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Chapter 1

Words and Sets

This chapter confronts us with the most basic abstract structures:

• words (or strings), which represent the simplestorderedstructures, and

• sets (or collections), which represent the simplestunorderedstructures.

As we shall see, apermutationis nothing but a word over an appropriately chosen
alphabet, while acombinationis just a subset of a finite set. It is natural to ask
why should one invent so complicated names for such simple objects. The answer
is simple. In the dark past of Discrete Mathematics the terminology used to be as
obscure as the ages that gave birth to it. Since the introduction of the names such as
permutationandcombinationmathematics has gone a long way and brought many
simplifications, both in terminology and understanding of the phenomena.

Throughout the course we shall use the following notation

N= {1,2,3, . . .} for the set of positive integers,

N0 = {0,1,2,3, . . .} for the set of nonnegative integers, and

N
∞
0 = {0,1,2,3, . . .}∪{∞}.

The setN∞
0 is a usual extension ofN0 with the greatest element∞: x+∞ = ∞+x=

x ·∞ = ∞ · x = ∞ for all x ∈ N
∞
0 , andx < ∞ for all x ∈ N0. Also, we define the

factorial of an integern∈ N0 as usual:

0! = 1

n! = 1·2· . . . ·n, for n> 1.
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1.1 Words

An alphabetis any finite nonempty set. Elements of an alphabetA will be referred
to asletters, and aword in A is a string of symbols fromA. More precisely, aword
of length k over an alphabet Ais any tuple fromAk. We follow a simple convention
to omit commas and parentheses when writing words.

Example 1.1 Here are some words over an alphabetA= {a,b,n}: banana, abba,
aa, or simplyn. The first of the words has six letters, then comes a four-letter word,
a two-letter word and finaly a word with only one letter.

We also alow words with no letters. On any alphabet there is precisely one
such word called theempty wordand denoted byε. It is a word with length 0. It
is important to note that words we deal with in this course areformal words, that
is, strings of symbols to which no meaning is attached. So, from this point of view
nbbaaais just as good a word asbanana. We shall leave the meaning of words to
other branches of science and treat words just as plain and simple stringsof letters.

Let w be a word over an alphabetA. The length ofw will be denoted by|w|.
For a lettera∈ A, by |w|a we denote the number of occurences ofa in w.

Example 1.2 Let A = {a,b,c,n} and letw = bananabe a word overA. Then
|w|= 6, |w|a = 3, |w|b = 1, |w|c = 0 and|w|n = 2.

There is not much structural theory behind such simple objects as words. The
most exciting thing we can do at the moment is to try to count them.

Problem 1.3 Let A = {a1,a2, . . . ,an} be an alphabet withn > 1 letters and let
k∈ N0 be arbitrary.

(a) How many words withk letters overA are there?
(b) How many words withk letters overA have the property that all the letters

in the word are distinct?
(c) How many words overA have the property that every letter fromA appears

precisely once in the word?

Solution.(a) The set of all words of lengthk overA is justAk. Therefore, there are
precisely|Ak| = |A| · . . . · |A|

︸ ︷︷ ︸

k

= nk such words. This is an instance of an important

combinatorial principle:

The Product Principle: If A1, . . . ,An are finite sets, then
|A1× . . .×An|= |A1| · . . . · |An|.
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There is a less formal, but more useful way to see this. A word withk letters
looks like this:

. . .

1st 2nd 3rd kth

There aren candidates for the first position,n candidates for the second position,
. . . ,n candidates for thekth position:

. . .

1st 2nd 3rd kth

n · n n n· · ·

Alltogether, there aren·n· . . . ·n
︸ ︷︷ ︸

k

= nk possibilites.

(b) Let us again take the informal point of view. Firstly, there aren candidates
for the first position, but onlyn−1 candidates for the second position, since the
letter used on the first position is not allowed to appear on the second position.
Then, there aren− 2 candidates for the third position since the two letters used
on the first two positions are a no-no, and so on. Finally, there will ben− (k−1)
candidates for the last position:

. . .

1st 2nd 3rd kth

n n−1 n−2 n− (k−1)

and putting it all together we getn· (n−1) · . . . · (n−k+1) =
n!

(n−k)!
possibilites.

Of course, this reasoning is valid as long ask6 n. If k> n no such word exists.
(c) If every letter fromA is required to appear precisely once in the word, then

the length of the word isn and all the letters have to be distinct. This is a special
case of(b) wherek= n and there aren! such words. �

Words where letters are not allowed to repeat are calledpermutations of sets.
Words where letters can appear more than once constitute another kind of permu-
tations — permutations of multisets — and we shall consider them in a separate
section.

Definition 1.4 A permutation of a set Ais a word overA where every letter from
the alphabet appears precisely once in the word. Ak-permutation of a set A, where
k6 |A|, is a word overA of lengthk where each letter from the alphabet is allowed
to appear at most once (and therefore, all the letters in the word are distinct).
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We shall now apply counting techniques discussed above to determine the num-
ber of all the subsets of a finite set. For a setA let P(A) denote thepower-set of A,
that is, the set of all the subsets ofA:

P(A) = {X : X ⊆ A}.
Let |A|= n andA= {a1, . . . ,an}. Then every subsetB of A can be represented by
a stringχ(B) of 0’s and 1’s as follows:

χ(B) = p1 . . . pn, where pi =

{

0, ai /∈ B,

1, ai ∈ B.

The wordχ(B) is called thecharacteristic vectorof B. Words over the two-element
alphabet{0,1} will be particularly useful in the sequel. So, we shall refer to them
as01-words.

Example 1.5 Let A = {a,b,c,d,e, f} and B = {b,d,e}. Then χ(B) = 010110
sincea /∈ B, b∈ B, c /∈ B etc. Clearly,χ(∅) = 000000 andχ(A) = 111111:

a b c d e f
∅ 0 0 0 0 0 0
B 0 1 0 1 1 0
A 1 1 1 1 1 1

Theorem 1.6 Let A be a finite set withn elements. Then|P(A)|= 2n.

Proof. The mappingχ : P(A) → {0,1}n that takes a subset ofA onto its char-
acteristic vector is a bijection, so|P(A)| and |{0,1}n| have the same number of
elements. We shall use this obvious but important fact on many occasions in the
course:

The Bijection Principle: Whenever there is a bijection between two sets,
they have the same number of elements.

Therefore,|P(A)| equals the number of all words over{0,1} whose length
is n, so|P(A)|= 2n. �

The following principle is a sort of a negation of the Bijection Principle:

The Pigeon-Hole Principle: Suppose thatA andB are nonempty finite
sets such that|A|> |B|. Then there is no injective mapping fromA into B.

The name comes from a simple observation concerning pigeons and holes: if
n+1 pigeons hide inn holes, then there is at least one hole with at least two pigeons
in it.
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Theorem 1.7 (Erdős, Szekeres 1935)Every sequence ofk= mn+1 distinct real
numbers has an increasing subsequence of lengthm+ 1 or a decreasing subse-
quence of lengthn+1.

Proof. Let a1, . . . , ak be a sequence ofk = mn+1 distinct real numbers and as-
sume that it has neither an increasing subsequence of lengthm+1 nor a decreasing
subsequence of lengthn+ 1. Then every increasing subsequence ofa1, . . . , ak

is of length6 m and, similarly, every decreasing subsequence ofa1, . . . , ak is of
length6 n.

For eachi let l+i denote the length of the longest increasing subsequence of
a1, . . . , ak that starts withai and letl−i denote the length of the longest decreas-
ing subsequence ofa1, . . . , ak that starts withai . This establishes a mapping
f : {1, . . . ,k} → {1, . . . ,m}× {1, . . . ,n} : i 7→ (l+i , l

−
i ). Let us show thatf is in-

jective. Take any pair of indicesi 6= j. Thenai 6= a j . If ai < a j then l+i > l+j so
f (i) = (l+i , l

−
i ) 6= (l+j , l

−
j ) = f ( j). Similarly, if ai > a j thenl−i > l−j and we again

concludef (i) 6= f ( j). This shows thati 6= j implies f (i) 6= f ( j) and thusf is an
injective map from ak-element set into andmn-element set. Butk> mnand hence
by the Pigeon-Hole Principle no such injective map can exist. Contradiction.�

1.2 Sets

For historical reasons, ak-element subset of ann-element set is called ak-combination
of a set. The number ofk-combinations of ann-element set is denoted by

(
n
k

)

[read: “n choosek”] .

The pronounciation comes from the fact that this is the number of ways to choose
k objects from a pool ofn identical objects. If we let

Pk(A) = {B∈ P(A) : |B|= k}

be the set of allk-subsets ofA and if |A|= n, then, clearly,

(
n
k

)

= |Pk(A)|.

Theorem 1.8 Let n,k> 0. If n> k then
(

n
k

)

=
n!

k!(n−k)!
. Otherwise,

(
n
k

)

= 0.
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Proof. Let n> k and letA= {1,2, . . . ,n}. Although sets seem to be simpler than
words due to the lack of structure, ordered structures (words in this case) are always
easier to count. LetWk(A) be the set of allk-permutations ofA and let f : Wk(A)→
Pk(A) be the mapping defined by

f (a1a2 . . .ak) = {a1,a2, . . . ,ak}.

Since f mapsk! different words fromWk(A) onto the same element ofPk(A), e.g.

abcd bacd cabd dabc
abdc badc cadb dacb
acbd bcad cbad dbac
acdb bcda cbda dbca
adbc bdac cdab dcab
adcb bdca cdba dcba







7→ {a,b,c,d},

we easily conclude that

|Pk(A)|=
1
k!

· |Wk(A)|.

We know that the number ofk-permutations of ann-element set is n!
(n−k)! , so we

finaly obtain that
(

n
k

)

= |Pk(A)|=
1
k!

· n!
(n−k)!

.

On the other hand, ifk > n then trivially

(
n
k

)

= 0 since ann-element set cannot

have a subset with more thann elements. �

Problem 1.9 How many 01-words of lengthm+n are there if they are required to
have preciselym zeros and preciselyn ones?

Solution.Consider a setA= {a1,a2, . . . ,am+n} with m+n elements. Then each 01-
word of lengthm+n with m zeros andn ones corresponds to ann-element subset
of A. Therefore, the number of such 01-words equals the number ofn-element
subsets ofA, which is (

m+n
n

)

.

Here is the other way to see this. Consider a string ofm+n empty boxes which are
to be filled bymzeros andn ones:

. . .

1st 2nd 3rd (m+n)th
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We can choosem boxes in which to write zeros in

(
m+n

m

)

ways. Then the re-

mainingn boxes have to be filled by ones. �

Theorem 1.10 (a)

(
n
k

)

=

(
n

n−k

)

for all n> k> 0;

(b)

(
n
k

)

=

(
n−1
k−1

)

+

(
n−1

k

)

for all n> k> 1 (Pascal’s identity).

Proof. (a) This follows by an easy calculation:
(

n
n−k

)

=
n!

(n−k)!(n− (n−k))!
=

n!
(n−k)!k!

=

(
n
k

)

.

Such proofs are usually calledalgebraic proofs.
Most combinatorial identities can be proven in another way: we find an ap-

propriate collection of objects and then count the elements of the collection in two
different ways. The resulting expressions have to be equal becausethe collection
is the same. Such proofs are usually calledcombinatorial proofs. The principle
behind theis approach is called Double Counting:

Double Counting: If the same set is counted in two different ways, the
answers are the same.

Let us provide a combinatorial proof of the same identity. Consider 01-words

of lengthn with preciselyk zeros. There are

(
n
k

)

ways to choosek places out

of n in which to write zeros, so the number of the words under consideration is(
n
k

)

. On the other hand, we can first choosen− k places in which to write ones

in

(
n

n−k

)

ways, so the number of the words under consideration is

(
n

n−k

)

.

Therefore,

(
n
k

)

=

(
n

n−k

)

.

(b) The algebraic proof of the Pascal’s identity is easy:
(

n−1
k−1

)

+

(
n−1

k

)

=
(n−1)!

(k−1)!(n−k)!
+

(n−1)!
k!(n−k−1)!

=
(n−1)!

(k−1)!(n−k−1)!

(
1

n−k
+

1
k

)

=
(n−1)!

(k−1)!(n−k−1)!
· n
k(n−k)

=

(
n
k

)
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The combinatorial proof uses another important combinatorial principle:

The Sum Principle: If A1, . . . ,An are mutually disjoint finite sets, then
|A1∪ . . .∪An|= |A1|+ . . .+ |An|.

Let S= {1,2, . . . ,n} be ann-element set. Clearly, the number ofk-element

subsets is

(
n
k

)

. On the other hand, allk-element subsets ofSsplit into two classes:

those that contain 1, and those that do not. The number ofk-element subsets ofS

that contain 1 is

(
n−1
k−1

)

since we have to choosek−1 elements from an(n−1)-

element setS′ = {2, . . . ,n}. The number ofk-element subsets ofS that do not con-

tain 1 is

(
n

k−1

)

since now we have to choose allk elements fromS′. Therefore,

by the Sum Principle,

(
n
k

)

=

(
n−1
k−1

)

+

(
n−1

k

)

. �

Due to the following important result the numbersnk are often referred to as
binomial coefficients:

Theorem 1.11 (Newton’s Binomial Formula) For alln∈ N0 we have

(a+b)n =
n

∑
k=0

(
n
k

)

an−kbk.

Proof. The proof proceeds by induction onn. The first few cases are trivial:

(a+b)0 = 1=

(
0
0

)

(a+b)1 = a+b=

(
1
0

)

a+

(
1
1

)

b

(a+b)2 = a2+2ab+b2 =

(
2
0

)

a2+

(
2
1

)

ab+

(
2
2

)

b2

Assume that the claim is true forn and let us compute(a+b)n+1. By the induction
hypothesis:

(a+b)n+1 = (a+b) · (a+b)n = (a+b) ·
n

∑
k=0

(
n
k

)

an−kbk.

After distributing the sum and multiplying we obtain:

(a+b)n+1 =
n

∑
k=0

(
n
k

)

an−k+1bk+
n

∑
k=0

(
n
k

)

an−kbk+1.
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Next, we take out the first summand in the first sum and the last summand in the
second sum to obtain:

(a+b)n+1 = an+1+
n

∑
k=1

(
n
k

)

an−k+1bk+
n−1

∑
k=0

(
n
k

)

an−kbk+1+bn+1

and reindex the second sum, which is a standard trick:

(a+b)n+1 = an+1+
n

∑
k=1

(
n
k

)

an−k+1bk+
n

∑
m=1

(
n

m−1

)

an−m+1bm+bn+1.

Putting the two sums together we obtain:

(a+b)n+1 = an+1+
n

∑
k=1

((
n
k

)

+

(
n

k−1

))

an−k+1bk+bn+1.

Finally, we apply the Pascal’s identity and wrap it up:

(a+b)n+1 = an+1+
n

∑
k=1

(
n+1

k

)

an−k+1bk+bn+1 =
n+1

∑
k=0

(
n+1

k

)

an−k+1bk.

The combinatorial proof of the Newton’s Binomial Formula is based on a sim-
ple observation. Clearly,

(a+b)n = (a+b) · (a+b) · . . . · (a+b)
︸ ︷︷ ︸

n times

so if one multiplies out and writes down the summands as words of lengthn (that
is, without the usuall abbreviations such asa ·a ·a= a3), one obtains all possible
words od lengthn in lettersa andb. For example,

(a+b)4 = aaaa+aaab+aaba+aabb+abaa+abab+abba+abbb

+baaa+baab+baba+babb+bbaa+bbab+bbba+bbbb.

There are

(
n
k

)

words that abbreviate toan−kbk since this is the number of ways

we can choosek places forb (Problem 1.9). Therefore,an−kbk appears

(
n
k

)

times

in the sum, whence(a+b)n =
n

∑
k=0

(
n
k

)

an−kbk. �
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Theorem 1.12
(

n
0

)

+

(
n
1

)

+

(
n
2

)

+ . . .+

(
n
n

)

= 2n.

Proof. For the algebraic proof, just note that

2n = (1+1)n =
n

∑
k=0

(
n
k

)

1n−k1k =
n

∑
k=0

(
n
k

)

by the Newton’s Binomial Formula. The combinatorial proof is also not very com-
plicated. LetA be an arbitratyn-element set and let us count the number of subsets
of A. According to Theorem 1.6 this number is 2n. On the other hand, let us split
P(A) into disjoint collectionsS0, S1, . . . , Sn so thatSk contains allk-element
subsets ofA. Clearly

|P(A)|= |S0|+ |S1|+ . . .+ |Sn|.

But, |Sk|=
(

n
k

)

according to Theorem 1.8. This concludes the proof. �

Example 1.13 Show that
mn+(m−2)n

2
is the number of words of lengthn over

anm-letter alphabetA= {a1, . . . ,am} with the additional property that the number
of occurences of lettera1 is even.

Solution. For each evenk, 0 6 k 6 n, the number of words of lengthn over A

wherea1 occursk times is

(
n
k

)

(m−1)n−k. Therefore, the number of words we

are interested in can be expressed as the sum∑
06k6n
k even

(
n
k

)

(m−1)n−k.

On the other hand,

mn = ((m−1)+1)n =
n

∑
k=0

(
n
k

)

(m−1)n−k

(m−2)n = ((m−1)−1)n =
n

∑
k=0

(−1)k
(

n
k

)

(m−1)n−k

whence

mn+(m−2)n =
n

∑
k=0

((
n
k

)

(m−1)n−k+(−1)k
(

n
k

)

(m−1)n−k
)

= 2· ∑
06k6n
k even

(
n
k

)

(m−1)n−k.

This completes the proof.



1.2. SETS 11

The Sum Principle states that|A1∪ . . .∪An| = |A1|+ . . .+ |An| wheneverA1,
. . . , An are mutually disjoint finite sets. But, what happens ifA1, . . . , An are not
mutually disjoint? In case ofn= 2 we know from the elementary school that

|A1∪A2|= |A1|+ |A2|− |A1∩A2|,

and it is also easy to see that in casen= 3:

|A1∪A2∪A3|= |A1|+ |A2|+ |A3|
− |A1∩A2|− |A1∩A3|− |A2∩A3|
+ |A1∩A2∩A3|.

Theorem 1.14 (The Principle of Inclusion-Exclusion)Let A1, . . . , An be finite
sets. Then

|A1∪ . . .∪An|= |A1|+ . . .+ |An|
− |A1∩A2|− |A1∩A3|− . . .−|An−1∩An|
+ |A1∩A2∩A3|+ |A1∩A2∩A4|+ . . .+ |An−2∩An−1∩An|
− . . .

+(−1)n−1|A1∩A2∩ . . .∩An|

Proof. The proof is by induction onn. In casen= 1 the formula is trivial and we
have already seen that the formula is true in casen= 2 orn= 3. Therefore, assume
that the formula is true in case ofn finite sets and let us consider the untion ofn+1
finite sets. Using the formula for the cardinality of the union of two sets:

|A1∪ . . .∪An∪An+1|= |(A1∪ . . .∪An)∪An+1|
= |A1∪ . . .∪An|+ |An+1|− |(A1∪ . . .∪An)∩An+1|
= |A1∪ . . .∪An|+ |An+1|− |(A1∩An+1)∪ . . .∪ (An∩An+1)|

the proof follows straightforwardly by applying the induction hypothesis twice.
We first apply the induction hypothesis to|A1∪ . . .∪An| and then to|A′

1∪ . . .∪A′
n|
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whereA′
i = Ai ∩An+1:

|A1∪ . . .∪An∪An+1|=
(

|A1|+ . . .+ |An|

− |A1∩A2|− |A1∩A3|− . . .−|An−1∩An|
+ |A1∩A2∩A3|+ . . .+ |An−2∩An−1∩An|
− . . .

+(−1)n−1|A1∩A2∩ . . .∩An|
)

+ |An+1|

−
(

|A1∩An+1|+ . . .+ |An∩An+1|

− |A1∩A2∩An+1|− . . .−|An−1∩An∩An+1|
+ . . .

+(−1)n−1|A1∩A2∩ . . .∩An∩An+1|
)

= |A1|+ . . .+ |An|+ |An+1|
− |A1∩A2|− |A1∩A3|− . . .−|An∩An+1|
+ |A1∩A2∩A3|+ . . .+ |An−1∩An∩An+1|
− . . .

+(−1)n|A1∩A2∩ . . .∩An∩An+1|,

which completes the proof. �

Corollary 1.15 Let A1, . . . ,An be finite sets such that

|Ai1 ∩ . . .∩Aik|= |A j1 ∩ . . .∩A jk|

wheneveri1, . . . , ik are k distinct indices andj1, . . . , jk are k distinct indices,
k∈ {1, . . . ,n}. Then

|A1∪ . . .∪An|=
(

n
1

)

|A1|−
(

n
2

)

|A1∩A2|+
(

n
3

)

|A1∩A2∩A3|− . . .

+(−1)n−1
(

n
n

)

|A1∩A2∩ . . .∩An|
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Proof. By the Principle of Inclusion-Exclusion:

|A1∪ . . .∪An|= |A1|+ . . .+ |An|
− |A1∩A2|− |A1∩A3|− . . .−|An−1∩An|
+ |A1∩A2∩A3|+ |A1∩A2∩A4|+ . . .+ |An−2∩An−1∩An|
− . . .

+(−1)n−1|A1∩A2∩ . . .∩An|

The assumption now yields:

|A1|+ . . .+ |An|=
(

n
1

)

|A1|

|A1∩A2|+ . . .+ |An−1∩An|=
(

n
2

)

|A1∩A2|

|A1∩A2∩A3|+ . . .+ |An−2∩An−1∩An|=
(

n
3

)

|A1∩A2∩A3|

. . .

(−1)n−1|A1∩A2∩ . . .∩An|= (−1)n−1
(

n
n

)

|A1∩A2∩ . . .∩An|

which completes the proof. �

A permutationa1 . . .an of {1, . . . ,n} is called aderangementif a1 6= 1, a2 6= 2,
. . . , an 6= n. For example, 21453 is a derangement of{1,2,3,4,5}, while 21354 is
not. LetDn denote the number of derangements of{1, . . . ,n}.

Theorem 1.16 Dn = n! ·
n

∑
k=0

(−1)k

k!
.

Proof. Let Sbe the set of all permutations of{1, . . . ,n} and letA j be the set of all
permutationsb1 . . .bn ∈ S with b j = j. ThenA1∪ . . .∪An is the set of permuta-
tions of{1, . . . ,n} which arenot derangements, whenceDn = |S|− |A1∪ . . .∪An|.
Clearly,|S|= n! while we compute|A1∪ . . .∪An| using the Principle of Inclusion-
Exclusion. In order to do so, we have to compute|Ai1 ∩ . . .∩Aik| for all choices
of indicesi1, . . . , ik with i1 < i2 < .. . < ik. But this is easy:Ai1 ∩ . . .∩Aik is the
set of all permutationsa1 . . .an from Swith the property thatai1 = i1, ai2 = i2, . . . ,
aik = ik, so|Ai1 ∩ . . .∩Aik|= (n−k)!. Using Corollary 1.15 we get

|A1∪ . . .∪An|=
n

∑
k=1

(−1)k−1
(

n
k

)

(n−k)!
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whence

Dn = |S|− |A1∪ . . .∪An|= n!−
n

∑
k=1

(−1)k−1
(

n
k

)

(n−k)!

=
n

∑
k=0

(−1)k
(

n
k

)

(n−k)!

which concludes the proof. �

1.3 Multisets

Two sets are equal if their elements are the same, or more precisely:

A= B if and only if ∀x(x∈ A⇔ x∈ B).

As a consequence,{b,a,n,a,n,a}= {a,b,n}. We usually say that “in a set one can
omit repeating elements”. But what if wewish to put several copies of an object
into a set? Well, we have to invent a new type of mathematical object.

Definition 1.17 Let A = {a1,a2, . . . ,an} be a finite set. Amultiset over Ais any
mappingα : A→ N

∞
0 .

The idea behind this definition is simple:α(ak) tells us how many copies of
ak we have in the multisetα . This is whyα is sometimes called themultiplicity
function, andα(ak) is themultiplicity of ak. In particular,α(ak) = 0 means thatak

does not belong to the multiset, whileα(ak) = ∞ means that we have an unlimited
supply of copies ofak.

A multisetα : A→ N
∞
0 can be compactly represented as

α =

(
a1 a2 . . . an

m1 m2 . . . mn

)

or, even more conveniently, as

{m1 ·a1,m2 ·a2, . . . ,mn ·an},

wheremj = α(a j), j ∈ {1,2, . . . ,n}.

Definition 1.18 A multisetα = {m1 ·a1,m2 ·a2, . . . ,mn ·an} is emptyif m1 = . . .=
mn = 0. The multisetα is finite if m1, . . . ,mn < ∞. The number of elements ofα is
denoted by|α | and we define it by|α |= ∑

a∈A
α(a).

A multisetα = {m1 ·a1,m2 ·a2, . . . ,mn ·an} is asubmultisetof a multisetβ =
{k1 ·a1,k2 ·a2, . . . ,kn ·an} if mj 6 k j for all j.
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Example 1.19 Let A= {a,b,c}. Thenα = {3 ·a,2 ·b,1 · c} andβ = {0 ·a,5 ·b,
∞ ·c} are two multisets overA. Clearlyα is a finite multiset with 6 elements, while
β is infinite and|β |= ∞. Bothα andβ are submultisets ofγ = {∞ ·a,5 ·b,∞ ·c}.
Also, β is a submultiset ofδ = {1·a,∞ ·b,∞ ·c}, while α is not.

A word over a multisetα = {m1 · a1,m2 ·a2, . . . ,mn ·an} is any wordw over
A= {a1, . . . ,an} such that|w|a j 6 mj for all j.

Example 1.20 Let α = {3 ·a,2 ·b,2 ·n}. The following are some words overα :
banana, abba, aa, but abbbais not. As another example, takeβ = {1 ·a,∞ ·b}.
Then all these are words overβ : a, ab, abb, abbb, and so on.

Problem 1.21 Let α = {m1 ·a1,m2 ·a2, . . . ,mn ·an} be a multiset and letk∈N0 be
arbitrary.

(a) Supposem1 = m2 = . . .= mn = ∞. How many words withk letters overα
are there?

(b) Supposeα is finite. How many wordsw over α have the property that
|w|a j = mj for all j?

Solution.(a) Since each letter comes in more than sufficiently many copies, it turns
out that the number of such words isnk. Compare with Problem 1.3(a).

(b) Let N = |α | = m1 + . . .+mn. Then the words we are interested are of
lengthN:

1st 2nd 3rd Nth

and each lettera j occurs preciselymj times. Let us now distribute the letters
from α . Out of N free places we can choosem1 places to put the copies ofa1

in

(
N
m1

)

ways:

1st 2nd 3rd Nth

a a a

Out of N−m1 remaining free places we can choosem2 places to put the copies of

a2 in

(
N−m1

m2

)

ways:

1st 2nd 3rd Nth

a a ab
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Out of N−m1 −m2 remaining free places we can choosem3 places to put the

copies ofa3 in

(
N−m1−m2

m3

)

ways, and so on. At the end, out ofN−m1−m2−
. . .−mn−1 remaining free places we can choosemn places to put the copies ofan

in

(
N−m1−m2− . . .−mn−1

mn

)

ways:

1st 2nd 3rd Nth

a a ab n n

Therefore, the number of words we are interested in is given by

(
N
m1

)

·
(

N−m1

m2

)

·
(

N−m1−m2

m3

)

· . . . ·
(

N−m1−m2− . . .−mn−1

mn

)

=

=
N!

m1!(N−m1)!
· (N−m1)!
m2!(N−m1−m2)!

· . . . · (N−m1−m2− . . .−mn−1)!
mn!(N−m1−m2− . . .−mn)!

=

=
N!

m1! ·m2! · . . . ·mn!
,

where at the end we use the fact thatN = m1+m2+ . . .+mn. �

A permutation of a finite multisetα = {m1 ·a1,m2 ·a2, . . . ,mn ·an} is any word
w over α such that|w|a j = mj for all j. As we have just seen, the number of
permutations over a finite multisetα is

(
N

m1,m2, . . . ,mn

)

=
N!

m1! ·m2! · . . . ·mn!

whereN = m1+m2+ . . .+mn. Finding the number ofk-letter words for arbitrary
k and over an arbitrary multiset is aterribly complicated problem and shall not be
discussed here.

We shall now prove an analogon on the Newton’s Binomial Formula in case a
sum of more than two expressions is raised to a certain power.

Theorem 1.22 (Multinomial Formula) For alln> 0 we have

(a1+a2+ . . .+ak)
n = ∑

l1,l2,...,lk∈N0
l1+l2+...+lk=n

(
n

l1, l2, . . . , lk

)

al1
1 al2

2 . . .alk
k
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Proof. The proof proceeds by induction onk. In casek= 2 this is just the Newton’s
Binomial Formula given in Theorem 1.11, see Homework 1.12. Suppose the the-
orem holds whenever there are less thank summands whose sum we wish to raise
to then-th power and consider the case withk summands. Then by the Newton’s
Binomial Formula

(a1+a2+ . . .+ak)
n = (a1+(a2+ . . .+ak))

n =
n

∑
l1=0

(
n
l1

)

al1
1 (a2+ . . .+ak)

n−l1.

The induction hypothesis now yields

(a1+a2+ . . .+ak)
n =

n

∑
l1=0

(
n
l1

)

al1
1 ∑

l2,...,lk∈N0
l2+...+lk=n−l1

(
n− l1

l2, . . . , lk

)

al2
2 . . .alk

k

=
n

∑
l1=0

∑
l2,...,lk∈N0

l2+...+lk=n−l1

(
n
l1

)(
n− l1

l2, . . . , lk

)

al1
1 al2

2 . . .alk
k

=
n

∑
l1=0

∑
l2,...,lk∈N0

l2+...+lk=n−l1

(
n

l1, l2, . . . , lk

)

al1
1 al2

2 . . .alk
k

= ∑
l1,l2,...,lk∈N0

l1+l2+...+lk=n

(
n

l1, l2, . . . , lk

)

al1
1 al2

2 . . .alk
k .

The combinatorial proof is analogous to the combinatorial proof of Theorem 1.11.�

Problem 1.23 Let α = {∞ ·a1,∞ ·a2, . . . ,∞ ·an} be a multiset and letk ∈ N0 be
arbitrary. How manyk-element submultisets doesα have?

Solution. If β = {x1 ·a1,x2 ·a2, . . . ,xn ·an} is a k-element submultiset ofα , then
x1+ x2+ . . .+ xn = k. Becauseα has an infinite supply of each of its letters, one
easily comes to the following conclusion:

Number ofk-element
submultisets ofα

=
Number of solutions of
x1+x2+ . . .+xn = k in N0

So, we have reduced the problem to counting nonnegative integer solutions of an
equation inn unknowns. Although not at all straightforward, this problem is rather
easy to solve. Let

S = {(x1,x2, . . . ,xn) ∈ (N0)
n : x1+x2+ . . .+xn = k}
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be the set of all the solutions of the above equation inn unknowns and let

W = {w∈ {0,1}k+n−1 : |w|0 = k and|w|1 = n−1}

be the set of all 01-words of lengthk+n−1 with preciselyk zeros andn−1 ones.
Now defineϕ : S → W as follows:

ϕ(x1,x2, . . . ,xn) = 00. . .0
︸ ︷︷ ︸

x1

1 00. . .0
︸ ︷︷ ︸

x2

1 . . . 1 00. . .0
︸ ︷︷ ︸

xn

.

It is easy to see thatϕ is well defined and bijective. Therefore,|S | = |W |, and

we know from Problem 1.9 that|W | =
(

k+n−1
k

)

. This is at the same time the

number ofk-element submultisets ofα . �

A k-combination of a finite multisetα is any k-element subset ofα . It is
againterribly complicated to find a number ofk-combinations of an arbitrary mul-
tiset, but as we have just seen, ifα = {∞ · a1,∞ · a2, . . . ,∞ · an}, the number of

k-combinations is given by

(
k+n−1

k

)

.

Homework

1.1. For a real numberx, by ⌊x⌋ we denote the greatest integer6 x. E.g,
⌊1.99⌋= 1, ⌊4⌋= 4, ⌊0.65⌋= 0, while⌊−1.02⌋=−2.

Let n be an integer andp a prime. Show that the greatestk such thatpk | n!
is given by

k=

⌊
n
p

⌋

+

⌊
n
p2

⌋

+

⌊
n
p3

⌋

+ . . .

The number 1000! ends with a lot of zeros. How many?

1.2. Show thatχ in proof of Theorem 1.6 is a bijection.

1.3. Let A be a set of all 01-wordsw of length 2005 with the property that
|w|0 = |w|1+1, and letB be a set of all 01-wordsw of length 2005 with
the property that|w|1 = |w|0 + 1. Show that|A| = |B|. (Hint: use the
Bijection Principle.)

1.4. For n ∈ N, let τ(n) denote the number of positive divisors ofn. E.g,
τ(12) = 6 since 1, 2, 3, 4, 6 and 12 are all positive divisors of 12. Let
n= pk1

1 · pk2
2 · . . . · pks

s be the factorisation ofn, where 1< p1 < p2 < .. . < ps

are primes. Prove that

τ(n) = (1+k1)(1+k2) . . .(1+ks).
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(Hint: note that ifm| n thenm= pl1
1 · p

l2
2 · . . . · pls

s where 06 l i 6 ki for all i.)

1.5. Show that

(a)
n

∑
k=0

2k
(

n
k

)

= 3n;

(b)

(
n
0

)

+

(
n
2

)

+

(
n
4

)

+ . . .=

(
n
1

)

+

(
n
3

)

+

(
n
5

)

+ . . .;

(c)
n

∑
k=0

k

(
n
k

)

= n·2n−1.

1.6. (a) Find lim
n→∞

Dn

n!
.

(b) Show thatDn = n·Dn−1+(−1)n, n> 2.

(c) Show thatDn = (n− 1) · (Dn−1+Dn−2), n > 3. (Hint: Use the fact
that n! = (n− 1) · ((n− 1)! +(n− 2)!); this is why the numbersDn are
sometimes referred to assubfactorials.)

1.7. Let b1 . . .bn be a permutation of ann-element setA. Find the number of
permutationsa1 . . .an of A having the property thata1 6= b1, a2 6= b2, . . . ,
an 6= bn.

1.8. Show thatϕ defined in the solution to Problem 1.23 is a bijection.

†1.9. What do you think, how do “usual” sets fit into the theory of multisets?

†1.10. Define the notion of union and intersection for multisets. (Note that there
are several possibilities; choose any one you like). Pick a few of your
favourite set-theory identities such as

α ∩α = α α ∪α = α
α ∩∅=∅ α ∪∅= α
α ∩β = β ∩α α ∪β = β ∪α
(α ∩β )∩ γ = α ∩ (β ∩ γ) (α ∪β )∪ γ = α ∪ (β ∪ γ)
(α ∩β )∪ γ = (α ∪ γ)∩ (β ∪ γ) (α ∪β )∩ γ = (α ∩ γ)∪ (β ∩ γ)

and show that they hold for operations you have defined.

1.11. Find the number ofk-element subsets of{1, . . . ,n} which do not con-
tain adjacent numbers. For example,{1,5,7,13} is a good subset of
{1, . . . ,15}, while {2,4,6,7} is not.

