Diskrete Mathematik (Wintersemester 2017/18) 531.104, 531.105

2. Übungsblatt für den 12.10.2017 und 16.10.2017

- 8. Seien A, B, C Aussagen. Zeigen Sie, dass $(A \vee B) \wedge C$ und $(A \wedge C) \vee (B \wedge C)$ äquivalent sind, indem Sie die Funktionen l und r tabellieren, die durch $l(a,b,c) := (a \sqcup b) \sqcap c$ und $r(a,b,c) := (a \sqcap c) \sqcup (b \sqcap c)$ für $a,b,c \in \{0,1\}$ definiert sind.
- 9. Seien A, B, C Aussagen. Zeigen Sie, dass $(A \vee B) \wedge C$ und $(A \wedge C) \vee (B \wedge C)$ äquivalent sind, und geben Sie einen Beweis in der Form des Beweises von Satz 1.10(1) oder Satz 1.10(5) aus dem Skriptum an. Nehmen Sie also an, dass $(A \vee B) \wedge C$ wahr ist, und zeigen Sie, dass dann auch $(A \wedge C) \vee (B \wedge C)$ wahr ist. Dann nehmen Sie an, dass $(A \wedge C) \vee (B \wedge C)$ wahr ist, und zeigen Sie, dass $(A \vee B) \wedge C$ wahr ist.
- 10. Finden Sie zwei Ausdrücke p,q der Form $A \wedge B$, $(\neg A) \vee (\neg B)$, ..., sodass folgendes gilt: wenn p wahr ist, ist auch q wahr, aber wenn q wahr ist, muss deshalb p nicht notwendigerweise wahr sein.
- 11. Sei p die Aussage

$$((A \lor B) \land ((\neg A) \lor C)) \Rightarrow (B \lor C).$$

- (a) Finden Sie einen zu p äquivalenten Ausdruck, der nur die Junktoren \land, \lor, \neg verwendet.
- (b) Zeigen Sie, dass p eine Tautologie ist, dass also p für alle Aussagen A, B, C wahr ist.
- 12. Überprüfen Sie jeweils, ob die die Aussagen p und q für alle Aussagen A und B äquivalent sind. Geben Sie dafür (im Fall der Äquivalenz) einen Beweis an, und finden Sie im Fall, dass die Aussagen nicht äquivalent sind, Belegungen für die Wahrheitswerte von A und B, sodass eine Seite wahr und die andere falsch ist.
 - (a) $p = \neg (A \Rightarrow B), q = A \land (\neg B).$
 - (b) $p = (A \Rightarrow B) \Rightarrow C, q = A \Rightarrow (B \Rightarrow C).$
 - (c) $p = A \Leftrightarrow B, q = (A \lor (\neg B)) \land ((\neg A) \lor B).$
- 13. Überprüfen Sie jeweils, ob die die Aussagen p und q für alle Aussagen A und B äquivalent sind. Geben Sie dafür (im Fall der Äquivalenz) einen Beweis an, und finden Sie im Fall, dass die Aussagen nicht äquivalent sind, Belegungen für die Wahrheitswerte von A und B, sodass eine Seite wahr und die andere falsch ist.

(a)
$$p = A \Rightarrow (B \Rightarrow C), q = (A \land B) \Rightarrow C.$$

(b)
$$p = A \Rightarrow (B \Rightarrow C), q = B \Rightarrow (A \Rightarrow C).$$

(c)
$$p = A \Rightarrow (B \Rightarrow B), q = B \Rightarrow (A \Rightarrow A).$$

(d)
$$p = (A \Rightarrow B) \Rightarrow A, q = A$$
.

14. Finden Sie für jede der 16 möglichen Funktionen von $\{0,1\}^2$ nach $\{0,1\}$ einen möglichst einfachen Ausdruck, der $0,1,\sqcup,\sqcap,\oplus,\sim$ verwendet und die entsprechende Funktion beschreibt.

a	b	?	$a \sqcap b$?	?	?	?	?	?	?	?	?	?	?	?	?	?
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

- 15. Finden Sie jeweils einen Ausdruck, der nur 0, x, y und den Junktor \rightarrow verwendet (wie etwa $(0 \rightarrow y) \rightarrow x$), und der folgende Funktionen beschreibt:
 - (a) $\sim x$.
 - (b) $x \sqcup y$.
 - (c) $x \sqcap y$.