancy robe. LeK be a nonempty set and &, n € N, be the set of all mappings
f: X —={1,...,n} xX. Lete! € A, be the following mappinge(x) = (i,x). For
Oi, ---» On € A define [gi,...,0n] : {1,...,n} x X — {1,...,k} x X by
[91,..-,0n](i,X) = gi(x) and let§}(f,g1,...,0n) = [O1,...,0n]o f. Then((An)neN,

(S)nkens (€) njen ) is an abstract clone.
1<ign

Theorem 4.56 Every abstract clone is isomorphic to a clone of operations (not
necessatrily on a finite set).

Proof. Let (An)nen be an abstract clone. In order to make it easier to follow the
proof we assume that ally’s are pairwise disjoint and instead §f(f,9s1,...,0n)
we shall simply writef (gy, ...,0n). Forax € A let

L(a) = {a(€],.... &) :n=>k}
= {a, a (&t Ll a2 )
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We say that (ax) is a chain, or the chain that starts with LetL(ax) = L(ax) N
An. Clearly,Ln(ax) = @ if n< kandLp(ax) = {ak(€],....€)} forn> k.

Let us now show that ik andL’ are chains such that, = L/, for somen € N
thenL C L' orL’ C L. Assume that, =L, = {an}, leti be the least integer such
thatlL; # @ and letj be the least integer such thegt;é @ so thatl = L(a) where
Li = {ai}, andL’ = L(&)) whereL] = {aj}. Clearly,i <nandj < nand without
loss of generality we may assume th& j. Let us show that’ C L.

First, we show thalt; = L|. LetL; = {a;}. Sincely, = {a,} andL’ = L(a]) we
havea, = & (e”, e”) and similarly fromL = L(&) we havea, = a(€],...,€).

Sinceaj = a(el, .,€)) itis easy to see tha, = a;(€],. L€

aj(el,. .. e”):a.(el, .g)(el,....€]) [y the def. ofaj]
=ai(el(el.....€)),....el(el,....ef)) by (AC3)]
=g (qv ’qﬂ) [by (ACZ)]
= an.

Thereforea, = aj(€},...,€]) = aj(€],...,€]), whence

aj(el,....e}) (e, .. ,e},e}, o) =aj(e],....€}) (e, .. ,e},e}, )

n n

so by (AC3) we havea’j(ei,...,e}) = aj(e{,...,e}) and by (AC1) we conclude
a’ = a;, i.e,, Lt = L;. Finally, we show that for alk > j we havely = L,. Let
Lk = {a} andLj = {a}. Thena, =&(€,...,&) anda, = ai(ef, ... er
in the previous paragraph we can show that a; (e'{, . .,e‘j) so fromaj = aJ it
follows thatay = a,. Sincel; = @ for k < j andL; = Ly for k > j we conclude
L' CL.

This shows that evergt € [ Jpcy An is contained in finitely many chains, . . .,
LS and that all these chains are linearly ordered by inclusion,lileC ... C LS.
Therefore, for evera € |J, An there is a maximal chain that contains it, and we
shall denote it bya. Let

A={a:ae (A}
be the set of all maximal chains. Fbe A, define then-ary operatiorQ : (A)" —
A on A as follows. Take angl, ..., a" € A and find the least > 1 such that

anA #oforalli. LetainA = {d},ie{1,...,n}, and set

Q¢(al,....,a") = f(al,...,aD).
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Note that fors > t we have

f(at,...,a) = f(al,....aD) (4.5)

wherea NAs = {al},i € {1,...,n}. This follows easily since
f(ag,....a) = f(& (&L, ... €),....a(eL,.... &) = f(a,....a) (€. &)

and thus f(af,...,a") N As = {f(al,...,al)}. Therefore, f(al,...,al) and
f(al, ..., a") belong to the same chain and hance have the same maximal chain.
To complete the proof, let

C={Qr:fe|JA}
neN

At the same time we show th@tis a clone and tha® : J,cyAn — C: f — Qg is
a clone homomorphism. We start with projections:

Qg(al,....a") =€\(@l,....a) =a =4,

wheret > 1 is the least integer such thain A, # @ for all i, andal N A = {al},
i€ {1,...,n}. Therefore Qg = 1" € C. Next, take anyQ¢, Qg,, ..., Qg €C
wheref € Acandgi, ...,0k € An. Then
Q1(Qq,.....Qg)(aL, ... 8" = Qf(Qg,(aL, ... @), .., 0, (a,....a"))
=Q¢(g(at,....a),....o(a, ... a)),

wheret > 1 is the least integer such thain A # @ for all i, anda N A = {ai},
i €{1,...,n}. From (4.5) and (AC1)—(AC3) it now follows that

Qf((@d,....a),...,o@t,....a0) ) = f(a(ad,....a),...,ak(@d, .. ..a)

= (g, o0&, ... af)
= Qt(g,...g0 (3%, ).

geooy

Therefore,Q¢(Qg,,...,Qq) = Qi (q,..... a) € C. So,Cis aclone and is a clone

homomorphism. Clearl\ is onto and in order to show th&tis an isomorphism
we still have to show tha® is injective. Letf,g € Ay and letQ¢ = Qq. Then

f= (eT’ €)= f(@lw"’a)zgg(@l 7@%) (eTa €)=

So, f =gand fromf,g € Ay and|[f NAy = 1= [gNAy] it follows f =g. This
completes the proof. d
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Recall that each algebraic typE corresponds to an abstract clone whose el-
ements are terms: le§y = {X1,..., X}, n € N, be an increasing chain of finite
sets of variables, l€[#(X,) denote the absolutely fre@-algebra over the set of
variablesX, and letX = [Jncy Xn; then Termz (X) = (T (Xn) )nen is the carrier of
an abstract clone whose constantseire- x; and the superposition operations are
given by substituting terms for variables.