1.12. (a) Explain the relationship between

(
n
k

)

and

(
n

k,n−k

)

.
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(b) Show that

(
n

k,n−k

)

=

(
n−1

k−1,n−k

)

+

(
n−1

k,n−k−1

)

(Hint: this is

the Pascal’s identity in disguise.)

1.13. Let m1, . . . ,mn ∈ N be positive integers and letN = m1+ . . .+mn. Show
that
(

N
m1,m2, . . . ,mn

)

=

(
N−1

m1−1,m2, . . . ,mn

)

+

(
N−1

m1,m2−1, . . . ,mn

)

+ . . .

. . .+

(
N−1

m1,m2, . . . ,mn−1

)

.

1.14. Provide a combinatorial proof of Theorem 1.22.

Exercises

1.15. How much memory can address a processor whose address bus is 32 bits
wide?

1.16. FORTRAN IV, being one of the oldest programming languages, had many
limitations. One of them concerned identifiers (words used to name vari-
ables and procedures). An identifier in FORTRAN IV consists of at most
6 symbols, where each symbol is a figure (0, 1, . . . , 9) or an uppercase
letter of the English alphabet (A, B, . . . , Z), with the exception that the
first symbol is obliged to be a letter. How many different identifiers can
one declare in FORTRAN IV?

†1.17. Show that there are infinitely many triples of positive integers(m,n,k)
with the property thatm! ·n! = k! andm,n,k> 2.

1.18. Let A = {n ∈ N : 1 6 n 6 999999 and the sum of digits ofn is 20}, and
B= {n∈N : 16 n6 999999 and the sum of digits ofn is 34}. Show that
|A|= |B|. (Hint: use the Bijection Principle.)

1.19. Two rooks on a chess board are said to be independent if they do not attack
each other. In how many different ways can one arrangen> 1 independent
identical rooks onto ann×n chess board?

1.20. In how many different ways can one arrangek > 1 independent identical
rooks onto ann×mchess board, wheren,m> k?

1.21. In how many ways cann students form a queue in front of a mensa so that
studentsA andB

(a) are next to each other in the queue?
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(b) arenot next to each other in the queue?

†1.22. In how many ways cann boysB1, . . . , Bn andn girls G1, . . . , Gn form a
queue in front of a mensa so thatB1 is next toG1 in the queue,B2 is next
to G2 in the queue, . . . ,Bn is next toGn in the queue?

1.23. Find the numbers of pairs(A,B) of subsets of{1, . . . ,n} satisfyingA∩B=∅.

1.24. The round table has entered combinatorial practice at the time of King
Arthur and his Knights of the Round Table and has remained an important
combinatorial object ever since. Since there is no throne, the trick with the
round table is that two arrangements are indistinguishable if it is possible
to get one of them by rotating the other. For example, the following three
arrangements are indistinguishable:

a

c

b e

d

a c

b

e

d a

c

b

e d

In how many ways cann people be seated around a round table withn
seats?

1.25. Theinteger gridconsists of all points in the plane with integer coordinates,
which we refer to asinteger points.

An increasing pathin the integer grid
is a sequence of integer points(x1,y1),
(x2,y2), . . . , (xk,yk) such that for each
i ∈ {1, . . . ,k−1} we have:

• eitherxi+1 = xi +1 andyi+1 = yi ,

• or xi+1 = xi andyi+1 = yi +1.

Find the number of increasing paths in
the integer grid that start at(0,0) and
end at(p,q), wherep,q∈ N.

y

x

1.26. Show that among any 10 distinct points chosen within a square of side 3
one can find two whose distance is6

√
2.

1.27. Is it possible to fill the entries of ann×n table with integers−1, 0 and 1 so
that the sums of each row, each column and both diagonals are all distinct?
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1.28. Show that

(a)

(
n
k

)

=
n
k

(
n−1
k−1

)

for all n> k> 1;

(b)

(
n
m

)(
m
k

)

=

(
n
k

)(
n−k
m−k

)

for all n> m> k> 0;

(c)

(
n
0

)(
m
k

)

+

(
n
1

)(
m

k−1

)

+

(
n
2

)(
m

k−2

)

+ . . .+

(
n
k

)(
m
0

)

=

(
n+m

k

)

for all n,m> k> 0.

(d)

(
n
0

)2

+

(
n
1

)2

+

(
n
2

)2

+ . . .+

(
n
n

)2

=

(
2n
n

)

for all n> 0.

(e)

(
k
0

)

+

(
k+1

1

)

+

(
k+2

2

)

+ . . .+

(
k+ j

j

)

=

(
k+ j +1

j

)

for all k, j > 0. (Hint: use mathematical induction onj.)

1.29. Find the number of 01-words of length 2n which have the following prop-
erty: the number of zeros on the firstn places equals the number of zeros
on the lastn places.

1.30. (a)Using the fact that two points determine precisely one straingt line, find
the greatest number of straignt lines that can be drawn throughn points in
a plane.

(b) Find the greatest number of diagonals a convex polygon withn vertices
can have.

(c) Let A1, . . . , An be n points on a circle,n > 4, and draw all the line
segmentsAiA j , i 6= j. Find the greatest possible number of intersection
points of these line segments.

1.31. Find the number of increasing paths (in the integer grid) which go fromP
to Q and avoid line segmentsABandCD.

C

A

B

D

P

Q
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1.32. Find the number of permutationsa1a2a3a4a5 of {1,2,3,4,5} such that
|a1−a2| 6= 1, |a2−a3| 6= 1, |a3−a4| 6= 1 and|a4−a5| 6= 1.

1.33. Show that
n

∑
k=0

(−1)k
(

n
k

)

(n−k)n = n!. (Hint: Using Double Counting and

the Principle of Inclusion-Exclusion find the number of words of lengthn
over ann-letter alphabet where each letter from the alphabet appears in the
word.)

1.34. (a) Find the number of integer solutions of the equation

x1+x2+ . . .+xn = k

in n unknownsx1, x2, . . . ,xn wherexi > 1 for all i.

(b) Find the number of integer solutions of the equation

x1+x2+ . . .+xk+1 = n−k

in k+1 unknownsx1, x2, . . . , xk+1 wherex1 > 0, xk+1 > 0 andxi > 1 for
all i ∈ {2, . . . ,k}.

1.35. Find the number of integer solutions of the inequalityx1+x2+ . . .+xn 6 k
in n unknownsx1, x2, . . . , xn wherexi > 0 for all i. (Hint: Sincek ∈ N0,
this inequality is equivalent to

x1+x2+ . . .+xn = 0 or x1+x2+ . . .+xn = 1 or . . .

. . . or x1+x2+ . . .+xn = k.

Find the number of solutions of each of thesek+1 equations and then sum
up using 1.28(e).)

1.36. An integer solution(x1, . . . ,xn) of the equationx1+x2+ . . .+xn = k, k>
1, in n unknownsx1, x2, . . . , xn is calledevenif x1 is even. Otherwise
it is calledodd. Show that the number of even solutions is greater than
the number of odd solutions, provided thatn > 3. (Hint: Show thatϕ :
(x1,x2,x3, . . . ,xn) 7→ (x1−1,x2+1,x3, . . . ,xn) is an injective mapping from
the set of odd solutions into the set of even solutions and note that there
exists an even solution which is not in the image ofϕ.)

1.37. Find the number of integer solutions of the equation

x+y+z≡ 0 (mod 3)

wherex,y,z∈ {1,2,3, . . . ,3n}.
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1.38. A sequence of numbersx1, x2, . . . ,xn is nondecreasing ifx1 6 x2 6 . . .6
xn. Find the number of nondecreasing sequencesx1, x2, . . . , xn where
xi ∈ {1, . . . ,k} for all i.

1.39. There aren knights sitting around a round table. Find the number of ways
to choosek of thosen knights in such a way that no two of the chosenk
knights are sitting next to one another. (Hint: pick a knightA and then
split all the choices into two disjoint classes – those whereA takes part,
and those whereA does not.)

1.40. Find the number ofn-digit positive integers (n > 2) whose sum of digits
is 11.

1.41. Show that ∑
l1,l2,...,lk∈N0

l1+l2+...+lk=n

(
n

l1, l2, . . . , lk

)

= kn.



Chapter 2

Graphs and Digraphs

Graphs represent one of the most popular tools for modeling discrete phenomena
where the abstraction of the problem involves information about certain objects
being connected or not. For example, crossings in a city transportation model
are joined by streets, or cities in a country are joined by roads. We will examine
two types of such models: graphs which correspond to situations where allthe
“roads” are bidirectional, and digraphs (directedgraphs) where one-way “roads”
are allowed.

2.1 Graphs

A graph is an ordered pairG= (V,E) whereV is a nonempty finite set andE is an
arbitrary subset ofV(2) =

{
{u,v} ⊆V : u 6= v

}
. Elements ofV are calledvertices

of G, while elements ofE are callededgesof G. We shall often writeV(G) and
E(G) to denote the set of vertices and the set of edges ofG, andn(G) andm(G)
to denote the number of vertices and the number of edges ofG. If e= {u,v} is
an edge of a graph, we say thatu andv areadjacent, and thate is incidentwith
u andv. We also say thatu is aneighbourof v. Theneighbour-set of vis the set
NG(v) = {x∈V(G) : x is a neighbour ofv}. Thedegree of a vertex v, denoted by
δG(v), is the number of edges incident tov: δG(v) = |NG(v)|. If G is clear from
the context, we simply writeN(v) andδ (v). By δ (G) we denote the least, and by
∆(G) the greatest degree of a vertex inG. A vertex with degree 0 is said to be an
isolated vertex. A vertex of degree 1 is called aleaf of G. A vertex is said to be
even, resp.oddaccording asδ (v) is an even or an odd integer. A graph isregular if
δ (G) = ∆(G). In other words, in a regular graph all vertices have the same degree.

The graphs are called graphs because of a very natural graphical representation
they have. Vertices are usually represented as (somewhat larger) points in a plane,

1
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izolovani
čvor

v

N(v)

ovonije čvor

s

u
w

y

t viséci čvor

grana

z

x

Figure 2.1: An example of a graph

while edges are represented as (smooth non-selfintersecting) curves joining the
respective vertices, so that adjacent vertices are joined by a curve.

Example 2.1 Fig. 2.1 depicts a graphG with V = {s, t,u,v,w,x,y,z} and
E =

{
{t,u}, {u,x}, {u,v}, {w,y}, {w,v}, {v,x}, {v,y}, {v,z}, {x,y}, {x,z}, {y,z}

}
.

We see that
vertex s t u v w x y z

δ 0 1 3 5 2 4 4 3

soδ (G) = 0 and∆(G) = 5. Also,N(v) = {u,w,x,y,z}.

Example 2.2 Two black and two white knights are placed on a 3×3 chessboard
as in Fig. 2.2(a). Is it possible to reach the configuration in Fig. 2.2(b) following
the rules of chess?

(a) (b)

Figure 2.2: Example 2.2
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(a) (b)

1 2 3

4 5 6

7 8 9

5

1
8

3

4

9
2

7

6

(c) (d)

Figure 2.3: Solution to the problem in Example 2.2

Answer:No. Let us enumerate the fields of the chess board by 1, . . . , 9 as in
Fig. 2.3(a). To this chess board we can now assign a graph with{1, . . . ,9} as the
set of vertices by joiningi and j if an only if it is possible for a knight to jump fromi
to j following the general rules of chess. The graph is given in Fig. 2.3(b). Clearly,
regular movements of a knight on the 3×3 chess board correspond to movements
of the knight along the edges of the graph in Fig. 2.3(b). We see now that it is not
possible to start from the initial position of the knights given in Fig. 2.3(c) and
reach the final position in Fig. 2.3(d) by moving one knight at a time along the
edges of the graph simply because the white knights separate the black knights in
Fig. 2.3(d), which is not the case in the initial position.

Theorem 2.3 (The First Theorem of Graph Theory) If G=(V,E) is a graph with
medges, then∑v∈V δ (v) = 2m.

Proof. Since every edge is incident to two vertices, every edge is counted twice in
the sum on the left. �

Corollary 2.4 In any graph the number of odd vertices is even.

Theorem 2.5 If n(G) > 2, there exist verticesv,w ∈ V(G) such thatv 6= w and
δ (v) = δ (w).

Proof. Let V(G) = {v1, . . . ,vn} and suppose thatδ (vi) 6= δ (v j) wheneveri 6= j.
Without loss of generality we may assume thatδ (v1)< δ (v2)< .. . < δ (vn). Since
there are onlyn possibilities for the degree of a vertex (0, 1, . . . ,n−1) it follows
thatδ (v1) = 0, δ (v2) = 1, . . . ,δ (vn) = n−1. But thenvn is adjacent to every other
vertex of a graph, including the isolated vertexv1. Contradiction. �

A graphH = (W,E′) is asubgraphof a graphG= (V,E), in symbolsH 6 G,
if W ⊆ V andE′ ⊆ E. A subgraphH of G is aspanning subgraphif W = V(G).
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A subgraphH is an induced subgraphof G if E′ = E∩W(2). Induced subgraphs
are usually denoted byG[W]. The edges of an induced subgraph ofG are all the
edges ofG whose both ends are inW. A set of verticesW ⊆V(G) is independent
if E(G[W]) = ∅, i.e. no two vertices inW are adjacent inG. If A,B ⊆ E(G) are
disjoint, byE(A,B) we denote the set of all edges inG whose one end is inA and
the other inB.

K7 C9 P6

Figure 2.4:K7, C9 andP6

A complete graph on n vertices(or ann-clique) is a graph withn vertices where
each two distinct vertices are adjacent. A complete graph onn vertices is denoted
by Kn. A cycleof lengthn, denoted byCn, is the graph withn vertices where the
first vertex is adjacent to the second one, and the second vertex to the third one, and
so on, the last vertex is adjacent to the first. Apath with n vertices, denoted byPn,
is a graph where the first vertex is adjacent to the second one, and the second vertex
to the third one, and so on, and the penultimate vertex is adjacent to the last one,
but the last vertex isnot adjacent to the first. We say that the path withn vertices
has lengthn−1. Fig. 2.4 depictsK7, C9 andP6.

Theorem 2.6 If δ (G)> 2 thenG contains a cycle.

Proof. Let x1 . . .xk−1 xk be the longest path inG. Sinceδ (xk)> δ (G)> 2, xk has
a neighbourv distinct fromxk−1. If v /∈ {x1, . . . ,xk−2} thenx1 . . .xk−1 xk v is a path
with more vertices than the longest path, which is impossible. Therefore,v = x j

for somej ∈ {1, . . . ,k−2} sox j . . .xk are vertices of a cycle inG. �

GraphsG1 andG2 are isomorhic, and we writeG1
∼= G2, if there is a bijec-

tion ϕ : V(G1) → V(G2) such that{x,y} ∈ E(G1) ⇔ {ϕ(x),ϕ(y)} ∈ E(G2). For
example graphsG andG2 in Fig. 2.5 are isomorphic, whileG andG1 are not.

Theorem 2.7 Let G1
∼=G2 and letϕ be an isomorphism betweenG1 andG2. Then

n(G1) = n(G2), m(G1) = m(G2) andδG1(x) = δG2(ϕ(x)) for everyx∈V(G1).
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G G1 G2

Figure 2.5:G∼= G2, butG 6∼= G1

The complementof a graphG = (V,E) is the graphG = (V,E) whereE =

V(2) \E. A graphG is selfcomplementaryif G∼= G. Clearly,m(G)+m(G) =

(
n
2

)

.

Lemma 2.8 Let G andH be graphs.
(a) G∼= H if and only if G∼= H.
(b) δG(x) = (n(G)−1)−δG(x) for all x∈V(G).

Theorem 2.9 If G is a selfcomplementary graph withn vertices thenn > 4 and
n ≡ 0,1 (mod 4). Conversly, for every integern > 4 such thatn ≡ 0,1 (mod 4)
there exists a selfcomplementary graph withn vertices.

Proof. Let G be a selfcomplementary graph withn> 4 vertices andmedges and let

m= m(G). Thenm+m=

(
n
2

)

andm= msinceG∼= G. Therefore 2m=
n(n−1)

2

i.e. m=
n(n−1)

4
. But m is an integer andn andn−1 are not of the same parity,

so 4| n or 4 | n−1.
For the other part of the statement, for every integern > 4 such thatn ≡ 0,1

(mod 4) we shall construct a selfcomplementary graphGn = (Vn,En) with n ver-
tices. It is obvious that we can takeG4 = P4 and G5 = C5. Now let Gn be a
selfcomplementary graph withn vertices and constructGn+4 as follows. Take four
new verticest, u, v, w and put

Vn+4 =Vn∪{t,u,v,w}
En+4 = En∪{{t,u},{u,v},{v,w}}∪{{t,x} : x∈Vn}∪{{w,x} : x∈Vn},

see Fig. 2.6(a). ThenGn+4 is given in Fig. 2.6(b) and it is easy to establish that
Gn+4

∼= Gn+4. �



6 CHAPTER 2. GRAPHS AND DIGRAPHS

Gn

t

u

v

w

Gn

t

w

u
v

(a) (b)

Figure 2.6: The proof of Theorem 2.9

(a) (b)

Figure 2.7:(a) A connected graph;(b) A graph withω = 4

2.2 Connectedness and distance

A walk in a graphG is any sequence of vertices and edgesv0 e1 v1 e2 v2 . . .vk−1 ek vk

such thatei = {vi−1,vi} for all i ∈ {1, . . . ,k}. Note that an edge or a vertex may ap-
pear more than once in a walk. We say thatk is thelengthof the walk. Ifv0 6= vk we
say that thewalk connects v0 and vk. A closed walkis a walkv0 e1 v1 . . . vk−1 ek vk

wherev0 = vk. Clearly, a path is a walk where neither vertices nor edges are al-
lowed to repeat, and a cycle is a closed walk where neither edges nor vertices are
allowed to repeat, except for the first and the last vertex.

Lemma 2.10 If there is a walk inG that connects two vertices then there is a path
that connects them. Every closed walk of odd length contains an odd cycle.

We define a binary relationθ onV(G) by xθy if x = y or there is a walk that
connectsx andy. Clearly,θ is an equivalence relation onV(G) and hence partitions
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V(K) into blocksS1, . . . ,St . These blocks or the corresponding induced subgraphs
(depending on the context) are calledconnected componentsof G. The number
of connected components ofG is denoted byω(G). A graphG is connectedif
ω(G) = 1. An example of a connected graph and of a graph with four connected
components are given in Fig. 2.7.

Lemma 2.11 S⊆ V(G) is a connected component ofG if and only if no proper
supersetS′ ⊃ S induces a connected subgraph ofG.

Theorem 2.12 A graphG is connected if and only ifE(A,B) 6=∅ for every parti-
tion {A,B} of V(G).

Proof. (⇒) Let G be a connected graph and{A,B} a partition ofV(G). Take any
a ∈ A andb ∈ B. Now G is connected, so there is a pathx1 . . .xk that connectsa
andb. Sincex1 = a andxk = b, there is aj such thatx j ∈ A andx j+1 ∈ B whence
E(A,B) 6=∅.

(⇐) SupposeG is not connected and letS1, . . . , Sω be the connected compo-
nents. Then Lemma 2.11 yieldsE(S1,

⋃ω
j=2Sj) =∅. �

Theorem 2.13 At least one of the graphsG, G is connected.

Proof. Suppose thatG is not connected and letS1, . . . ,Sω , ω > 2, be the connected
components ofG. Let us show that any pair of vertices inG is connected by a path.
Take anyx,y∈V(G), x 6= y. If x andy belong to distinct connected components of
G then{x,y} /∈ E(G) and hence{x,y} ∈ E(G), so they are connected by an edge.
If, however,x andy belong to the same connected component ofG, saySi , take any
j 6= i and anyz∈ Sj . Thenx andz are connected by an edge inG and so arey and
z. Therefore,x z yis a path inG that connectsx andy. �

We see from the proof of previous theorem that ifG is not connected, thenG
is “very connected”. We shall now introduce a numerical measure that enables us
to express such statements formally.

Thedistance dG(x,y) between verticesx andy of a connected graphG is de-
fined bydG(x,x) = 0, and in casex 6= y,

dG(x,y) = min{k : there is a path of lengthk that connectsx andy}.

Theorem 2.14 Let G = (V,E) be a connected graph. Then(V,dG) is a metric
space, i.e. for allx,y,z∈V the following holds:

(D1) dG(x,y)> 0;
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(D2) dG(x,y) = 0 if and only if x= y;

(D3) dG(x,y) = dG(y,x); and

(D4) dG(x,z)6 dG(x,y)+dG(y,z).

If G is obvious, instead ofdG(x,y) we simply writed(x,y). Thediameter d(G)
of a connected graphG is the maximum distance between two of its vertices:

d(G) = max{d(x,y) : x,y∈V(G)}.

Example 2.15 (a) d(G) = 1 if and only ifG is a complete graph.

(b) d(Pn) = n−1 andd(Cn) = ⌊n−1
2

⌋.

A graphG is bipartite if there is a partition{X,Y} of V(G) such that every
edge inG has one end inX and the other inY, i.e.E(G) = E(X,Y). Therefore,X
andY are independent sets. Acomplete bipartite graphis a bipartite graph with
partition{X,Y} of vertices such that its edges areall pairs{x,y} with x ∈ X and
y∈Y. If |X|= p and|Y|= q, the complete bipartite graph with the partition{X,Y}
is denoted byKp,q. A star with n vertices, denoted bySn, is a complete bipartite
graphK1,n−1. A bipartite graph, aK3,4 and a starS10 are depicted in Fig. 2.8.

X

Y
K3,4 S10

Figure 2.8: A bipartite graph, aK3,4 and a starS10

Lemma 2.16 A graphG with at least two vertices is a bipartite graph if and only
if every connected component ofG is either an isolated vertex or a bipartite graph.

Theorem 2.17 A graphG with at least two vertices is bipartite if and only ifG
does not contain an odd cycle.

Proof. According to Lemma 2.16 it suffices to give the proof for connected graphs.
So, letG be a connected graph andn(G)> 2.

(⇒) Let G be a bipartite graph and supposeG contains an odd cycle whose
vertices arev1, v2, . . . , v2k+1. Sovi is adjacent tovi+1 for all i ∈ {1, . . . ,2k} and
v2k+1 is adjacent tov1. Let{X,Y} be a partition ofV(G) showing thatG is bipartite,
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i.e. such thatE(G[X]) = E(G[Y]) =∅. Now v1 belongs toX or Y, so assume that
v1 ∈ X. Thenv2 ∈ Y sincev2 is adjacent tov1 andG is bipartite, and this forces
v3 ∈ X, v4 ∈ Y and so on. We see that vertices with odd indices belong toX,
so v2k+1 ∈ X. But we havex1 ∈ X too, soE(G[X]) contains{x1,x2k+1} which
contradicts the assumptionE(G[X]) =∅.

(⇐) SupposeG does not contain an odd cycle. Take anyv∈V(G) and define
A0, A1, . . .⊆V(G) as follows:

An = {x∈V(G) : d(v,x) = n},

for n> 0. SinceG is connected, there is a path connectingv to any other vertex of
G, so each vertex ofG appears in at least one of theAi ’s. TheAi ’s are disjoint by
the construction and the fact thatV(G) is finite now yields that there is ans such
that{A0,A1, . . . ,As} is a partition ofV(G) andAt =∅ for all t > s. Let

X =
⋃

j even

A j , and Y =
⋃

j odd

A j

and let us show that bothX andY are independent sets inG. Suppose that there
are verticesx,y∈ X such thatx andy are adjacent. By the construction ofX there
is an even pathv. . .x and an even pathy. . .v. By chaining these two paths together
with the edgee= {x,y} we obtain a closed walkv. . .x e y. . .v of odd length, so by
Lemma 2.10G contains an odd cycle, which is impossible.

The proof thatY is independent is analogous. Therefore, bothX andY are sets
of independent vertices. This shows thatG is a bipartite graph and one possible
partition of its vertices is{X,Y}. �

Note that this theorem does not imply that bipartite graphs have to have cycles.
A graph with no cycles is a bipartite graph, and this follows from the theorem since
it hasno odd cycles.

Let e be an edge andv a vertex of a graphG. By G−e we denote the graph
obtained fromG by removing the edgee, while G− v denotes the graph obtained
from G by removingv and all the edges ofG incident tov. A cut-vertexof a graph
G is a vertexv∈V(G) such thatω(G−v)> ω(G). A cut-edgeof a graphG is an
edgee∈ E(G) such thatω(G−e) > ω(G). Cut-vertices and cut-edges are weak
points in the graph since removing one of these makes the graph split. Intuitively,
they look like this:

v

BA
e

BA

a cut-edge a cut-vertex
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Theorem 2.18 Let ebe an edge of a graphG. The following are equivalent:

(1) e is a cut-edge ofG;

(2) there is a partition{A,B} of V(G) such thatE(A,B) = {e};

(3) ebelongs to no cycle ofG.

Proof. We give the proof in caseG is connected. IfG is not connected it suffices
to consider the connected component ofG that containse.

(2) ⇒ (1): If E(A,B) = {e} in G thenE(A,B) = ∅ in G−e, soG−e is not
connected by Theorem 2.12. Therefore,ω(G−e)> 1= ω(G).

(1)⇒ (3): Suppose thateappears in a cycle

C= v0 e
↑

v1 e2 v2 . . . vk−1 ek v0

of G. To show thatG− e is connected take an arbitrary pair of verticesx 6= y.
SinceG is connected, there is a pathP that connectsx to y. If P does not contain
e, it is also a path inG− e that connectsx to y. If, however,P containse, say
P= x. . .v0 e v1 . . .y, then removee from P and replace it withC−e to obtain the
following walk:

W = x. . .v0 ek vk−1 . . .v2 e2 v1
︸ ︷︷ ︸

C−e

. . .y,

Fig. 2.9. Sincee appears once inP and once inC it follows thate does not appear
in W, soW is a walk fromx to y in G−e.

e v1v0

e2

v2vk−1

ek

x y

C

P

Figure 2.9: The walkW

(3)⇒ (2): Suppose thate= {a,b} belongs to no cycle ofG and defineA and
B as follows:A= {a}∪{x∈V(G) : there is a path froma to x that does not pass
throughe} andB=V(G)\A. If b /∈B thenb∈A and there is a path froma to b that
does not pass throughe. This path together withe forms a cycle that containse.
Since there are no such cycles we haveb∈ B. So,{A,B} is a partition ofV(G) and
e∈ E(A,B). Suppose now that there is ane′ ∈ E(A,B), e′ 6= e, and lete′ = {a′,b′},
a′ ∈ A, b′ ∈ B, Fig. 2.10. We will assume further thata 6= a′ andb 6= b′ since these
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a be

e′ b′a′

A B

PA
PB

Figure 2.10: A cycle that containse

two cases follow by similar arguments. There is a pathPA = a. . .a′ that does not
pass throughe and there is a pathPB = b′ . . .b that does not pass throughe. Now
these two paths together witheande′ form a cycle a. . .a′

︸ ︷︷ ︸

PA

e′ b′ . . .b
︸ ︷︷ ︸

PB

e a which

containse. This contradiction shows thatE(A,B) = {e}. �

Theorem 2.19 Let v be a vertex ofG. Thenv is a cut-vertex ofG if and only if
there is a partition{A,B} of V(G)\{v} such thatE(A,B) =∅, E(A,{v}) 6=∅ and
E(B,{v}) 6=∅.

Theorem 2.20 If e is a cut-edge ofG thenω(G− e) = ω(G)+ 1. If v is a cut-
vertex ofG thenω(G−v)< ω(G)+δ (v).

Theorem 2.21 If G is a connected graph with at least three vertices and ifG has a
cut-edge, thenG has a cut-vertex.

Proof. Let e be a cut-edge ofG. Then there is a partition{A,B} of V(G) such
thatE(A,B) = {e} (Theorem 2.18). Lete= {a,b} and leta∈ A andb∈ B. From
n(G) > 3 it follows that |A| > 2 or |B| > 2, say|A| > 2. Since the graph is con-
nected,a has a neighbourc in A, Fig. 2.11. Now letA′ = A\ {a} and note that

e

BA

A′
a

b
c

Figure 2.11: The proof of Theorem 2.21
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E(A′,B) = ∅, E(A′,{a}) 6= ∅ and E(B,{a}) 6= ∅. Therefore,a is a cut-vertex
according to Theorem 2.19. �

We have seen in Theorem 2.18 that a graph has no cut-edges if and only if
every edge belongs to a cycle. The analogous statement for cut-verticesis the
famous Whitney Theorem.

Theorem 2.22 (Whitney 1932)Let G be a connected graph with at least three
vertices. G has no cut-vertices if and only if any two vertices lie on a common
cycle.

Proof. (⇐) Since any two verticesu andv lie on a common cycle, removing one
vertex from the graph cannot separateu from v, and henceG− x is connected for
all x.

(⇒) For the converse, suppose thatGhas no cut-vertices. We say that two paths
ux1 . . .xkv anduy1 . . .yl v connectingu to v are internally disjoint if{x1, . . . ,xk}∩
{y1, . . . ,yl} = ∅. Now take anyu andv in G, u 6= v, and let us show by induction
on d(u,v) thatG has two intenally disjoint paths connectingu andv. Clearly, the
two paths will then form a cycle containing bothu andv.

Let d(u,v) = 1 and lete= {u,v}. The graphG− e is connected by Theo-
rem 2.21 so there is a path inG−e from u to v. This is also a path inG and it is
internally disjoint from the trivial pathu vconsisting of the edgee itself.

For the induction step, letd(u,v) = k > 1 and assume thatG has internally
disjoint paths connecting every pair of verticesx, y such that 16 d(x,y) < k. Let
u x1 . . . xk−1 v the a path of lengthk (i.e. one of the shortest paths that connectu
to v). We haved(u,xk−1) = k− 1, and hence by the induction hypothesisG has
internally disjoint pathsP andQ joining u to xk−1, Fig. 2.12. SinceG− xk−1 is

u vxk−1

P

Q

R

z

Figure 2.12: The proof of Whitney’s Theorem

connected,G− xk−1 contains a pathR that joinsu andv. If this path is internally
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disjoint from P or Q we are done, so assume thatR shares internal vertices with
both P andQ. Let z be the last vertex ofR belonging toP∪Q. Without loss of
generality we may assume thatz∈ P. We now combine the subpath ofP joining
u to z with the subpath ofR joining z to v to obtain a path fromu to v internally
disjoint from the pathQ′ = Q e′ v wheree′ = {xk−1,v}. �

2.3 Trees

A tree is a connected graph with no cycles. By Theorem 2.18 we see that every
edge of a tree is a cut-edge. Therefore, a tree is a minimal connected graph with
the given set of vertices. The following theorem shows that in a way treescapture
the essence of the property of being connected.

Recall that a spanning subgraph of a graphG= (V,E) is a graphH = (W,E′)
such thatW =V andE′ ⊆ E. If H is a tree, we say thatH is aspanning tree of G.

Theorem 2.23 A graph is connected if and only if it has a spanning tree.

Proof. Clearly, if a graphG contains a connected spanning subraphH thenG is
also connected. Therefore if a graph has a spanning tree, it is connected. For the
converse, take any connected graphG and construct a sequence of graphsG0, G1,
G2, . . . as follows:G0 = G; if Gi has a cycle, take any edgeei that lies on a cycle
and letGi+1 = Gi −ei , otherwise putGi+1 = Gi . EachGi is a spanning subgraph of
G and eachGi is connected since an edge that lies on a cycle cannot be a cut-edge
(Theorem 2.18). Moreover, ifGi = Gi+1 thenGi = G j for all j > i. Let m be the
number of edges ofG. Since we cannot remove more thanm edges fromG, we
conclude thatGm+1 =Gm+2. By construction of the sequence this means thatGm+1

has no cycles. Therefore,Gm+1 is a spanning tree ofG. �

We will now show that each tree withn vertices hasn−1 edges and that each
two of the three properties listed below implies the remaining one:

• being connected,

• having no cycles, and

• m= n−1.

Lemma 2.24 Each tree with at least two vertices has at least two leaves.

Proof. Let G be a tree withn> 2 vertices and letv1, v2, . . . ,vk be the longest path
in the tree. Thenk > 2 sinceG is a connected graph with at least two vertices.
If δ (v1) > 1 thenv1 has a neighbourx distinct fromv2. If x is a new vertex, i.e.
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x /∈ {v3, . . . ,vk}, then the pathx, v1, v2, . . . , vk is longer than the longest path in
G, which is impossible. If, however,x ∈ {v3, . . . ,vk} thenG has a cycle, which
contradicts the assumption thatG is a tree. Therefore,v1 is a leaf. The same
argument shows thatvk is another leaf. �

Theorem 2.25 Let G = (V,E) be a tree withn vertices andm edges. Then
m= n−1, and consequently∑v∈V δ (v) = 2(n−1).

Proof. The second part of the theorem follows from the First Theorem of Graph
Theory, so let us show thatm= n−1. The proof is by induction onn. The cases
n= 1 andn= 2 are trivial. Assume that the statement is true for all trees with less
thenn vertices and consider a treeG with n vertices. By Lemma 2.24 there is a leaf
x in G. According Theorem 2.19 the degree of a cut-vertex is at least two, sox is
not a cut-vertex and henceG−x is connected. Clearly,G−x does not have cycles
(removing vertices and edges cannot introduce cycles), soG−x is a tree with less
thann vertices. By the induction hypothesis,m′ = n′−1, wherem′ = m(G−x) and
n′ = n(G−x). Butm′ = m−1 andn′ = n−1 sincex is a leaf, whencem= n−1.�

Theorem 2.26 Let G be a graph withn vertices andm edges. Ifm= n−1 andG
has no cycles thenG is connected (hence a tree).

Proof. Suppose thatm= n− 1 and thatG has no cycles. LetS1, . . . , Sω be the
connected components ofG. Each connected component is a tree, somi = ni −1
for all i, wheremi = m(Si) andni = n(Si). Therefore∑ω

i=1mi = ∑ω
i=1ni −ω i.e.

m= n−ω (sincem= ∑ω
i=1mi andn= ∑ω

i=1ni). Now, m= n−1 yieldsω = 1, i.e.
G is connected. �

Theorem 2.27 Let G be a connected graph withn > 2 vertices andm edges and
let m= n−1. ThenG has no cycles (and hence it is a tree).

Proof. According to Theorem 2.23 the graphG = (V,E) has a spanning tree
H = (V,E′). SinceH is a tree Theorem 2.25 yieldsm(H) = n(H)− 1 = n− 1.
Assumptionm= n−1 now impliesm(H) = mand thus fromE′ ⊆ E we conclude
E′ = E. Therefore,G= H and soG is a tree. �

Corollary 2.28 A connected graph withn vertices andmedges is a tree if and only
if m= n−1.

We shall conclude the section by a result on the number of distinct trees. Let us
first note that when counting structures we can count distinct structuresand non-
isomorphic structures. For example, there are 16 distinct trees on a four element
set, but only two nonisomorphic, see Fig. 2.13. It is not surprising that counting
nonisomorphic structures is more difficult.
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Figure 2.13: Sixteen distinct and only two nonisomorphic trees with four vertices

Theorem 2.29 (Cayley 1889)There arenn−2 distinct trees withn vertices.

Proof. Let V = {1, . . . ,n} be a finite set that serves as a set of vertices. The proof
we are going to present is due to H. Prüfer1. The idea is to encode each tree on
V by a sequence of integers(a1, . . . ,an−2) and thus provide a bijectionϕ : Tn →
{1,2, . . . ,n}n−2, whereTn denotes the set of all trees onV.

