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Preface

The development of Discrete Mathematics has gained momentum in the second
half of the 20th century with the introduction of computers. Today, it is one of
the most vivid mathematical disciplinespraustfor every mathematician/computer
scientist of the 21st century.

The objective of the course is to provide an overview of the main topics and
techniques of Discrete Mathematics. The emphasis will be on the investigation of
the most fundamental combinatorial structures. In this course we address some of
the most importand topics in Discrete Mathematics:

e Elementary combinatorial configurations (permutations and variations) and
basic counting;

Systems of distinct representatives and latin squares;
Combinatorial designs and finite geometries;

Eulerian and Hamiltonian graphs and NP-hard problems;
Planarity and the Four Colour Problem.

These lecture notes have been compiled during my stay at the Institute of Al-
gebra of the Johannes Kepler University in Linz, Austria, where | gave a course on
Discrete Mathematics in the Winter Semester of the academic year 2005/6.

| would like to express my deepest gratitute to Prof. Dr. Glnter Pilz, the Head
of the Institute of Algebra and Vice-Rector of the Johannes Kepler University in
Linz, and Dr. Erhard Aichinger from the Institute of Algebra. None of this would
have been possible without their help, support and friendship.
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Chapter 1

Words and Sets

This chapter confronts us with the most basic abstract structures:

e words (or strings), which represent the simplasteredstructures, and
e sets (or collections), which represent the simplegirderedstructures.

As we shall see, permutationis nothing but a word over an appropriately chosen
alphabet, while aombinationis just a subset of a finite set. It is natural to ask
why should one invent so complicated names for such simple objects. The answer
is simple. In the dark past of Discrete Mathematics the terminology used to be as
obscure as the ages that gave birth to it. Since the introduction of the names such as
permutatiorandcombinatiormathematics has gone a long way and brought many
simplifications, both in terminology and understanding of the phenomena.
Throughout the course we shall use the followin notation

N={1,2,3,...} forthe set of positive integers,
Np=1{0,1,2,3,...} forthe set of nonnegative integers, and
NS ={0,1,2,3,...} U{oo}.

The sefNY is a usual extension ofy with the greatest element X+ 00 =00 +X=
X-00 =o00-X=oo for all x e N, andx < o for all x € No. Also, we define the
factorial of an integein € Ng as usual:

ol=1
n=1.2-...-n,forn> 1
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1.1 Words

An alphabetis any finite nonempty set. Elements of an alphabeill be referred
to asletters and aword in Ais a string of symbols fromA. More precisely, avord
of lengthk over an alphabeA is any tuple fromAX. We follow a simple convention
to omit commas and parentheses when writing words.

Example 1.1 Here are some words over an alphabet {a,b,n}: banana abba
aa, or simplyn. The first of the words has six letters, then comes a four-letter word,
a two-letter word and finaly a word with only one letter.

We also alow words with no letters. On any alphabet there is precisely one
such word called thempty wordand denoted by. It is a word with lengtt. It
is important to note that words we deal with in this coursefarmal words that
is, strings of symbols to which no meaning is attached. So, from this point of view
nbbaaais just as good a word dsmnana We shall leave the meaning of words to
other branches of science and treat words just as plain and simple strings of letters.
Let w be a word over an alphabét The length ofw will be denoted byw|.
For a lettera € A, by |w|, we denote the number of occurencesudrfi w.

Example 1.2 Let A = {a,b,c,n} and letw = bananabe a word ovetA. Then
Iw| =6, |W|a =3, |W|p =1, |w|c =0and|w|, = 2.

There is not much structural theory behind so simple objects such as words.
The most exciting thing we can do at the moment is to try to count them.

Problem 1.3 Let A = {&1,a,...,an} be an alphabet with > 1 letters and let
k € Ng be arbitrary.

(a) How many words witlk letters oveA are there?

(b) How many words witl letters ovelA have the property that all the letters
in the word are distinct?

(c) How many words oveh have the property that every letter fraxrappears
precisely once in the word?