Let 7 be a variety of typeZ and let Eq¥") denote the equational theory of
¥, thatis

Eq(¥) = |J Ea(¥)
neN
where
Ech(7) ={(p,a) : pd€ Tz (%) and? = p~q}.

Then Eq7) is a congruence of Tergn(X) and the factor-clone Terg(X) /Eq(?")
is just another representation of the fr€ealgebra on a countable set of generators.
In particular,

Lemma 4.57 If A = (A/F) is an.% -algebra and’ (A) the variety generated by
thenTermg (X)/Eq(7 (A)) = CIn(A).

Proof. This is straightforward, and we include the proof just to demonstrate the
language of abstract clone theory. Recall thatif# — F is the interpretation

of fundamental operation symbols that gives risétaheni extends to a clone
homomorphism*: Termz(X) — CIn(A), and this homomorphism is onto. So, by
the First Isomorphism Theorem it suffices to show that Ker= Eq(7 (A)), and

this is easy:#(p) = 1#(q) if and only if p* = ¢* if and only if A |= p~ qif and

only if ¥ (A) = p~qifandonlyif (p,q) € Eq(¥ (A)). O

In [31] A. Knoebel considered maximal clon€son a finite sefA as algebras
(A,C) and located these algebras in the lattice of varieties of the appropriate sim-
ilarity type. It turns out that any such algeb{a,C) generates a variety whose
subvarieties form a chain of length 1, 2, 4 or 5 under inclusion.

We say that anZ -variety isminimalif it is an atom in the lattice of all%-
varieties. It is easy to see that the congruence lattice of F¢¥n is dually iso-
morphic to the lattice of# -varieties and hence a variety is minimal if and only
if Term4 (X)/Eq(?") has no nontrivial congruences.

Theorem 4.58 (A. Knoebel 1985 [31])Let < be a bounded partial order on a fi-
nite setA and letA < = (A,Pol <}). Then the variety (A<) is minimal.

Proof. Let .# be an algebraic type chosen so tAatis an.# -algebra. In order to
show that? (A<) is a minimal.# -variety, we show that Terg(X)/Eq(7 (A<))
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has no nontrivial congruences. Since Ter(X)/Eq(7 (A<)) = CIn(A<) (Lemma
4.57) and CIgA) = PoK <}, we are done if we manage to show that{o} has
no nontrivial congruences.

Let @0 = (@9)neny and @' = (O}),cn denote, respectively, the least and the
greatest congruence @h:

X={(f,f):fcol} and ©t={(f,0):f,ge o}

and letf = (Gn)neN be a congruence on Rat } distinct from@0 Then there is an

nsuch thaB, # @9, i.e. there exish € N and f,g € Pol™ {<} such thatf # gand

(f,g) € 6. Let us first show that this implies that for evdeyve havefy # OO
Takeay,...,ap € Asothatp= f(ay,...,a)) #9(a1,...,a) =Q. Letca denote

the constant unary mapping— a. Clearly,c; € PoK<} for all a€ A. Then from

f 6hg, Cy B1Cyy, ..., Cq, 61 Cq, and the fact tha is a clone congruence it follows

that

Cp= f(Ca,..-,Ca,) 61 9(Cay,---,Cay) = Cq-

Sincep # g, we havep £ gor g £ p, so assume thatZ p. Then there is ah €
PolY{<} such thah(p) = 0 andh(q) = 1, where 0 and 1 denote the least and the
greatest element af. Now, h 6, handc,, 61 ¢q, soh(cp) 61 h(cy), i.e.co 61 c1. But
then for everyk € N we have thato(7t) # c1 () andco(T5) 6k c1 (7). Therefore,
6 # O forallk € N.

FinaIIy let us show that for ak € N, if 6 # ©Y then 6 = ©f. Take any

se Pol®{<} and considet € 6" defined by

07 Xic+-1 7é 1
t(le"'7Xk7Xk+1) = "
S(Xla s 7Xk)7 X1 = 1.

Then it is easy to see that Pol(k+1){<} and that
s=t(m,..., 7, ca(7%)) Bt (T, .., i, Co(T%)) = Co( 7).

Therefores 6 co(T) for everys ¢ Pol(k){g}, whencefy = G)&. O
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Chapter 5

Minimal clones and CSP

One of the main concerns in theoretical computer science is to understéctd wh
computational problems are tractable, and which problems are hard to Hehe.
“tractable” means that instances of the problem can be solved within angdaleo
amount of computational resources and time. In this text we designate moate
tractable if there exists a polynomial time algorithm, whereas hard are those that
are NP-hard.

The constraint satisfaction problem was introduced by Montanari in &48d4
has been widely studied [42]. Several frameworks to formalize the notioare
straint satisfaction have been proposed, most prominantly the class G®R-of
straint satisfaction problems that are defined as homomorphism problerol. Su
problems are defined by a relational structure, the so-called template afrihe c
straint satisfaction problem. Constraint satisfaction problems are compatation
problems that occur in many areas of computer science, graph theolyahsat-
isfiability and database theory.

One fundamental open research problem in this area is to characteacgly ex
the forms of constraint relations which give rise to tractable problem da3s$es
problem is important from a theoretical perspective, as it helps to clagfigdlind-
ary between tractability and intractability in a wide range of combinatorial bearc
problems.