We first show how to construct the Prüfer code of a tree. LetT be a tree with
the set of verticesV. We shall construct a sequence of trees(Ti) and two sequences
of integers, the code(ai) and an auxiliary sequence(bi). Let T1 = T. GivenTi , let
bi be the smallest leaf of the tree (vertices are integers, so out of all integersthat
appear as leaves we choose the smallest) and letai be its only neighbour. Now put
Ti+1 = Ti −bi and repeat until a tree with two vertices is obtained. The code of the
tree is now(a1,a2, . . . ,an−2). An example is given in Fig. 2.14. Thus, we have a
functionϕ : Tn →{1, . . . ,n}n−2 that takes a tree onto its Prüfer code.

Conversely, given a sequence(a1, . . . ,an−2) we can construct the tree as fol-
lows. ForS⊆{1, . . . ,n} let mixS=min({1, . . . ,n}\S) denote the minimal number
not inS(mimimal excluded). Putan−1 = n and then constructb1, b2, . . . ,bn−1 by

bi = mix{ai , . . . ,an−1,b1, . . . ,bi−1}
1H. Prüfer, Neuer Beweis eines Satzes über Permutationen, Archiv der Math. und Phys. (3)

27(1918), 142–144
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Figure 2.14: The Prüfer code of a tree

(for i = 1 there are nob j ’s in the set). For example in case of(4,7,3,4,1,4,4) we
havea8 = 9 and:

b1 = mix{4,7,3,4,1,4,4,9}= 2

b2 = mix{ 7,3,4,1,4,4,9,2}= 5

b3 = mix{ 3,4,1,4,4,9,2,5}= 6

b4 = mix{ 4,1,4,4,9,2,5,6}= 3

b5 = mix{ 1,4,4,9,2,5,6,3}= 7

b6 = mix{ 4,4,9,2,5,6,3,7}= 1

b7 = mix{ 4,9,2,5,6,3,7,1}= 8

b8 = mix{ 9,2,5,6,3,7,1,8}= 4

This process is called thereconstruction proceduresince, as we shall see, it pro-
duces a tree whose Prüfer code is(a1, . . . ,an−2).

Let us show that{{bi ,ai} : 1 6 i 6 n} is the set of edges of a tree. Ifi < j
then, by construction,b j = mix{a j , . . . ,an−1,b1, . . . ,bi , . . . ,b j−1}, sob j 6= bi . We
see that allbi ’s are distinct and smaller thann= an−1. Therefore,{b1, . . . ,bn−1}=
{1, . . . ,n−1} and hence{b1, . . . ,bn−1,an−1} = {1, . . . ,n−1,n}. Moreover, ifi 6
j thena j /∈ {b1, . . . ,b j} sincebi = mix{ai , . . . ,a j , . . . ,an−1,b1, . . . ,bi−1}, so from
{b1, . . . ,bn−1,an−1} = {1, . . . ,n−1,n} it follows thata j ∈ {b j+1, . . . ,bn−1,an−1}.
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To summarize,

a j ∈ {b j+1,b j+2, . . . ,bn−1,an−1} and
b j /∈ {a j+1,b j+1,a j+2,b j+2, . . . ,an−1,bn−1},

for all j. (⋆)

To build the graph we start from{bn−1,an−1} and then add edges{bn−2,an−2},
{bn−3,an−3}, . . . , {b1,a1} one by one. From(⋆) it follows that at each step we
extend the graph by one new vertexbi and one new edge{bi ,ai} that connects
the new vertex to an existing one. Therefore, the graph we obtain at the end is
connected, and a connected graph withn vertices andn−1 edges has to be a tree
(Corollary 2.28). Thus, we have a functionψ : {1, . . . ,n}n−2 → Tn that takes a
code and produces a tree.

To complete the proof, we have to show thatϕ and ψ are inverses of one
another, i.e.ϕ ◦ψ = id andψ ◦ϕ = id. We show onlyψ ◦ϕ = id i.e.ψ(ϕ(T)) = T
for all T ∈ Tn (the other equality is left for Homework 2.10). For a treeT, a vertex
v ∈ V(T) is an internal vertex Tif δT(v) > 1. Let int(T) denote the set of all
internal vertices ofT.

Take anyT ∈ Tn, let (a1, . . . ,an−2) be its Prüfer code and(b1, . . . ,bn−2) the
auxiliary sequence. At the end of the procedure of constructing the Prüfer code
two vertices remain the the graph, the vertexan−1 = n and its neighbour whom we
denote bybn−1. Starting from(a1, . . . ,an−1) the reconstruction procedure produces
a sequence of integersb′1, . . . , b′n−1. We will show thatbi = b′i for all i. Assume
also thatn> 3.

Sinceb1 is adjacent toa1 in T andn> 3,a1 cannot be a leaf ofT soa1 ∈ int(T).
The same argument shows thata2 ∈ int(T − b1), a3 ∈ int(T − b1 − b2), and in
general,ai+1 ∈ int(T −b1− . . .−bi). Since int(T − v) ⊆ int(T) wheneverv is a
leaf ofT andn(T)> 2, it follows that int(T −b1− . . .−bi) = {ai+1, . . . ,an−2}. In
particular, int(T) = {a1, . . . ,an−2}. Since each vertex of a tree with at least two
vertices is either a leaf or an internal vertex we obtain that

V(T −b1− . . .−bi)\ int(T −b1− . . .−bi)

is the set of leaves ofT −b1− . . .−bi . Now V(T −b1− . . .−bi) = {1, . . . ,n} \
{b1, . . . ,bi} and int(T − b1 − . . .− bi) = {ai+1, . . . ,an−2}, so the set of leaves of
T −b1− . . .−bi is

(

{1, . . . ,n}\{b1, . . . ,bi}
)

\{ai+1, . . . ,an−2}=

= {1, . . . ,n}\{ai+1, . . . ,an−2,b1, . . . ,bi}.

It is now easy to show thatbi = b′i by induction oni. As we have seen,b1 is a leaf of
T, sob1 ∈ {1, . . . ,n} \ {a1, . . . ,an−2}. But b1 is the smallest such integer, whence
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b1 = min({1, . . . ,n}\{a1, . . . ,an−2}) = mix{a1, . . . ,an−2}= b′1. Assume thatb j =
b′j for all j ∈ {1, . . . , i} and considerbi+1. It is the smallest leaf inT −b1− . . .−bi

so, with the help of induction hypothesis

bi+1 = min({1, . . . ,n}\{ai+1, . . . ,an−2,b1, . . . ,bi})
= mix{ai+1, . . . ,an−2,b1, . . . ,bi}= mix{ai+1, . . . ,an−2,b

′
1, . . . ,b

′
i}= b′i+1

Therefore,{ai ,bi} = {ai ,b′i} for all i and the tree produced by the reconstruction
procedure isT, the tree we started with. �

2.4 Digraphs

A digraph is an ordered pairD = (V,E) whereV is a nonempty finite set andE
is an arbitrary subset ofV2 such that(x,x) /∈ E for all x ∈ V. Elements ofV are
calledverticesof D, while elements ofE are callededgesof D. We shall often
write V(D) andE(D) to denote the set of vertices and the set of edges ofD, and
n(D) andm(D) to denote the number of vertices and the number of edges ofD.
Instead of(x,y) ∈ E we often writex → y or x →

D
y. If x → y we say thatx is a

predecessorof y andy is a successorof x. We also say that the edge(x,y) goes
out of the vertexx and into the vertexy. The number of edges that go out ofv iz
called theout-degreeof v and will be denoted byδ+

D (v). The number of edges that
go intov is called thein-degreeof v and will be denoted byδ−

D (v). Further, let,

ID(v) = {x∈V : x→ v}, OD(v) = {x∈V : v→ x},

denote the set of predecessors and the set of successors ofv. Clearly, δ−
D (v) =

|ID(v)| andδ+
D (v) = |OD(v)|. The total degreeof a vertexv is δD(v) = δ−

D (v)+
δ+

D (v) . If D is clear from the context, we simply writeδ−(v), δ+(v), I(v), O(v)
andδ (v).

A sourceof a digraphD is a vertexv∈V(D) such thatδ−(v) = 0 andδ+(v)>
0. A sinkof a digraphD is a vertexv∈V(D) such thatδ−(v)> 0 andδ+(v) = 0.
A back-edgein a digraphD is an edge(x,y) ∈ E(D) such that(y,x) ∈ E(D). If D
has no back-edges thenI(v)∩O(v) =∅ for everyv∈V(D).

If v is a vertex ande an edge of a digraphD thenD−e denotes the digraph
obtained fromD by removing the edgee, while D−v denotes the digraph obtained
from D by removingv, the edges that go intov and the edges that go out ofv.

Digraphs also have a very natural graphical representation. Verticesare rep-
resented as points in a plane, while an edgex → y is represented as a directed
curve (usually an arrow) going fromx to y. Fig. 2.15(a) depicts a digraph with 10
vertices.
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Figure 2.15: Two digraphs

Theorem 2.30 (The First Theorem for Digraphs) Let D = (V,E) be a digraph
with m edges. Then∑v∈V δ−(v) = ∑v∈V δ+(v) = m.

DigraphsD1 = (V1,E1) andD2 = (V2,E2) areisomorphicif there exists a bijec-
tion ϕ : V1 →V2 such that(x,y)∈E1 if and only if (ϕ(x),ϕ(y))∈E2. The bijection
ϕ is referred to as asisomorphismand we writeD1

∼= D2.
The notions of the oriented path, oriented cycle and oriented walk in a di-

graph are straightforward generalizations of their “unoriented” versions. Anori-
ented walkis a sequence of vertices and edgesx0 e1 x1 . . .xk−1 ek xk such that
ei = (xi−1,xi). We say thatk is the length of the walk. An oriented pathis an
oriented walk where all vertices and all edges are distinct. Anoriented cycleis
an oriented walk where all edges and vertices are distinct, with the exceptionof
x0 = xk.

Theorem 2.31 Let D be a digraph with at least one edge. IfD has no sinks, then
it has an oriented cycle. Dually, ifD has no sources, it has an oriented cycle.

A digraph isacyclic if it has no oriented cycles. Fig. 2.15(b) is an example of
an acyclic digraph.

Corollary 2.32 Each acyclic digraph with at least one edge has both a source and
a sink.
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Theorem 2.33 A digraphD with n vertices is acyclic if and only if it is possible
to arrange its vertices as(v1, . . . ,vn) in such a way thatvi → v j implies i < j.

Proof. (⇐) If such an arrangement of vertices exists then clearlyG has no oriented
cycles.

(⇒) We use induction onn. Casesn= 1 andn= 2 are easy. Assume that such
an arrangement of vertices exists for all acyclic digraphs with less thann vertices
and letD be an acyclic digraph withn vertices. If there is a vertexx such that
δ (v) = 0 put v1 = x. Otherwise,D has at least one edge, so it has a source. Let
v1 be any source ofD. Now, D− v1 is again an acyclic digraph and by induction
hypothesis its vertices can be arranged into a sequence(v2, . . . ,vn) in such a way
thatvi → v j impliesi < j for all i, j > 2. SinceI(v1) =∅ andO(v1)⊆ {v2, . . . ,vn},
it is easy to see that(v1,v2, . . . ,vn) is the required arrangement of vertices ofD. �

A digraphD′ = (V ′,E′) is asubdigraphof a digraphD = (V,E) if V ′ ⊆V and
E′ ⊆ E. We writeD′ 6 D. ForS⊆V, thesubdigraph induced by Sis the digraph
D[S] = (S,S2∩E).

We say thatS⊆ V(D) dominates Dif D[S] has no edges and the following
holds: for everyx∈V(D)\S there is ans∈ Ssuch that eithers→ x or s→ y→ x
for somey∈V(D).

Theorem 2.34 (Chvátal, Lovász 1974)For every digraphD there is a set of ver-
ticesS⊆V(D) which dominatesD.

Proof. We use induction onn = n(D). For n = 1 or n = 2 the claim is obvious.
Suppose the claim is true for all digraphs with less thann vertices and letD be a
digraph withn> 3 vertices. Take anyx∈V(D) and letA=V(D)\({x}∪O(x)). If
A=∅ thenS= {x} dominatesD. If, however,A 6=∅, by the induction hypothesis
the digraphD[A] has a set of verticesS′ ⊆ A that dominatesD[A]. If there are no
edges inD[S′ ∪{x}] thenS= S′ ∪{x} dominatesD. Otherwise, there is az∈ S′

such thatx →D z or z→D x. Fromz /∈ O(x) we conclude thatz→D x, soS= S′

dominatesD. �

There are two natural notions of connectedness for digraphs. It seems natural
to be able to go from any vertex to any other vertex respecting the orientationof
the edges, but sometimes we might wish to be able to do the same thing regardless
of the orientation of edges.

A baseof a digraphD = (V,E) is a graphG = (V,E′) whereE′ = {{x,y} :
(x,y) ∈ D}. A base of a digraph is obtained by replacing oriented edges of the
digraph by nonoriented edges, see Fig. 2.16. A digraphD is weakly connectedif
its base is a connected graph. A digraphD is strongly connectedif for every pair
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Figure 2.16: A digraph and its base

of verticesx,y∈V, x 6= y, there is an oriented path going fromx to y, see Fig. 2.17.

strongly
connected

weakly connected
(not strongly connected)

not
connected

Figure 2.17: Two types of connectedness for digraphs

For disjointA,B⊆V(D) let E(A,B) = {(x,y) ∈ E(D) : x∈ A,y∈ B} be the set
of all edges ofD that go from a vertex inA to a vertex inB.

Theorem 2.35 A digraphD is weakly connected if and only ifE(A,B) 6= ∅ or
E(B,A) 6=∅ for every partition{A,B} of V(D).

A digraphD is strongly connected if and only ifE(A,B) 6=∅ and E(B,A) 6=∅

for every partition{A,B} of V(D).

Proof. We shall prove the second part of the theorem.
(⇒) Let D be a strongly connected digraph and let{A,B} be an arbitrary parti-

tion of V(D). Take anya∈ A and anyb∈ B. The digraphD is strongly connected,
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so there exists an oriented path froma to b. Sincea ∈ A andb ∈ B, the path has
to cross fromA into B at some point, so there exists an edge(x,y) along this path
such thatx∈ A andy∈ B. Therefore,E(A,B) 6=∅. Similarly, E(B,A) 6=∅.

(⇐) Take anyx,y∈V(D), x 6= y, and let us show that there is an oriented path
from x to y. Let A= {x}∪{v∈V(D) : there is an oriented path fromx to v}. We
wish to show thaty∈ A. Suppose this is not the case and letB=V(D) \A. Then
y ∈ B and soB 6= ∅. Now, {A,B} is a partition ofV(D) and by the assumption
E(A,B) 6= ∅. This means that there is av∈ A and aw∈ B such thatv→ w. But
v∈ A means that there is an oriented path fromx to v, sov→ w implies that there
is an oriented path fromx to w /∈ A. This contradiction shows thaty∈ A and hence
there is an oriented path fromx to y. �

Every connected graphG= (V,E) can be turned into a strongly connected di-
graphD(G) = (V,E′) whereE′ = {(x,y) : {x,y} ∈ E}, that is, by replacing each
edge{x,y} of G by a pair of edges(x,y), (y,x). Therefore, each connected graph
is a base of some strongly connected digraph, possibly with back-edges.The fol-
lowing theorem shows that this is not the case if we forbid back-edges.

Theorem 2.36 A connected graphG with at least two vertices is a base of a
strongly connected digraph with no back-edges if and only ifG has no cut-edges.

Proof. (⇒) Let G= (V,EG) be a base of a digraphD = (V,ED) and suppose that
G has a cut-edgee= {u,v}. Then by Theorem 2.18 there is a partition{A,B} of
V such thatEG(A,B) = {e}. SinceD has no back-edges then either(u,v) ∈ ED or
(v,u) ∈ ED, but not both. Therefore, eitherED(A,B) =∅ or ED(B,A) =∅. In any
case,D is not strongly connected by Theorem 2.35.

(⇐) Let G= (V,E) be a graph with no cut-edges and letS⊆V be a maximal
set of vertices such thatG[S] is a base of a strongly connected digraphD(S) with
no back-edges. Let us show thatS 6= ∅. Note first thatG contains a cycle (G has
no cut-edges, so by Theorem 2.18 every edge ofG belongs to a cycle; hence there
is at least one cycle inG). Take any cycleC in G, orient its edges to obtain an
oriented cycle and orient the remaining edges inG[V(C)] arbitrarily. We thus ob-
tain a strongly connected digraphD(C) with no back-edges whose base isG[V(C)].
Therefore, there exists a setS′ ⊆V with at least three vertices such thatG[S′] is a
base of a strongly connected digraph with no back-edges, so the maximal such set
cannot be empty.
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Let us show thatS= V. Suppose to the
contrary thatS⊂ V, i.e.V \S 6= ∅. SinceG
is connected we haveE(S,V \S) 6=∅, so take
anye= {u,v} such thatu ∈ S andv ∈ V \S.
There are no cut-edges inG so according to
Theorem 2.18 the edgee belongs to a cycle
in G. Let v w1 . . .wk be a part of the cycle that
belongs toV \S and letwk+1 be the vertex
that followswk on the cycle. By assumption,
wk+1 ∈ S. Now orient the edges on the path

S V \S

v

w1

wk

u

wk+1

u v w1 . . .wk wk+1 to obtain an oriented path that goes fromu to wk+1 and attach the
path to the digraphD(S). Orient the remaining edges inG[S∪{v,w1, . . .wk}] arbi-
trarily. The digraphD′ obtained this way is strongly connected, has no back-edges
and its base isG[S∪{v,w1, . . .wk}] whose set of vertices is a proper superset ofS.
This contradiction shows thatS= V, i.e. thatG is a base of a strongly connected
digraph with no back-edges. �

2.5 Tournaments

A tournamentis a digraphT = (V,E) with
the property that for each pairx,y∈V, x 6= y,
either(x,y) ∈ T or (y,x) ∈ T. Equivalently, a
tournament is a digraph with no back-edges
whose base is a complete graph. Tourna-
ments (as digraphs) appear as models of tour-
naments (as sprot events) where no match
ends in a draw; each arrow then represents
one match and goes from the vertex repre-
senting the winner to the vertex representing
the loser.

A tournament withn vertices has

(
n
2

)

edges andδ+(v)+ δ−(v) = n−1 for

each vertexv. Therefore, it has become customary to consider onlyδ+(v). When
working with tournaments,δ+(v) is called thescoreof v and denoted bys(v). A
tournament istransitiveif x→ y andy→ z impliesx→ z wheneverx, y andz are
three distinct vertices of the tournament.

Theorem 2.37 Let T be a tournament withn vertices. Then the following are
equivalent:
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(1) T is an acyclic tournament;

(2) T is a transitive tournament;

(3) the scores of vertices inT are0, 1, . . . ,n−1.

Proof. (1) ⇒ (2): SupposeT is not a transitive tournament. Then there exist
distinct verticesx, y and z such thatx → y and y → z but x 6→ z. SinceT is a
tournament,x 6→ zmeans thatz→ x and we obtain a cyclex→ y→ z→ x.

(2)⇒ (3): The proof is by induction onn. Casesn= 2 andn= 3 are trivial.
Suppose that in each transitive tournament withk< n vertices the scores of vertices
are 0, 1, . . . ,k−1 and letT be a transitive tournament withn vertices. Letv1 be the
vertex ofT with maximal score and let us show thats(v1) = n−1. Suppose that
there is a vertexx such thatx→ v1. Then due to transitivityv1 → z impliesx→ z
and hences(x)> 1+s(v1)> s(v1), which is impossible. Therefore,v1 → x for all
x 6= v1 and hences(v1) = n−1. It is easy to see thatT − v1 is again a transitive
tournament and by the induction hypothesis the scores of its vertices are 0,1, . . . ,
n−2. Therefore, the scores of vertices inT are 0, 1, . . . ,n−2, n−1.

(3)⇒ (1): The proof is again by induction onn and the casesn= 2 andn= 3
are trivial. Suppose that each tournament withk< n vertices and with scores 0, 1,
. . . , k−1 is acyclic and letT be a tournament withn vertices and scores 0, 1, . . . ,
n−1. Letv be the vertex ofT whose score isn−1 and letC be an oriented cycle
in T. SinceT−v is a tournament with scores 0, 1, . . . ,n−2, it is acyclic according
to the induction hypothesis soV(C) 6⊆V(T −v). Therefore,C has to pass through
v. On the other hand,s(v) = n−1 means thatv→ x for everyx 6= v so no cycle in
T can pass throughv. Contradiction. �

Corollary 2.38 Two transitive tournaments are isomorphic if and only if they have
the same number of vertices.

Theorem 2.39 Every tournament with at least2k−1 vertices,k> 2, has a transitive
subtournament with at leastk vertices.

Proof. The proof is by induction onk. If k = 2 the
tournament has at least two vertices and hence at least
one edge, and each edgex→ y is a transitive tourna-
ment with two vertices. Assume the claim is true for
all integers less thank and consider a tournamentT
with at least 2k−1 vertices. Take anyv∈V(T). Then
V(T) = I(v)∪{v}∪O(v), so one of the setsI(v), O(v)
has at least 2k−2 vertices. Without loss of generality

O(v)

T ′

> k−1
v

we can assume that|O(v)| > 2k−2. Inductioin hypothesis now yields that there is
a transitive subtournamentT ′ of T[O(v)] with at leastk−1 vertices. ThenT ′ to-
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gether withv induces a transitive subtournament ofT with at leastk vertices. �

A king in a tournamentT is a vertexv∈V(T) such that{v} dominatesT. This
means that for everyx 6= v eitherv→ x or v→ y→ x for somey∈V(T).

Theorem 2.40 Each tournament with at least two vertices has a king.

Proof. Let v be a vertex ofT whose score is maximal and
let us show thatv is a king. Suppose to the contrary thatv
is not a king. Then there is anx 6= v such thatv 6→ x and
noy∈V(T) satisfiesv→ y→ x. SinceT is a tournament,
v 6→ x meansx→ v, while the other condition means that
if v→ y thenx→ y. But thens(x)> 1+s(v)> s(v), which
contradicts the maximality ofs(v). �

x

v
y1

y2

Homework

2.1. An automorphsmof a graphG is every isomorhismϕ : V(G) → V(G)
from the graph onto itself. By Aut(G) we denote the set of all the auto-
morphisms ofG.

(a) Show that(Aut(G),◦) is a group.

(b) Describe Aut(Kn), Aut(Sn) and Aut(Pn) for n> 3.

(c) Show that Aut(G) = Aut(G).

2.2. (a) Show that for everyn> 6 there exists a graphG with n vertices such
that|Aut(G)|= 1.

(b) Show that for everyk > 2 and everyn> k+3 there exists a graphG
with n vertices such that|Aut(G)|= k!.

2.3. Prove Lemma 2.10.

2.4. Prove Theorem 2.14.

2.5. If G is not connected show thatd(G)6 2. (We know thatG is connected).

2.6. Prove Theorem 2.19.

2.7. Prove Theorem 2.20.

2.8. Show that a graph is a tree if and only if each pair of distinct vertices of of
the graph is connected by a unique path.

2.9. Find the number of distinct spanning trees ofKn.
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2.10. Complete the proof of Theorem 2.29 by showing thatϕ ◦ψ = id.

2.11. Prove Theorem 2.31.

2.12. In the distant land of Xÿç there aren cities some of which are connected
by roads, but still it is possible to reach each city from every other city by
traveling along the roads (and possibly passing through some other cities).
The Evil Magician who rules the Xÿç would like to terrorize his people by
making each road a one-way road in such a way that after leaving a city it
is impossible to get back. Show that it is possible to do such a thing.

2.13. Prove the first part of Theorem 2.35 (the characterization of weak connect-
edness).

2.14. Prove Corollary 2.38.

2.15. A tournament isregular if s(x) = s(y) for all x andy. Show that in a regular
tournament each vertex is a king.

Exercises

2.16. Let G be a graph withn vertices andmedges. Show that∆(G)> 2m
n .

2.17. Which of the following integer sequences can be a sequence of degreesof
vertices of a graph?

(a) (1,2,2,4,5,6,7);

(b) (1,1,2,2,2,3,3);

(c) (1,1,3,3,3,3,5,6,8,9).

†2.18. Show that there are

(a) 2
(n

2

)

distinct graphs withn vertices;

(b) 2
(n−1

2

)

distinct graphs withn vertices such that the degree of each vertex
in the graph is even.

2.19. Let G be a graph withδ (G)> 2. ThenG contains a path of length> δ (G)
and a cycle of length> δ (G)+1.

2.20. Let G be a bipartite graph (not necessarily a complete bipartite graph!)
with n vertices andmedges. Show thatm6 1

4n2.

2.21. By α(G) we denote the maximum carinality of an independent set of ver-
tices inG. Show that a graphG is bipartite if and only if every subgraph
H of G satisfiesα(H)> 1

2n(H).
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2.22. A k-dimensional hypercubeis a graphQk = (Vk,Ek) whereVk is the set of
all 01-words of lengthk anda1 . . .ak, b1 . . .bk ∈Vk are adjacent if and only
if the two words differ at exactly one place. For example, ifk = 4 then
0101 and 0001 are adjacent inQ4 while 0101 and 0000 are not.

(a) Find the number of vertices and the number of edges ofQk.

(b) Show thatQk is bipartite.

(c) Show thatQk is connected and findd(Qk).

2.23. Show that for every evenn> 6 there exists a connected regular graph of
degree 3 withn vertices and with no trianlges.

2.24. Show that ifδ (G)> 1
2n(G) thenG is connected andd(G)6 2.

2.25. Show that for every graphG there exists a regular graphH such thatG is
an induced subgraph ofH and∆(G) = ∆(H).

2.26. Show thatδ (G) = (n(G)−1)−∆(G) and∆(G) = (n(G)−1)−δ (G).

2.27. Show the following:

(a) If G is connected andd(G)> 3 thenG is connected andd(G)6 3.

(b) Every selfcomplementary graphG with at least two vertices is con-
nected and 26 d(G)6 3.

2.28. Suppose that the degree of every vertex in a connected graphG is even.
Show thatω(G−v)6 1

2δ (v) for all v∈V(G).

2.29. Let G= (V,E) be a connected graph withn vertices and letu be an arbi-

trary vertex ofG. Show that∑
x∈V

d(u,x)6

(
n
2

)

.

2.30. Let G be a connected graph with at least two vertices. Show thatG has at
least two vertices that are not cut-vertices.

2.31. Show that ifv is a cut-vertex ofG, thenv is not a cut-vertex ofG.

2.32. Show that each treeG has at least∆(G) leaves.

2.33. Let T be a tree,∆ = ∆(T) and fk the number of vertices inT of degreek.

Show thatf1 = 2+
∆

∑
k=3

(k−2) fk.

2.34. Find all treesG such thatG is a tree.

2.35. For everyn > 4 find a graphG with n vertices such that for eachk ∈
{2, . . . ,n−2} there is a spanning tree ofG whose diameter isk.
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2.36. Note first that each tree is a bipartite graph since no cycles means no odd
cycles. Let{X,Y} be a partition of the vertices of a treeT which demon-
strates thatT is a bipartite graph and assume that|X| = |Y|+ p for some
p> 0. Show thatX contains at leastp+1 leaves ofT.

2.37. A forestis a graph whose connected components are trees. Show thatG is
a forest if and only ifδ (H)6 1 for all induced subgraphsH of G.

†2.38. How many nonisomorphic spanning trees doesK2,n have?

†2.39. Show that each spanning tree of a connected graph contains all cut-edges
of the graph.

†2.40. A blockof a connected graphG is a maximal set of verticesS⊆V(G) such
thatG[S] has no cut-vertices (that is, ifS′ ⊇ SandG[S′] has no cut-vertices
thenS′ = S).

(a) Show that any two blocks of a graph have at most one vertex in com-
mon.

(b) Let B1, . . . , Bk be blocks ofG and letBG be the graph with vertices
{1, . . . ,k} wherei is adjacent toj if and only if i 6= j andBi andB j have a
nonempty intersection. Show thatBG is a tree.

†2.41. Let D= (V,E) be a weakly connected digraph. A strongly connected com-
ponent ofD is a maximal set of verticesS⊆V such thatD[S] is strongly
connected (that is, ifS′ ⊇ SandD[S′] is strongly connected thenS′ = S).

(a) Show thatS∩S′ =∅ wheneverSandS′ are distinct strongly connected
components ofD.

(b) Let S andS′ be distinct strongly connected components ofD. Show
that if E(S,S′) 6=∅ thenE(S′,S) =∅.

(c) Let S1, . . . , Sk be strongly connected components ofD and letSD

be the graph with vertices{1, . . . ,k} wherei → j if and only if i 6= j and
E(Si ,Sj) 6=∅. Show thatSD has no back-edges and its base is a tree.

2.42. Show that∑
v∈V

(δ+(v))2 = ∑
v∈V

(δ−(v))2 in every tournamentT = (V,E).

2.43. A tournament isregular if s(x) = s(y) for all x andy. Show that for each
odd integern> 3 there exists a regular tournament withn vertices.

2.44. Scoress1 6 s2 6 . . .6 sn of a tournamentT satisfy
k

∑
i=1

si =

(
k
2

)

for every

k∈ {1, . . . ,n}. Show thatT is an acyclic tournament.



Chapter 3

Eulerian and Hamiltonian graphs

In this chapter we deal with two important classes of graphs:

• Eulerian graphs, which are graphs with the closed walk in which each edge
occurs precisely once; and

• Hamiltonian graphs, which are graphs with the cycle in which every vertex
occurs precisely once.

We present an easy characterisation of Eulerian graphs and discuss several neces-
sary and sufficient conditions for a graph to be Hamiltonian. The fact thatthere is
no “easy” and “useful” characterisation of Hamiltonian graphs is justified by the
discussion at the end of the chapter where we argue that checking for aHamiltonian
cycle in a graph is an NP-complete problem.

3.1 Eulerian graphs

The famous Swiss mathematician Leonhard Euler was visiting the city of Königs-
berg in the year 1735. Königsberg was a city in Prussia situated on the Pregel
River, which served as the residence of the dukes of Prussia in the 16thcentury.
(Today, the city is named Kaliningrad, and is a major industrial and commercial
center of western Russia.) The river Pregel flowed through the city such that in its
center was an island, and after passing the island, the river broke into twoparts.
Seven bridges were built so that the people of the city could get from one part to
another. A map of the center of Königsberg in 1735 looked like this:

1
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A favorite pastime for visitors to the city was to try to cross each of the bridges
of Königsberg exactly once. Euler was told by some people that it was impossible
and by others that they doubted whether or not it could be done. No one believed
it was possible. Eventually, Euler realized that all problems of this form could
be represented by replacing areas of land by vertices, and the bridgesto and from
them by edges of a graph such as:
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The problem now becomes to draw this picture without tracing any line twice
and without picking the pencil up off the paper. All four of the vertices in the
above picture have an odd degree. Take one of these vertices, say one of the ones
of degree three. We could start at that vertex, and then arrive and leave later. But
then we can’t come back. So, every vertex with an odd degree has to be either
the beginning or the end of the pencil-path and thus we can have at most two odd
vertices. Therefore it is impossible to draw the above picture in one pencil stroke
without tracing some line twice.

This is the first recorded problem in graph theory, and W. Tutte, himself a
prominent graph-theorist, decided to celebrate the problem with a poem:

From Königsberg to König’s book
by William T. Tutte

Some citizens of Koenigsberg
Were walking on the strand
Beside the river Pregel
With its seven bridges spanned.

O, Euler, come and walk with us
Those burghers did beseech
We’ll walk the seven bridges o’er
And pass but once by each.

“It can’t be done” then Euler cried
“Here comes the Q.E.D.
Your islands are but vertices,
And all of odd degree.”

We shall now go for a more formal treatment of this and similar problems. We
shall first solve the general problem in case of oriented graphs, and then infer the
solution in case of undirected graphs.

Definition 3.1 A trail in a graph is a walk in which edges are not allowed to repeat.
An Eulerian trail in a graph is a trail that contains each edge of the graph precisely
once. A graph is said to beEulerian if it contains a closed Eulerian trail, Fig. 3.1.

Definition 3.2 Analogously, anoriented trail in a digraph is an oriented walk in
which edges are not allowed to repeat. AnEulerian trail in a digraph is an oriented
trail in the digraph that contains each edge of the digraph precisely once.A digraph
is said to beEulerian if it contains a closed Eulerian trail.
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(a) (b) (c)

Figure 3.1:(a) A graph with no Eulerian trail;(b) a non-eulerian graph with an
Eulerian trail;(c) an Eulerian graph

Lemma 3.3 Let D be a digraph with no isolated vertices and with the property that
δ−(v) = δ+(v) for everyv ∈ V(D). Then every vertex ofD belongs to a closed
oriented trail inD.

Proof. Let W = v e1 x1 . . .ek xk be the longest trail inD that
starts withv and let us show thatxk = v. Suppose to the con-
trary thatxk 6= v and assume thatxk appearsl > 1 times on
the trailW. Each appearance ofxk on W engages one edge
that leads intoxk and one edge that leads out ofxk, except for
the last appearance ofxk that engages one edge leading into
xk. Therefore,W containsl edges leading intoxk and l −1
edges leading out ofxk. Sinceδ−(xk) = δ+(xk), there exists
an edgee′ = (xk,u) ∈ E(D) that does not appear inW. Now,

v

u

xk

v e1 x1 . . .ek xk e′ u is a trail that starts fromv longer thatW. Contradiction. �

Theorem 3.4 Let D be a digraph with no isolated vertices. ThenD is an Eulerian
digraph if and only ifD is weakly connected andδ−(v) = δ+(v) for everyv ∈
V(D).

Proof. (⇒) Let D be an Eulerian digraph with no isolated vertices and consider
a closed Eulerian trailW in D. Walking alongW we can start from any vertex
in D and reach any other vertex inD which shows thatD is strongly, and hence
also weakly connected. The trailW can be partitioned into oriented cyclesC1,
. . . , Ck in such a way that every edge inD belongs to exactly one of the cycles
(Homework 3.1). Each vertex ofD appears onW, so each vertex belongs to at
least one of the cycles. Now, ifv ∈ V(D) lies on exactlyl of these cycles, then
δ−(v) = l = δ+(v) since every edge inW belongs to precisely one of the cycles
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C1, . . . ,Ck, and each of the cycles “absorbs” one edge that goes intov and one edge
that goes out ofv.

(⇐) Take anyv∈V(D). According to Lemma 3.3,v belongs to some closed
oriented trail inD. Let W be the longest closed oriented trail inD that containsv
and let us show thatW is an Eulerian trail inD.

Suppose thatW is not an Eulerian trail inD, i.e. E(W) ⊂ E(D). If V(W) =
V(D), take anye= (u,v) ∈ E(D) \E(W). If V(W) ⊂ V(D) then{V(W),V(D) \
V(W)} is a partition ofV(D) and sinceD is weakly connected there is an edge
e= (u,v) ∈ E(D) \E(W) such thatu∈ V(W) andv∈ V(D) \V(W) (or the other
way around; the proof is analogous). In any case, letS be the weak connected
component ofD−E(W) that containse. SinceW is a closed trail, it is easy to see
thatδ−

S (v) = δ+
S (v) for everyv∈V(S). Hence, by Lemma 3.3 there exists a closed

trail W′ in S that containsu. SinceE(W′) ⊆ E(S) ⊆ E(D) \E(W), it follows that
E(W′)∩E(W) = ∅, so glueingW andW′ at u provides a trail that containsv and
which is longer thanW. Contradiction. �

The characterisation of Eulerian graphs is similar, and the proof goes along the
same guidelines as in case of digraphs.