Solution. (a) The set of all words of lengtk over A is justAX. Therefore, there
are preciselyA¥| = |A|-...-|A| = n® such words. There is a less formal, but more
———

k
useful way to see this. A word witkletters looks line this:

1st 2nd 3rd kt h
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There aren candidates for the first position,candidates for the second position,
..., h candidates for thith position:

1st 2nd 3rd kt h

n - n - n - - n
Alltogether, there ara-n-...-n = nk possibilites.
———

k

(b) Let us again take the informal point of view. Firstly, there m@ndidates
for the first position, but onlyr— 1 candidates for the second position, since the
letter used on the first position is not allowed to appear on the second position.
Then, there ar@ — 2 candidates for the third position since the two letters used
on the first two positions are a no-no, and so on. Finally, there will bgk — 1)
candidates for the last position:

1st 2nd 3rd kth
n n-1 n-2 n—(k—1)
I
and putting it all together we get (n—1)-...-(n—k+1) = (nik)i possibilites.

Of course, this reasoning is valid as longkas n. If k > n no such word exists.

(c) If every letter fromA is required to appear precisely once in the word, then
the length of the word is and all the letters have to be distinct. This is a special
case of(b) wherek = n and there ara! such words. O

Words where letters are not allowed to repeat are cg&chutations of sets
Words where letters can appear more than once are other kind of permutations —
permutations of multisets — and we shall consider them in a separate section.

Definition 1.4 A permutation of a sed\ is a word overA where every letter from
the alphabet appears precisely once in the work.p&rmutation of a seA, where

k <|A|, is a word oveA of lengthk where each letter from the alphabet is allowed
to appear at most once (and therefore, all the letters in the word are distinct).

At the end, we apply counting techniques discussed above to determine the
number of all the subsets of a finite set. For afskdt &2(A) denote thgpower-set
of A, that is, the set of all the subsetsAf

P(A) = {X: X CAL
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Let |A| =nandA={ay,...,an}. Then every subs& of A can be represented by
a stringx (B) of O's and 1's as follows:

0, &¢B,

B)=pi...pn, Where p=
X(B)=p1...pn pi {1, 5 CB.

The wordy (B) is called thecharacteristic vectoof B.

Example 1.5 Let A= {a,b,c,d,e, f} andB = {b,d,e}. Then x(B) = 010110
sincea¢ B, b e B, c ¢ Betc. Clearly,x(&) = 000000andx (A) = 111111

la b cde f
/0 0 OO0 OO
B|{0O1 0110
A/l 11111

Theorem 1.6 LetA be a finite set witln elements. Theh?(A)| = 2".

Proof. The mappingy : #(A) — {0,1}" that takes a subset &f onto its char-
acteristic vector is a bijection, §6#(A)| and [{0,1}"| have the same number of
elements. Therefore2?(A)| equals the number of all words ovéd,1} whose
length isn, so|Z2(A)| = 2". O

The proof of Theorem 1.6 is based on an obvious but important fact we shall
use on many occasions in this course:

The Bijection Principle: Whenever there is a bijection between two sets,
they have the same number of elements.

Words over two-element alphabets will be particularly useful in the sequel. So,
we give them a name: @l-wordis a word over0,1}.

1.2 Sets

One of the most basic things one can do with a set is to count its elements. Clearly,

The Product Principle: If Ay, ..., A, are finite sets, then
|Ag X ... X Ag| = |Ag] ...+ |An|.

Itis also easy to see that

The Sum Principle: If Ay, ..., A, are mutually disjoint finite sets, then
[AcU.. UA = |Ag]+... +][Ad].
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/i
OVAYERNAVA

A3 A3

Aq Ao A Az

|Ad] + |Ao] + |Ag| Al + |Ao| + |Ag|—
—|A1ﬂA2| — |A1ﬂA3’ — |A2ﬂA3‘

A]_ I A2
Az
|Aq| +[Aa| + |Ag| -
—’AlﬂAz‘ — ’AlﬂA3‘ — ’AzﬂA3H—
+|A1ﬁA2ﬂA3’

Figure 1.1: The cardinality oA UA; U A3

But, what happens i, ..., Ay are not mutually disjoint? In case af= 2 we
know from the elementary school that