The problem of characterising the tractable cases was completely solved fo
the important special case of Boolean constraint satisfaction problemshagfer
in 1978 [55]. Schaefer established that for Boolean constraint sat@igprob-
lems (which he called Generalised Satisfiability Problems) there are exactly six
different families of tractable constraints, and any problem involving tcaimés
not contained in one of these six families is NP-complete. This important result
is known as Schaefer's Dichotomy Theorem. In 2002. Bulatov managebl-to o

43
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tain a complete classification for the complexity of constraints on a three-element
set [11]. There is still no complete classiffcation for the complexity of caiirstis

over finite sets with more than three elements, and no dichotomy has so far been
established for arbitrary finite sets, although it has been conjecturethtbase

of an arbitrary finite templates the class of CSP problems satisfies the dichotomy
principle.

5.1 Introduction

Let X be a finite set of variables, aida finite set of values. A mapping: X — A
will be referred to as a&aluation Forh > 1, anh-ary constraintis an ordered pair
(x,p) wherex € X" andp ¢ %ﬂ‘). We say that a valuatiof : X — A satisfies a
constraintx, p) if f(x) € p.

Theconstraint satisfaction problem (CSB)a class of decision problert®, A, %)
whereX andA are finite setsg’ = {(x%,p1),..., (X, p)} is a finite class of con-
straints over the set of variablésand the set of values, and the problem is to
decide whether there exists a valuationX — A which satisfies each constraint in
%, i.e., such thaf(x') € p;, for all i?

Since bothX and A are always finite, it is clear that every instance of CSP
is decidable. The real problem is, therefore, to establish the complexitsobf e
particular decision problem.

Example 5.1 An instance of &-SATISFIABILITY problem asks whether a propo-

sitional formula "

F(XL,. %) = A O V...V
i=1
in its conjuctive normal form over a set of variables, ..., x,} is satisfiable, i.e.
whether there exists an assignment of truth values to variables that maKkes the
mula true. Hereg;; € {0,1} and we follow the convention that

e X €=1
= -x, £=0.
The CSP interpretation of the problem is straightforward.Xet {xi,...,X,} and
letA={0,1}. For each conjuncti V...V x:* take a constrair = (X1, .., Xik), 0i)
where
o =AN\{(1-g1,....1— &)}

Note thatp; is the set of all th&k-tuples(ay,...,ax) € AX such that the conjunct

XIt V... vk evaluates to 1 under the assignment of truth vakes- ay, ...,
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Xik = a. Now putér = {S,...,Sn}. Then this particular instance of CSP has a
solution if and only if the formuld is satisfiable.

Example 5.2 An instance of &k-GRAPHCOLORABILITY problem asks whether

a given graplhG is k-colourable. The CSP interpretation of the problem is again
straightforward. LeX = {x,...,X,}, be the set of vertices @, let {ey,...,en}

be the set of edges & whereg = {u;,v;} C X with uy; # v;. LetA={1,2,... k}
andva = {(x,y) € A%:x # y}. For each edge = {u;,Vi} we take a constraint

S= ((Ui,Vi),VA)

and putés = {Si,...,Sn}. Clearly, this instance of CSP has a solution if and only
if Gisk-colourable.

Example 5.3 An instance of &-CLIQUE problem asks whether a given graph
G = (V,E) contains &-cliqgue. The CSP interpretation of the problem is slightly
more involved. LeX = {xa,..., X}, letA=V = {&a,...,an} be the set of vertices
of G, and let

& = U {(U,V),(V, U)}

{uv}eE
Now, for a pair of distinct indices j € {1,2,...,k}, let
SJ = {((Xi,Xj), VA)v ((Xi,Xj),Eg)},

and put
%G:U{SJ :ivj 6{1727~--7k}7i 7& J}
X1 X2

Clearly, if G has ak-clique spanned bjy,...,b €V thenf = (3 12 7 ¢) is a
valuation that satisfies every constraintdg. Conversely, if a valuatior : X — A
satisfies every constraint g, thenf is injective due to the set of constraints

€6 ={((%,%j),va) 1i,j € {1,2,... .k}, i # j}

andf(X) spans a complete subgraph@®fiue to the set of constraints

64 = 1(06.x)),€0) 11, ] € {1.2,... .k} # }.

Therefore,f(X) is the set of vertices of kclique inG.
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Example 5.4 Aninstance of a AMILTONIAN problem asks whether a given graph
G = (V,E) contains a Hamiltonian cycle. For a CSP interpretation of the problem
let X = {x1,...,%}, wheren is the number of vertices db, and letA =V =
{a4,...,an} be the set of vertices @. Definesg andS; as in Example 5.3 and let

66 =S12US3U...US_1nUSy.

Now, if a valuationf : X — A satisfies every constraint i, thenf is injective,
|f(X)| = nand thusf(X) spans a cycle it which contains every vertex @.
Therefore,f (X) is the set of vertices of a Hamiltonian cycle@

It is well known that 3-3TISFIABILITY is NP-complete. It follows from Ex-
ample 5.1 then that the general CSP is also NP-complete. However, cestait re
tions may affect the complexity of CSP. One of the possible natural waystticte
CSP is to limit the scope of relations which can appear as constraints.

Definition 5.5 Let A be a finite set an@l C % a set of finitary relations oA.
Then CSR(I) is the class of all pair$X,%’) such that(X,A, %) is a constraint
satisfaction problem wheré = {(x,p1),..., (X, px)} andp; € T for all i.

Example 5.6 Let A be a finite set witHA| > 2. Without loss of generality we may
assume thaf0,1} C A. Fix an integek > 2. For each tupla € {0,1}¥ let

6a = A\ {a}

and let
O ={6a:ac {0,1}"}.

Example 5.1 suggests thés, wherea = (ay,...,ax), consists of all the&-tuples
(by,...,by) € {0,1}* such thate; @ V...V, * evaluates to 1 under the assign-
ment of truth valuesi; = by, ..., Xk = bx. Therefore, CSR©) corresponds to
thek-SATISFIABILITY problem.