Theorem 3.5 Let G be a graph with no isolated vertices. ThenG is an Eulerian
graph if and only ifG is connected and each vertex ofG is even.

Proof. Analogous to the proof of Theorem 3.4. �

It is now easy to characterize noneulerian graphs that contain an Eulerian trail
(which therefore cannot be a closed Eulerian trail).

Theorem 3.6 Let G be a noneulerian graph with no isolated vertices. ThenG has
an Eulerian trail if and only if it is connected and has precisely two odd vertices.

Proof. (⇒) Let W be an Eulerian trail inG. SinceG is not Eulerian,W is not
closed. Denote the vertices it starts and ends with byu andv. Introduce a new
vertexx /∈V(G) and two new edges{x,u}, {x,v}, and apply Theorem 3.5.

(⇐) Let u andv be the odd vertices inG. Introduce a new vertexx /∈V(G) and
two new edges{x,u}, {x,v}, and apply Theorem 3.5. �

Finally, we conclude the section with another characterization of Eulerian graphs.

Theorem 3.7 Let G be a connected graph. ThenG is Eulerian if and only if every
edge ofG belongs to an odd number of cycles inG.
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Proof. We start by proving an auxiliary statement.

Claim. LetG be a connected noneulerian graph with an Eulerian trail and letu
andv be the only two odd vertices inG. Then the number of trails that start atu,
end inv and wherev appears only once (i.e. at the end of the trail) is odd.

Proof. The proof is by induction onm(G). The claim is true for connected
noneulerian graphs with an Eulerian trail that have 1, 2 and 3 edges. Suppose the
claim holds for all such graphs with< m edges, and letG be such a graph withm
edges. Furthermore, letu andv be the two odd vertices inG, let k = δ (u) and let
x1, . . . , xk be the neighbours ofu. For j ∈ {1, . . . ,k} let ej = {u,x j} and letTj be
the set of all the trailsu ej x j . . . v with the property thatv appears only at the end
of the trail. ThenT1∪ . . .∪Tk is the set of all the trails we are considering and we
have to show that|T1|+ . . .+ |Tk| is odd. Sincek is odd, it suffices to show that
every|Tj | is odd.

Take anyj ∈ {1, . . . ,k} and letG j =G−ej . The degree ofu in G j is even, sox j

andv are the only odd vertices inG j . This is why they have to belong to the same
connected component ofG j . The number of edges in this connected component is
strictly less thanm, so by the induction hypothesis the number of trails that start at
x j , end inv and containv only once is odd. It is easily seen that the number of such
trails equals|Tj |, and hence|Tj | is also odd. This completes the proof of the claim.

Let us now go back to the proof of the theorem.

(⇐) Let G be a connected graph that is not Eulerian. ThenG has an odd
vertexv. For an edgee incident tov let c(e) denote the number of cycles inG that
containe. Since each such cycle contains two edges that are adjacent tov, the sum
∑v∈ec(e) is even (= twice the number of cycles that pass throughv). But δ (v) is
odd, so this sum consists of an odd number of summands. Therefore, oneof the
summands has to be even, and thus there exists an edgee adjacent tov such that
c(e) is even.

(⇒) Let G be an Eulerian graph and lete= {u,v} ∈ E(G) be arbitrary. Ac-
cording to Exercise 3.13,e is not a cut-edge, soG−e is connected. Hence,G−e
is not Eulerian, but has an Eularian trail. Let this trail start atu and end inv. The
Claim now yields that there is an odd number of trails that start atu, end inv and
containv only once. IfS is one such trail which is not a path, thenScontains some
vertex more than once (for otherwiseSwould be a path). Letwi be the first vertex
in S that appears more than once inSand letwiei+1wi+1 . . .ejw j = wi be the short-
est cycle inS that containswi . “Mirroring” the cycle withinSproduces a new trail
S′ having the same properties asS:

S: ue1w1 . . .wi ei+1wi+1 . . . ej w j . . .ws−1esv
‖ ‖

S′ : ue1w1 . . .w j ej . . . wi+1ei+1 wi . . .ws−1esv
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Therefore, trails that start atu, end inv, containv only once and are not paths
appear in pairs. Hence, the number of such trails which are not paths is even.
But, we know that there is an odd number of trails with these properties, whence
follows that the number of paths connectingu andv in G−e is odd. Each of the
paths together withebuilds a cycle inG that containse. Therefore,ebelongs to an
odd number of cycles. �

3.2 Hamiltonian graphs

Sir William Rowan Hamilton, who was Astronomer Royal of Ireland, invented in
1857 a puzzle calledThe Travellers Dodecahedron or A Voyage Around the World.
It is not a true dodecahedron but is a “schematic” of a dodecahedron on a wooden
“mushroom”.

The 30 edges represent the only roads that one is allowed to pass along as one
visits the 20 vertices that represent cities. Two travellers were supposedto set off
visiting the cities: the first was supposed to pose a problem and start the tourby
visiting four cities that belong to the same face of the dodecahedron. The player
posing the problem then returns home and the other continues to travel around the
world trying to visit all the remaining cities only once, and eventaully return home.
The silk cord that accompanied the puzzle was used to mark the voyage and thus
prevent the voyager from visiting a city more than once.
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Until recently, only information we had onThe Travellers Dodecahedronwas
its description in a chapter on Hamilton’s Game in volume 2 of Édouard Lucas’
Récréations Mathématiquesand another mention in the 3rd edition of Ahrens’
German work on Recreational Mathematics. But then an example was recovered,
complete and in almost new condition.

In graph-theoretic terms the puzzle boils down to finding a spanning cycle of
the incidence graph of a dodecahedron. The graph shown in Fig. 3.2 is aplane
projection of a dodecahedron and we outlined a spanning cycle in this graph.

Definition 3.8 A Hamiltonian pathin a graph is a path that contains all vertices of
the graph. AHamiltonian cyclein a graph is a cycle that contains all vertices of
the graph. A graph is calledHamiltonianif it has a Hamiltonian cycle.

In comparison with Eulerian graphs, Hamiltonian graphs are much more hard
to grasp. There is no “useful” characterisation of Hamiltonian graphs andwe shall
see in the next section that there is a justification for this: deciding whether a graph
is Hamiltonian is one of the most complicated computational problems. We will
actually show that this decision problem is NP-complete (for the moment, think of
this as “extremely hard”).
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Figure 3.2: A solution to The Travellers Dodecahedron is a spaning cycle of the
incidence graph of the dodecahedron

Theorem 3.9 Let G be a Hamiltonian graph and∅ 6= S⊂V(G) a nonempty set of
vertices ofG. Thenω(G−S)6 |S|.

Proof. Let C be a Hamiltonian cycle ofG. Then ω(C−S) > ω(G−S) since
G−Shas more edges thanC−S, and they might connect some of the connected
components ofC−S together. On the other hand, it is easy to see thatω(C−S)6
|S|. Therefore,ω(G−S)6 |S|. �

Theorem 3.9 is useful when it comes to showing that a graph isnot Hamilto-
nian.

Corollary 3.10 Hamiltonian graphs have no cut-vertices and no cut-edges.

Proof. If v is a cut-vertex of a graphG thenω(G− v) > 2> |{v}|. Theorem 3.9
now implies thatG is not Hamiltonian. We leave the cut-edges as Homework 3.5.
�

We have already mentioned that there is no “useful” characterisation of Hamil-
tonian graphs. However, it is generally accepted that the best characterization of
Hamiltonian graphs was given in 1972 by Bondy and Chvátal who generalized ear-
lier results by G. A. Dirac and O. Ore. The idea behind their result is that a graph
is Hamiltonian if enough edges exist.

If u,v are nonadjacent vertices inG ande= {u,v}, then byG+e we denote
the graph obtained by adding the edgee to G.
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The closure of a graphG is a graph on the same set of vertices constructed as
follows. Define a sequence of graphsG0, G1, . . . , byG0 = G and

Gi+1 =







Gi +e, wheree /∈ E(Gi) joins two nonadjacent vertices

u,v∈V(Gi) such thatδGi (u)+δGi (v)> n(Gi),

Gi , if no such pair of vertices exists.

Since we leave the set of vertices fixed and add new edges whenever possible, there
exists ak such thatGk = Gk+ j for all j > 1. Then the graphGk is called theclosure
of G and denoted by cl(G).

Theorem 3.11 (Bondy, Chvátal 1972)A graphG is Hamiltonian if and only if
cl(G) is Hamiltonian.

Proof. If G is Hamiltonian, then so is cl(G) sinceE(G) ⊆ E(cl(G)). For the
converse, suppose thatG is not Hamiltonian but that cl(G) is Hamiltonian. Then
there exists a graphGi in the sequenceG= G0, G1, . . . ,Gk = cl(G) defining cl(G)
such thatGi is not Hamiltonian andGi+1 is Hamiltonian. LetGi+1 = Gi +ewhere
e= {u,v}. Then by the construction,u andv are not adjacent andδGi (u)+δGi (v)>
n.

SinceGi + e is Hamiltonian andGi is not, it follows that each Hamiltonian
cycle in Gi +e passes throughe. Take any Hamiltonian cycleC in Gi +e. Then
e∈ E(C) and henceC−e is a Hamiltonian pathu = x1 x2 . . . xn−1 xn = v in Gi .
Now it is easy to see that ifu is adjacent tox j for somej > 1 thenv is not adjacent
to x j−1 for otherwise we would have a Hamiltonian cycle inGi :

u=x1 x2 x j−1 x j xn−1 xn= v

Therefore, ifδGi (u)= k thenδGi (v)6 n−(1+k) sincev is not adjacent to itself,
nor is it adjacent to predecessors of thek neighbours ofu. HenceδGi (u)+δGi (v)6
n−1. Contradiction. �
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Corollary 3.12 Let G be a graph withn vertices.

(a) If δ (u)+ δ (v) > n wheneveru andv are distinct, nonadjacent vertices ofG
thenG is Hamiltonian. (O. Ore 1960)

(b) If δ (u)>
n
2

for all u∈V(G) thenG is Hamiltonian. (G. A. Dirac 1952)

All these statements have their analogues for digraphs. We shall, however, treat
only tournaments to show how very special digraphs they are.

Definition 3.13 A Hamiltonian pathin a digraph is an oriented path that contains
all vertices of the digraph. AHamiltonian cyclein a digraph is an oriented cycle
that contains all vertices of the digraph. A digraph is calledHamiltonianif it has a
Hamiltonian cycle.

Theorem 3.14 (Rédei)Every tournament has a Hamiltonian path.

Proof. The proof is by induction on the number of vertices in the tournament. The
statement is easily seen to be true in case of tournaments with 2 and 3 vertices.
Assume now that every tournament with less thann vertices has a Hamiltonian
path, and letT be a tournament onn vertices,V(T)= {x1, . . . ,xn}. By the induction
hypothesisT ′ = T−x1 has a Hamiltonian pathxi2 xi3 . . . xin. If x1 → xi2 or xin → x1,
the Hamiltonian path ofT ′ easily extends to a Hamiltonian path ofT. If, however,
x1 6→ xi2 andxin 6→ x1 thenxi2 → x1 andx1 → xin. It is easy to see that there exists
ans such thatxis → x1 → xis+1:

xi2 xis xis+1 xin

x1

soxi2 . . . xis x1 xis+1 . . . xin is a Hamiltonian path forT. �

Theorem 3.15 A tournament is Hamiltonian if and only if it is strongly connected.

Proof. (⇒) If a tournament is Hamiltonian, then walking along the Hamiltonian
cycle we can get from every vertex of the tournament to every other vertex. Hence,
the tournament is strongly connected.

(⇐) Let T be a strongly connected tournament. ThenT is not transitive and
hence contains an oriented cycle. LetC= x0 → x1 → . . .→ xk → x0 be the longest
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oriented cycle inT and let us show thatV(C) =V(T). Suppose to the contrary that
V(C) ⊂V(T). Then{V(C),B} is a partition ofV(T), whereB=V(T)\V(C). If
there exists ay∈ B such thatE(V(C),{y}) 6=∅ andE({y},V(C)) 6=∅ then there
exists an indexi such thatxi → y→ xi+1:

xi xi+1

y

x0 xk

andx0 → . . .→ xi → y→ xi+1 → . . .→ xk → x0 is an oriented cycle inT which is
longer thanC. Contradiction.

Therefore, for eachy∈ B eitherE(V(C),{y}) = ∅ or E({y},V(C)) = ∅. Let
Y = {y∈ B : E(V(C),{y}) =∅} andZ = {z∈ B : E({z},V(C)) =∅}. SinceT is
strongly connected it follows thatY 6=∅, Z 6=∅ andE(Z,Y) 6= 0. Takez∈ Z and
y∈Y such thatz→ y. FromE(V(C),{y}) =∅ it follows thaty→ xi for all i.

x0 xkx1

z

y

Similarly, xi → z for all i, sox0 → z→ y→ x1 → . . .→ xk → x0 is an oriented cycle
in T and it is longer thanC. Contradiction. Therefore,V(C) = V(T), soT is a
Hamiltonian tournament. �

A careful analysis of the previous proof reveals that we can actually prove
much more.

Theorem 3.16 (Camion 1959)Let T be a Hamiltonian tournament withn ver-
tices. For every vertexv∈ V(T) and everyk ∈ {3, . . . ,n} there exists an oriented
cycle of lengthk that containsv.
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3.3 Complexity issues

In this section we consider the computational complexity of deciding whether a
graph has a Hamiltonian cycle. We show that this decision problem not only falls
into theNP complexity class, but that it is anNP-complete problem, i.e. a paradigm
of anNP-hard problem.

The notion of an algorithm (= ”effective procedure”) was recognised as one of
the essential notions in mathematics as early as 1928 when D. Hilbert and W. Ack-
ermann published their influential booklet “Grundzüge der theoretischenLogik” in
which they posed a problem of finding an algorithm (whatever that might mean)
which decides whether a first-order sentence is a consequence of the axioms of
arithmetic. At that time there was no formal notion of an algorithm, so the problem
was actually twofold: on the “philosophical” level it was required to introduce the
precise definition of an algorithm, while on the mathematical level the definition
should have been used in solving the particular problem of mathematical logic.
The problem (both on the philosophical and the mathematical level) was indepen-
dently solved in 1936 by A. Church and A. Turing. Although Church’s solution
was published a few months ahead of Turing’s, the approach taken by A.Turing
is more intuitive, and constitues a basis of what is today known as Computability
Theory.

We shall not present a formal definition of a Turing machine. For our purposes
it suffices to say that aTuring machineis a mathematical model of a computer
program written for a modern computer with infinite memory. Since computers
actually operate on finite 01-words we shall takeΣ = {0,1} as the alphabet in
which to carry out our considerations. LetΣ∗ denote the set of all finite 01-words,
together with the empty wordε. By |w| we denote the length ofw∈Σ∗. A language
is any setL ⊆ Σ∗ of 01-words. In particular, for every graphG there is a 01-word
〈G〉 representing the graph, so we also have the languageG = {〈G〉 : G is a graph}.

A computer programA can take any 01-wordw as its input, but may fail to
produce an output. Hence, each computer programA corresponds to a function
Â : Σ∗ → Σ∗∪{∞} such that

Â(w) =







u, A takesw as its input and after a finite number of computation
steps stops and printsu as a result;

∞, A never stops on inputw.

For a computer programA and a wordw∈ Σ∗ let

tA(w) =

{

n, A takesw as its input and stops aftern computation steps;

∞, A never stops on inputw.
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A computer programA runs in polynomial timeif there exists a positive integerk
such thattA(w) = O(|w|k) whenever̂A(w) 6= ∞.

The complexity classP. A languageL ⊆ Σ∗ is decidableif there exists a com-
puter programA such that̂A : Σ∗ →{0,1} and

L = {w∈ Σ∗ : Â(w) = 1}.

(Note that the computer program which decides a language stops on all inputs
and outputs 0 or 1.) The languageL ⊆ Σ∗ is decidable in polynomial timeif there
exists a computer programAwich runs in polynomial time such that̂A : Σ∗→{0,1}
andL = {w∈ Σ∗ : Â(w) = 1}.

Definition 3.17 The complexity classP consists of all languages overΣ = {0,1}
that are decidable in polynomial time:

P = {L ⊆ Σ∗ : L is decidable in polynomial time}.

Equivalently, the complexity classP consists of all problems that can be solved
in polynomial time. Indeed, given an problemQ it suffices to encode each instance
I of the problem by a 01-word〈I〉 and consider the languageLQ = {〈I〉 : I is an
instance ofQ}. Then each instanceI of the problem can be solved in polynomial
time (where the degree of the polynomial does not depend on the instance) ifand
only if LQ is decidable in polynomial time. For example, the problem of deciding
in polynomial time whether a graph is connected corresponds to polynomial de-
cidability of the languageLconn= {〈G〉 : G is a connected graph}. For some other
problems the transformation problem→ languagemay not be so obvious.

The complexity classNP. Instead of requiring a computer program to solve a
problem, we might only wish to pull a solution out of a sleeve and verify that then
solution is indeed a solution to a problem. Averification algorithmis a computer
programA with two inputs such that̂A : Σ∗×Σ∗ → {0,1}. If there exists a posi-
tive integerk such thattA(p,s) = O((|p|+ |s|)k) for all p,s∈ Σ∗ we say thatA is
a polynomial verification algorithm. A languageL is verified by a verification
algorithmA if

L = {p∈ Σ∗ : ∃s∈ Σ∗ (Â(p,s) = 1)}.
A languageL ⊆Σ∗ is verifiable in polynomial timeif there exists a positive integer
c and a polynomial verification algorithmA such that

L = {p∈ Σ∗ : ∃s∈ Σ∗ (|s|6 |p|c andÂ(p,s) = 1)}.
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Definition 3.18 The complexity classNP consists of all languages overΣ= {0,1}
that are verifiable in polynomial time:

NP = {L ⊆ Σ∗ : L is verifiable in polynomial time}.

Equivalently, the complexity classNP consists of problems for which it is easy
to check whether what we claim to be a solution is indeed a solution. For example,
LHam = {〈G〉 : G is a Hamiltonian graph} is in NP since given a graphG and a
sequence of verticesx1, . . . ,xn it is easy to check whetherx1, . . . ,xn is a Hamiltonian
cycle ofG.

Theorem 3.19 P ⊆ NP.

Proof. Take anyL ∈ P. ThenL = {w ∈ Σ∗ : Â(w) = 1} for some computer
programA that decidesL in polynomial time. Now take a verification algorithm
B : Σ∗×Σ∗ → {0,1} so thatB̂(p,s) = Â(p). ThenB clearly verifiesL in polyno-
mial time, soL ∈ NP. �

The exact relationship betweenP andNP is still unknown. It is strongly be-
lieved thatP 6= NP, but we still haven’t got a proof. The problem is actually so
important that the Clay Mathematics Institute is offering a USD 1,000,000 prize for
the correct solution.1 Apart from the prize, the importance of the problem is also
reflected by the fact that the security of RSA, the most widely used crypto-system,
depends onP 6= NP. If it turns out thatP = NP the security of all transactions
based on RSA, PGP and the such will be broken and many aspects of our everyday
life would have to change.

Polynomial reducibility and NP-completeness. We say that a languageL1 ⊆
Σ∗ is polynomially reducibleto a languageL2 ⊆ Σ∗, and writeL1 4p L2, if there
exists a computer programA which runs in polynomial time such that̂A : Σ∗ → Σ∗

and

w∈ L1 if and only if Â(w) ∈ L2.

Intuitively, regarding polynomial-time as “easy”, this means: if there is a polyno-
mial reduction fromL1 to L2, thenL1 cannot be harder thanL2.

Theorem 3.20 If L ∈ P andL ′ 4p L thenL ′ ∈ P.

1http://www.claymath.org/millennium/P_vs_NP/
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Proof. If A is a computer program that decidesL in polynomial time, and ifB
is a computer program that reducesL ′ to L in polynomial time, thenB◦A is a
computer program that decidesL ′ in polynomial time, soL ′ ∈ P. �

Definition 3.21 A languageL ⊆ Σ∗ is NP-hard if L ′ 4p L for everyL ′ ∈ NP.
A languageL ⊆ Σ∗ is NP-completeif it is NP-hard and belongs toNP.

An NP-complete problem is a paradigm of anNP-problem. Moreover, if one
of them happens to be inP thenP = NP:

Theorem 3.22 Let L be anNP-complete language. IfL ∈ P thenP = NP.

Proof. Suppose thatL is anNP-complete language such thatL ∈ P. Take any
L ′ ∈ NP. SinceL is NP-hard, it follows thatL ′ 4p L and thusL ′ ∈ P by
Theorem 3.20. This shows thatNP ⊆ P. �

The first hands-onNP-complete problem was discovered in 1971 by S. Cook.
A Boolean formulais a formula built up from Boolean variablesx1, . . . , xn (each
of which can take the valuestrueor false) and Boolean connectives¬, ∧ and∨. A
Boolean formulaF(x1, . . . ,xn) is said to be in aconjunctive form(CF for short) if
it has the form

F(x1, . . . ,xn) =C1(x1, . . . ,xn)∧C2(x1, . . . ,xn)∧ . . .∧Ck(x1, . . . ,xn)

where each clauseCi(x1, . . . ,xn) is a disjuction of literals

Ci(x1, . . . ,xn) = (l i1∨ l i2∨ . . .∨ l imi )

and each literall i j is a variablexi j or a negated variable¬xi j . It is a well known
fact from Boolean logic that every Boolean formula is equivalent to a CF Boolean
formula.

A Boolean formulaF(x1, . . . ,xn) is satisfiableif there exists an assignment
τ : {x1, . . . ,xn} → {true, false} of truth values to variables such thatτ(F) = true,
that is,F evaluates totrue under the assignmentτ. Let us fix a systematic way
of encoding CF Boolean formulas by 01-words and let〈F〉 denote an encoding
of F . Let us denote the language that corresponds to satisfiable Boolean formulas
by SAT:

SAT= {〈F〉 : F is a satisfiable CF Boolean formula}.

Theorem 3.23 (Cook 1971)SATis NP-complete.
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Now that we have an expliciteNP-complete problem, it gives us a strategy to
show that other problems are alsoNP-complete: if anNP-complete problem is
polynomially reducible to some other problem, this new problem also has to be
NP-complete.

Theorem 3.24 If L is anNP-complete language and ifL ′ ∈NP has the property
thatL 4p L ′ thenL ′ is alsoNP-complete.

Proof. This is an immediate consequence of the fact that4p is transitive. �

Therefore, in order to show that finding a Hamiltonian cycle in a graph is an
NP-complete problem, it suffices to show thatSATis polynomially reducible to it.
In this particular case, working with digraphs turns out to be easier than working
with graphs, so we introduce the two languages:

• HAMG= {〈G〉 : G is a Hamiltonian graph}, which is a 01-language that en-
codes Hamiltonian graphs, and

• HAMD = {〈D〉 : D is a Hamiltonian digraph}, which is a 01-language that
encodes Hamiltonian digraphs,

and carry out the proof in two steps:

• we first show thatHAMG4p HAMD andHAMD4p HAMG; and then

• we show thatSAT4p HAMD.

Lemma 3.25 HAMG4p HAMD andHAMD4p HAMG.

Proof. For every graphG = (V,E) let DG = (V,E′) denote the digraph with the
same set of vertices whose set of edges is

E′ = {(u,v) ∈V2 : {u,v} ∈ E}.

Clearly, there exists a polynomial algorithm that converts〈G〉 to 〈DG〉 and it is easy
to see thatG is a Hamiltonian graph if and only ifDG is a Hamiltonian digraph
(Homework 3.11). Therefore,HAMG4p HAMD.

Now, letD = (V,E) be a digraph and letGD = (V ′,E′) be a graph constructed
from D as follows. For eachv ∈ V we add three verticesv0,v1,v2 to V ′ and two
edges{v0,v1} and {v1,v2} to E′ replacing thus each vertex ofD by a path of
length 2 inGD. Moreover, for each edge(u,v) in E we add an edge{u2,v0} to
E′. An illustration of this proces is given in Fig. 3.3. Clearly,|V ′| = 3|V| and
|E′| = |E|+2|V|, so the reduction is polynomial. It is also easy to see thatD is a
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u

v

w

x u0 u1 u2 x2x1x0

v2v1v0

w0 w1 w2

x

w

v

u

w2w1w0

v0 v1 v2

x0 x1 x2u2u1u0

Figure 3.3: Two digraphs and their associated graphs

Hamiltonian digraph if and only ifGD is a Hamiltonian graph (Homework 3.11).
Therefore,HAMD4p HAMG. �

Theorem 3.26 HAMG is NP-complete.

Proof. According to Theorem 3.24 it suffices to show thatSAT4p HAMG. We shall
actually show thatSAT4p HAMD and then useHAMD4p HAMG established in
Lemma 3.25. Therefore, for every Boolean formulaF(x1, . . . ,xn) in CF we have to
construct a not too complicated digraphDF such thatF is satisfiable if and only if
DF has an oriented Hamiltonian cycle.

Let F(x1, . . . ,xn) be a Boolean formula given in its conjunctive form:

F(x1, . . . ,xn) =C1(x1, . . . ,xn)∧C2(x1, . . . ,xn)∧ . . .∧Ck(x1, . . . ,xn).

Recall that each clauseCi(x1, . . . ,xn) is a disjuction of literals

Ci(x1, . . . ,xn) = (l i1∨ l i2∨ . . .∨ l imi )

and each literall i j is a variablexi j or a negated variable¬xi j . We construct a
digraphDF with 2nk+ k vertices as follows. For each variablexi we have 2k
verticesui1, vi1, ui2, vi2, . . . , uik, vik, and for each clauseCi we have a vertexci .
The verticesui j , vi j are connected by edges as in Fig. 3.4. We choose a direction,
say from left to right, and say that thatxi evaluates totrue if we traverse vertices
that correspond toxi in that direction, while it evaluates to false if we traverse the
vertices that correspond toxi in the oposite direction.
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x1 →

x2 →

...

xn →

u11 v11 u12 v12 u1k v1k

u21 v21 u22 v22 u2k v2k

un1 vn1 un2 vn2 unk vnk

c1 c2 ck. . .

. . . . . .

. . . . . .

. . . . . .

...
...

...
...

...
...

true

Figure 3.4: The construction of the digraphDF , Part I: vertices that correspond to
variables



20 CHAPTER 3. EULERIAN AND HAMILTONIAN GRAPHS

x1 →

x2 →

xn →

u11 v11 u12 v12 u13 v13

u21 v21 u22 v22 u23 v23

u41 v41 u42 v42 u43 v43

c1 c2 c3

x3 → v31u31 u32 u33v32 v33

true

Figure 3.5: The construction of the digraphDF , Part II: vertices that correspond to
clauses

Next, we describe how to connect vertices that correspont to clauses tovertices
that correspond to variables. If a variablexi appears in a clauseCj and it is not
negated inCj , we add the edgesui j → c j andc j → vi j . If, however,xi is negated
in Cj we add the edgesvi j → c j andc j → ui j . So, if a variablexi is not negated
in a clauseCj we add edges that go “in the direction of truth”. Ifxi is negated in
Cj , we add edges that go “in the direction oposite of truth”. An example is given
in Fig. 3.5 (for clarity, the figure indicates only the edges incident to verticesthat
represent clauses; edges connectingui j ’s to vi j ’s have been omitted). The digraph
in Fig. 3.5 corresponds to the boolean formulaF(x1,x2,x3,x4)=C1∧C2∧C3 where
C1 = x1∨x2∨x4, C2 = ¬x2∨x3 andC3 = ¬x1∨x3. The full graph that represents
F is given in Fig. 3.6.

It is easy to see that this construction can be carried out in polynomial time. Let
us finally show thatF is satisfiable if and only ifDF has an oriented Hamiltonian
cycle. Recall that traversing a row of vertices that corresponds toxi from left to
right meansτ(xi) = true while traversing from right to left meansτ(xi) = false.
The idea is that an oriented Hamiltonian cycle through the digraph representsan
assignment of truth values to the variablesx1, . . . ,xn.

Assume the formulaF is satisfiable by some truth assignmentτ. Choose one
true literal in each clause, traverse the graph moving across each variableŠs path
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x1 →

x2 →

xn →

u11 v11 u12 v12 u13 v13

u21 v21 u22 v22 u23 v23

u41 v41 u42 v42 u43 v43

c1 c2 c3

x3 → v31u31 u32 u33v32 v33

true

Figure 3.6: The digraphDF for F(x1,x2,x3,x4) = (x1 ∨ x2 ∨ x4)∧ (¬x2 ∨ x3)∧
(¬x1∨x3)
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in the appropriate direction, and take a diversion to a clause-node for each literal
chosen above. This oriented path is a Hamiltonian cycle.

Conversely, suppose there exists an oriented Hamiltonian cycleH in DF . Then
H traverses each variableŠs row either from left to right or from right to left and
thus determines an assignment of truth valuesτ to variables. Each clause-node is
visited by a side-trip from a variable row. This variable corresponds to a true literal
in the clause. Hence, each clause evaluates totrueunderτ and henceτ(F) = true,
i.e.F is a satisfiable formula. �

Homework

3.1. Let D be an Eulerian digraph. Prove that each closed Eulerian trail inD
can be partitioned into oriented cycles in such a way that every edge ofD
belongs to exactly one of the cycles. (Hint: use induction on the length of
the trail.)

3.2. Prove Theorem 3.5.

3.3. Complete the proof of Theorem 3.6.

3.4. There are five regular polyhedra: tetrahedron, hexahedron, octahedron,
dodecahedron and icosahedron (Fig. 3.7). Which of them could have been
used instead of the dodecahedron in the Hamilton’s Voyage Around the
World puzzle?

3.5. Complete the proof of Corollary 3.10.

3.6. Prove Corollary 3.12. (Hint: for(a) show that cl(G) is a complete graph
and use the Bondy-Chvátal Theorem;(b) follows from (a).)

3.7. (Ore 1960) LetG be a graph withn vertices. Ifδ (u)+δ (v)> n−1 when-
everu andv are distinct, nonadjacent vertices ofG thenG has a Hamilto-
nian path. (Hint: add a new vertex toG and connect it by an edge to every
vertex ofG; show that the new graph is Hamiltonian using a similar result
for Hamiltonian graphs.)

3.8. Show that a transitive tournament has exactly one Hamiltonian path.

3.9. Show that each tournament which is not strongly connected can be turned
into a strongly connected tournament by changing the orientation of only
one edge.

3.10. Prove Theorem 3.16. (Hint: induction onk using the fact that a Hamilto-
nian tournament is strongly connected; fork= 3 show thatE(O(v), I(v)) 6=
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Figure 3.7: The five regular polyhedra

∅; for the induction step modify slightly the idea used in the proof of The-
orem 3.15.)

3.11. Complete the proof of Lemma 3.25 by showing that

• G is a Hamiltonian graph if and only ifDG is a Hamiltonian di-
graph; and

• D is a Hamiltonian digraph if and only ifGD is a Hamiltonian graph.

Exercises

3.12. (a) For eachn > 2 give an example of a graph withn vertices which is
neither Eulerian nor Hamiltonian.

(b) For eachn > 3 give an example of a graph withn vertices which is
both Eulerian and Hamiltonian.

(c) For eachn> 4 give an example of a Hamiltonian graph withn vertices
which is not Eulerian.
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Figure 3.8: Exercise 3.19

(d) For eachn> 5 give an example of an Eulerian graph withn vertices
which is not Hamiltonian.

3.13. Prove that an Eulerian graph with no isolated vertices has no cut-edges.

3.14. For a digraphD and a set of edgesF ⊆E(D) letW be the set of all vertices
of D incident to an edge inF and letD[F] = (W,F) denote thesubdigraph
of D induced by F.

Let D be a weakly connected digraph. Prove thatD is Eulerian if and only
if there exists a partition{F1, . . . , Fk} of E(D) such that eachD[Fi ] is an
oriented cycle.

3.15. Let A be a finite set with at least three elements. OnV =P(A)\{∅,A} as
a set of vertices we define a graphG as follows: two proper subsetsX and
Y of A are adjacent if and only ifX ⊂Y or Y ⊂ X (i.e., if and only if one
of them is a proper subset of the other one). Show thatG is an Eulerian
graph.

3.16. Let G be an Eulerian graph with no isolated vertices and withn(G) odd.
If ∆(G)6 ⌊n

2⌋ show thatG is an Eulerian graph.

3.17. Let G be a connected Eulerian graph with no isolated vertices and with
n(G) odd. If d(G)> 3 show thatG is an Eulerian graph.

3.18. Let G be a connected graph with 2k odd vertices. Show thatE(G) can be
partitioned intok edge-disjoint trails.

3.19. Is it possible to partition the edge-set of the graph in Fig. 3.8 into five
edge-disjoint paths of legth 8?

3.20. Which of the graphs in Fig. 3.9 are Hamiltonian?

3.21. (a) Let G be a bipartite Hamiltonian graph and let{X,Y} be a partition
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(b) (c) (d)

(a)

Figure 3.9: Exercise 3.20

of the set of its vertices that demonstrates thatG is bipartite. Show that
|X|= |Y|.

(b) Is the graph in Fig. 3.10 Hamiltonian?

3.22. A vertex cover of a graphG is a set of verticesW ⊆V(G) such that every
edge inG is incident to a vertex fromW. Show that ifG has a vertex cover
W such that|W|< 1

2n(G) thenG is not Hamiltonian.

3.23. Let G be a graph withn vertices andm edges such thatm>
(n−1

2

)
+ 2.

Show thatG is a Hamiltonian graph.

Figure 3.10: Exercise 3.21
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3.24. Show that the complement of a regular disconnected graph is a Hamilto-
nian graph.

3.25. Show that a hypercube of dimensionk> 2 is a Hamiltonian graph.

3.26. Show that every strongly connected tournament withn > 4 vertices con-
tains a vertexv such that after changing the orientation of all the edges
incident tov we again obtain a strongly connected tournament.

3.27. Show that a strongly connected tournament withn > 3 vertices has at
leastn− 2 oriented triangles. (An oriented triange is an oriented cycle
of length 3.)

†3.28. Let s1 6 s2 6 . . . 6 sn be the scores in a tournamentT with n vertices. If
sn− s1 <

n
2, show thatT is a Hamiltonian tournament. (Hint: show that

sj −si <
n
2 wheneveri < j and conclude thatT is strongly connected.)



Chapter 4

Introduction to Clones

Boolean logic (or propositional logic as we prefer to call it) is named after George
Boole, a professor at University College Cork, who first thought about an algebraic
system of logic in the chapter “Of Hypotheticals” of his 1847 book “The Mathe-
matical Analysis of Logic”.

The ideas of George Boole (that can be traced back to Leibniz, actually) have
reached their final form in the formalisation of mathematical logic at the beginning
of the 20th century, which, among other things, lead to the clear distinction between
the syntaxand thesemanticsof logical systems. In case of Boolean logic, the
syntactic part consists of propositional formulas, while the semantics is provided
by Boolean functions, e.g.

p∨ (q∧¬r) vs.

p q r f (p,q, r)
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

It is an easy obsetvation that every Boolean functionf (x1, . . . ,xn) in n un-
knowns which is not identically equal to 0 can be represented by a formula of the
propositional calculus as follows:

f (x1, . . . ,xn) =
∨

ε1,...,εn:
f (ε1,...,εn)=1

xε1
1 ∧ . . .∧xεn

n

1
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where

xε is a replacement for

{

x if ε = 1,

¬x if ε = 0.

