Diskrete Mathematik (Wintersemester 2019/2020) ASB1MA1DMU, SeBMA01203

12. Übungsblatt für den 27.1.2020, 30.1.2020 und 31.1.2020

- 89. Geben Sie ein Beispiel für eine Äquivalenzrelation auf $A := \{3, 5, 8, 12, 17\}$ an. Geben Sie die Relation in der Form $\rho = \{\dots\}$ an!
- 90. Sei ρ eine Äquivalenzrelation auf A, und seien $a, b \in A$. Zeigen Sie, dass folgende Aussagen äquivalent sind:
 - (a) $(a,b) \in \rho$.
 - (b) $[a]_{\rho} = [b]_{\rho}$.
 - (c) $a \in [b]_{\rho}$.
 - (d) $[a]_{\rho} \cap [b]_{\rho} \neq \emptyset$.

Hinweis: Zeigen Sie: (a) \Rightarrow (b), (b) \Rightarrow (c), (c) \Rightarrow (d) und (d) \Rightarrow (a).

- 91. Geben Sie die Partition \mathcal{P} der Menge $M = \{1, 2, 3\}$ an, die von der Äquivalenzrelation $\alpha = \{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)\}$ induziert wird.
- 92. Geben Sie die Äquivalenzrelation β auf $M = \{1, 2, 3, 4\}$ an, die die Partition $\mathcal{P} = \{\{1\}, \{2, 4\}, \{3\}\}$ induziert.
- 93. Wir definieren die Relation $\rho := \{(a,b) \in \mathbb{Z} \times \mathbb{Z} : 5 | (a-b) \}$. Zeigen Sie, dass ρ eine Äquivalenzrelation ist. Bestimmen Sie die Menge $[2]_{\rho}$.
- 94. Wir definieren folgende Relation auf \mathbb{N} , $\rho := \{(a, b) \in \mathbb{N} \times \mathbb{N} : a|b\}$. Zeigen Sie, dass ρ eine Ordnungsrelation ist.
- 95. Sei $M = \{0, 1, 2, 4, 8, 16, \dots, 2^n, \dots\} \subset \mathbb{N}_0$. Wir definieren folgende Relation auf $M, \rho := \{(a, b) \in M \times M : a \mid b\}$. Man zeige: ρ ist eine Ordnungsrelation. Ist ρ linear? Gibt es ein größtes oder ein kleinstes Element bezüglich ρ ?
- 96. Seien $A := \{1, 2, 3\}$, M die Potenzmenge von A und $T := \{\{2\}, \{2, 3\}\}$.
 - (a) Zeigen Sie: (M,\subseteq) ist eine geordnete Menge.
 - (b) Ist \subseteq linear auf M?
 - (c) Bestimmen Sie das kleinste und das größte Element von M.
 - (d) Bestimmen Sie alle unteren Schranken von T in M.