More precisely, it is easy to see that is&SATISFIABILITY problem is polyno-
mially reducible to CSR©x). Take any propositional formula

m
F(X1,...,%) = /\(xfill\/...\/xﬁi(")
i=1
in its conjuctive normal form over a set of variabls= {x,...,x.}. Let X =
(Xi1,---,%), for eachj € {1,...,m} take the constraintx’, 6, ) wherea; = (1—
&j1,-..,1—€jk), and put

G = {(x%6s),....,(x™ 6:.)}.



5.1. INTRODUCTION 47

Then(X,%r) € CSR\(©) and it is obvious thatX, ¢ ) has a solution if and only
if F is a satisfiable formula. Since theSATISFIABILITY problem is NP-complete
for k > 3, this polynomial reduction shows that G&Bx) is NP-complete fok >
3.

Example 5.7 An instance of the BT-ALL-EQUAL 3-SATISFIABILITY coOnsists
of a set of triples{(x1,y1,21),..., (%, ¥Yn,Zn)} € X3 such thatX is a finite set of
variables and # y; # z # x; for all i. The question is whether there exists a
valuationf : X — {0,1} such that-(f(x) = f(yi) = f(z)) for all i, i.e. no triple
evaluates tq0,0,0) or (1,1,1). It is a well-known fact that HT-ALL-EQUAL
3-SATISFIABILITY problem is NP-complete [55]. We shall now provide an inter-
pretation of the problem in terms of CSP.

Let A be a finite set withA| > 2 and assume thd,1} C A. Consider the
relation

B= {O, 1}3\{(07070)7 (1,1, 1)}

Thenthe MT-ALL-EQUAL 3-SATISFIABILITY problemis polynomially reducible
to CSR({B}) whence follows that CS®{f3}) is NP-complete.

Equivalently, CSP can be understood as a class of decision probl&ms/),
whereZ = (X, &1,...,&) ande’ = (A, py,...,px) are finite relational systems of
the same type (thatis, @) = ar(p;) for all i), and the problem is to decide whether
there exists a homomorphisft 2~ — <. Recall that a homomorphism between
relational systems?” and.e7 is a mappingf : X — A such thatf (&) C p;, for all i.

The two formulations of CSP are equivalent in the following sense:

Lemma 5.8 Forevery instanceéX,A, %) of the general constraint satisfaction prob-
lem there exist finite relational systen#s, and <y of the same type such that
there is a valuation which satisfies every constraint’inf and only if there is a
homomorphism fronty to 7.

Conversely, for every pair of finite relational systes and.c/ of the same
type there exists an instan¢¥,A, ¢ .,) of the general constraint satisfaction
problem such that there is a homomorphism frémto <7 if and only if that there
is a valuation which satisfies every constraintigp ., .

Moreover, an instance of CSP is in P (NP-complete) if and only if its analogon
is in P (NP-complete).

Proof. Indeed, take any finite set of constraifsts= {(x%, p1),..., (X, p)} and let
Ay = (A,p1,...,px) and 2y = (X, &1,...,&), where& = {x'} for alli. Then a
mappingf : X — Alis a valuation which satisfies every constrain#inf and only
if fisahomomorphism fron#s to <% .
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Conversely, letZ” = (X, &1, ..., &) ands/ = (A, p1,. .., p«) be finite relational
systems of the same type and#}- ., be the following set of constraints:

%@QW =%1U...U%,

where

G ={(x,p) xe€&}
Then a mapping : X — Ais a homomorphism fron®" to <7 if and only if f is a
valuation which satisfies every constraintd- ., .

Note that the constructioré — (2%, %) and(Z",«/) — €4 ., described
above can be realized in polynomial time. O

Let o7 = (A,I') be a finite relational structure (themplatg. Then instead of
CSRy\(I) it may be more convenient to write C&#). In this parlance, CSEY)
then denotes the class of all finite relational structuéof the same type as/
such that there is a homomorphis#i — /. With a slight abuse of set notation,
we might write

CSR«) ={Z : Z is afinite relational structure of the same typezas
and there is a homomorphisg#i — <7}

The formulation of CSP via homomorphisms sometimes allows for a more
compact description of the problem.

Example 5.1bis In order to obtain an analogon of tRESATISFIABILITY problem

in terms of homomorphism of relational stuctures, we apply the algorithm from
the proof of of Lemma 5.8. Sa&2" = (X, &1,...,&m) whereX = {x1,..., X}, §&1 =
coo=&m={(X,..., %)}, ands = ({0,1}, p1,...,pm), Wherep;'s are defined in
Example 5.1.

The following examples are more instructive.

Example 5.2bis For an analogon of th&-GRAPHCOLORABILITY problem in
terms of homomorphism of relational stuctures it suffices to téke- G and.«” =

Kk, the complete graph davertices (that is, an appropriate representation of these
two graphs, such a&; in Example 5.3). To see this, it suffices to note thatdnd
vare adjacent i, and if f : G — Ky is a graph homomorphism, théiu) # f (v),
sinceKy does not have loops.

Example 5.3bis For an analogon of thie-CLIQUE problem just takeZ” = K and
o =G.
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Example 5.4bis Finally, for an analogon of the AMILTONIAN problem we have
to ensure that the graph homomorphism be injective. Therefore, takepa gr
G = (V,E), and let«/ = (V, &, W) Where &s is the binary relation defined in
Example 5.3 and is the “non-equality” relation defined in Example 5.2. On the
other hand, let2” = (X,&,vx) whereX = {1,2,...,n}, n= |V| is the number of
vertices ofG, vy is the “non-equality” relation oX andé = {(1,2),(2,3),...,(n—
1,n),(n,1)}. ThenG has a Hamiltonian cycle if and only if there is a homomor-
phismf : 2" — .