(If f is identically equal to 0 thenf (x1, . . . ,xn) = x1∧¬x1.) Therefore,{∧,∨,¬}
is a completeset of Boolean operations in the sense that every Boolean function
can be “obtained from{∧,∨,¬}” using superpositions and usual manipulation of
variables.

Are there any other complete sets of Boolean functions? Well, clearly{¬,∧},
{¬,∨} and{¬,⇒} are complete.

It is usually tedious but easy to show that a certain set is complete. But how
can one show that some set of Boolean functions isnot complete?

Example 4.1 (a) {∧,∨} is not complete: since 0∧0= 0∨0= 0, every functionf
that can be obtained from these two functions also fulfillsf (0, . . . ,0) = 0. There-
fore,¬ cannot be obtained from∧ and∨.

(b) {⇒} is not complete: since 1⇒ 1 = 1, every functionf that can be ob-
tained from this function has the property thatf (1, . . . ,1) = 1. Therefore,¬ cannot
be obtained from⇒.

(c) {¬,⇔} is not complete. To see this, note that¬x = 1+ x andx⇔ y =
1+x+y, where+ is the addition inGF(2). Now it is easy to show that if a function
f can be obtained from¬ and⇔ then f (x1, . . . ,xn) = b+a1x1+ . . .+anxn for some
b,a1, . . . ,an ∈ {0,1}. On the other hand,x∧y is not of this form, so{¬,⇔} is not
complete.

Problem 4.2 (a) Make precise the meaning of the phrase “a function can be ‘ob-
tained’ from a set of functions”.

(b) Given a set of functionsF , decide whetherF is complete.

Our major reference for general clone theory is [48], and we rely on [61] for
the applications of clone theory in universal algebra. The section on abstract clones
follows the idea presented by B. Csákány in his addendum to the Hungariantrans-
lation of “A course in universal algebra” by S. Burris and H. P. Sankappanavar [15].
Most unreferenced statements in this text can be found (in this or a similar form)
in one of the three books.

4.1 Clones

Throughout this text,A is a finite set with at least two elements. LetO
(n)
A =AAn

be a

set of alln-ary operations onA, n> 1, andOA =
⋃

n>1O
(n)
A be the set of all finitary
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operations onA. The arity of an operationf is denoted by ar( f ). For F ⊆ OA let

F(n) = F ∩O
(n)
A .

Let πn
i denote thei-th n-ary projection:

πn
i (x1, . . . ,xi , . . . ,xn) = xi

and letΠA denote the set of all projections of all finite arities onA. Let f ∈
O

(n)
A andg1, . . . ,gn ∈ O

(m)
A . Thesuperposition of f and g1, . . . ,gn is an operation

h= f (g1, . . . ,gn) of arity mdefined by

h(x1, . . . ,xm) = f (g1(x1, . . . ,xm), . . . ,gn(x1, . . . ,xm)).

Definition 4.3 A setC⊆ OA is called aclone of operations on Aif

• ΠA⊆C, and

• for each f ,g1, . . . ,gn ∈C such that ar( f ) = n and ar(g1) = . . . = ar(gn), we
have f (g1, . . . ,gn) ∈C.

The legend says that the nameclonecame around 1936 from Marshall Hall
(1910–1990) as a convenient abbreviation for the “closed one”. The requirement
that the clone contain projections makes it easy to formalise “usual manipulations
with variables” as the following examples show.

Example 4.4 Let C be a clone andf (x,y,z,u,v) ∈C. Then

f (y,y,y,x,x) ∈C since f (y,y,y,x,x) = f (π5
2 ,π

5
2 ,π

5
2 ,π

5
1 ,π

5
1)(x,y,z,u,v),

f (z,x,u,y,v) ∈C since f (z,x,u,y,v) = f (π5
3 ,π5

1 ,π5
4 ,π5

2 ,π5
5)(x,y,z,u,v).

It is obvious that the intersection of an arbitrary family of clones is a clone.
So for anF ⊆ OA let Cln(F) denote the least clone that containsF . This clone
is said to begeneratedby F . A cloneC is said to befinitely generatedif C =
Cln({ f1, . . . , fn}) for somefi ∈ OA. Now it is easy to show:

Theorem 4.5 Let F ⊆ OA and letF be an algebraic type such thatA = (A,F) is
of typeF . Theng∈ Cln(F) if and only if there is anF -termt such thatg= tA .

Theorem 4.6 All clones of operations on a finite setA form an algebraic lattice
LA under set inclusion. The least element of the lattice isΠA, the greatest element
is OA, and the lattice operations are given by:

∧

α
Cα =

⋂

α
Cα , and

∨

α
Cα = Cln(

⋃

α
Cα).
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The last theorem tells us that it is possible to introduce and algebraic structure
on OA in such a way thatC ⊆ OA is a clone if and only if it is a subuniverse of
the algebra. Presenting such an algebra explicitely is easy. Consider the following
four operations onOA:

• for f ∈ O
(m)
A andg∈ O

(n)
A let

( f ∗g)(x1, . . . ,xm+n−1) = f (g(x1, . . . ,xn),xn+1, . . . ,xm+n−1);

• for f ∈ O
(1)
A let ζ f = τ f =△ f = f ;

• for f ∈ O
(n)
A , n> 2, let

(ζ f )(x1,x2, . . . ,xn) = f (x2, . . . ,xn,x1)

(τ f )(x1,x2,x3, . . . ,xn) = f (x2,x1,x3, . . . ,xn)

(△ f )(x1,x2, . . . ,xn−1) = f (x1,x1,x2, . . . ,xn−1).

The algebra(OA,∗,ζ ,τ ,△,π2
1) is referred to as theMal’cev algebra.

Theorem 4.7 A set C ⊆ OA is a clone if and only if it is a subuniverse of the
Mal’cev algebra.

Definition 4.8 A setF ⊆ OA is completeif Cln(F) = OA.

Now that we have firmly established the terminology, we can finally start look-
ing for a completeness criterion. First, one can easily show that

Proposition 4.9 A set F ⊆ OA is complete if and only ifF 6⊆C for every clone
C 6= OA.

Needless to say that this criterion is pretty useless. We are going to turn it
into a much more usefull criterion by focusing of some veryspecialclones. The
structure of the lattice of clones given in Theorem 4.6 suggests that the latticeof
clones could be dual-atomic, which actuallyis the case. The key argument is the
following statement due to Yablonskiı̌:

Theorem 4.10 (Yablonskǐı 1958, [66]) Let C be a clone on a finite set. ThenC is
finitely generated if and only if there exist maximal subclones ofC, every proper
subclone ofC is contained in a maximal subclone ofC and maximal subclones of
C are finite in number.
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The proof of this theorem requires some preparation. LetF ⊆OA andg∈O
(n)
A

for some integern> 1. We say thatan operation g preserves operations from Fif
g( f1, . . . , fn) ∈ F wheneverf1, . . . , fn ∈ F are of the same arity.

Lemma 4.11 Let n> 1 be an integer, letC be a clone and letF ⊂ C(n). There
exists at most one maximal subcloneD of C such thatD(n) = F .

Proof. Let D be a maximal subclone ofC such thatD(n) = F and let us show thatD
has to be unique. LetPC(F) be the set of all operations inC that preserve operations
from F and let us show thatD = PC(F).

It is easy to see thatPC(F) is a clone and thatD ⊆ PC(F) ⊆C. SinceD is a
maximal subclone ofC it follows that eitherD = PC(F) or PC(F) = C. Suppose
thatPC(F) =C and let us show that this leads to a contradiction. Take anyf ∈C(n).
Then f ∈C = PC(F), so f preserves operations fromF . According to the choice
of D we have thatF = D(n), soF containsπn

1 , . . . ,πn
n . Now, f preserves operations

from F , so f (πn
1 , . . . ,πn

n) ∈ F , i.e. f ∈ F . This shows thatC(n) ⊆ F – contradiction.
Therefore,PC(F) 6=C and the maximality ofD now yieldsPC(F) = D, which

shows thatD is uniquely determined byF . �

Let us now go back to the proof of Theorem 4.10.

Proof. (of Theorem 4.10)(⇐) Let D1, . . . , Dk be maximal proper subclones of
C. Take anyf1 ∈C\D1, . . . , fk ∈C\Dk and letF = { f1, . . . , fk}. FromF ⊆C
it follows that Cln(F) ⊆C. Now, if Cln(F) ⊂C, then it is a proper subclone ofC
and, by assumption, it is contained in a maximal subclone ofC, sayDi . But, this is
not possible, sincefi ∈ Cln(F)\Di . Therefore, Cln(F) =C.

(⇒) Assume thatC is finitely generated, say,C = Cln({ f1, . . . , fk}). SinceC
is finitely generated, it follows immediately that the union of every chain of proper
subclones ofC is again a proper subclone ofC, so by Zorn’s Lemma, we get that
maximal subclones ofC exist and that every proper subclone ofC is contained in a
maximal subclone ofC.

Let us now show that there are only finitely many maximal subclones ofC. Let
ni = ar( fi), N = max{n1, . . . ,nk}, let M be the set of all maximal subclones ofC
and consider the mapping

ϕ : M →P(O
(N)
A ) : D 7→ D(N).

Since Cln(C(N)) = C it follows thatD(N) ⊂C(N) for everyD ∈M . Lemma 4.11

now imples thatϕ is injective, so|M | 6 |P(O
(N)
A )|, andP(O

(N)
A ) is a finite set

due to the fact thatA is finite. �
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Theorem 4.12 OA is finitely generated.

Proof. If |A| = 2 we have seen at the very beginning thatOA is finitely gener-
ated. For|A|> 3 we follow the straightforward idea of Werner and Wille. Fix two
distinct elements fromA and call them 0 and 1. Fora∈ A let

ca(x) = a, and χa(x) =

{

1, x= a

0, x 6= a.

Choose binary operations+, · ∈O
(2)
A so that 0+x= x+0= 0,x·0= 0 andx·1= x

for all x∈ A. Then it is easy to see that

f (x1, . . . ,xn) = ∑
(a1,...,an)∈An

cf (a1,...,an)(x1) ·χa1(x1) ·χa2(x2) · . . . ·χan(xn).

Note that+ and · need not be associative, and that the representation is valid re-
gardless of the actual order of taking sums and taking products.

Therefore,OA can be generated by the following finite set of functions:{+, ·}∪
{ca : a∈ A}∪{χa : a∈ A}. �

Corollary 4.13 OA has maximal subclones, they are finite in number, and every
proper subclone ofOA is contained in one of the maximal subclones.

Definition 4.14 Maximal subclones ofOA are calledmaximal clones on A.

Finally, we come to a much better completeness criterion, which tells us that
in order to prove that a setF is complete, it suffices to check only finitely many
clones. Nevertheless, the result needs some more refinements.

Theorem 4.15 A setF ⊆ OA is complete if and only ifF 6⊆C for every maximal
cloneC onA.

We shall conclude this section by two important completeness criteria. The
Słupecki completeness criterion says that all unary operations together with an
essential operation (to be defined shortly) constitute a complete set. The theorem
of Webb, on the other hand, shows that there exist one-element complete sets.

We say that an operationf ∈ O
(n)
A depends on its i-th argumentif there exist

a,b,c1, . . . ,ci−1,ci+1, . . . ,cn ∈ A such thata 6= b and

f (c1, . . . ,ci−1,a,ci+1, . . . ,cn) 6= f (c1, . . . ,ci−1,b,ci+1, . . . ,cn).

An operation f is essentialif it is surjective and depends on at least two of its
arguments. Let im( f ) = f (An) denote the set of images off .
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Lemma 4.16 (The Main Lemma of Yablonskǐı, 1958 [66]) Assume thatf ∈ OA

depends on at least two arguments and letn= ar( f ).
(a) If |im( f )| > 3 then there existX1, . . . , Xn ⊆ A such that|Xi | 6 2 for all i,

and| f (X1, . . . ,Xn)|> 3.
(b) If |im( f )|= k> 3 then there existX1, . . . ,Xn⊆ A such that|Xi |6 k−1 for

all i, and| f (X1, . . . ,Xn)|= k.

Proof. Without loss of generality we may assume thatf depends on the first two
arguments.

(a) Since f depends on the first argument, there exista, a′, b2, . . . ,bn ∈ A such
that

f (a,b2, . . . ,bn) = p

f (a′,b2, . . . ,bn) = q 6= p.

Case 1: f(a,A, . . . ,A) 6= {p,q}. Since f depends on the second argument we
have| f (a,A, . . . ,A)| > 2, so there exists anr ∈ f (a,A, . . . ,A) \ {p,q}. Choosec2,
. . . ,cn ∈ A so that

f (a,c2, . . . ,cn) = r.

Now letX1= {a,a′}, X2= {b2,c2}, . . . ,Xn= {bn,cn}. Clearlyp,q, r ∈ f (X1, . . . ,Xn)
so| f (X1, . . . ,Xn)|> 3.

Case 2: f(a,A, . . . ,A) = {p,q}. From |im( f )| > 3 we know that there is an
r /∈ {p,q} andc1, . . . ,cn ∈ A such that

f (c1,c2, . . . ,cn) = r.

By the assumption,f (a,c2, . . . ,cn) ∈ {p,q} so without loss of generality we may
assume that

f (a,c2, . . . ,cn) = p.

But f (a,A, . . . ,A) = {p,q} whence follows that there existd2, . . . ,dn ∈ A so that

f (a,d2, . . . ,dn) = q.

Now letX1= {a,c1}, X2= {c2,d2}, . . . ,Xn= {cn,dn}. Clearlyp,q, r ∈ f (X1, . . . ,Xn)
so| f (X1, . . . ,Xn)|> 3.

(b) Let im( f ) = {a1, . . . ,ak}. According to(a) there existY1, . . . ,Yn⊆ A such
that |Yi | 6 2 and| f (Y1, . . . ,Yn)| > 3. Let a1,a2,a3 ∈ f (Y1, . . . ,Yn). For eachj > 4
chooseb j

1, . . . ,b
j
n ∈ A so that

f (b j
1, . . . ,b

j
n) = a j .
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Put Xi = Yi ∪ {b4
i , . . . ,b

k
i }, i ∈ {1, . . . ,n}. Then clearly|Xi | 6 k− 1 for all i and

f (X1, . . . ,Xn) = im( f ). �

Theorem 4.17 (Słupecki 1939, [57])Let |A|> 3 and letF ⊆OA. If F contains an

essential operation and ifO(1)
A ⊆ F , thenF is complete.

Theorem 4.18 (Webb 1935, [64])LetA= {0,1, . . . ,k−1} andx↑ y=max(x,y)+
1, where+ denotes addition modk. Then{↑} is a complete set of operations.

Proof. Let s(x) = x ↑ x= x+1. Then max(x,y) = sk−1(x ↑ y). Next, we can obtain
constant maps as

ca(x) = sa+1(max{sj(x) : j ∈ A}),
and characteristic functions as

χa(x) = s(max{sj(x) : j ∈ A anda+ j 6= k−1}) =
{

0, x 6= a

k−1, x= a

Next,
x= (k−1)−x= max{sk− j(max(χ j(x), j)) : j ∈ A}

and
min(x,y) = max(x,y).

The statement now follows by the same argument as in the proof of Theorem 4.12,
where we let max play the role of+, min the role of· andk−1 the role of 1. �

Definition 4.19 A Sheffer operationis any operationf ∈ OA such that{ f} is a
complete set.

Sheffer operations were named after H. M. Sheffer who in 1913 discovered a
Sheffer operationx ↑ y= ¬(x∧y) on {0,1} (see [56]). We see now thatOA has a
Sheffer operation wheneverA is a finite set with at least two elements.
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4.2 Galois connections

We have seen that in order to show that a certain set of operations is complete it
suffices to show how to produce operations from some other complete set of opera-
tions. But how does one show that a certain setF of functions isnotcomplete? The
idea is to find a propertyP which is preserved under superpositions, to show that
every operationf ∈ F has the propertyP, and to find an operationg which does
not have the property. Theng /∈ Cln(F) (since, by the choice ofP, every operation
in F has the propertyP) andF is not complete.

Example 4.20 (a) Let A= {1, . . . ,n} and let min(x,y), max(x,y) denote the usual
binary minimum and maximum operations on integers. To show that{min,max}
is not complete, if suffices to note that min(1,1) = max(1,1) = 1 and hence for
every f ∈ Cln(min,max) we havef (1, . . . ,1) = 1. On the other hand, the constant
mapcn(x) = n does not have this property.

(b) Let A= {0,1, . . . , p−1} wherep is an odd prime and let+ be the addition
mod p. Let∼ x = 1+ x and let us show that{∼,+} is not complete. For every
f ∈ Cln(∼,+) there area1, . . . ,an,b ∈ A such thatf (x1, . . . ,xn) = a1x1 + a2x2 +
. . .+anxn+b whence follows that min/∈ Cln(∼,+).

The standard approach is to encode properties by finitary relations and then
interpret “f has propertyP” by “ f preserves (an appropriately chosen relation)ρ”.

LetR(h)
A =P(Ah) denote the set of allh-ary relations onA and letRA =

⋃

h>1R
(h)
A

be the set of all finitary relations onA. If ρ ∈R
(h)
A andρ 6=∅, we write ar(ρ) = h.

We take ar(∅) = 0.

Definition 4.21 An operationf ∈ O
(n)
A preservesa relationρ ∈R

(h)
A if








a11

a21
...

ah1







∈ ρ,








a12

a22
...

ah2







∈ ρ, . . . ,








a1n

a2n
...

ahn







∈ ρ implies








f (a11,a12, . . . ,a1n)
f (a21,a22, . . . ,a2n)

...
f (ah1,ah2, . . . ,ahn)







∈ ρ,

or, equivalently, ifρ is a subuniverse of(A, f )h. We also say thatρ is aninvariant
relationof f .

Example 4.22 (a) Let6 be a partial order onA. Then “f preserves6” is equiva-
lent to the fact thatf is monotonous with respect to6.

(b) “ f preserves{a}” is equivalent tof (a, . . . ,a) = a.
(c) If ε is an equivalence relation onA then “f preservesε” is equivalent toε

being a congruence of(A, f ).



10 CHAPTER 4. INTRODUCTION TO CLONES

Let O andR be nonempty sets and letρ ⊆ O×R be a binary relation. Define−→ρ : P(O)→P(R) and←−ρ : P(R)→P(O) by

−→ρ (F) = {r ∈ R : ∀ f ∈ F ( f ρr)} and ←−ρ (Q) = { f ∈O : ∀r ∈Q ( f ρr)},

whereF ⊆ O andQ⊆ R. Then the pair(−→ρ ,←−ρ ) is called theGalois connection
betweenP(O) andP(R) with respect toρ. The proof of the following theorem
can be found e.g. in [40]:

Theorem 4.23 Let (−→ρ ,←−ρ ) be a Galois connection betweenP(O) andP(R) with
respect toρ, and letF,F1,F2 ∈P(O) andQ,Q1,Q2 ∈P(R).

(1) If F1⊆ F2 then−→ρ (F1)⊇−→ρ (F2).

If Q1⊆Q2 then←−ρ (Q1)⊇←−ρ (Q2).

(2) F ⊆←−ρ (−→ρ (F)) andQ⊆−→ρ (←−ρ (Q)).

(3) −→ρ (F) =−→ρ (←−ρ (−→ρ (F))) and←−ρ (Q) =←−ρ (−→ρ (←−ρ (Q))).

(4) LO = {←−ρ (Q) : Q⊆ R} andLR = {−→ρ (F) : F ⊆ O} are dually isomorphic
complete lattices with respect to⊆. The dual isomorphisms are

−→ρ : LO→ LR and ←−ρ : LR→ LO.

The relation “. . . preserves. . . ” generates a Galois connection between op-
erations and relations and the corresponding operators−→ρ and←−ρ are commonly
denoted by PolQ and InvF , Q⊆RA, F ⊆ OA:

PolQ= { f ∈ OA : f preserves everyρ ∈Q}
InvF = {ρ ∈RA : every f ∈ F preservesρ}.

It is easy to show that PolQ is a clone of operations for everyQ. But the converse
is also true. Before we move on to the proof, let us introduce some more notation.
Let x1, . . . , xn be tuples understood as column-vectors. Thenf (x1, . . . ,xn) is a
column-vector obtained by applyingf to the rows of the matrix[x1 . . .xn], i.e.

if x1 =








a11

a21
...

ah1







, . . . ,xn =








a1n

a2n
...

ahn








then f (x1, . . .xn) =








f (a11,a12, . . . ,a1n)
f (a21,a22, . . . ,a2n)

...
f (ah1,ah2, . . . ,ahn)







.
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a a a . . . a
a a a . . . b
...

...
...

...
z z z . . . y
z z z . . . z

 










a
a
...
z
z



















a
a
...
z
z



















a
a
...
z
z










. . .










a
b
...
y
z










↑ ↑ ↑ . . . ↑
x1 x2 x3 . . . xn

Figure 4.1: The special relation from the proof of Theorem 4.24

Theorem 4.24 (Bondařcuk, Kalužnin, Kotov, Romov 1969, [8]) LetC⊆OA. The
following statements are equivalent:

(1) C is a clone.

(2) C= PolQ for someQ⊆ OA.

(3) C= Pol InvC.

Proof. (3)⇒ (2)⇒ (1) is easy. In order to show(1)⇒ (3) it suffices to show
Pol InvC⊆C since the other inclusion is true for any Galois connection. Take any
g∈ Pol InvC and letn= ar(g). We shall now construct a special relation of arity
|A|n. List all n-tuples fromAn in lexicographic order, denote the column-vectors
by x1, . . . ,xn, Fig. 4.1, and let

θn(C) = { f (x1, . . . ,xn) : f ∈C}.

SinceC is a clone, it is easy to show thatθn(C) ∈ InvC, so g preservesθn(C).
Now, x1, . . . ,xn ∈ θn(C) sinceπn

1 , . . . ,πn
n ∈ C, so from the fact thatg preserves

θn(C) it follows thatg(x1, . . . ,xn) ∈ θn(C). Therefore, there is anf ∈C such that
g(x1, . . . ,xn) = f (x1, . . . ,xn) and from the construction ofx1, . . . ,xn it follows g=
f ∈C. �

Corollary 4.25 Let F ⊆ OA.
(a) Cln(F) = Pol InvF .
(b) If every f ∈ F preserves a relationρ then everyf ∈ Cln(F) preservesρ.

Galois closed sets on the relational side are somewhat more complicated. It is
possible to define closed sets of relations using “trivial” relations and a requirement
that the set be closed with respect to certain “superpositions”, but this approach is
less usual. Later on, we shall treat relational clones in a more standard way, as
subuniverses of a certain algebra onRA.
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We start with the trivial relations. Letn> 1 and letε be an equivalence relation
on{1, . . . ,n}. Thenthe n-aryε-diagonalis the following relation:

δ ε
n = {(x1, . . . ,xn) ∈ An : ∀i, j ((i, j) ∈ ε ⇒ xi = x j)}.

Let δ0 = ∅ be thezero-ary diagonaland let∆A denote the set of all diagonals on
all arities> 0.

Example 4.26 Let 12|3 denote the equivalence relation on{1,2,3}with two blocks,

{1,2} and{3}. Thenδ 12|3
3 = {(x,x,y) : x,y∈ A}.

Let τ ,ρ,σ ∈RA be relations such that ar(τ) = ar(ρ)+ar(σ), let t be an integer
and f : {1, . . . , t}→ {1, . . . ,m+n} be a mapping wherem= ar(ρ) andn= ar(σ).
We define thef -superposition ofτ with ρ andσ denoted by[τ ,ρ,σ ] f as follows:
[τ ,ρ,∅] f = [τ ,∅,σ ] f = [∅,∅,∅]∅ =∅ and in casem> 1, n> 1 we let

[τ ,ρ,σ ] f = {(xf (1),xf (2), . . . ,xf (t)) ∈ At : (x1,x2, . . . ,xm+n) ∈ τ ,
(x1, . . . ,xm) ∈ ρ and(xm+1, . . . ,xm+n) ∈ σ}.

Definition 4.27 A relational clone on Ais any setQ⊆RA such that

• ∆A⊆Q, and

• If τ, ρ, σ ∈RA such that ar(τ)= ar(ρ)+ar(σ), then for everyf : {1, . . . , t}→
{1, . . . ,m+n}, wherem= ar(ρ) andn= ar(σ), we have[τ ,ρ,σ ] f ∈Q.

It is easy to see that the intersection of an arbitrary nonempty family of rela-
tional clones is again a relational clone. Therefore, for everyQ⊆RA there exists
the least relational clone that containsQ. We say that thisrelational clone is gen-
erated by Qand denote it by Clr(Q).

In order to present more conventional descriptions of relational clones, we have
to introduce several operations on relations:

• for ρ ∈R
(m)
A andσ ∈R

(n)
A we define therelational product× and therela-

tional composition◦ by

ρ×σ = {(x1, . . . ,xm,y1, . . . ,yn) : (x1, . . . ,xm) ∈ ρ and(y1, . . . ,yn) ∈ σ}
ρ ◦σ = {(x1, . . . ,xm−1,y2, . . . ,yn) : ∃z∈ A ((x1, . . . ,xm−1,z) ∈ ρ and

(z,y2, . . . ,yn) ∈ σ)};
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• for ρ ∈R
(1)
A or ρ =∅ let ζ ρ = τρ =△ρ = ρ; for ρ ∈R

(n)
A , n> 2, let

ζ ρ = {(x1,x2, . . . ,xn) : (x2, . . . ,xn,x1) ∈ ρ},
τρ = {(x1,x2,x3, . . . ,xn) : (x2,x1,x3, . . . ,xn) ∈ ρ},
△ρ = {(x1,x2, . . . ,xn−1) : (x1,x1,x2, . . . ,xn−1) ∈ ρ},

be thecyclic permutation of variables, transposition of the first two variables
and theidentification of the first two variables; and

• for ρ ∈R
(n)
A with n> 2 andi, j ∈ {1, . . . ,n} such thati < j let

△i, j(ρ) = {(x1, . . . ,xi , . . . ,x j−1,x j+1, . . . ,xn) : (x1, . . . ,xn) ∈ ρ andxi = x j}

denote the variation of△ that operates on arbitrary two coordinates;

• for ρ ∈R
(n)
A and any mappingf : {1, . . . ,m}→ {1, . . . ,n}, let

prf (ρ) = {(xf (1),xf (2), . . . ,xf (m)) : (x1, . . . ,xn) ∈ ρ}.

denote thef -projectionof ρ. We shal often write simply pri1...ik e.g.

pr522(ρ) = {(x5,x2,x2) : (x1,x2,x3,x4,x5) ∈ ρ} where f =

(
1 2 3
5 2 2

)

.

Theorem 4.28 Let Q⊆RA. The following are equivalent:

(1) Q is a relational clone;

(2) ∆A ⊆Q andQ is closed with respect to intersection of relations of the same
arity, relational products andf -projections; and

(3) Q is a subuniverse of the algebra(RA,◦,ζ ,τ ,△,δ 12|3
3 ).

Proof. (1)⇔ (2): Note that[τ ,ρ,σ ] f = prf (τ ∩ (ρ × σ)). On the other hand,
prf (ρ) = [An+1,ρ,A] f ′ , wheren = ar(ρ) and f ′ : {1, . . . , t} → {1, . . . ,n+ 1} is
given by f ′(i) = f (i); ρ ×σ = [An+m,ρ,σ ]id, wheren = ar(ρ) andm= ar(σ);
andρ ∩σ = [ρ×A,σ ,A] f ′ , wheren= ar(ρ) and f ′ : {1, . . . ,n}→ {1, . . . ,n+1} is
given by f ′(i) = i.

(2)⇒ (3): Unary operations are eazy:ζ (ρ)= prn12...n−1(ρ), τ(ρ)= pr213...n(ρ)
and△(ρ) = pr23...n(ρ ∩ δ 12|3|...|n

n ). As for ◦ let n= ar(ρ), m= ar(σ) and letε be
the equivalence relation on{1, . . . ,m+n}whose only nontrivial block is{n,n+1}.
Thenρ ◦σ = pr1...n−1,n+2...n+m(δ ε

n+m∩ (ρ×σ)).
(3)⇒ (2): Note first that compositions ofζ andτ can achieve any permutation

of variables. Nowδ 12|3
3 ◦ζ ζ (δ 12|3

3 )= δ 12|34
4 ,△ζ 3(δ 12|34

4 )= δ 123
3 and△△(δ 12|3

3 )=
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δ 1
1 = A. Thenρ ×σ = ρ ◦ δ 12|34

4 ◦σ , A◦ ρ omits the first variable ofρ, while
δ 123

3 ◦ρ doubles the first variable ofρ. It is easy but rather technical to show that
using the last three operations we can get all the diagonals and all thef -projections.
Next we note that each△i, j can be obtained fromζ , τ and△. Finally, if ρ and
σ are relations of arityn thenρ ∩σ = △n,n+1△n−1,n+1 . . .△2,n+1△1,n+1(ρ ×σ)
which completes the proof. �

The proof of the following theorem is due to Bondarčuk, Kalužnin, Kotov and
Romov (1969) and independently Geiger (1968).

Theorem 4.29 (Geiger 1968, Bondarčuk, Kalužnin, Kotov, Romov 1969, [25, 8])
Let Q⊆RA. The following statements are equivalent:

(1) Q is a relational clone.

(2) Q= InvF for someF ⊆RA.

(3) Q= InvPolQ.

Proof. (3)⇒ (2)⇒ (1) is easy. Let us show(1)⇒ (3). ClearlyQ⊆ InvPolQ
since this is true for every Galois connection. Let us show that InvPolQ⊆Q. Let
C = PolQ and let us first show thatθn(C) ∈ Q for all n> 1, whereθn(C) is the
relation defined in the proof of Theorem 4.24. Recall also the vectorsx1, . . . , xn

from the definition ofθn(C), let q= |A|n and let

γn =
⋂

{η ∈Q : ar(η) = q andη ⊇ {x1, . . . ,xn}}.

It is obvious thatγn ∈ Q sinceQ is closed with respect to finite intersections. We
are going to show thatθn(C) = γn whenceθn(C) ∈Q follows immediately.

First, θn(C) ⊆ γn sincex1, . . . , xn ∈ γn and γn is preserved by everyf ∈ C
(C = PolQ, so InvC = InvPolQ ⊇ Q ∋ γn). Assume thatθn(C) ⊂ γn, take any
r = (u1, . . . ,uq) ∈ γn \ θn(C) and considergr defined bygr (x1, . . . ,xn) = r . From
r /∈ θn(C) it follows thatgr /∈C = PolQ, so there is aρ ∈ Q such thatgr does not
preserveρ. Therefore, there existy1, . . . ,yn ∈ ρ such thatgr (y1, . . . ,yn) /∈ ρ. Let
m= ar(ρ) and consider the tuplesxi×yi of lengthq+m(obtained by concatenating
xi andyi) as columns of an(q+m)×n-matrix, Fig. 4.2. LetX be the topq×n-
submatrix formed byx1, . . . , xn and letY be the bottomm×n-submatrix formed
by y1, . . . , yn. Since the rows ofX areall posssible n-tuples of elements from
A and rows ofY aresome n-tuples of elements ofY, every row ofY appears as
a row in X. Assume that thej-th row of Y appears as theh j -th row of X. Let
ε be the equivalence relation on{1, . . . ,q+m} generated by the pairs(h j ,q+ j),
j ∈ {1, . . . ,m}, and let

ρ ′ = pr1...q(δ
ε
q+m∩ (γn×ρ)).
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h j →













x1

























x2













. . .













xn













1

q

su
bm

at
rix

X

j →



 y1







 y2



 . . .



 yn





q+1

q+m

su
bm

at
rix

Y

Figure 4.2: The proof of Theorem 4.29

Clearly,ρ ′ = [δ ε
q+m,γn,ρ]1...q ∈ Q andρ ′ ⊆ γn. On the other hand, fromxi × yi ∈

δ ε
q+m∩ (γn×ρ) it follows thatx1, . . . ,xn ∈ ρ ′.

Let us show thatr /∈ ρ ′. Sincegr (x1, . . . ,xn) = (u1, . . . ,uq) and since thej-th
row ofY is equal to theh j -th row ofX it follows thatgr (y1, . . . ,yn) = (uh1, . . . ,uhm)
and by the choice ofy1, . . . , yn we have(uh1, . . . ,uhm) /∈ ρ. Now, if r ∈ ρ ′ then
(u1, . . . ,uq,uh1, . . . ,uhm) ∈ γn×ρ, whence follows(uh1, . . . ,uhm) ∈ ρ, which is im-
possible. So,r /∈ ρ ′.

Therefore,r ∈ γn \ρ ′, whenceρ ′ ⊂ γn. But this is impossible sinceγn is con-
structed as the least relation inQ that containsx1, . . . , xn. This showsγn = θn(C)
and thusθn(C) ∈Q.

Finally, let us show that InvPolQ⊆ Q. Take anyσ ∈ InvPolQ, let n = |σ |
and t = ar(σ). Write all tuples inσ as column vectors and denote this matrix
by M. The rows of matrixX (Fig. 4.2) are all possiblen-tuples of elements of
A, so there are indicesi1, . . . , it ∈ {1, . . . ,q} such that thek-th row of M is equal
to the ik-th row of X, k ∈ {1, . . . , t}, so σ = pri1...it ({x1, . . . ,xn}). Let us show
that σ = pri1...it (θn(C)). Since{x1, . . . ,xn} ⊆ θn(C) it immeditaly follows that
σ = pri1...it ({x1, . . . ,xn}) ⊆ pri1...it (θn(C)). To show the other inclusion, take any
(v1, . . . ,vt) ∈ pri1...it (θn(C)). Then there is az= (z1, . . . ,zq) ∈ θn(C) such thatzi1 =
v1, . . . ,zit = vt . But z= f (x1, . . . ,xn) for somef ∈C sozi j = f (x1i j ,x2i j , . . . ,xni j ),
wherex j = (x j1, . . . ,x jq). Sinceσ = pri1...it ({x1, . . . ,xn}) it follows that(x1i1, . . . ,
x1it ), . . . , (xni1, . . . ,xnit ) ∈ σ . Now f ∈C andσ ∈ InvC imply that f preservesσ ,
so(v1, . . . ,vt) = (zi1, . . . ,zit ) ∈ σ .

Therefore,σ = pri1...it (θn(C)). Sinceθn(C) ∈Q we haveσ = pri1...it (θn(C)) ∈
Q. This completes the proof that InvPolQ= Q. �

Corollary 4.30 Clr(Q) = InvPolQ.
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Figure 4.3: The lattice of clones on{0,1} (E. Post)

4.3 On the number of clones

Emil Post classified all possible clones on{0,1}, and hence in a natural sense all
possible 2-valued propositional logics. His work was first presented in 1920 as
an addendum to his Ph. D. Thesis, and it was finally published in the bookTwo-
valued Iterative Systems of Mathematical Logic, Princeton, 1941 (see [49]). The
classification of E. Post was presented in a more modern notation by R. Lyndon in
[35]. The lattice of clones on a two-element set is given in Fig. 4.3. Among other
things, it explicitely shows that there are countably many clones of operations on
A if |A|= 2.

