Diskrete Mathematik (Wintersemester 2017/18) 531.104, 531.105

7. Übungsblatt für den 30.11.2017 und 4.12.2017

- 48. Für $m \in \mathbb{N}_0$ sei $F_m := 2^{2^m} + 1$ die m-te Fermat Zahl. Zeigen Sie, dass F_6 keine Primzahl ist. (Hinweis: Prüfen Sie, dass 274177 ein Teiler von F_6 ist. Sie dürfen dazu auch technische Hilfsmittel (Taschenrechner oder Computer) verwenden.)
- 49. Im Beispiel 47 wurden die Primzahlen der Form $2^n 1$ betrachtet. Bestimmen Sie alle positiven ganzen Zahlen n < 15, sodass $2^n 1$ tatsächlich eine Primzahl ist.
- 50. Seien $a, c \in \mathbb{Z}, b, d \in \mathbb{N}$. Zeigen Sie: Wenn die Brüche $\frac{a}{b}$ und $\frac{c}{d}$ gekürzt, und die Nenner b und d teilerfremd sind, so ist auch der Bruch $\frac{ad+bc}{bd}$ gekürzt.
- 51. Sei p_n die n-te Primzahl, d. h. $p_1=2,\,p_2=3,\,$ usw. Zeigen Sie

$$p_n < 2^{2^{n-1}}$$
.

Hinweis: Euklids Beweis, dass es unendlich viele Primzahlen gibt beruht auf folgender Überlegung: Seien q_1, q_2, \ldots, q_n Primzahlen. Dann ist der kleinste positive Teiler von $q_1 \cdot q_2 \cdot \cdots \cdot q_n + 1$ eine Primzahl, die von allen q_i verschieden ist.

52. Welche Zahlen $q \in \mathbb{N}$ erfüllen folgende Eigenschaft?

Für alle $a, b \in \mathbb{Z}$ mit $q \mid a \cdot b$ gilt $q \mid a$, oder es gibt ein $n \in \mathbb{N}$, sodass $q \mid b^n$.

- 53. Sei p_n die n-te Primzahl, d. h. $p_1=2, p_2=3$, usw. Seien $a,N\in\mathbb{N}$ mit $a=\prod_{i=1}^N p_i^{\alpha_i}$. Betrachten wir nun die Primfaktorzerlegungen aller positiven ganzen Zahlen unter 100, d. h. $1\leq a<100$. Welche Zahl a hat die meisten Primfaktoren, nämlich wenn
 - (a) dieselben Primfaktoren nur einmal aufzählt werden ($|\{i: \alpha_i > 0\}|$ ist maximal),

(b) dieselben Primfaktoren mit Multiplizität aufzählt werden $(\sum_{i=1}^{N} \alpha_i)$ ist maximal)?

Beispiele: Wenn
$$a=28$$
: $N=2, p_1=2, p_2=7, \alpha_1=2, \alpha_2=1, \alpha_1+\alpha_2=3$. Wenn $a=30$: $N=3, p_1=2, p_2=3, p_3=5, \alpha_1=1, \alpha_2=1, \alpha_3=1, \alpha_1+\alpha_2+\alpha_3=3$.

- 54. Sei p_n die n-te Primzahl, d. h. $p_1=2,\ p_2=3,$ usw. Seien $a,b,N\in\mathbb{N}$ mit $a=\prod_{i=1}^N p_i^{\alpha_i}$ und $b=\prod_{i=1}^N p_i^{\beta_i}$. Zeigen Sie:
 - (a) $\operatorname{ggT}(a,b) = \prod_{i=1}^{N} p_i^{\min(\alpha_i,\beta_i)}$.
 - (b) $\operatorname{kgV}(a,b) = \prod_{i=1}^{N} p_i^{\max(\alpha_i,\beta_i)}$.

Folgern Sie daraus, dass für alle $a, b \in \mathbb{N}$ gilt: $kgV(a, b) \cdot ggT(a, b) = a \cdot b$.

55. Seien $a, b, c \in \mathbb{N}$. Zeigen Sie, dass

$$kgV(kgV(a, b), c) = kgV(a, kgV(b, c)).$$