5.2 Constraints and clones

In order to describe tractable sets of relations @ver {0,1}, Schaefer used syn-
tactic properties of propositional formulas representing boolean relatidos/-
ever, in case ofA| > 3 this method can no longer be used. We therefore need an
adequate language in which it is possible to express the properties off sets o
lations which are responsible for the complexity of the correspondingtredmts
satisfaction problems. A useful first step in tackling this problem is to conside
what additional relations can be added to a set of relations without clgatiggn
complexity of the corresponding problem class. The main result in this sastion
due to Jeavons and shows that the complexity of the constraint satisfactimam
does not increase if we pass from a set of relations to the relational gtorezated

by the set of relations [28].

We shall say that a problemtisctableif there exists a deterministic polynomial-
time algorithm that solves all the instances of that problem. In order to be able to
talk about tractability of infinite as well as finite sets of relations, we follow [12]
and define the notion of a tractable set of relations in a way that deperfasten
subsets only.

Definition 5.9 Let A be a finite set and Idt C Z%a be finite. We say thall is
tractable if CSPa(I") is tractable. We say thdt is NP-completaf CSPA(IN) is
NP-complete.

Now, letl” C Za be infinite. We say thall is tractableif every finiteA C T
is tractable. We say that is NP-completéf there is a finiteA C I which is NP-
complete. We say thdt is globally tractableif CSPA(I") is tractable, i.e., every
decision problem in CS®I) isin P.

Theorem 5.10 (Jeavons 1998, [28]het T C % be an arbitrary set of relations
(finite or infinite). Then for every finit& C Clr(I") there exists a polynomial-time
algorithm which reduces every instancea8Px(A) to an instance c€SRy\(I"). In



50 CHAPTER 5. MINIMAL CLONES AND CSP

other words, for every finith C Clr(I"), the class of problemGSPRy(A) is poly-
monially reducible taCSRy(I").

Proof. (See [12]) LetA = {64,...,6¢} C CIr(I") be a finite set of relations. We
know from Theorem 4.52 that for eveff € A there exists a primitive-positive
formula¢; overl” such that

(a1,...,an) € 6 ifandonlyif (AT) [ ¢i[as,...,an]

forall ay,...,a, € A. Note that it is not the job of the algorithm we are looking for
to find these formulag;. Given a finite templaté&, we use our human ingenuity
to find the formulagp; which are, then, hard-coded into the algorithm. So, for each
6 fix a primitive-positive formulap; defining6; in terms of relations fronfr.

Now, take any instancéX, %) € CSR\(A) whereX = {xq,..., %} and¢ =
{(x%,8,),...,(x™ 6,)}. Foreachx!, &,) € ¢ repeat the following:

o let i (Xuy,--- X)) = V.-, Yp(P1(Z, - ) A APg(ZLs-, 2 ), where
prerfu{=}foralltandz e {xy,...,Xy,Y1,---,Yp}, be the primitive-
positive formula defining ;

¢ add the auxiliary variableg, .. .,yp to X (renaming if necessary so that none
of them occurs before);

e add the constraintdz, .., 2,),p1), .-, ((Z,....2}).pg) 0 €

e remove(x!, &) from %.

It can easily be checked that the instari®e, ¢”) obtained by this procedure is
equivalent to(X,%’) and belongs to CSflr U {=}). Moreover, since all the
primitive-positive formulas representating relations framare fixed, this trans-
formation can be carried out in polynomial time. Finally, all constraints of the
form ((x,y),=) can be eliminated by replacing all occurrences of the variable
with y. This transformation can also be carried out in polynomial time. O

This result reduces the problem of characterizing tractable sets diraiots
to the problem of characterizing tractable relational clones:

Corollary 5.11 Letl’ C %Za be an arbitrary set of relations. ThEris tractable if
and only ifClr(I") is tractable. MoreoveF, is NP-complete if and only i€lr(I") is
NP-complete.

We have shown, thus, that in order to analyze the complexity of arbitrésy se
of relations it suffices to consider only relational clones. This is not olyreid-
erabe reduction in the sense that, in contrast to arbitraty sets of relattatgmal



5.3. TIDYING UP 51

clones are well understood, but enables us to use the descriptiontmfirel&lones
via clones of operations. As we shall see, the tractability of {{SPdepends sig-
nificantly on the structure of Pbl

5.3 Tidying up

Quite often it is possible to find a solution to a CSP problem by taking a partial
solution and extending it to the global solution. Those approaches to s@\8Ry
usually require tidying up the instance we are working with. In this section we
describe two such procedures which we need in the sequel.

Let (X,%) be an instance of CQFI") wherel is a relational clone and let
€ = {(x5,p1),...,(x,p)}. Fix a linear order orX, say,X = {xg,...,%} and
consider the following algorithm:

(1) for eachx € X do _
if xappears in no tuplg' then
removex from X;

(2) foreach € {1,...,k} do
if X' =(...,Xj,...,Xj,...) then

introduce a new lettey and put it at the end of
(recall thatX is linearly ordered)

remove(x', p) from &

add(y', p) to €, wherey' = (....,Xj,...,,...)

add((x;.y), 532 to ¢
(recall thatd}? = {(x,X) : x € A})

(3) foreach € {1,...,k} do
let f be a permutation such thatqfk') is sorted w.r.t. the order of
remove(x', p;) from ¢
add(pry(x'),pre (pi)) to ¢