Yu. I. Yanov and A. A. Muchnik showed in 1959 that in case of a finite setwith
|A|> 3 the number of clones is continuum.

Theorem 4.31 (Yanov, Muchnik 1959, [67])Let A be a finite set with at least
three elements. Then the number of clones onA is continuum.

Proof. Since clones are special subsets of the countably infinite setOA it follows
immediately that|LA|6 c. To show that we have an equality, it suffices to construct
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a family of clones with continuum elements.
Let 0,1,2∈A be three distinct elements ofA and for eachn> 3 definefn∈O

(n)
A

andρn,σn ∈R
(n)
A by

σn = {(1,2,2, . . . ,2,2),(2,1,2, . . . ,2,2), . . . ,(2,2,2, . . . ,2,1)},

fn(x1, . . . ,xn) =

{

1, (x1, . . . ,xn) ∈ σn

0, otherwise,

ρn = σn∪{(x1, . . . ,xn) ∈ {0,1,2}n : ∃i (xi = 0)}.

Let us first show thatfn /∈ Pol{ρn} and thatfk ∈ Pol{ρn} wheneverk 6= n. The first
part of the claim is easy:

1 2 2 . . . 2 2
fn→ 1

2 1 2 . . . 2 2
fn→ 1

2 2 1 . . . 2 2
fn→ 1

...
...

...
...

...
...

...

2 2 2 . . . 1 2
fn→ 1

2 2 2 . . . 2 1
fn→ 1∈

ρ

∈
ρ

∈
ρ . . .

∈
ρ

∈
ρ

/∈
ρ

As for the second part of the claim, assume thatk< n and take anyx1, . . . ,xk ∈ ρn.
If at least one of thexi ’s has a zero coordinate, thenfk(x1, . . . ,xk) also has a zero
coordinate and hencefk(x1, . . . , xk) ∈ ρn. If, however,x1, . . . , xk ∈ σn then at
least one of the rows will consist of 2’s andfk(x1, . . . , xk) will again have a zero
coordinate, ensuringfk(x1, . . . ,xk)∈ ρn. E.g., ifk= 3 andn= 4 this situation may
be illustrated by

1 2 2
f3→ 1

2 1 2
f3→ 1

2 2 1
f3→ 1

2 2 2
f3→ 0

=
x

1

=
x

2

=
x

3

∈
ρ

Finally, letk> n and take anyx1, . . . ,xk ∈ ρn. It at least one of thexi ’s has a zero
coordinate, then as in casek < n we conclude thatfk(x1, . . . , xk) also has a zero
coordinate and hencefk(x1, . . . ,xk) ∈ ρn. If, however,x1, . . . ,xk ∈ σn then at least
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one of the rows will contain at least two 1’s andfk(x1, . . . , xk) will again have a
zero coordinate, ensuringfk(x1, . . . ,xk)∈ ρn. E.g., ifk= 5 andn= 4 this situation
may be illustrated by

1 2 2 2 2
f5→ 1

2 1 2 2 2
f5→ 1

2 2 1 2 1
f5→ 0

2 2 2 1 2
f5→ 1

=
x

1

=
x

2

=
x

3

=
x

4

=
x

5

∈
ρ

We are now ready to complete the proof. LetH = { f3, f4, . . .} be the set of
functions we have just constructed and defineϕ : P(H)→LA by ϕ(F) =Cln(F).
Let us show thatϕ is injective. SupposeF1 6=F2 for someF1,F2⊆H, but Cln(F1)=
Cln(F2). SinceF1 6= F2, there is ann> 3 such thatfn ∈ F1 \F2 (or the other way
around). So,fn ∈ F1 ⊆ Cln(F1) = Cln(F2). Since fn /∈ F2 we have that every
g∈ F2 preservesρn. Therefore, everyg∈ Cln(F2) preservesρn and consequently
fn ∈ Cln(F2) preservesρn – contradiction.

This shows thatϕ is injective and hence|LA|> |P(H)|= c. �

4.4 Minimal clones

A cloneC is called aminimal cloneif C 6= ΠA andD⊆C impliesD = ΠA or D=C
for every cloneD. Minimal clones are atoms inLA and it is easy to see that every
minimal clone is of the form Cln( f ) for somef ∈ OA\ΠA.

We are going to show that on a finte set every clone6= ΠA contains a minimal
clone and that there are finitely many minimal clones. We also show that all mini-
mal clones split into five types. We start by introducing some terminology. Apoly-
merof an operationf is every operation that can be obtained fromf by identifying
certain variables. Note thatf is nota polymer of itself: in order to obtain a polymer
onehas toidentify at least two variables. For example,g(x,y) = f (x,y,x,y) is a
polymer of f . A ternary operationf onA is called amajority operationif

f (a,a,b) = f (a,b,a) = f (b,a,a) = a,

and aminority operationif

f (a,a,b) = f (a,b,a) = f (b,a,a) = b,

for all a,b∈ A. Forn> 3 andk∈ {1, . . . ,n}, ann-ary operationf is called ak-th
n-ary semiprojectionif it is not a projection, but

f (a1, . . . ,an) = ak
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whenevera1, . . . ,an ∈ A have the property that|{a1, . . . ,an}|< n.

Lemma 4.32 (́Swierczkowski 1960, [58])Let f be ann-ary operation onA and
n> 4. Then f is a semiprojection if and only if every polymer off is a projection.

Proof. (⇒) Obvious.
(⇐) First let us note that

f (x1,y,y,x4, . . . ,xn) /∈ {πn−1
2 ,πn−1

3 } or f (y,x2,x3,y,x5, . . . ,xn) /∈ {πn−1
1 ,πn−1

4 }.

(Suppose to the contrary that, e.g.,f (x1,y,y,x4, . . . ,xn) = πn−1
2 and f (y,x2,x3,y,x5,

. . . , xn) = πn−1
1 . Then f (z,y,y,z,x5, . . . ,xn) would at the same time have to be the

first and the second projection, which is impossible.) So, without loss of general-
ity we may assume thatf (x1,y,y,x4, . . . ,xn) = πn−1

1 , i.e. f (x1,y,y,x3, . . . ,xn) = x1.
Now takei, j ∈ {2, . . . ,n} such thati < j and consider

f (x1, . . . ,xi−1,y,xi+1, . . . ,x j−1,y,x j+1, . . . ,xn). (4.1)

We know that it is a projection and sincef (x1,y,y, . . . ,y) = x1, the polymer (4.1)
has to be the first projection. Using this fact one now easily shows that

f (y,x2, . . . ,xi−1,y,xi+1, . . . ,xn)

is again the first projection, for alli ∈ {2, . . . ,n}. Therefore,f is a first semiprojec-
tion. �

Theorem 4.33 (Rosenberg 1986, [52])Every cloneC 6=ΠA contains an operation
which belongs to one of the following five classes of operations:

(1) a nonidentical unary operation;

(2) a binary idempotent operation which is not a projection;

(3) a majority operation;

(4) a minority operation;

(5) a semiprojection.

Proof. Take an operationf ∈C\ΠA of the least possible arity and letn= ar( f ).
If n = 1 we have case (1). Otherwise, ifn> 2 the choice off implies that all
polymers of f have to be projections. So, ifn= 2 we have case (2), while in case
of n> 4 Lemma 4.32 yields thatf is a semiprojection (case (5)).
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Finally, let n= 3. Since all polymers off are projections,f (x,x,y), f (x,y,x)
and f (y,x,x) are eitherπ2

1 or π2
2 , so we have eight cases to consider. Five cases are

straightforward:

f (x,x,y) = x, f (x,y,x) = x, f (y,x,x) = x : case (3)
f (x,x,y) = y, f (x,y,x) = y, f (y,x,x) = y : case (4)
f (x,x,y) = x, f (x,y,x) = x, f (y,x,x) = y : a first semiprojection
f (x,x,y) = x, f (x,y,x) = y, f (y,x,x) = x : a second semiprojection
f (x,x,y) = y, f (x,y,x) = x, f (y,x,x) = x : a third semiprojection

In the remaining three cases (possibly after a permutation of variables) oneobtains
an operation that satisfies

f (x,x,y) = f (y,x,y) = f (y,x,x) = y

but theng(x,y,z) = f (x, f (x,y,z),z) is a majority operation (case (3)). �

Corollary 4.34 For every minimal cloneC we have thatC=Cln( f ), wheref is an
operation that belongs to one of the five classes of operations listed in Theorem 4.33
and minimal clones are finite in number. Moreover, every cloneC 6= ΠA contains a
minimal clone,

Proof. Let C be a minimal clone and letf ∈C be an operation whose existence is
guaranteed by Theorem 4.33. Then Cln( f ) ⊆C and sincef /∈ ΠA, the minimality
of C yields Cln( f ) =C.

To show that there are finitely many minimal clones onA it suffices to show
that each of the classes (1)–(5) in Theorem 4.33 is finite. Classes (1)–(4) are ob-
viously finite. As for class (5), note that iff is a semiprojection then ar( f ) 6 |A|
(a semiprojection of arity> |A| would have to be a projection, which by definition
is not a semiprojection).

For an arbitrary cloneC 6= ΠA take f ∈C as in Theorem 4.33 and let us define
a sequence of clones and operations as follows:C0 =C, f0 = f , and

• if Cln( fi) is a minimal clone, letCi+1 =Ci and fi+1 = fi ;

• if Cln( fi) is not a minimal clone, chooseCi+1 such thatΠA 6=Ci+1⊂Cln( fi)
and takefi+1 ∈Ci+1 as in Theorem 4.33.

Then

• eitherC0⊇Cln( f0)⊃Cln( f1)⊃ . . .⊃Cln( fk) =Cln( fk+1) = . . . for somek,

• or C0⊇ Cln( f0)⊃ Cln( f1)⊃ . . .⊃ Cln( fi)⊃ . . .
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In the former case Cln( fk) is a minimal clone contained inC0 =C, so in order to
somplete the proof it suffices to show that the latter case cannot occur. Suppose
that Cln( fi) ⊂ Cln( f j) wheneveri < j. Then fi 6= f j for all i 6= j whence follows
that there are infinitely many operations that belong to the classes (1)–(5) inTheo-
rem 4.33. But we have shown in the previous paragraph that each of thefive classes
of operations is finite. Contradiction. �

The results presented in Theorem 4.33 and Corollary 4.34 have been a part of
folklore for quite some time, and can be traced back to [17]. There are minimal
clones that belong to each of the five types, as the following example shows.

Example 4.35 (1) Take an idempotent unary operationf which is not identity.
Then Cln( f ) is a minimal clone.

(2) Let∧ be a semilattice operation onA. Then Cln(∧) is a minimal clone.
(3) Cln(d) is a minimal clone ifd is a dual discriminator onA, i.e.,

d(x,y,z) =

{

x, x= y

z, otherwise.

(4) If (A,+) is an abelian group of exponent 2 andf (x,y,z) = x+ y+ z then
Cln( f ) is a minimal clone.

(5) Let n = |A| > 3. Then Cln(ln) is a minimal clone, whereln is an n-ary
operation defined by:

ln(x1, . . . ,xn) =

{

xn, {x1, . . . ,xn}= A

x1, otherwise.

Theorem 4.36 (Rosenberg 1986, [52])Let C be a minimal clone generated by a
unary operationf . Then f 6= idA and eitherf 2 = f or there is a prime numberp
such thatf p = idA.

Let C be a minimal clone generated by a minority operationf . Then there is
an abelian group(A,+) of exponent 2 such thatf (x,y,z) = x+y+z.

4.5 Maximal clones

We already know that there are finitely many maximal clones on a finite set and that
every proper subclone ofOA is contained in a maximal clone. In this section we ad-
dress one of the deepest and most influential results of clone theory, I.Rosenberg’s
classification of maximal clones. We start with a special case.
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Theorem 4.37 (Yablonskǐı 1958, [66]) Let |A|= k and letιA = {(x1, . . . ,xk)∈Ak :
∃i 6= j (xi = x j)}. ThenPol{ιA} is the set of all nonessential operations. It is a

maximal clone, and it is the only maximal clone that containsO
(1)
A .

Proof. A nonessential operations is either essentially unary, of nonsurjective.It
easily seen that both essentially unary and nonsurjective operations preserveιA

whence follows that Pol{ιA} contains all nonessential operations. Let us show that
every operation in Pol{ιA} is nonessential.

Suppose to the contrary that Pol{ιA} contains an essential operationf and let
A= {a1, . . . ,ak}. Then according to the Main Lemma of Yablonskiı̌ 4.16 there exist
X1, . . . ,Xn⊆ A such that|Xi |6 k−1 for all i and f (X1, . . . ,Xn) = A. Therefore, for
eachi ∈ {1, . . . ,k} there existx1

i ∈ X1, . . . ,xn
i ∈ Xn such that

f (x1
i , . . . ,x

n
i ) = ai .

Forx1=(x1
1, . . . ,x

1
k), . . . ,xn=(xn

1, . . . ,x
n
k)we havex1, . . . ,xn∈ ιA since{xi

1, . . . ,x
i
k}⊆

Xi and|Xi |6 k−1. On the other hand,f (x1, . . . ,xn) = (a1, . . . ,ak) /∈ ιA, so f does
not preserveιA. This completes the proof that Pol{ιA} is the set of all nonessential
operations.

It is now very easy to show that Pol{ιA} is a maximal clone. Take anyf ∈
OA \Pol{ιA}. Then f is an essential operation and Cln({ f}∪Pol{ιA}) = OA by
the Słupecki completeness criterion (Theorem 4.17). The clone Pol{ιA} clearly
contains all unary maps, and Lemma 4.11 ensures that no other maximal clone
containsO(1)

A . �

For the general case, let us first show that each maximal clone is completely
determined by a single relation.

Proposition 4.38 (Kuznecov 1961, [32])(a) If PolQ= OA thenQ⊆ ∆A.
(b) A cloneC 6= OA is a maximal clone if and only ifC = Pol{ρ} for every

ρ ∈ InvC\∆A.

Proof. (a) Take anyρ ∈ Q and letn= ar(ρ). Without loss of generality we may
assume that there are no systematically repeated coordinates inρ, i.e.,

¬ ∃i, j (i 6= j and∀(x1, . . . ,xn) ∈ ρ (xi = x j))

for otherwise we can safely remove systematically repeated coordinates to obtain
ρ ′ with the property Pol{ρ}= Pol{ρ ′}. Therefore, for everyi, j ∈ {1, . . . ,n} such
that i < j there exists anxi j = (xi j

1 , . . . ,x
i j
n ) ∈ ρ such thatxi j

i 6= xi j
j . Take arbitrary
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a1, . . . ,an ∈ A and any mapf ∈ OA of arity
(n

2

)
which satisfies the following:

f (x12
1 ,x13

1 , . . . ,xn,n−1
1 ) = a1

f (x12
2 ,x13

2 , . . . ,xn,n−1
2 ) = a2

...

f (x12
n ,x13

n , . . . ,xn,n−1
n ) = an

Note that this requirement makes sense because each pair of
(n

2

)
-tuples in the list

above differs at at least one place. Since Pol{ρ}= OA, this f preservesρ so from
xi j ∈ ρ for all i, j it follows that (a1, . . . ,an) ∈ ρ. But (a1, . . . ,an) was arbitrary,
soρ = An ∈ ∆A.

(b) First note that InvC contains a nondiagonal relation wheneverC 6= OA,
since otherwise one has InvC⊆ ∆A whenceC = Pol InvC⊇ Pol∆A = OA, which
contradicts the fact thatC is a proper subclone ofOA.

(⇒) Let C be a maximal clone and take anyρ ∈ InvC\∆A. Then Pol{ρ} ⊇
Pol InvC=C. Since(a) implies that Pol{ρ} 6=OA, maximality ofC yields Pol{ρ}=
C.

(⇐) SupposeC 6=OA is not a maximal clone. Then there is a maximal cloneM
such thatC⊂M. Take anyρ ∈ InvM\∆A. Thenρ ∈ InvC since InvC⊇ InvM ∋ ρ,
butC 6= Pol{ρ} sinceC⊂M = Pol{ρ}. �

In particular, each maximal cloneM takes the form Pol{ρ} for a nondiago-
nal relationρ. One of the most influential results in clone theory is the explicite
characterization of the maximal clones, obtained in 1970 by I. G. Rosenberg as the
culmination of the work of many mathematicians. It is usually stated in terms of
the following six classes of finitary relations onA (the so-calledRosenberg rela-

tions). For anf ∈O
(n)
A , let f • denote the(n+1)-ary relation onA called thegraph

of f :
f • = {(x1, . . . ,xn, f (x1, . . . ,xn)) : x1, . . . ,xn ∈ A}.

(R1) Bounded partial orders.These are partial orders onA with a least and a
greatest element.

(R2) Nontrivial equivalence relations.These are equivalence relations onA dis-
tinct from δ 12

2 = {(x,x) : x∈ A} andA2.

(R3) Permutational relations.These are relations of the formα• whereα is a
fixpoint-free permutation ofA with all cycles of the same prime lengthp.

(R4) Affine relations.An affine relationis a relation of the formf • wheref (x,y,z)=
x−y+z for an elementary abelianp-group(A,+) onA.
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(R5) Central relations.All unary relations are central relations. For central rela-
tions of arityh> 2 the definition is as follows. The relationρ is said to be
totally symmetricif (x1, . . . ,xh) ∈ ρ implies(xπ(1), . . . ,xπ(h)) ∈ ρ for all per-
mutationsπ, and it is said to betotally reflexiveif (x1, . . . ,xh) ∈ ρ whenever
there arei 6= j such thatxi = x j . A c∈ A is central if (c,x2, . . . ,xh) ∈ ρ for
all x2, . . . ,xh ∈ A. Finally, ρ 6= Ah is calledcentral if it is totally reflexive,
totally symmetric and has a central element.

(R6) Regular relations.Let Θ= {θ1, . . . ,θm} be a family of equivalence relations.
We say thatΘ is anh-regular familyif every θi has preciselyh blocks, and
additionally, ifBi is an arbitrary block ofθi , i ∈ {1, . . . ,m}, then

⋂m
i=1Bi 6=∅.

An h-ary relationρ 6= Ah is said to beh-regular if h> 3 and there is anh-
regular familyΘ such that(x1, . . . ,xh) ∈ ρ if and only if for all θ ∈ Θ there
are distincti, j with (xi ,x j) ∈ θ .

Theorem 4.39 (Rosenberg 1970, [51])A cloneM is maximal if and only if there
is a relationρ from one of the classes (R1)–(R6) such thatM = Pol{ρ}.

The proof of Rosenberg’s theorem is very complicated. The shortest known
proof comes from Quackenbush [50] and it is still rather complicated. Thesketch
of the proof that we are going to present follows the track of the Quackenbush’s
proof and relies on two nontrivial facts which we shall not prove. Recall that a
finite algebra(A,F) is calledquasiprimalif Cln(F) = PolQ whereQ= {h• : h is
an isomorphism between subalgebras of(A,F)}. recall also that a finite algebra
(A,F) is quasiprimal if and only if Cln(F) contains a discriminator (Pixley [45]).

Proposition 4.40 (a) (Quackenbush [50]) IfF 6⊆ Pol{ρ} for every Rosenberg re-
lation ρ, thenCln(F) contains a Mal’cev operation.

(b) (McKenzie) If(A,F) is a simple finite algebra which has no proper subalge-
bras and which has a Mal’cev term operation, then(A,F) is quasiprimal, or there
is an elementary abelianp-group (A,+) with the following property: for every
f ∈ F there are ana∈ A and endomorphismsεi of (A,+) such thatf (x1, . . . ,xn) =
ε1(x1)+ . . .+ εn(xn)+a.

Proof. (of Rosenberg’s theorem)
(⇐) This direction is somewhat easier. We have to show that Pol{ρ} is a

maximal clone for every Rosenberg relationρ. We shall demonstrate main ideas
in case of relations from (R1).

The strategy will be as follows. Letρ be a Rosenberg relation and letC =
Pol{ρ}. According to Proposition 4.38(a) we obtainC 6= OA, so by the statement
(b) of the same proposition it suffices to show that for everyσ ∈ InvC\∆A we
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haveC = Pol{σ}. And this is equivalent to showing that for everyσ ∈ InvC\
∆A we haveρ ∈ Clr(σ). (To see this, note that fromC = Pol{σ} it follows that
InvC = InvPol{σ} = Clr(σ) andρ ∈ InvC now yieldsρ ∈ Clr(σ); conversely,
if ρ ∈ Clr(σ) thenC = Pol{ρ} ⊇ Pol{σ}, while from σ ∈ InvC it follows that
Pol{σ} ⊇C.)

Let6 be a bounded partial order onA with the least element 0 and the greatest
element 1. LetC = Pol{6}, take anyσ ∈ InvC \ ∆A and let us show that6∈
Clr(σ). Without loss of generality we may assume that there are no systematically
repeated coordinates inσ , i.e.

¬ ∃i, j (i 6= j and∀(x1, . . . ,xn) ∈ σ (xi = x j)).

Suppose first that there exists 6= t such that prst(σ)⊆6. Let us show that prst(σ)=6.
Let a6 b, take any(p1, . . . , pn) ∈ σ such thatps < pt and definef by

f (x) =

{

a, x6 ps

b, otherwise.

Clearly f ∈ Pol{6}, so f preservesσ as well. Therefore( f (p1), . . . , f (pn)) ∈ σ
and hence(a,b) ∈ prst(σ). This shows6= prst(σ) ∈ Clr(σ).

Suppose now that for everys 6= t we have prst(σ) 6⊆6 and let us show that
this leads toσ = An. Let |σ | = m and denote the elements ofσ by (pi1, . . . , pin),
i ∈ {1, . . . ,m}. For every j ∈ {1, . . . ,n} let x j = (p1 j , . . . , pm j), Fig. 4.4. Take
arbitrary(q1, . . . ,qn) ∈ An and definef by

f (y1, . . . ,ym) =







qi , (y1, . . . ,ym) = xi

0, there exists aj such that(y1, . . . ,ym)6 x j

1, otherwise.

The assumption prst(σ) 6⊆6 for all s 6= t means that allx j ’s are incomparable,
so f ∈ Pol{6}. Therefore,f preservesσ as well, whence(q1, . . . ,qn) ∈ σ . But
(q1, . . . ,qn) was chosen arbitrarily, soσ = An.

(⇒) We now know that Pol{ρ} is a maximal clone for every Rosenberg re-
lation ρ. Suppose there is a maximal cloneC which is not of the form Pol{ρ}
for a Rosenberg relationρ. ThenC 6⊆ Pol{ρ} for every Rosenberg relationρ,
so by Proposition 4.40(a), C contains a Mal’cev operation. In particular, since
C 6⊆ Pol{ρ} whereρ is an equivalence relation it follows that(A,C) is simple,
whileC 6⊆ Pol{ρ} whereρ is a central relation implies(A,C) has no proper subal-
gebras. Then by Proposition 4.40(b) it follows that (A,C) is quasiprimal, or that
there is an elementary abelianp-group(A,+) such that for everyf ∈ F there are an
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x1 = p11 p21 . . . pm1
f→ q1

x2 = p12 p22 . . . pm2
f→ q2

...
...

...
...

...
...

xn = p1n p2n . . . pmn
f→ qn∈

σ

∈
σ . . .

∈
σ

Figure 4.4: The proof that Pol{6} is a maximal clone

a∈A and endomorphismsεi of (A,+) and f (x1, . . . ,xn) = ε1(x1)+ . . .+εn(xn)+a.
The latter possibility would implyC⊆ Pol{(x−y+z)•} which contradicts the fact
thatC 6⊆ Pol{ρ} for every Rosenberg relationρ. Therefore,(A,C) is quasiprimal.

We are going to show that(A,C) is primal, by showing that Aut(A,C) = {id}
(Proposition 4.40(c)). Take anyϕ ∈ Aut(A,C). Let B be the set of all fixpoints of
ϕ . SinceB is a subalgebra of(A,C) and(A,C) has no proper subalgebras, we get
B=∅ or B= A. Therefore,ϕ = id or ϕ has no fixpoints. Assumeϕ 6= id. Thenϕ
has no fixpoints. Letk be the length of the shortest cycle ofϕ and let

(a11. . .a1k), . . . ,(an1 . . .ank)

be all the shortest cycles ofϕ. Then{a11, . . . ,a1k, . . . ,an1, . . . ,ank} is the set of
all the fixpoints ofϕk ∈ Aut(A,C) and hence{a11, . . . ,a1k, . . . ,an1, . . . ,ank} = A.
From k > 1 it follows that there is a primep such thatk = pm for somem. But
thenψ = ϕm is a fixpoint free automorphism of(A,C) of orderp, and henceC⊆
Pol{ψ•} – a contradiction.

Therefore,(A,C) is primal, i.e.,C = OA, which contradicts the fact thatC is a
maximal clone. �

4.6 Describing clones by relations of bounded arity

Our next goal is to characterize clones uniquely determined by their invariant re-
lations of arity at mostk. Let g ∈ O

(n)
A , F ⊆ OA and letk be a positive integer.

Suppose that for everyS⊆ An such that|S| = k there is anf ∈ F(n) such that
g|S = f |S. Then we say thatg can be k-approximated by F. Let Lock(F) denote
the set of allg ∈ OA that can bek-approximated byF . We say that a cloneC is
k-locally closedif C= Lock(C).

Lemma 4.41 For every cloneC and everyk> 1, Lock(C) = Pol Inv(k)C.
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Proof. (⊆) Take anyg ∈ Lock(C) and let us show thatg ∈ Pol Inv(k)C. Let n =
ar(g). Take anyρ ∈ Inv(k)C and anyx1, . . . ,xn ∈ ρ. Let xi = (xi1, . . . ,xik), i ∈
{1, . . . ,n}. Form newn-tuplesy j = (x1 j , . . . ,xn j), j ∈ {1, . . . ,k}, and letS= {y1,
. . . ,yk}.

y1 → x11 x21 . . . xn1

y2 → x12 x22 . . . xn2
...

...
...

...
yk → x1k x2k . . . xnk

↑ ↑ . . . ↑
x1 x2 . . . xn

Sinceg ∈ Lock(C) there is anf ∈ C(n) such thatg|S = f |S, i.e., g(x1, . . . ,xn) =
f (x1, . . . ,xn). Now, f ∈C andρ ∈ Inv(k)C means thatf (x1, . . . ,xn)∈ ρ. Therefore,
g(x1, . . . ,xn) ∈ ρ. This shows thatg preservesρ, and sinceρ was arbitrary, we get
g∈ Pol Inv(k)C.

(⊇) Take anyg ∈ Pol Inv(k)C and let ar(g) = n. Let S= {y1, . . . ,yk} ⊆ An

be anyk-element subset ofAn and let us show that there exists anf ∈C(n) such
that g|S = f |S. Let y j = (x1 j , . . . ,xn j), j ∈ {1, . . . ,k}, and form the tuplesxi =
(xi1, . . . ,xik), i ∈ {1, . . . ,n}, as in the diagram above. Finally, let

θ = { f (x1, . . . ,xn) : f ∈C(n)}.

Clearly,θ ∈ Inv(k)C, sog preservesθ . Therefore,g(x1, . . . ,xn) ∈ θ , whence fol-
lows that there is anf ∈C(n) such thatg(x1, . . . ,xn) = f (x1, . . . ,xn). But this means
thatg|S= f |S and thusg∈ Lock(C). �

Theorem 4.42 (Szábo 1978, Pöschel 1979 [59, 46])Let C be a clone and letk be
a positive integer. Then the following are equivalent:

(1) C is k-locally closed;

(2) C= PolQ for someQ⊆R
(k)
A ;

(3) C= Pol Inv(k)C.

Proof. (3)⇒ (2) is trivial.

(2)⇒ (1): LetC=PolQ for someQ⊆R
(k)
A . To show thatC is k-locally closed

it suffices to show that Lock(C)⊆C, for the other inclusion is trivial. But the proof
that Lock(C)⊆ PolQ is analogous to the proof of inclusion(⊆) in Lemma 4.41.

(1)⇒ (3): C= Lock(C) sinceC is k-locally closed, and Lock(C) = Pol Inv(k)C
according to Lemma 4.41. �
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We shall now present the famous Baker-Pixley theorem which states that a
clone is uniquely deretmined by itsk-ary invariant relations whenever it contains a
special operation. An operationf of arity> 3 is called anear-unanimity operation
if

f (y,x,x, . . . ,x,x) = f (x,y,x, . . . ,x,x) = . . .= f (x,x,x, . . . ,x,y) = x

for all x,y∈ A.

Theorem 4.43 (Baker, Pixley 1975, [3])Let k > 2 and suppose that a cloneC
contains an(k+1)-ary near-unanimity operation. ThenC= Pol Inv(k)C.

Proof. Let ν ∈ C(k+1) be a near-unanimity operation and let us show that
Pol Inv(k)C⊆ Pol InvC since the other inclusion always holds.

Take anyf ∈ Pol Inv(k)C, any positive integerh and anyρ ∈ Inv(h)C. If h= k
we trivially have thatf preservesρ. If h < k it suffices to note thatρ ×Ak−h ∈
Inv(k)C and that f preservesρ if and only if f preservesρ ×Ak−h. Finally, as-
sumeh > k. For every sequence of indices 16 i1 < .. . < is 6 h let ρi1...is =
pri1...is(ρ). By the assumption,f preserves everyρi1...ik. Let us show that then
f has to preserveρ. We demonstrate the main idea by considering a special case
of k = 2. Let us start by showing thatf preservesρi jl for all i < j < l . Take
any (u1,v1,w1), . . . ,(un,vn,wn) ∈ ρi jl and letu = f (u1, . . . ,un), v = f (v1, . . . ,vn),
w = f (w1, . . . ,wn). Since f preservesρi j , ρil and ρ jl we have that(u,v) ∈ ρi j ,
(u,w) ∈ ρil and(v,w) ∈ ρ jl . But ρi j , ρil andρ jl are projections ofρi jl , so there
existx, y, z∈ A such that

(u,v,x) ∈ ρi jl , (u,y,w) ∈ ρi jl , (z,v,w) ∈ ρi jl .

Now, ν ∈C preserves all relations in InvC and in particular it preservesρi jl so

(ν(u,u,z),ν(v,y,v),ν(x,w,w)) = (u,v,w) ∈ ρi jl .

This shows thatf preserves allρi jl . Next, let us show thatf preservesρi jlm

for all i < j < l < m. Take any(u1,v1,w1, p1), . . . ,(un,vn,wn, pn) ∈ ρi jlm and let
u = f (u1, . . . ,un), v = f (v1, . . . ,vn), w = f (w1, . . . ,wn), p = f (p1, . . . , pn). Since
f preservesρi jl , ρi jm and ρilm we have that(u,v,w) ∈ ρi jl , (u,v, p) ∈ ρi jl and
(u,w, p) ∈ ρilm. But ρi jl , ρi jm andρilm are projections ofρi jlm , so there existx,
y, z∈ A such that

(u,v,w,x) ∈ ρi jlm , (u,v,y, p) ∈ ρi jlm , (u,z,w, p) ∈ ρi jlm ,

whence

(ν(u,u,u),ν(v,v,z),ν(w,y,w),ν(x, p, p)) = (u,v,w, p) ∈ ρi jlm .
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Now, using induction ons we can show thatf preservesρi1...is for all 16 i1 <
.. . < is6 h, and hencef preservesρ = ρ12...h. Therefore,f ∈ Pol InvC = C and
this completes the proof. �

Corollary 4.44 Let C be a clone that contains a near-unanimity operation. Then
the order-filter↑C= {D⊆ OA : D is a clone andD⊇C} is finite.

Proof. Let ν ∈ C be a near-unanimity operation and letk = ar(ν). Thenν ∈ D
for everyD ∈ ↑C, soD = Pol Inv(k)D for everyD ∈ ↑C and hence the mapping
ϕ : ↑C→P(R

(k)
A ) given byϕ(D) = Inv(k)D is injective. SinceP(R

(k)
A ) is finite,

↑C is also finite. �

Corollary 4.45 Every clone containing a near-unanimity operation is finitely gen-
erated.

Proof. Let C be a clone and letν ∈ C be a near-unanimity operation. LetN =
Cln(ν). If C = N we are done. Assume, therefore, thatC ⊃ N. According to
Corollary 4.44 the order-filter↑N is finite, so the interval[N,C] is also finite, say,
[N,C] = {N,D1, . . . ,Dk,C}. For everyi ∈ {1, . . . ,k} choose an arbitraryfi ∈C\Di ,
chooseg ∈ C\N and letF = Cln(ν ,g, f1, . . . , fk). Clearly,N ⊆ F ⊆C andF /∈
{N,D1, . . . ,Dk}. Therefore,F =C and thusC is finitely generated. �

4.7 Primitive-positive clones

There is another important Galois connection this time between operations onA.
We say thatoperations f∈ O

(n)
A and g∈ O

(m)
A commuteif (see Fig. 4.5):

f (g(a11,a12, . . . ,a1m), . . . ,g(an1,an2, . . . ,anm)) =

= g( f (a11,a21, . . . ,an1), . . . , f (a1m,a2m, . . . ,anm)).

It is easy to see that the following statements are equivalent:

f commutes withg⇔ f ∈ Pol{g•}⇔ g∈ Pol{ f •}⇔ g commutes withf .

The binary relation “. . . commutes with . . . ” onOA generates a Galois connection
where the operators−→ρ and←−ρ are the same and usually denoted by(−)∗. The
closure operator isF 7→ F∗∗ and the Galois closed sets are of the formF∗. They
are usually referred to asbicentralizers, bicentrally closed setsor primitive-positive
clones(the last name is due to Stanley Burris).
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a11 a12 . . . a1m
g→ b1

a21 a22 . . . a2m
g→ b2

...
...

...
...

...

an1 an2 . . . anm
g→ bn

f ↓ f ↓ . . . f ↓ f ↓
c1 c2 . . . cm

g→ d

Figure 4.5: Commuting operations

Proposition 4.46 (a) Let F ⊆OA and letF• = { f • : f ∈ F}. ThenF∗ = Pol(F•).
(b) For every primitive-positive cloneC of operations onA there is an algebra

A on A such thatC=
⋃

n>1hom(An,A).

Proof. (a) is just a reformulation of the definitions. As for(b), letC be a primitive-
positive clone. ThenC = F∗ for someF ⊆ OA. It is easy now to see thatC =
⋃

n>1hom(An,A) whereA = (A,F). �

As we have seen from Theorems 4.7 and 4.28, both clones of operations and
relational clones are subuniverses of algebras of the same type. In both cases we
have a binary “composition”, two operations that permute variables, one operation
that identifies variables and a constant. So, starting from a set of operations F
one can first produce a clone Cln(F) and then interprete it as a set of relations
Cln(F)•, or one can immediately treatF as a set of relationsF• and then produce
the relational clone Clr(F•), Fig. 4.6. A question arises: what is the relationship

F
(−)•−−−−−−−−−−−−−−−−→ F•

Cln



y



yClr∩O•A

Cln(F)
(−)•−−→ Cln(F)•

?
= Clr(F•)∩O•A

Figure 4.6: Cln(F)• versus Clr(F•)

between the two sets of relations? Clearly, Clr(F•) contains relations that are not
graphs of operations, but what if we compare Cln(F)• and Clr(F•)∩O•A? The
following easy lemma deals with the general case.

Proposition 4.47 For everyF ⊆ OA we haveCln(F)• ⊆ Clr(F•)∩O•A.