This simple algorithm runs in polynomial time and makes a versiofXo#’) we
shall refer to agidy. It is tidy in the following sense:

e (X',¢")is aninstance of CS{I);
e (X,%) has a solution if and only ifX, %) has a solution;
e every letter fromX apperas in at least one constraint;

e for every(x,p) € ¢, all the letters inx are distinct and appear in a fixed
order.
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A list of variables from a linearly ordered set= {xy, ..., %n} isatuple(xi,, ..., %)
such thai; < ... <ix. So, in a “tidy” instance of CSHI") every constraint con-
sists of a list of variables, together with a relation from A list (x,,...,X) is
contained ina list (Xj,, ..., X;j,) if {i1,...,ik} € {j1,...,Ji}. In that case we write
(Kigs -5 Xi) E (Xjgs - Xj,)-

Let S= ((Xj,,---,X;j,),p) be a constraint wherg;,,...,x; ) is a list, and let
(Xiy,---, %) be alist such thatx;,,...,x,) C (Xj;,...,Xj). Then for eachp, x,
appears at precisely one place in the(ist, . . .,X;, ), say at the placey, (or, more
preciselyp(jmp = X;,). Theprojectionof Sonto(x;,,...,X;) is the constraint
)(S) = ((Xil’ e 7Xik)7 prmlw.,m((p))-

pr(Xiym»(ak

For listsx! andx, over X, let x* Lix? denote the shortest ligtover X such that
x! Cy andx? Cy, and letx! M x? denote the longest listoverX such thaty C x*
andy C x2.

Let S; = (x',p1) and S, = (x?,p) be constraints where bottt and x? are
lists and letm be the length ok Lix2. Letx! = (x},...,x}) andx? = (x3,...,x?).
Furthermore, lep; be the position ok} in x*LIx* and letq; be the position ok
in x'LUx2. Thejoin of S; andS; is the constraint

S xS = x'Ux?0),

where

gees PN/ = LT F O,

Example 5.12 Let X = {x,y,z u,v} with the linear ordex <y <z<u<vand

let A= {a,b,c,d}. Consider the following two constraints (where the list of the
variables appears at the top row of the table, while the tuples from the relation
apear in the remaining rows):

S: Xy z u and $: x z v
a a a a a b a
ac b d a b b
acd c acb
a d d
Then
S>xXS: Xy z u v
acbda
acbdwpb
acdocd
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Lemma 5.13 (a) LetS; = (x%, p1) andS, = (X2, pp) be constraints where both
andx? are lists. Themr,:(S;<S) C p1 andpr,z(S;<S) C ps.

(b) LetT be a relational clone and I1€X,{S1,$,Ss,...,S}) be a “tidy” in-
stance oCSR(N). Then(X,{S =<1, Ss,...,S}) € CSR(IN).

(c) LetT be a relational clone and I1€X,{$,$,Ss,...,}) be a “tidy” in-
stance o£SRA\(I"). Thenf : X — Alis a solution tdX,{S,$,Ss,...,}) if and

only if f is a solution tqX,{S <1 S>...=x1S}). In particular(X,{S1,$,Ss, ..., S})
has a solution if and only B <1 S < ... <1 S = (X, p) wherep is nonempty.

Proof. (a) Obvious.

(b) LetS; = (x1,p1), S = (X%, p2) and letS; S, = (y, 0). Itis easy to see that
o can be obrained from; andp, using diagonals, pr and, so Theorem 4.28 im-
plies thato € I sincel is a relational clone. ThereforeX,{S >~ $,Ss,...,&})
is an instance of CS{I).

(c) is a straightforward consequence (@ and the definition of the join of
constraints. O

Note that statemerft) in the previous lemmeoes not provida feasible algo-
rithm for solving CSP in general because it is not clear why compging S <
... 1 § should take polynomial time in the length of the input!

Another way of transforming an instance of a CSP into a (hopefully) more
managable one consists of removing from the constraints those tuplesifdr wh
we know that cannot contribute to finding a solution. To illustrate the idea, take
two constraintsS; = (x%, p1) and S, = (X%, p2) over the same set of variabls
Take a listy = (y1,...,Yk) such thaty C x* andy C x?, let p; be the position
of yj in x! and letq; be the position ofy; in x2. Assume now that there is a
tuplea= (aa,..., &) € Prp, o (P1) \ Py, .. g (P2). Then if there exists a solution
f: X — Ato{S,S} then we know for sure thdt(y1) # ay, ..., f(Yk) # a, since
a¢ pry, . q(p2). Therefore, we can remove from all those tupleg having the
property p[,lwpk(z) =a

Instead of “pruning” constraint§; = (x%, p1) andS, = (X2, p) for an arbitrary
list y satisfyingy C x* andy C x?, it is much more efficient to prune them for
maximal sucly, which isx:1x2. The final observation is that “maximally” pruned
S; andS; can be obtained simply as,pfS; >t ) and pLz (S < S).

The “pruning” algorithm now takes the following form. LEX, %) be a tidy
instance of CSR(") where? = {S,,...,S} andS = (X, p1),i € {1,...,k}.
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D repeat

2 foreach,j € {1,...,k} such thai < j do
3) S{ — pri(§ Sj)

(4) S < pri(§S)

(5) removeS andS; from &

(6) add§ andSjto ¢

@) until no more changes t¢

Lemma5.14 Let (X,%) be a tidy instance o€ESRy\(I") and let(X,%") be the
outcome of the “pruning” algorithm. TheiX,¢") be a tidy instance dESPy\(I").

Proof. It is obvious that X,%¢”) is tidy, because the algorithm changes neitker
nor the tuples<1, ..., xk. Moreover, it is easy to see that 4§ > §j) can be

obrained fromp; andp; using diagonals, pr angl, so Theorem 4.28 implies that
pri (S > Sj) €T sincel is arelational clone. ThereforeX,¢”) be a tidy instance

of CSRy(IN). 0

Lemma 5.15 The “pruning” algorithm runs in polynomial time.

Proof. It is clear that each of the constructions in steps (3)—(6) takes polynomial
time, so the body of the repeat-until loop (lines (2)—(6)) executes in potiado
time. In each pass through the body of the repeat-until loop we removesat lea
one tuple from one of the relatioms, ..., px (the algorithm stops when no such
removal occurs). In the worst case, the algorithm executes the reptlalibop
once for each tuple of each of the relatigms ..., px, and the numer of tuples
equals|pi| + ...+ |pn| is polynomial in the length of the input. Therefore, the
entire algorithm runs in polynomial time. a

Each “pruned” instance of C@H") is “consistent” in the following sense (a
precise notion of consistency will be introduced later):

Lemma 5.16 Let(X,%’) be an outcome of the “pruning” algorithm, Bt= (x*, p;)
andS, = (x2, p) be two constraints i€’ and lety be a list oveiX such thay C x*

andy C x?. Thenpr,(S1) = pr,(S).

Proof. Let us start by considering the cage= X' M x2. Let pra2(S1) = (X1
x2,p}) and prie(S) = (X1 Nx2, pb) and assume that pr.(S1) # Pl (S)-
Thenp; # p5 sop; \ py # & or p5\ p; # @. This, however, contradicts the fact that
(X,%) is an outcome of the “pruning” algorithm, since the “pruning” algorithm
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would not have stopped witfX, %) as a result if there had been more possibilities
for “pruning”.

Now, lety be a list overX such thaty T x* andy C NG Theny C x1Mx2, so
starting from pi.2(S1) = pranke(S2) and taking py of the both sides we obtain
the claim. O

5.4 Towards the dichotomy

Shaefer proved in 1978 [55] that every G§B(I) is either tractable or NP-
complete. In 1993 it was conjectured by Feder and Vardi that everyaC$P
whereA is a finite set is either tractable or NP-complete. This is calledie
chotomy Conjecture

The Dichotomy Conjecture (Feder, Vardi 1993, [24]).For every finiteA, every
CSR\(I") is either tractable or NP-complete.

We shall now demonstrate one possibility towards the proof of the conjecture
Let I be a relational clone such that£ Za. Then Pol” # M and according to
Theorems 4.33 and 4.36 one of the following cases arises:

(1a) Pol contains a constant unary operation;

(1b) Poll contains essentially unary operatiangy, none of which is a constant;
(2) Poll contains a binary idempotent operation which is not a projection;
(3) Poll contains a majority operation;

(4) Poll contains a minority operation; or
(5) Poll contains projections and semiprojections only.

5.4.1 Constants (Case (1a))

Proposition 5.17 (Jeavons 1998, [28]Jf Poll" contains a constant unary opera-
tion thenCSRy(I") can be solved in polynomial time.

Proof. Let c; be a constant unary operation such tbat Poll. Then every
nonempty relation i contains a tuple of the forifa, a, ... ,a). Take any instance
(X,%) € CSRy(IN) and let& = {(x*,p1),...,(XX, px)}. If there is ari such thap; =
@ then the instance of the problem has no solutions. Othenwiss,a solution.
This can be decided in polynomial time. O
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5.4.2 Semiprojections (Case (5))

Proposition 5.18 (Jeavons 1998, [28])f Poll" contains projections and semipro-
jections only therCSPy\(I") is NP-complete.

Proof. Without loss of generality we can assume tf@f1} C A and recall the
definition of @3 from Example 5.693 = {0, : a < {0,1}3}, wheref, = A3\ {a}.

It is easy to see that evefy is invariant under projections and semiprojections.
Since Pol” contains projections and semiprojections only, it follows that'Rol
PolOs, i.e.,©03 C ClIr(I"). Theorem 5.10 now yields that C{®s) is polynomially
reducible to CSR(I"). However, Example 5.6 shows that the B¥f&FIABILITY
problem is polynomially reducible to Caf®3). Since the 3-&TISFIABILITY
problem is NP-complete, it follows that C(P ) is also NP-complete. O

5.4.3 Essentially unary nonconstant operations (Case (1b))

Lemma5.19 LetA={a,...,an}.

(a) Every operation in a clon€ of operations orA is an essentially unary
operation if and only ito, = 5jz|3‘4 U 6j 1234 ¢ Inve,

(b) If every operation irPoll" is essentially unary, the@Ir(I') = Clr({p, wy})
wherewy is defined ina) and

p={(f(a),...,f(an)): f € Endr}.
In particular,Clr(I") is finitely generated.
Proof. (a) The implication(=) is trivial. Let us show(<=).
Let f € C be an operation that is not essentially unaryklet ar(f) > 2 and

let 6 = 5412‘3|4 U 5}‘2‘34. Without loss of generality we can assume thatepends
on the first two arguments. Then there exsta), by, ..., by, di, 2, €, ds, ...,
dk € A such that

pP= f(al,bz,b3,...,bk) 75 f(a’l,bz,bg,...,bk): p’

and
q=f(d1,Cz,d3,...,dk)75f(dl,C/z,d3,...,dk):q,.

Then

a; by by ... by ,i> P

a’l b, bs by ,i> p’

dl Co d3 dk l—f> q

dh & d3 ... d¢ >

m M M M M R

D DO DO D D
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Therefore,f does not preservé.
(b) Itis easy to see that Plol= PoK wu,p}, whence CIT") = Clr({wy, p}). O

Lemma 5.20 (Jeavons 1998, [28]Letl = {p1,...,p«} be a finite set of relations
onAand letf € Endl'. LetB = f(A) and letA be the following set of relations on
B:

A={f(p1),.... F(o)}-

ThenCSR\(I") is polynomially reducible t&€SRs(A) and, vice versazSRs(A) is
polynomially reducible t@CSPy(T").