Proof. Having in mind Theorems 4.7 and 4.28, it suffices to note that if ar( f )> 2
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then( f ∗g)• = (g•)◦ ( f •), ζ ( f )• = prn,1,2,...,n−1,n+1( f •), τ( f )• = τ( f •),△( f )• =

△( f •) and(π2
1)
• = δ 13|2

3 . �

We are now going to show that Cln(F)• = Clr(F•)∩O•A if and only if Cln(F)
is a primitive-positive clone.

Lemma 4.48 Let F ⊆ OA.
(a) (Pol(F•))• = InvF ∩O•A.
(b) (F∗∗)• = Clr(F•)∩O•A.
(c) Clr(Cln(F)•) = Clr(F•).
(d) If C= Cln(F) thenF∗∗ =C∗∗.

Proof. (a) Take anyg• ∈ (Pol(F•))•. Theng∈ Pol(F•) if and only if g commutes
with every f ∈ F if and only if every f ∈ F preservesg• i.e.,g• ∈ InvF .

(b) SinceF∗ = Pol(F•) we haveF∗∗ = Pol(Pol(F•)•), so

(F∗∗)• =
(

Pol(Pol(F•)•)
)•
.

Let C= Pol(F•). Then according to(a),

(F∗∗)• =
(

Pol(C•)
)•

= InvC∩O
•
A = InvPol(F•)∩O

•
A = Clr(F•)∩O

•
A.

(c) Inclusion⊇ is obvious and follows from Cln(F) ⊇ F . For the other inclu-
sion, note that Cln(F)•⊆Clr(F•) according to Proposition 4.47, so Clr(Cln(F)•)⊆
Clr(Clr(F•)) = Clr(F•).

(d) (C∗∗)• = Clr(C•)∩O•A = Clr(Cln(F)•)∩O•A = Clr(F•)∩O•A = (F∗∗)•.
Therefore,C∗∗ = F∗∗. �

Theorem 4.49 Let F ⊆ OA. ThenCln(F) is a primitive-positive clone if and only
if Cln(F)• = Clr(F•)∩O•A.

Proof. (⇒) Let C= Cln(F) be a primitive-positive clone. ThenC=C∗∗ and

Cln(F)• =C• = (C∗∗)• = Clr(C•)∩O
•
A = Clr(Cln(F)•)∩O

•
A = Clr(F•)∩O

•
A,

by (b) and(c) of Lemma 4.48.
(⇐) Let C= Cln(F). According to Lemma 4.48 and the assumption:

(C∗∗)• = Clr(C•)∩O
•
A = Clr(Cln(F)•)∩O

•
A = Clr(F•)∩O

•
A = Cln(F)• =C•.

Therefore,(C∗∗)• =C•, i.e.,C∗∗ =C and henceC is a primitive-positive clone.�
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There is another description of primitive-positive clones that justifies the name.
Recall that aprimitive-positive formula over a languageF ∪C ∪Q, whereF is
a set of function symbols,C is a set of constant symbols andQ is a set of relation
symbols, is a formula of the form

∃x1∃x2 . . .∃xm (α1∧ . . .∧αk)

whereαi areatomic formulas, that is, either formulas of the formQ(v1, . . . ,vn)
for someQ∈Q and some variablesv j , or an equalityt(v1, . . . ,vn) = s(v1, . . . ,vn)
wheret ands are(F ∪C )-terms.

Let F be a set of operations such that(A,F) is anF -algebra. An operation

g∈ O
(n)
A is primitive-positive definable over F(or pp-definable, for short) if there

is a primitive-positive formulaϕ(x1, . . . ,xn,y) overF such that

g(a1, . . . ,an) = b if and only if (A,F) |= ϕ [a1, . . . ,an,b]

for everya1, . . . ,an,b∈ A. Then it is easy to show the following statement:

Proposition 4.50 Let F ⊆ OA. The set of all operations that are pp-definable over
F is a clone of operations onA.

We are now ready to show that primitive-positive clones are precisely the
clones of pp-definable operations.

Theorem 4.51 (Kuznecov)Let F ⊆ OA. ThenF∗∗ = {g∈ OA : g is pp-definable
overF}.

Proof. (⊇) Supposeh ∈ OA is pp-definable overF . Then there is a primitive
positive formulaϕ overF that definesh, i.e.

h(x1, . . . ,xn) = y if and only if (A,F) |= ϕ(x1, . . . ,xn,y).

Let x = (x1, . . . ,xn), A = (A,F) and letϕA denote the interpretation ofϕ in A.
Clearly,ϕA = h•. Without loss of generality we may assume that

ϕ(x,y) = (∃z)
s∧

i=1

( fi(x,y,z) = gi(x,y,z))

for appropriately chosenfi ,gi ∈C=Cln(F). Let us show thatϕA ∈Clr(C•). From
fi ,gi ∈C it follows that f •i ,g

•
i ∈C•, so f •i ×g•i ∈Clr(C•) for all i. For appropriately

chosen diagonalsδi and mappingsαi we have

( fi(x,y,z) = gi(x,y,z))A = prαi
(δi ∩ ( f •i ×g•i )) ∈ Clr(C•).
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Next, we have

(
s∧

i=1

( fi(x,y,z) = gi(x,y,z))

)A

=
s⋂

i=1

prαi
(δi ∩ ( f •i ×g•i )) ∈ Clr(C•),

and thus

ϕA = prξ1...ξb

(
s⋂

i=1

prαi
(δi ∩ ( f •i ×g•i ))

)

∈ Clr(C•)

for appropriately chosenξ1, . . . ,ξb. This shows thath• = ϕA ∈Clr(C•). Therefore,
h∈C∗∗ = F∗∗.

(⊆) Take anyh ∈ C∗∗. Then f • ∈ (C∗∗)• = Clr(C•)∩O•A. The proof now

follows from Theorem 4.28 having in mind that operations◦, ζ , τ,△ andδ 12|3
3 can

easily be represented by primitive-positive formulas. �

Therefore, only some very special clones are clones of pp-definablefunctions.
Actually, we shall show that there are only finitely many such clones on a finite
set. The situation with relational clones, however, is significantly different:every
relational clone is a clone of pp-definable relations.

LetQbe a set of relations such that(A,Q) is aQ-relational structure. A relation

ρ ∈R
(n)
A is primitive-positive definable over Q(or pp-definable, for short) if there

is a primitive-positive formulaϕ(x1, . . . ,xn) overQ such that

(a1, . . . ,an) ∈ ρ if and only if (A,Q) |= ϕ [a1, . . . ,an]

for all a1, . . . ,an ∈ A.

Theorem 4.52 Let Q⊆RA. ThenClr(Q) = {ρ ∈RA : ρ is pp-definable overQ}.

Theorem 4.53 (Burris, Willard 1987, [16]) For any fintite setA there are only
finitely many primitive-positive clones.

Proof. Let (A,F) be an algebra of typeF . We say that a relationρ ∈ R
(4)
A is

definable by a principal congruence formula w.r.t(A,F) if there is a principal con-
gruence formulaψ such that

(a,b,c,d) ∈ ρ if and only if (A,F) |= ψ [a,b,c,d],

for all a,b,c,d ∈ A.
Now let A1 = (A,F1) be an algebra of typeF1 andA2 = (A,F2) an algebra of

typeF2, and assume that the following two conditions hold:
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(1) ρ ∈R
(4)
A is definable by a principal congruence formula w.r.tA1 if and only

if ρ is definable by a principal congruence formula w.r.tA2; and

(2) f ∈ ⋃|A|i=1O
(i)
A is a term function of algebraA1 if and only if f is a term

function of algebraA2.

Then we are going to show that hom(Ak
1,A1) = hom(Ak

2,A2), for everyk> 1.
Let k> 1 be arbitrary and let us first show that (1) implies Con(Ak

1) =Con(Ak
2).

Clearly, it suffices to show that the principal congruences coincide. So, let Θ1(c,d)
be a principal congruence ofAk

1 generated byc,d ∈ Ak. Then there is a principal
congruence formulaψ such that

(a,b) ∈ Θ1(c,d) if and only if Ak
1 |= ψ [a,b,c,d].

Since principal congruence formulas respect homomorphisms we have that

A1 |= ψ [a1,b1,c1,d1], . . . ,A1 |= ψ [ak,bk,ck,dk],

wherea= (a1, . . . ,ak), . . . ,d = (d1, . . . ,dk), so the 4-ary relation

ρ = {(a,b,c,d) ∈ A4 : A1 |= ψ [a,b,c,d]}

contains the quadruples(a1,b1,c1,d1), . . . , (ak,bk,ck,dk). But ρ is obviously de-
finable by a principal congruence formula w.r.t.A1, so according to (1)ρ is defin-
able by a principal congruence formual w.r.t.A2. Let ψ̂ be a principle congruence
formula which definesρ w.r.t. A2. Then

A2 |= ψ̂[a1,b1,c1,d1], . . . ,A2 |= ψ̂[ak,bk,ck,dk],

whence follows thatAk
2 |= ψ̂[a,b,c,d]. Therefore,(a,b) ∈ Θ2(c,d). This con-

cludes the proof that Con(Ak
1) = Con(Ak

2).
Now, take anyϕ ∈ hom(Ak

1,A1) and assume thatϕ /∈ hom(Ak
2,A2). Fromϕ ∈

hom(Ak
1,A1) it follows that kerϕ ∈ Con(Ak

1) = Con(Ak
2), while ϕ /∈ hom(Ak

2,A2)
means that there is a function symbolf ∈F2 and someu1, . . . ,us∈ Ak such that

ϕ( f Ak
2(u1, . . . ,us)) 6= f A2(ϕ(u1), . . . ,ϕ(us)). (4.2)

Let g be a term obtained fromf by identifying variablesxi andx j if and only if
ϕ(ui) = ϕ(u j). In order to make it easier to follow the proof, we proceed by taking
an example. Lets= 5 so thatf depends on 5 variablesf (x,y,z,v,w) and assume
thatϕ(u2) = ϕ(u5) andϕ(u3) = ϕ(u4). Then

g(x,y,z) = f (x,y,z,z,y).
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Then f A2(ϕ(u1), . . . ,ϕ(us)) = gA2(ϕ(ui1), . . . ,ϕ(uit )) for appropriately chosen in-
dices i1, . . . , it . In our example this means thatf A2(ϕ(u1),ϕ(u2),ϕ(u3),ϕ(u4),
ϕ(u5)) = gA2(ϕ(u1),ϕ(u2),ϕ(u3)). Note that ar(g) = |im(ϕ)|6 |A|.

Next let us show that

ϕ( f Ak
2(u1, . . . ,us)) = ϕ(gAk

2(ui1, . . . ,uit )). (4.3)

We again take a look at the example. Since(u1,u1) ∈ kerϕ , (u2,u2) ∈ kerϕ ,
(u3,u3) ∈ kerϕ , (u4,u3) ∈ kerϕ , (u5,u2) ∈ kerϕ and since kerϕ ∈ Con(Ak

2) we
have that

( f Ak
2(u1,u2,u3,u4,u5), f Ak

2(u1,u2,u3,u3,u2)) ∈ kerϕ

i.e.
( f Ak

2(u1,u2,u3,u4,u5),g
Ak

2(u1,u2,u3)) ∈ kerϕ ,

so ϕ( f Ak
2(u1, . . . ,us)) = ϕ(gAk

2(ui1, . . . ,uit )). Equations (4.2) and (4.3) together
with the definition ofg imply that

ϕ(gAk
2(ui1, . . . ,uit )) 6= gA2(ϕ(ui1), . . . ,ϕ(uit )). (4.4)

SincegA2 is a term function ofA2 of arity 6 |A|, from assumption (2) it follows
that there is anF1-termh such thathA1 = gA2. From (4.4) if now follows that

ϕ(hAk
1(ui1, . . . ,uit )) 6= hA1(ϕ(ui1), . . . ,ϕ(uit )),

which contradicts the fact thatϕ ∈ hom(Ak
1,A1) andh is anF1-term. This com-

pletes the proof that assumptions (1) and (2) imply hom(Ak
1,A1) = hom(Ak

2,A2).
For a primitive-positive cloneC let γC be the set of all 4-ary relations onA

definable by principal congruence formulas w.r.t.(A,C) and letτC be the set of all
term functions of(A,C) of arity6 |A|, and define the mapΦ by Φ(C) = (γC,τC).
SinceC =

⋃

n>1hom((A,C)n,(A,C)), the above discussion actually shows thatΦ
is an injective mapping. Since there are only finitely many possibilities to choseγC

andτC, it follows that there are only finitely many primitive-positive clones onA.�

4.8 Abstract clones

Each cloneC can be understood as a structure with countably many layersC(1),
C(2), . . . , C(n), . . . , substitution operationsSn

k : C(n)× (C(k))n→ C(k) and distin-
guished elementsπn

1 , . . . ,πn
n of each layerC(n). An abstrast setting to express this

point of view is that of multisorted algebras.
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Let Sbe a nonempty set called theset of sorts. An S-set(or amultisorted set)
is any family(As)s∈S. A multisorted setA= (As)s∈S is asubset ofa multisorted set
B= (Bs)s∈S, in symbolsA⊆ B, if As⊆ Bs for all s∈ S. An S-function f: A→ B
betweenS-setsA = (As)s∈S andB = (Bs)s∈S is any family of maps( fs)s∈S such
that fs : As→ Bs is a (usual) mapping for alls∈ S. An S-function f : A→ B is
bijectiveif all fs’s are bijective. AnS-equivalence relationθ = (θs)s∈S on anS-set
A= (As)s∈S is anS-set(θs)s∈S such thatθs is an equivalence relation onAs for all
s∈ S. By A/θ we denote theS-set(As/θs)s∈S.

For a string of sortsw= (s1, . . . ,sn) ∈ Sn and a sorts0 ∈ S, a (w,s0)-operation
(or a multisorted operation) on (As)s∈S is any mappingf : As1× . . .×Asn → As0.
In that casew is said to be thearity of f . If w = () is the empty string of sorts,
then a((),s0)-operation is just an element ofAs0. Therefore,((),s0)-operations
correspond to constants of sorts0.

An S-signatureis a setΣ of pairs (w,s) wherew is a string of sorts fromS
ands∈ S. For a signatureΣ, a Σ-multisorted algebrais a pair(A,F) whereA =
(As)s∈S is anS-set andF is a set of multisorted operations onA such that for every
σ = (w,s) ∈ Σ there is exactly one(w,s)-operationfσ ∈ F and there are no other
multisorted operations inF .

Let (A,FA) and(B,FB) be Σ-multisorted algebras and leth : A→ B be anS-
function. Thenh is aΣ-homomorphismif

hs0( f A
σ (a1, . . . ,an)) = f B

σ (hs1(a1), . . . ,hsn(an))

for everyσ = ((s1, . . . ,sn),s0) ∈ Σ and allai ∈ Asi , 16 i 6 n. A Σ-isomorphismis
a bijectiveΣ-homomorphism. We say that(B,FB) is aΣ-subalgebraof (A,FA) if
B⊆ A and

f B
σ (b1, . . . ,bn) = f A

σ (b1, . . . ,bn)

for everyσ = ((s1, . . . ,sn),s0) ∈ Σ and allbi ∈ Bsi , 16 i 6 n. An S-equivalence
relationθ onA is aΣ-congruenceof (A,FA) if for all σ = ((s1, . . . ,sn),s0) ∈ Σ,

(a1,b1) ∈ θs1, . . . ,(an,bn) ∈ θsn

implies
( f A

σ (a1, . . . ,an), f A
σ (b1, . . . ,bn)) ∈ θs0.

If θ is a Σ-congruence of(A,FA) then theS-setA/θ is the carrier of aΣ-algebra
whose operations are defined by

f A/θ
σ (a1/θs1, . . . ,an/θsn) = f A

σ (a1, . . . ,an)/θs0

whereσ = ((s1, . . . ,sn),s0) ∈ Σ. This algebra is referred to as thefactor algebra
and denoted also byA/θ . One can now show that all the facts from universal
algebra easily carry over to multisorted algebras.
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Definition 4.54 An abstract cloneis a multisorted algebra whose carrier is anN-
set (An)n∈N, with operationsSn

k of signature((n,k, . . . ,k
︸ ︷︷ ︸

n

),k), and with constants

en
i ∈An, 16 i 6 n, which satisfies the following identities for all reasonable choices

of i, k, mandn:

(AC1) Sn
n( f ,en

1, . . . ,e
n
n) = f ,

(AC2) Sn
k(e

n
i , f1, . . . , fn) = fi , and

(AC3) Sk
m(S

n
k( f ,g1, . . . ,gn),h1, . . . ,hk) =

= Sn
m( f ,Sk

m(g1,h1, . . . ,hk), . . . ,Sk
m(gn,h1, . . . ,hk)).

Example 4.55 (a) Clearly, every clone of operationsC is an abstract clone. The
carrier of the algebra is(C(n))n∈N, the operationsSn

k are given bySn
k( f ,g1, . . . ,gn) =

f (g1, . . . ,gn) and the constants areen
i = πn

i .
(b) There are abstract clones that are not clones of operations. We startwith

a straighforward example. LetF be an algebraic type, letXn = {x1, . . . ,xn},
n ∈ N, be an increasing chain of finite sets of variables, letX =

⋃

n>1Xn and let
TF (Xn) denote the absolutely freeF -algebra over the set of variablesXn. Then
TermF (X) = (TF (Xn))n∈N is the carrier of an abstract clone whose constants are
given byen

i = xi and the superposition operations are given by substituting terms
for variables. Note that ifA = (A,F) is an F -algebra andι : F → F is the
interpretation of operation symbols, thenι extends to a clone homomorphism
ι# : TermF (X)→ Cln(A), where Cln(A) denotes the clone of term-operations of
the algebraA.

(c) Finally, there exist abstract clones which are not just clones of operations in
a fancy robe. LetX be a nonempty set and letAn, n∈N, be the set of all mappings
f : X→ {1, . . . ,n}×X. Let en

i ∈ An be the following mapping:en
i (x) = (i,x). For

g1, . . . , gn ∈ Ak define [g1, . . . ,gn] : {1, . . . ,n} × X → {1, . . . ,k} × X by

[g1, . . . ,gn](i,x) = gi(x) and letSn
k( f ,g1, . . . ,gn) = [g1, . . . ,gn]◦ f . Then

(

(An)n∈N,

(Sn
k)n,k∈N, (en

i ) n,i∈N
16i6n

)

is an abstract clone.

Theorem 4.56 Every abstract clone is isomorphic to a clone of operations (not
necessarily on a finite set).

Proof. Let (An)n∈N be an abstract clone. In order to make it easier to follow the
proof we assume that allAn’s are pairwise disjoint and instead ofSn

k( f ,g1, . . . ,gn)
we shall simply writef (g1, . . . ,gn). Forak ∈ Ak let

L(ak) = {ak(e
n
1, . . . ,e

n
k) : n> k}

= {ak,ak(e
k+1
1 , . . . ,ek+1

k ),ak(e
k+2
1 , . . . ,ek+2

k ), . . .}.
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We say thatL(ak) is a chain, or the chain that starts withak. Let Ln(ak) = L(ak)∩
An. Clearly,Ln(ak) =∅ if n< k andLn(ak) = {ak(en

1, . . . ,e
n
k)} for n> k.

Let us now show that ifL andL′ are chains such thatLn = L′n for somen∈ N

thenL ⊆ L′ or L′ ⊆ L. Assume thatLn = L′n = {an}, let i be the least integer such
thatLi 6=∅ and let j be the least integer such thatL′j 6=∅ so thatL = L(ai) where
Li = {ai}, andL′ = L(a′j) whereL′j = {a′j}. Clearly, i 6 n and j 6 n and without
loss of generality we may assume thati 6 j. Let us show thatL′ ⊆ L.

First, we show thatL j = L′j . LetL j = {a j}. SinceL′n = {an} andL′ = L(a′j) we
havean = a′j(e

n
1, . . . ,e

n
j ) and similarly fromL = L(ai) we havean = ai(en

1, . . . ,e
n
i ).

Sincea j = ai(e
j
1, . . . ,e

j
i ) it is easy to see thatan = a j(en

1, . . . ,e
n
j ):

a j(e
n
1, . . . ,e

n
j ) = ai(e

j
1, . . . ,e

j
i )(e

n
1, . . . ,e

n
j ) [by the def. ofa j ]

= ai(e
j
1(e

n
1, . . . ,e

n
j ), . . . ,e

j
i (e

n
1, . . . ,e

n
j )) [by (AC3)]

= ai(e
n
1, . . . ,e

n
i ) [by (AC2)]

= an.

Therefore,an = a′j(e
n
1, . . . ,e

n
j ) = a j(en

1, . . . ,e
n
j ), whence

a′j(e
n
1, . . . ,e

n
j )(e

j
1, . . . ,e

j
j ,e

j
j , . . .e

j
j

︸ ︷︷ ︸

n

) = a j(e
n
1, . . . ,e

n
j )(e

j
1, . . . ,e

j
j ,e

j
j , . . .e

j
j

︸ ︷︷ ︸

n

)

so by (AC3) we havea′j(e
j
1, . . . ,e

j
j) = a j(e

j
1, . . . ,e

j
j) and by(AC1) we conclude

a′j = a j , i.e., L′j = L j . Finally, we show that for allk> j we haveLk = L′k. Let
Lk = {ak} andL′k = {a′k}. Thena′k = a′j(e

k
1, . . . ,e

k
j) andak = ai(ek

1, . . . ,e
k
i ). As

in the previous paragraph we can show thatak = a j(ek
1, . . . ,e

k
j) so froma j = a′j it

follows thatak = a′k. SinceL′k = ∅ for k < j andL′k = Lk for k> j we conclude
L′ ⊆ L.

This shows that everya∈⋃n∈NAn is contained in finitely many chainsL1, . . . ,
Ls and that all these chains are linearly ordered by inclusion, i.e.,L1 ⊆ . . . ⊆ Ls.
Therefore, for everya∈ ⋃n∈NAn there is a maximal chain that contains it, and we
shall denote it bya. Let

A=
{

a : a∈
⋃

n∈N
An
}

be the set of all maximal chains. Forf ∈An define then-ary operationΩ f : (A)n→
A on A as follows. Take anya1, . . . , an ∈ A and find the leastt > 1 such that
ai ∩At 6=∅ for all i. Let ai ∩At = {ai

t}, i ∈ {1, . . . ,n}, and set

Ω f (a1, . . . ,an) = f (a1
t , . . . ,a

n
t ).
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Note that fors> t we have

f (a1
t , . . . ,a

n
t ) = f (a1

s, . . . ,an
s) (4.5)

whereai ∩As = {ai
s}, i ∈ {1, . . . ,n}. This follows easily since

f (a1
s, . . . ,a

n
s) = f (a1

t (e
s
1, . . . ,e

s
t ), . . . ,a

n
t (e

s
1, . . . ,e

s
t )) = f (a1

t , . . . ,a
n
t )(e

s
1, . . . ,e

s
t )

and thus f (a1
t , . . . ,a

n
t ) ∩ As = { f (a1

s, . . . ,a
n
s)}. Therefore, f (a1

s, . . . ,a
n
s) and

f (a1
t , . . . , an

t ) belong to the same chain and hance have the same maximal chain.
To complete the proof, let

C=
{

Ω f : f ∈
⋃

n∈N
An}.

At the same time we show thatC is a clone and thatΩ :
⋃

n∈NAn→C : f 7→Ω f is
a clone homomorphism. We start with projections:

Ωen
i
(a1, . . . ,an) = en

i (a
1
t , . . . ,a

n
t ) = ai

t = ai ,

wheret > 1 is the least integer such thatai ∩At 6= ∅ for all i, andai ∩At = {ai
t},

i ∈ {1, . . . ,n}. Therefore,Ωen
i
= πn

i ∈ C. Next, take anyΩ f , Ωg1, . . . , Ωgk ∈ C
where f ∈ Ak andg1, . . . ,gk ∈ An. Then

Ω f (Ωg1, . . . ,Ωgk)(a1, . . . ,an) = Ω f (Ωg1(a1, . . . ,an), . . . ,Ωgk(a1, . . . ,an))

= Ω f (g1(a1
t , . . . ,a

n
t ), . . . ,gk(a1

t , . . . ,a
n
t )),

wheret > 1 is the least integer such thatai ∩At 6= ∅ for all i, andai ∩At = {ai
t},

i ∈ {1, . . . ,n}. From (4.5) and (AC1)–(AC3) it now follows that

Ω f ( g1(a1
t , . . . ,a

n
t ), . . . ,gk(a1

t , . . . ,a
n
t ) ) = f (g1(a1

t , . . . ,a
n
t ), . . . ,gk(a1

t , . . . ,a
n
t ))

= f (g1, . . . ,gk)(a1
t , . . . ,a

n
t )

= Ω f (g1,...,gk)(a1, . . . ,an).

Therefore,Ω f (Ωg1, . . . ,Ωgk) = Ω f (g1,...,gk) ∈C. So,C is a clone andΩ is a clone
homomorphism. Clearly,Ω is onto and in order to show thatΩ is an isomorphism
we still have to show thatΩ is injective. Let f ,g∈ An and letΩ f = Ωg. Then

f = f (en
1, . . .e

n
n) = Ω f (en

1, . . . ,e
n
n) = Ωg(en

1, . . . ,e
n
n) = g(en

1, . . .e
n
n) = g.

So, f = g and from f ,g ∈ An and | f ∩An| = 1 = |g∩An| it follows f = g. This
completes the proof. �
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Recall that each algebraic typeF corresponds to an abstract clone whose el-
ements are terms: letXn = {x1, . . . ,xn}, n ∈ N, be an increasing chain of finite
sets of variables, letTF (Xn) denote the absolutely freeF -algebra over the set of
variablesXn and letX =

⋃

n∈NXn; then TermF (X) = (TF (Xn))n∈N is the carrier of
an abstract clone whose constants areen

i = xi and the superposition operations are
given by substituting terms for variables.

Let V be a variety of typeF and let Eq(V ) denote the equational theory of
V , that is

Eq(V ) =
⋃

n∈N
Eqn(V )

where
Eqn(V ) = {(p,q) : p,q∈ TF (Xn) andV |= p≈ q}.

Then Eq(V ) is a congruence of TermF (X) and the factor-clone TermF (X)/Eq(V )
is just another representation of the freeV -algebra on a countable set of generators.
In particular,

Lemma 4.57 If A = (A,F) is anF -algebra andV (A) the variety generated byA
thenTermF (X)/Eq(V (A))∼= Cln(A).

Proof. This is straightforward, and we include the proof just to demonstrate the
language of abstract clone theory. Recall that ifι : F → F is the interpretation
of fundamental operation symbols that gives rise toA, thenι extends to a clone
homomorphismι# : TermF (X)→Cln(A), and this homomorphism is onto. So, by
the First Isomorphism Theorem it suffices to show that ker(ι#) = Eq(V (A)), and
this is easy:ι#(p) = ι#(q) if and only if pA = qA if and only if A |= p≈ q if and
only if V (A) |= p≈ q if and only if (p,q) ∈ Eq(V (A)). �

In [31] A. Knoebel considered maximal clonesC on a finite setA as algebras
(A,C) and located these algebras in the lattice of varieties of the appropriate sim-
ilarity type. It turns out that any such algebra(A,C) generates a variety whose
subvarieties form a chain of length 1, 2, 4 or 5 under inclusion.

We say that anF -variety isminimal if it is an atom in the lattice of allF -
varieties. It is easy to see that the congruence lattice of TermF (X) is dually iso-
morphic to the lattice ofF -varieties and hence a varietyV is minimal if and only
if TermF (X)/Eq(V ) has no nontrivial congruences.

Theorem 4.58 (A. Knoebel 1985 [31])Let 6 be a bounded partial order on a fi-
nite setA and letA6 = (A,Pol{6}). Then the varietyV (A6) is minimal.

Proof. Let F be an algebraic type chosen so thatA6 is anF -algebra. In order to
show thatV (A6) is a minimalF -variety, we show that TermF (X)/Eq(V (A6))
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has no nontrivial congruences. Since TermF (X)/Eq(V (A6))∼=Cln(A6) (Lemma
4.57) and Cln(A) = Pol{6}, we are done if we manage to show that Pol{6} has
no nontrivial congruences.

Let Θ0 = (Θ0
n)n∈N andΘ1 = (Θ1

n)n∈N denote, respectively, the least and the
greatest congruence onOA:

Θ0
n = {( f , f ) : f ∈ O

(n)
A } and Θ1

n = {( f ,g) : f ,g∈ O
(n)
A }

and letθ = (θn)n∈N be a congruence on Pol{6} distinct fromΘ0. Then there is an
n such thatθn 6= Θ0

n, i.e. there existn∈N and f ,g∈ Pol(n){6} such thatf 6= g and
( f ,g) ∈ θn. Let us first show that this implies that for everyk we haveθk 6= Θ0

k.
Takea1, . . . ,an ∈ A so thatp= f (a1, . . . ,an) 6= g(a1, . . . ,an) = q. Let ca denote

the constant unary mappingx 7→ a. Clearly,ca ∈ Pol{6} for all a∈ A. Then from
f θn g, ca1 θ1 ca1, . . . ,can θ1 can and the fact thatθ is a clone congruence it follows
that

cp = f (ca1, . . . ,can) θ1 g(ca1, . . . ,can) = cq.

Sincep 6= q, we havep 66 q or q 66 p, so assume thatq 66 p. Then there is anh∈
Pol(1){6} such thath(p) = 0 andh(q) = 1, where 0 and 1 denote the least and the
greatest element of6. Now,h θ1 h andcp θ1 cq, soh(cp) θ1 h(cq), i.e.c0 θ1 c1. But
then for everyk∈N we have thatc0(πk

1) 6= c1(πk
1) andc0(πk

1) θk c1(πk
1). Therefore,

θk 6= Θ0
k for all k∈ N.

Finally, let us show that for allk ∈ N, if θk 6= Θ0
k then θk = Θ1

k. Take any

s∈ Pol(k){6} and considert ∈ O
(k+1)
A defined by

t(x1, . . . ,xk,xk+1) =

{

0, xk+1 6= 1

s(x1, . . . ,xk), xk+1 = 1.

Then it is easy to see thatt ∈ Pol(k+1){6} and that

s= t(πk
1, . . . ,πk

k ,c1(πk
1)) θk t(πk

1, . . . ,πk
k ,c0(πk

1)) = c0(πk
1).

Therefore,sθk c0(πk
1) for everys∈ Pol(k){6}, whenceθk = Θ1

k. �
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Chapter 5

Minimal clones and CSP

One of the main concerns in theoretical computer science is to understand which
computational problems are tractable, and which problems are hard to solve.Here,
“tractable” means that instances of the problem can be solved within a reasonable
amount of computational resources and time. In this text we designate problems as
tractable if there exists a polynomial time algorithm, whereas hard are those that
are NP-hard.

The constraint satisfaction problem was introduced by Montanari in 1974and
has been widely studied [42]. Several frameworks to formalize the notion of con-
straint satisfaction have been proposed, most prominantly the class CSP ofcon-
straint satisfaction problems that are defined as homomorphism problems. Such
problems are defined by a relational structure, the so-called template of the con-
straint satisfaction problem. Constraint satisfaction problems are computational
problems that occur in many areas of computer science, graph theory, boolean sat-
isfiability and database theory.

One fundamental open research problem in this area is to characterise exactly
the forms of constraint relations which give rise to tractable problem classes. This
problem is important from a theoretical perspective, as it helps to clarify the bound-
ary between tractability and intractability in a wide range of combinatorial search
problems.

The problem of characterising the tractable cases was completely solved for
the important special case of Boolean constraint satisfaction problems by Schaefer
in 1978 [55]. Schaefer established that for Boolean constraint satisfaction prob-
lems (which he called Generalised Satisfiability Problems) there are exactly six
different families of tractable constraints, and any problem involving constraints
not contained in one of these six families is NP-complete. This important result
is known as Schaefer’s Dichotomy Theorem. In 2002. Bulatov managed to ob-

43
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tain a complete classification for the complexity of constraints on a three-element
set [11]. There is still no complete classiffcation for the complexity of constraints
over finite sets with more than three elements, and no dichotomy has so far been
established for arbitrary finite sets, although it has been conjectured thatin case
of an arbitrary finite templates the class of CSP problems satisfies the dichotomy
principle.

5.1 Introduction

Let X be a finite set of variables, andA a finite set of values. A mappingf : X→ A
will be referred to as avaluation. Forh> 1, anh-ary constraintis an ordered pair
(x,ρ) wherex ∈ Xh andρ ∈R

(h)
A . We say that a valuationf : X→ A satisfies a

constraint(x,ρ) if f (x) ∈ ρ.
Theconstraint satisfaction problem (CSP)is a class of decision problems(X,A,C )

whereX andA are finite sets,C = {(x1,ρ1), . . . ,(xk,ρk)} is a finite class of con-
straints over the set of variablesX and the set of valuesA, and the problem is to
decide whether there exists a valuationf : X→ A which satisfies each constraint in
C , i.e., such thatf (xi) ∈ ρi , for all i?

Since bothX and A are always finite, it is clear that every instance of CSP
is decidable. The real problem is, therefore, to establish the complexity of each
particular decision problem.

Example 5.1 An instance of ak-SATISFIABILITY problem asks whether a propo-
sitional formula

F(x1, . . . ,xn) =
m∧

i=1

(xεi1
i1 ∨ . . .∨xεik

ik )

in its conjuctive normal form over a set of variables{x1, . . . ,xn} is satisfiable, i.e.
whether there exists an assignment of truth values to variables that makes thefor-
mula true. Here,εi j ∈ {0,1} and we follow the convention that

xε =

{

x, ε = 1

¬x, ε = 0.

The CSP interpretation of the problem is straightforward. LetX = {x1, . . . ,xn} and
letA= {0,1}. For each conjunctxεi1

i1 ∨ . . .∨xεik
ik take a constraintSi =((xi1, . . . ,xik),ρi)

where
ρi = Ak \{(1− εi1, . . . ,1− εik)}

Note thatρi is the set of all thek-tuples(a1, . . . ,ak) ∈ Ak such that the conjunct
xεi1

i1 ∨ . . .∨ xεik
ik evaluates to 1 under the assignment of truth valuesxi1 = a1, . . . ,
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xik = ak. Now putCF = {S1, . . . ,Sm}. Then this particular instance of CSP has a
solution if and only if the formulaF is satisfiable.

Example 5.2 An instance of ak-GRAPHCOLORABILITY problem asks whether
a given graphG is k-colourable. The CSP interpretation of the problem is again
straightforward. LetX = {x1, . . . ,xn}, be the set of vertices ofG, let {e1, . . . ,em}
be the set of edges ofG whereei = {ui ,vi} ⊆ X with ui 6= vi . Let A= {1,2, . . . ,k}
andνA = {(x,y) ∈ A2 : x 6= y}. For each edgeei = {ui ,vi} we take a constraint

Si = ((ui ,vi),νA)

and putCG = {S1, . . . ,Sm}. Clearly, this instance of CSP has a solution if and only
if G is k-colourable.

Example 5.3 An instance of ak-CLIQUE problem asks whether a given graph
G= (V,E) contains ak-clique. The CSP interpretation of the problem is slightly
more involved. LetX = {x1, . . . ,xk}, let A=V = {a1, . . . ,an} be the set of vertices
of G, and let

εG =
⋃

{u,v}∈E

{(u,v),(v,u)}.

Now, for a pair of distinct indicesi, j ∈ {1,2, . . . ,k}, let

Si j = {((xi ,x j),νA),((xi ,x j),εG)},

and put
CG =

⋃

{Si j : i, j ∈ {1,2, . . . ,k}, i 6= j}.

Clearly, if G has ak-clique spanned byb1, . . . ,bk ∈ V then f =
( x1 x2 ... xk

b1 b2 ... bk

)
is a

valuation that satisfies every constraint inCG. Conversely, if a valuationf : X→ A
satisfies every constraint inCG, then f is injective due to the set of constraints

C
′
G = {((xi ,x j),νA) : i, j ∈ {1,2, . . . ,k}, i 6= j}

and f (X) spans a complete subgraph ofG due to the set of constraints

C
′′
G = {((xi ,x j),εG) : i, j ∈ {1,2, . . . ,k}, i 6= j}.

Therefore,f (X) is the set of vertices of ak-clique inG.
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Example 5.4 An instance of a HAMILTONIAN problem asks whether a given graph
G= (V,E) contains a Hamiltonian cycle. For a CSP interpretation of the problem
let X = {x1, . . . ,xn}, wheren is the number of vertices ofG, and letA = V =
{a1, . . . ,an} be the set of vertices ofG. DefineεG andSi j as in Example 5.3 and let

CG = S12∪S23∪ . . .∪Sn−1,n∪Sn1.

Now, if a valuationf : X→ A satisfies every constraint inCG, then f is injective,
| f (X)| = n and thusf (X) spans a cycle inG which contains every vertex ofG.
Therefore,f (X) is the set of vertices of a Hamiltonian cycle inG.

It is well known that 3-SATISFIABILITY is NP-complete. It follows from Ex-
ample 5.1 then that the general CSP is also NP-complete. However, certain restric-
tions may affect the complexity of CSP. One of the possible natural ways to restrict
CSP is to limit the scope of relations which can appear as constraints.

Definition 5.5 Let A be a finite set andΓ ⊆ RA a set of finitary relations onA.
Then CSPA(Γ) is the class of all pairs(X,C ) such that(X,A,C ) is a constraint
satisfaction problem whereC = {(x1,ρ1), . . . ,(xk,ρk)} andρi ∈ Γ for all i.

Example 5.6 Let A be a finite set with|A|> 2. Without loss of generality we may
assume that{0,1} ⊆ A. Fix an integerk> 2. For each tuplea∈ {0,1}k let

θa = Ak \{a}

and let
Θk = {θa : a∈ {0,1}k}.

Example 5.1 suggests thatθa, wherea = (a1, . . . ,ak), consists of all thek-tuples
(b1, . . . ,bk) ∈ {0,1}k such thatx1−a1

i1 ∨ . . .∨ x1−ak
ik evaluates to 1 under the assign-

ment of truth valuesxi1 = b1, . . . , xik = bk. Therefore, CSPA(Θk) corresponds to
thek-SATISFIABILITY problem.

More precisely, it is easy to see that thek-SATISFIABILITY problem is polyno-
mially reducible to CSPA(Θk). Take any propositional formula

F(x1, . . . ,xn) =
m∧

i=1

(xεi1
i1 ∨ . . .∨xεik

ik )

in its conjuctive normal form over a set of variablesX = {x1, . . . ,xn}. Let xi =
(xi1, . . . ,xik), for each j ∈ {1, . . . ,m} take the constraint(x j ,θa j ) wherea j = (1−
ε j1, . . . ,1− ε jk), and put

CF = {(x1,θa1), . . . ,(x
m,θam)}.
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Then(X,CF) ∈ CSPA(Θk) and it is obvious that(X,CF) has a solution if and only
if F is a satisfiable formula. Since thek-SATISFIABILITY problem is NP-complete
for k> 3, this polynomial reduction shows that CSPA(Θk) is NP-complete fork>
3.

Example 5.7 An instance of the NOT-ALL -EQUAL 3-SATISFIABILITY consists
of a set of triples{(x1,y1,z1), . . . ,(xn,yn,zn)} ⊆ X3 such thatX is a finite set of
variables andxi 6= yi 6= zi 6= xi for all i. The question is whether there exists a
valuation f : X→ {0,1} such that¬( f (xi) = f (yi) = f (zi)) for all i, i.e. no triple
evaluates to(0,0,0) or (1,1,1). It is a well-known fact that NOT-ALL -EQUAL

3-SATISFIABILITY problem is NP-complete [55]. We shall now provide an inter-
pretation of the problem in terms of CSP.

Let A be a finite set with|A| > 2 and assume that{0,1} ⊆ A. Consider the
relation

β = {0,1}3\{(0,0,0),(1,1,1)}.
Then the NOT-ALL -EQUAL 3-SATISFIABILITY problem is polynomially reducible
to CSPA({β}) whence follows that CSPA({β}) is NP-complete.

Equivalently, CSP can be understood as a class of decision problems(X ,A ),
whereX = (X,ξ1, . . . ,ξk) andA = (A,ρ1, . . . ,ρk) are finite relational systems of
the same type (that is, ar(ξi) = ar(ρi) for all i), and the problem is to decide whether
there exists a homomorphismf : X →A . Recall that a homomorphism between
relational systemsX andA is a mappingf : X→ A such thatf (ξi)⊆ ρi , for all i.

The two formulations of CSP are equivalent in the following sense:

Lemma 5.8 For every instance(X,A,C ) of the general constraint satisfaction prob-
lem there exist finite relational systemsXC andAC of the same type such that
there is a valuation which satisfies every constraint inC if and only if there is a
homomorphism fromXC to AC .

Conversely, for every pair of finite relational systemsX andA of the same
type there exists an instance(X,A,CX ,A ) of the general constraint satisfaction
problem such that there is a homomorphism fromX to A if and only if that there
is a valuation which satisfies every constraint inCX ,A .

Moreover, an instance of CSP is in P (NP-complete) if and only if its analogon
is in P (NP-complete).

Proof. Indeed, take any finite set of constraintsC = {(x1,ρ1), . . . ,(xk,ρk)} and let
AC = (A,ρ1, . . . ,ρk) andXC = (X,ξ1, . . . ,ξk), whereξi = {xi} for all i. Then a
mappingf : X→ A is a valuation which satisfies every constraint inC if and only
if f is a homomorphism fromXC to AC .
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Conversely, letX = (X,ξ1, . . . ,ξk) andA = (A,ρ1, . . . ,ρk) be finite relational
systems of the same type and letCX ,A be the following set of constraints:

CX ,A = C1∪ . . .∪Ck,

where
Ci = {(x,ρi) : x ∈ ξi}.

Then a mappingf : X→ A is a homomorphism fromX to A if and only if f is a
valuation which satisfies every constraint inCX ,A .

Note that the constructionsC 7→ (XC ,AC ) and(X ,A ) 7→ CX ,A described
above can be realized in polynomial time. �

Let A = (A,Γ) be a finite relational structure (thetemplate). Then instead of
CSPA(Γ) it may be more convenient to write CSP(A ). In this parlance, CSP(A )
then denotes the class of all finite relational structuresX of the same type asA
such that there is a homomorphismX →A . With a slight abuse of set notation,
we might write

CSP(A ) = {X : X is a finite relational structure of the same type asA

and there is a homomorphismX →A }

The formulation of CSP via homomorphisms sometimes allows for a more
compact description of the problem.

Example 5.1bis In order to obtain an analogon of thek-SATISFIABILITY problem
in terms of homomorphism of relational stuctures, we apply the algorithm from
the proof of of Lemma 5.8. So,X = (X,ξ1, . . . ,ξm) whereX = {x1, . . . ,xk}, ξ1 =
. . . = ξm = {(x1, . . . ,xk)}, andA = ({0,1},ρ1, . . . ,ρm), whereρi ’s are defined in
Example 5.1.

The following examples are more instructive.

Example 5.2bis For an analogon of thek-GRAPHCOLORABILITY problem in
terms of homomorphism of relational stuctures it suffices to takeX = G andA =
Kk, the complete graph onk vertices (that is, an appropriate representation of these
two graphs, such asεG in Example 5.3). To see this, it suffices to note that ifu and
v are adjacent inG, and if f : G→Kk is a graph homomorphism, thenf (u) 6= f (v),
sinceKk does not have loops.

Example 5.3bis For an analogon of thek-CLIQUE problem just takeX = Kk and
A = G.
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Example 5.4bis Finally, for an analogon of the HAMILTONIAN problem we have
to ensure that the graph homomorphism be injective. Therefore, take a graph
G = (V,E), and letA = (V,εG,νV) whereεG is the binary relation defined in
Example 5.3 andνV is the “non-equality” relation defined in Example 5.2. On the
other hand, letX = (X,ξ ,νX) whereX = {1,2, . . . ,n}, n= |V| is the number of
vertices ofG, νX is the “non-equality” relation onX andξ = {(1,2),(2,3), . . . ,(n−
1,n),(n,1)}. ThenG has a Hamiltonian cycle if and only if there is a homomor-
phism f : X →A .

5.2 Constraints and clones

In order to describe tractable sets of relations overA= {0,1}, Schaefer used syn-
tactic properties of propositional formulas representing boolean relations. How-
ever, in case of|A| > 3 this method can no longer be used. We therefore need an
adequate language in which it is possible to express the properties of sets of re-
lations which are responsible for the complexity of the corresponding constraint
satisfaction problems. A useful first step in tackling this problem is to consider
what additional relations can be added to a set of relations without changing the
complexity of the corresponding problem class. The main result in this sectionis
due to Jeavons and shows that the complexity of the constraint satisfaction problem
does not increase if we pass from a set of relations to the relational clonegenerated
by the set of relations [28].

We shall say that a problem istractableif there exists a deterministic polynomial-
time algorithm that solves all the instances of that problem. In order to be able to
talk about tractability of infinite as well as finite sets of relations, we follow [12]
and define the notion of a tractable set of relations in a way that depends onfinite
subsets only.

Definition 5.9 Let A be a finite set and letΓ ⊆ RA be finite. We say thatΓ is
tractable if CSPA(Γ) is tractable. We say thatΓ is NP-completeif CSPA(Γ) is
NP-complete.

Now, let Γ ⊆ RA be infinite. We say thatΓ is tractable if every finite ∆ ⊆ Γ
is tractable. We say thatΓ is NP-completeif there is a finite∆ ⊆ Γ which is NP-
complete. We say thatΓ is globally tractableif CSPA(Γ) is tractable, i.e., every
decision problem in CSPA(Γ) is in P.

Theorem 5.10 (Jeavons 1998, [28])Let Γ ⊆ RA be an arbitrary set of relations
(finite or infinite). Then for every finite∆⊆ Clr(Γ) there exists a polynomial-time
algorithm which reduces every instance ofCSPA(∆) to an instance ofCSPA(Γ). In
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other words, for every finite∆ ⊆ Clr(Γ), the class of problemsCSPA(∆) is poly-
monially reducible toCSPA(Γ).

Proof. (See [12]) Let∆ = {θ1, . . . ,θk} ⊆ Clr(Γ) be a finite set of relations. We
know from Theorem 4.52 that for everyθi ∈ ∆ there exists a primitive-positive
formulaϕi overΓ such that

(a1, . . . ,ah) ∈ θi if and only if (A,Γ) |= ϕi [a1, . . . ,ah]

for all a1, . . . ,ah ∈ A. Note that it is not the job of the algorithm we are looking for
to find these formulasϕi . Given a finite template∆, we use our human ingenuity
to find the formulasϕi which are, then, hard-coded into the algorithm. So, for each
θi fix a primitive-positive formulaϕi definingθi in terms of relations fromΓ.

Now, take any instance(X,C ) ∈ CSPA(∆) whereX = {x1, . . . ,xn} andC =
{(x1,θi1), . . . ,(x

m,θim)}. For each(x j ,θi j ) ∈ C repeat the following:

• let ϕi j (xu1, . . . ,xur ) = ∃y1, . . . ,yp(ρ1(z1
1, . . . ,z

1
l1
)∧ . . .∧ρq(z

q
1, . . . ,z

q
lq
)), where

ρt ∈ Γ∪ {=} for all t and zs
t ∈ {xu1, . . . ,xur ,y1, . . . ,yp}, be the primitive-

positive formula definingθi j ;

• add the auxiliary variablesy1, . . . ,yp to X (renaming if necessary so that none
of them occurs before);

• add the constraints((z1
1, . . . ,z

1
l1
),ρ1), . . . ,((zq

1, . . . ,z
q
lq
),ρq) to C ;

• remove(x j ,θi j ) from C .

It can easily be checked that the instance(X′,C ′) obtained by this procedure is
equivalent to(X,C ) and belongs to CSPA(Γ ∪ {=}). Moreover, since all the
primitive-positive formulas representating relations from∆ are fixed, this trans-
formation can be carried out in polynomial time. Finally, all constraints of the
form ((x,y),=) can be eliminated by replacing all occurrences of the variablex
with y. This transformation can also be carried out in polynomial time. �

This result reduces the problem of characterizing tractable sets of constraints
to the problem of characterizing tractable relational clones:

Corollary 5.11 Let Γ ⊆RA be an arbitrary set of relations. ThenΓ is tractable if
and only ifClr(Γ) is tractable. Moreover,Γ is NP-complete if and only ifClr(Γ) is
NP-complete.

We have shown, thus, that in order to analyze the complexity of arbitrary sets
of relations it suffices to consider only relational clones. This is not only aconsid-
erabe reduction in the sense that, in contrast to arbitraty sets of relations, relational
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clones are well understood, but enables us to use the description of relational clones
via clones of operations. As we shall see, the tractability of CSPA(Γ) depends sig-
nificantly on the structure of PolΓ.

5.3 Tidying up

Quite often it is possible to find a solution to a CSP problem by taking a partial
solution and extending it to the global solution. Those approaches to solvingCSP
usually require tidying up the instance we are working with. In this section we
describe two such procedures which we need in the sequel.

Let (X,C ) be an instance of CSPA(Γ) whereΓ is a relational clone and let
C = {(x1,ρ1), . . . ,(xk,ρk)}. Fix a linear order onX, say,X = {x1, . . . ,xn} and
consider the following algorithm:

(1) for eachx∈ X do
if x appears in no tuplexi then

removex from X;

(2) for eachi ∈ {1, . . . ,k} do
if xi = (. . . ,x j , . . . ,x j , . . .) then

introduce a new lettery and put it at the end ofX
(recall thatX is linearly ordered)

remove(xi ,ρi) from C

add(yi ,ρi) to C , whereyi = (. . . ,x j , . . . ,y, . . .)
add((x j ,y),δ 12

2 ) to C

(recall thatδ 12
2 = {(x,x) : x∈ A})

(3) for eachi ∈ {1, . . . ,k} do
let f be a permutation such that prf (x

i) is sorted w.r.t. the order ofX
remove(xi ,ρi) from C

add(prf (x
i),prf (ρi)) to C

This simple algorithm runs in polynomial time and makes a version of(X,C ) we
shall refer to astidy. It is tidy in the following sense:

• (X′,C ′) is an instance of CSPA(Γ);
• (X,C ) has a solution if and only if(X,C ) has a solution;

• every letter fromX apperas in at least one constraint;

• for every(x,ρ) ∈ C ′, all the letters inx are distinct and appear in a fixed
order.



52 CHAPTER 5. MINIMAL CLONES AND CSP

A list of variables from a linearly ordered setX = {x1, . . . ,xn} is a tuple(xi1, . . . ,xik)
such thati1 < .. . < ik. So, in a “tidy” instance of CSPA(Γ) every constraint con-
sists of a list of variables, together with a relation fromΓ. A list (xi1, . . . ,xik) is
contained ina list (x j1, . . . ,x j l ) if {i1, . . . , ik} ⊆ { j1, . . . , j l}. In that case we write
(xi1, . . . ,xik)⊑ (x j1, . . . ,x j l ).

Let S= ((x j1, . . . ,x j l ),ρ) be a constraint where(x j1, . . . ,x j l ) is a list, and let
(xi1, . . . ,xik) be a list such that(xi1, . . . ,xik) ⊑ (x j1, . . . ,x j l ). Then for eachp, xip

appears at precisely one place in the list(x j1, . . . ,x j l ), say at the placemp (or, more
precisely,x jmp

= xip). Theprojectionof Sonto(xi1, . . . ,xik) is the constraint

pr(xi1 ,...,xik)
(S) = ((xi1, . . . ,xik),prm1,...,mk

(ρ)).

For listsx1 andx2 over X, let x1⊔ x2 denote the shortest listy over X such that
x1⊑ y andx2⊑ y, and letx1⊓x2 denote the longest listy overX such thaty⊑ x1

andy⊑ x2.
Let S1 = (x1,ρ1) andS2 = (x2,ρ2) be constraints where bothx1 andx2 are

lists and letm be the length ofx1⊔x2. Let x1 = (x1
1, . . . ,x

1
k) andx2 = (x2

1, . . . ,x
2
l ).

Furthermore, letp j be the position ofx1
j in x1⊔x2 and letq j be the position ofx2

j

in x1⊔x2. Thejoin of S1 andS2 is the constraint

S1 ⊲⊳ S2 = (x1⊔x2,σ),

where
σ = {a∈ Am : prp1,...,pk

(a) ∈ ρ1 and prq1,...,ql
(a) ∈ ρ2}.

Example 5.12 Let X = {x,y,z,u,v} with the linear orderx≺ y≺ z≺ u≺ v and
let A = {a,b,c,d}. Consider the following two constraints (where the list of the
variables appears at the top row of the table, while the tuples from the relation
apear in the remaining rows):

S1 : x y z u
a a a a
a c b d
a c d c

and S2 : x z v
a b a
a b b
a c b
a d d

Then
S1 ⊲⊳ S2 : x y z u v

a c b d a
a c b d b
a c d c d
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Lemma 5.13 (a) Let S1 = (x1,ρ1) andS2 = (x2,ρ2) be constraints where bothx1

andx2 are lists. Thenprx1(S1 ⊲⊳ S2)⊆ ρ1 andprx2(S1 ⊲⊳ S2)⊆ ρ2.
(b) Let Γ be a relational clone and let(X,{S1,S2,S3, . . . ,Sk}) be a “tidy” in-

stance ofCSPA(Γ). Then(X,{S1 ⊲⊳ S2,S3, . . . ,Sk}) ∈ CSPA(Γ).
(c) Let Γ be a relational clone and let(X,{S1,S2,S3, . . . ,Sk}) be a “tidy” in-

stance ofCSPA(Γ). Then f : X→ A is a solution to(X,{S1,S2,S3, . . . ,Sk}) if and
only if f is a solution to(X,{S1 ⊲⊳S2 ⊲⊳ . . . ⊲⊳Sk}). In particular,(X,{S1,S2,S3, . . . ,Sk})
has a solution if and only ifS1 ⊲⊳ S2 ⊲⊳ . . . ⊲⊳ Sk = (x,ρ) whereρ is nonempty.

Proof. (a) Obvious.
(b) Let S1 = (x1,ρ1), S2 = (x2,ρ2) and letS1 ⊲⊳S2 = (y,σ). It is easy to see that

σ can be obrained fromρ1 andρ2 using diagonals, pr and×, so Theorem 4.28 im-
plies thatσ ∈ Γ sinceΓ is a relational clone. Therefore,(X,{S1 ⊲⊳ S2,S3, . . . ,Sk})
is an instance of CSPA(Γ).

(c) is a straightforward consequence of(a) and the definition of the join of
constraints. �

Note that statement(c) in the previous lemmadoes not providea feasible algo-
rithm for solving CSP in general because it is not clear why computingS1 ⊲⊳ S2 ⊲⊳
. . . ⊲⊳ Sk should take polynomial time in the length of the input!

Another way of transforming an instance of a CSP into a (hopefully) more
managable one consists of removing from the constraints those tuples for which
we know that cannot contribute to finding a solution. To illustrate the idea, take
two constraintsS1 = (x1,ρ1) andS2 = (x2,ρ2) over the same set of variablesX.
Take a listy = (y1, . . . ,yk) such thaty ⊑ x1 and y ⊑ x2, let p j be the position
of y j in x1 and letq j be the position ofy j in x2. Assume now that there is a
tuplea= (a1, . . . ,ak) ∈ prp1,...,pk

(ρ1)\prq1,...,qk
(ρ2). Then if there exists a solution

f : X→ A to {S1,S2} then we know for sure thatf (y1) 6= a1, . . . , f (yk) 6= ak, since
a /∈ prq1,...,qk

(ρ2). Therefore, we can remove fromρ1 all those tuplesz having the
property prp1,...,pk

(z) = a.
Instead of “pruning” constraintsS1 = (x1,ρ1) andS2 = (x2,ρ2) for an arbitrary

list y satisfyingy ⊑ x1 andy ⊑ x2, it is much more efficient to prune them for
maximal suchy, which isx1⊓x2. The final observation is that “maximally” pruned
S1 andS2 can be obtained simply as prx1(S1 ⊲⊳ S2) and prx2(S1 ⊲⊳ S2).

The “pruning” algorithm now takes the following form. Let(X,C ) be a tidy
instance of CSPA(Γ) whereC = {S1, . . . ,Sk} andSi = (xi ,ρi), i ∈ {1, . . . ,k}.
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(1) repeat
(2) for eachi, j ∈ {1, . . . ,k} such thati < j do
(3) S′i ← prxi (Si ⊲⊳ Sj)
(4) S′j ← prx j (Si ⊲⊳ Sj)

(5) removeSi andSj from C

(6) addSi andSj to C

(7) until no more changes toC

Lemma 5.14 Let (X,C ) be a tidy instance ofCSPA(Γ) and let (X,C ′) be the
outcome of the “pruning” algorithm. Then(X,C ′) be a tidy instance ofCSPA(Γ).

Proof. It is obvious that(X,C ′) is tidy, because the algorithm changes neitherX
nor the tuplesx1, . . . , xk. Moreover, it is easy to see that prxi (Si ⊲⊳ Sj) can be
obrained fromρi andρ j using diagonals, pr and×, so Theorem 4.28 implies that
prxi (Si ⊲⊳ Sj) ∈ Γ sinceΓ is a relational clone. Therefore,(X,C ′) be a tidy instance
of CSPA(Γ). �

Lemma 5.15 The “pruning” algorithm runs in polynomial time.

Proof. It is clear that each of the constructions in steps (3)–(6) takes polynomial
time, so the body of the repeat-until loop (lines (2)–(6)) executes in polynomial
time. In each pass through the body of the repeat-until loop we remove at least
one tuple from one of the relationsρ1, . . . , ρk (the algorithm stops when no such
removal occurs). In the worst case, the algorithm executes the repeat-until loop
once for each tuple of each of the relationsρ1, . . . , ρk, and the numer of tuples
equals|ρ1|+ . . .+ |ρn| is polynomial in the length of the input. Therefore, the
entire algorithm runs in polynomial time. �

Each “pruned” instance of CSPA(Γ) is “consistent” in the following sense (a
precise notion of consistency will be introduced later):

Lemma 5.16 Let (X,C ) be an outcome of the “pruning” algorithm, letS1=(x1,ρ1)
andS2 = (x2,ρ2) be two constraints inC and lety be a list overX such thaty⊑ x1

andy⊑ x2. Thenpry(S1) = pry(S2).

Proof. Let us start by considering the casey = x1⊓ x2. Let prx1⊓x2(S1) = (x1⊓
x2,ρ ′1) and prx1⊓x2(S2) = (x1⊓ x2,ρ ′2) and assume that prx1⊓x2(S1) 6= prx1⊓x2(S2).
Thenρ ′1 6= ρ ′2 soρ ′1\ρ ′2 6=∅ or ρ ′2\ρ ′1 6=∅. This, however, contradicts the fact that
(X,C ) is an outcome of the “pruning” algorithm, since the “pruning” algorithm
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would not have stopped with(X,C ) as a result if there had been more possibilities
for “pruning”.

Now, let y be a list overX such thaty ⊑ x1 andy ⊑ x2. Theny ⊑ x1⊓ x2, so
starting from prx1⊓x2(S1) = prx1⊓x2(S2) and taking pry of the both sides we obtain
the claim. �

5.4 Towards the dichotomy

Shaefer proved in 1978 [55] that every CSP{0,1}(Γ) is either tractable or NP-
complete. In 1993 it was conjectured by Feder and Vardi that every CSPA(Γ)
whereA is a finite set is either tractable or NP-complete. This is called theDi-
chotomy Conjecture:

The Dichotomy Conjecture (Feder, Vardi 1993, [24]).For every finiteA, every
CSPA(Γ) is either tractable or NP-complete.

We shall now demonstrate one possibility towards the proof of the conjecture.
Let Γ be a relational clone such thatΓ 6= RA. Then PolΓ 6= ΠA and according to
Theorems 4.33 and 4.36 one of the following cases arises:

(1a) PolΓ contains a constant unary operation;

(1b) PolΓ contains essentially unary operationsonly, none of which is a constant;

(2) PolΓ contains a binary idempotent operation which is not a projection;

(3) PolΓ contains a majority operation;

(4) PolΓ contains a minority operation; or

(5) PolΓ contains projections and semiprojections only.

5.4.1 Constants (Case (1a))

Proposition 5.17 (Jeavons 1998, [28])If PolΓ contains a constant unary opera-
tion thenCSPA(Γ) can be solved in polynomial time.

Proof. Let ca be a constant unary operation such thatca ∈ PolΓ. Then every
nonempty relation inΓ contains a tuple of the form(a,a, . . . ,a). Take any instance
(X,C )∈CSPA(Γ) and letC = {(x1,ρ1), . . . ,(xk,ρk)}. If there is ani such thatρi =
∅ then the instance of the problem has no solutions. Otherwise,ca is a solution.
This can be decided in polynomial time. �
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5.4.2 Semiprojections (Case (5))

Proposition 5.18 (Jeavons 1998, [28])If PolΓ contains projections and semipro-
jections only thenCSPA(Γ) is NP-complete.

Proof. Without loss of generality we can assume that{0,1} ⊆ A and recall the
definition ofΘ3 from Example 5.6:Θ3 = {θa : a∈ {0,1}3}, whereθa = A3\{a}.
It is easy to see that everyθa is invariant under projections and semiprojections.
Since PolΓ contains projections and semiprojections only, it follows that PolΓ ⊆
PolΘ3, i.e.,Θ3⊆Clr(Γ). Theorem 5.10 now yields that CSPA(Θ3) is polynomially
reducible to CSPA(Γ). However, Example 5.6 shows that the 3-SATISFIABILITY

problem is polynomially reducible to CSPA(Θ3). Since the 3-SATISFIABILITY

problem is NP-complete, it follows that CSPA(Γ) is also NP-complete. �

5.4.3 Essentially unary nonconstant operations (Case (1b))

Lemma 5.19 Let A= {a1, . . . ,an}.
(a) Every operation in a cloneC of operations onA is an essentially unary

operation if and only ifω4 = δ 12|3|4
4 ∪δ 1|2|34

4 ∈ InvC.
(b) If every operation inPolΓ is essentially unary, thenClr(Γ) = Clr({ρ,ω4})

whereω4 is defined in(a) and

ρ = {( f (a1), . . . , f (an)) : f ∈ EndΓ}.
In particular,Clr(Γ) is finitely generated.

Proof. (a) The implication(⇒) is trivial. Let us show(⇐).
Let f ∈C be an operation that is not essentially unary, letk = ar( f ) > 2 and

let θ = δ 12|3|4
4 ∪ δ 1|2|34

4 . Without loss of generality we can assume thatf depends
on the first two arguments. Then there exista1, a′1, b2, . . . , bk, d1, c2, c′2, d3, . . . ,
dk ∈ A such that

p= f (a1,b2,b3, . . . ,bk) 6= f (a′1,b2,b3, . . . ,bk) = p′

and
q= f (d1,c2,d3, . . . ,dk) 6= f (d1,c

′
2,d3, . . . ,dk) = q′.

Then
a1 b2 b3 . . . bk

f7→ p

a′1 b2 b3 . . . bk
f7→ p′

d1 c2 d3 . . . dk
f7→ q

d1 c′2 d3 . . . dk
f7→ q′∈

θ

∈
θ

∈
θ

∈
θ

∈
θ

/∈
θ
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Therefore,f does not preserveθ .
(b) It is easy to see that PolΓ = Pol{ω4,ρ}, whence Clr(Γ) = Clr({ω4,ρ}). �

Lemma 5.20 (Jeavons 1998, [28])Let Γ = {ρ1, . . . ,ρk} be a finite set of relations
onA and let f ∈ EndΓ. Let B= f (A) and let∆ be the following set of relations on
B:

∆ = { f (ρ1), . . . , f (ρk)}.
ThenCSPA(Γ) is polynomially reducible toCSPB(∆) and, vice versa,CSPB(∆) is
polynomially reducible toCSPA(Γ).

Proof. Let (X,C ) be an instance of CSPA(Γ) whereC = {(x1,ρi1), . . . ,(x
l ,ρi l )}.

ThenC ′ = {(x1, f (ρi1)), . . . ,(x
l , f (ρi l ))} is an instance of CSPB(∆) and it is easy

to see that ifh : X→ A is a solution to(X,C ) then f ◦h is a solution to(X,C ′). On
the other hand, ifh : X→ B is a solution to(X,C ′) then the same function solves
(X,C ), since f (ρ)⊆ ρ for everyρ ∈ Γ.

Conversely, let(X,C ′) be an instance of CSPB(∆)whereC ′= {(x1,θ1), . . . ,(xl ,θl )}.
For eachj find aρi j ∈ Γ such thatf (ρi j ) = θ j (sinceΓ is finite this can be achieved
by a straightforward polynomial-time algorithm: for eachρ ∈Γ test whetherf (ρ)=
θ j ) and putC = {(x1,ρi1), . . . ,(x

l ,ρi l )}. Clearly,(X,C ) is an instance of CSPA(Γ)
and(X,C ′) has a solution if and only if(X,C ) has a solution. �

Proposition 5.21 (Jeavons 1998, [28])If PolΓ contains essentially unary noncon-
stant operations only, thenCSPA(Γ) is NP-complete.

Proof. In this proof we work with clones on two sets,A andB, so we shall have to
write PolA Γ and PolB Γ to distinguish between clones of operations onA and clones
of operations onB. Simliarly, we shall writeω4(A) andω4(B) (see Lemma 5.19)
to distinguish between the two relations which are constucted in the same fashion,
but on distinct sets.

Since PolA Γ contains essentially unary operations only, Lemma 5.19(b) yields
that ClrA(Γ) = ClrA({ρ,ω4(A)}), whereρ andω4(A) are defined in Lemma 5.19.
Moreover, we may safely restrict our attention to the unary operations in themonoid
M = EndA Γ = EndA{ρ,ω4(A)}.

Let q=min{| f (A)| : f ∈M} and letg∈M be the unary operation that achieves
the minimum:|g(A)| = q. Since there are no constant maps inM we haveq> 2.
Let B= g(A) and

∆ = {g(ρ),g(ω4(A))}.
Clearly, ∆ ⊆ RB. Sinceg(ω4(A)) = ω4(B), Lemma 5.19(a) ensures that PolB ∆
consists of essentially unary operations only.
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Let us first show that EndB ∆ contains no constant operations. Assume, to
the contrary, thatcb ∈ EndB ∆ for somec ∈ B. Thencb preservesg(ρ), whence
follows that(b, . . . ,b) ∈ g(ρ). On the other hand,g preservesρ, whenceg(ρ)⊆ ρ.
Therefore,(b, . . . ,b)∈ ρ, which contradicts the assumption that PolA Γ contains no
constant operations.

Next, let us show that every operation in EndB ∆ is a permutation. Assume
now that there exists anh ∈ EndB ∆ which is not a permutation. Thenh◦ g ∈
EndA{ρ,ω4(A)}= M. On the other hand|h(B)|< |B|= q sinceh is not a permu-
tation. This contradicts the choice ofg.

Let us now show that CSPB(∆) is NP-complete. Lemma 5.20 then yields that
CSPA(Γ) is also NP-complete since CSPB(∆) is polynomially reducible to CSPA(Γ).

Assume, first, thatq= 2. Without loss of generality we can assume thatB=
{0,1}. Since every operation in PolB ∆ is essentially unary and every operation in
EndB ∆ is a permutation, it follows thatβ ∈ ClrB(∆), where

β = {0,1}3\{(0,0,0),(1,1,1)}

(see Example 5.7). Then Theorem 5.10 ensures that CSPB({β}) is polynomially
reducible to CSPB(∆), and we know from Example 5.7 that CSPB({β}) is NP-
complete. Therefore, CSPB(∆) is NP-complete.

Assume, now, thatq> 3. Since every operation in PolB ∆ is essentially unary
and every operation in EndB ∆ is a permutation, it follows thatνB ∈ClrB(∆), where

νB = {(x,y) ∈ B : x 6= y}

(see Example 5.2). Then Theorem 5.10 ensures that CSPB({νB}) is polynomi-
ally reducible to CSPB(∆). On the other hand, we know from Example 5.2 that
CSPB({νB}) corresponds to theq-GRAPHCOLORABILITY problem, which is NP-
complete forq> 3 (which is the case). Therefore, CSPB(∆) is NP-complete. �

5.4.4 Binary idempotent operations (Case (2))

Proposition 5.22 (Jeavons 1998, [28])If PolΓ contains a semilattice operation
thenCSPA(Γ) is tractable.

Proof. Let∧∈PolΓ be a semilattice operation onA. Take any instance of CSPA(Γ),
tidy it up, “prune” it (see Section 5.3) and denote the outcome by(X,C ). As we
have seen in Section 5.3, these two procedures execute in polynomial time.

If C contains an empty constraint, i.e. a constraint of the form(x,∅), then
the original problem has no solutions. Assume, now, that every constraint in C is
nonempty and let us show that in this case(X,C ) has a solution.
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Let z∈ X be an arbitrary variable, and let(x,ρ) be an arbitrary constraint in
C . Let us denote prz(x,ρ) by (z,Dz). Clearly, Dz 6= ∅. Moreover, sinceρ is
invariant under∧, it follows thatDz is also invariant under∧, whence follows that
∧

Dz ∈ Dz. It is also important to note thatDz does not depend on the constraint
(x,ρ): according to Lemma 5.16, for every pair of constraints(x,ρ),(y,σ) ∈ C

such thatz⊑ x andz⊑ y we have prz(x,ρ) = prz(y,σ).
Define f : X→ A by f (z) =

∧
Dz and let us show thatf is a solution to(X,C ).

Take any((y1, . . . ,yk),σ) ∈ C . Since pryi
(S) = (yi ,Dyi ) and f (yi) =

∧
Dyi ∈ Dyi

for all i, it follows that for everyi there exists a tupleai ∈ σ such that pri(ai) =
∧

Dyi = f (yi). Then

a1∧ . . .∧ak = (
∧

Dy1, . . . ,
∧

Dyk) = ( f (y1), . . . , f (yk)).

But, σ is invariant under∧, soa1∧ . . .∧ak ∈ σ . This shows thatf is a solution to
every constraint inC . �
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[66] Yablonskǐı, S. V.,Functional constructions in k-valued logic, Trudy Mat. Inst.
Steklov 51 (1958), 5–142 (Russian)

[67] Yanov, Yu. I., Muchnik A. A.,On the existence of k-valued closed classes
that have no bases, Dokl. Akad. Nauk SSSR 127 (1959), 44-46 (Russian)

[68] Zádori L., Relational sets and categorical equivalence of algebras, Interna-
tional Journal of Algebra and Computation 7 (1997), 561–576