Proof. Let (X, %) be an instance of CQIT") where® = {(x},01,),..., (X, p;,)}.
Thens” = {(x},f(py)),...,(xX', f(p;))} is an instance of CSRPA) and it is easy
to see thatih : X — Ais a solution tg'X, %) thenf ohis a solution tg X, %”). On
the other hand, ih: X — B is a solution to(X,%”) then the same function solves
(X, %), sincef(p) C p foreveryp eT.

Conversely, lefX,%") be an instance of C$PA) wheres” = {(x*,61),...,(X,8)}.
For eachj find ap;; € I such thatf (o;;) = 6; (sincerl is finite this can be achieved
by a straightforward polynomial-time algorithm: for eqek I test whetherf (p) =
6;) and put¢ = {(x%, pi,), ..., (X', p;,) }. Clearly,(X,%) is an instance of CS®T)
and(X,%”) has a solution if and only ifX, %) has a solution. O

Proposition 5.21 (Jeavons 1998, [28])f Poll" contains essentially unary noncon-
stant operations only, th&2SPy\(I") is NP-complete.

Proof. In this proof we work with clones on two ses andB, so we shall have to
write Polh " and Pog ™ to distinguish between clones of operations®aand clones
of operations orB. Simliarly, we shall writecs(A) andws(B) (see Lemma 5.19)
to distinguish between the two relations which are constucted in the same fashion
but on distinct sets.

Since Pol " contains essentially unary operations only, Lemma 5o} §ields
that Clia(I") = Clra({p, awu(A)}), wherep andwa(A) are defined in Lemma 5.19.
Moreover, we may safely restrict our attention to the unary operations maheid
M =Endal" = Enda{p, wu(A)}.

Letq=min{|f(A)|: f € M} and letg € M be the unary operation that achieves
the minimum:|g(A)| = g. Since there are no constant map®irwe haveq > 2.
LetB = g(A) and

A={g(p),9(ws(A))}.

Clearly, A C #g. Sinceg(ws(A)) = wy(B), Lemma 5.19a) ensures that Pgh
consists of essentially unary operations only.
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Let us first show that EngA contains no constant operations. Assume, to
the contrary, that, € EndsA for somec € B. Thenc, preservegy(p), whence
follows that(b,...,b) € g(p). On the other hand) preservep, whenceg(p) C p.
Therefore(b,...,b) € p, which contradicts the assumption that Fokontains no
constant operations.

Next, let us show that every operation in dis a permutation. Assume
now that there exists ah € Ends A which is not a permutation. Themog €
Enda{p, wu(A)} = M. On the other hanth(B)| < |B| = g sinceh is not a permu-
tation. This contradicts the choice gf

Let us now show that CSPA) is NP-complete. Lemma 5.20 then yields that
CSRy\(I) is also NP-complete since C&[) is polynomially reducible to CS{I).

Assume, first, thatj = 2. Without loss of generality we can assume tBat
{0,1}. Since every operation in RA is essentially unary and every operation in
Ends A is a permutation, it follows thgk € Clrg(A), where

B= {Oa 1}3\{(07030)7 (17 1, 1)}

(see Example 5.7). Then Theorem 5.10 ensures thagGBP) is polynomially
reducible to CSE(A), and we know from Example 5.7 that GSFPB}) is NP-
complete. Therefore, CgR)) is NP-complete.

Assume, now, thagl > 3. Since every operation in R is essentially unary
and every operation in Egd is a permutation, it follows thatg € Clrg(A), where

ve = {(x,y) € B:x#Y}

(see Example 5.2). Then Theorem 5.10 ensures thag@G8§}) is polynomi-
ally reducible to CSE{A). On the other hand, we know from Example 5.2 that
CSRs({vs}) corresponds to thg- GRAPHCOLORABILITY problem, which is NP-
complete forg > 3 (which is the case). Therefore, GER) is NP-complete. [

5.4.4 Binary idempotent operations (Case (2))

Proposition 5.22 (Jeavons 1998, [28])Jf Poll" contains a semilattice operation
thenCSRy\(I") is tractable.

Proof. Let A € Poll" be a semilattice operation @n Take any instance of CaH),
tidy it up, “prune” it (see Section 5.3) and denote the outcoméX’). As we
have seen in Section 5.3, these two procedures execute in polynomial time.

If ¢ contains an empty constraint, i.e. a constraint of the foxn®), then
the original problem has no solutions. Assume, now, that every cortstneghis
nonempty and let us show that in this c&Xe%’) has a solution.
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Let z€ X be an arbitrary variable, and I&t, p) be an arbitrary constraint in
% . Let us denote pfx,p) by (z,D;). Clearly,D, # @. Moreover, sincep is
invariant under\, it follows thatD, is also invariant undet, whence follows that
AD; € D,. Itis also important to note th&d, does not depend on the constraint
(x,p): according to Lemma 5.16, for every pair of constraif¥sp), (y,o0) € ¢
such thaz C x andz C y we have pJ(x,p) = pr,(y, 0).

Definef : X — Aby f(z) = AD;and let us show thait is a solution ta’X, ).
Take any((y1,---,Y¥k),0) € €. Since py,(S) = (¥i,Dy) and f(yi) = ADy, € Dy,
for all i, it follows that for everyi there exists a tuple; € o such that pfa) =
ADy, = f(yi). Then

a1 A...Aa=(/\Dy,,..., ADy) = (F(¥1),- .., F(¥i0)-

But, o is invariant unden,, soa; A ... Aax € . This shows thaf is a solution to
every constraint ir¢’. O
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