[ALUAg| = [Ag] + |Ao| — [AL N Az,
and it is also easy to see that in case 3 (see Fig. 1.1):

|A1UA2UA3| = |A1| + |A2‘ + |A3| — ’A]_ﬂA2| — ‘A10A3|—
—|A2ﬂA3| + ’AlﬂAzﬂA3|.
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Theorem 1.7 (The Principle of Inclusion-Exclusion) LetAy, ... ,As be finite sets.
Then

|A1U...UAn‘ = ‘Al“f—---""An’
— |A1ﬁA2|— |A1ﬁA3|—...—|An,1ﬂAn|
+ALNAN A3+ AL NA N AL + ...+ [An—2N A1 N A

+ (=D)AL nAN. . NAY|

Proof. The proof is by induction om. In casen = 1 the formula is trivial and we
have already seen that the formula is true in case or n = 3. Therefore, assume
that the formula is true in case ofinite sets and let us consider the untiomef 1
finite sets. Using the formula for the cardinality of the union of two sets:

‘AlU...UAnUArHl‘ = ‘(A]_U...UN)UAn+1’
= [ArU...UAn|+[Anta] = [(ArU... UAR) NAn]
=|ALU...UA| 4+ |Ant1| — [(Aa N A1) U U (AN Ang)]-

the proof follows straightforwardly by applying the induction hypothesis twice.
The calculations are given in Fig. 1.2. O

Corollary 1.8 LetAq, ...,An be finite sets such thak, N...NA,| = |Aj;N...N
A, | wheneveiy, ..., i arek distinct indices angy, ..., jx arek distinct indices,
ke{l,...,n}. Then
n n n
|A1U...UA|ﬂ = (l) |A1| - <2> |A1ﬂA2| + <3> |A1ﬂA2ﬂA3| —...

+ (—1)”1<2> ALNAN...NA|

1.3 Subsets

For historical reasons kaelement subset of anelement set is calledkacombination
of a set. The number ¢&combinations of am-element set is denoted by

<E> [read: ‘n choose’].

The pronounciation comes from the fact that this is the number of ways to choose
k objects from a pool of identical objects.
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/'T Waloay] Jo Jooid ay) wolj suonenoed ayl :Z'T ainbi4

YUY U UV UTY[(T-) + T U U T Y|+ + By Uy U T+

+HTy U] = = [y UTY| = [y U] = [T Y[ 4+ [Ty =
A_H+c<cc<c...cN<cH<_ZQ|V+...+_ic<cc<c2$ -

- My Uy U TY| - [Ty Uy U TY| - ?fcif:iifcfo — [T+

A_fc...cN<cH<_Tc:|v+...| NUT YUY+ [y Uty U Ty
[ U2y U]+ iy U Tty | — By U] — [y Uy | — [+ 1] ) =
Py uty) NN (Fy UTY)| = [P+ [y ety = [Py Nty
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n n! n
Theorem 1.9 Letn,k > 0. If n > k then = —— . Otherwise, =0.
7 ()= (4
Proof. Let n > k. Although sets seem to be simpler than words due to the lack
of structure, ordered structures (words in this case) are always easier to count. A
k-element set gives rise to different words, e.qg.

{a,b,c,d} — abcd bacd cabd dabc
abdc badc cadb dacb
acbd bcad cbad dbac
acdb bcda cbda dbca
adbc bdac cdab dcab
adcb bdca cdba dcbha

whence immediately follows

Number of 1 |Number of
k-elementsets | k! |k-permutations

Since the number dé-permutations of an-element set |§nf—'k). we finaly obtain

that |
()% wr

On the other hand, K> nthen trivially (/) = 0 since am-element set cannot have
a subset with more thamelements. O

Problem 1.10 How many 01-words of lengtih+ n are there if they are required
to have preciselyn zeros and preciselyones?

Solution.Consider a seA = {aj,ay, ..., ann} With m+nelements. Then each 01-
word of lengthm+ n with m zeros andh ones corresponds to aelement subset
of A. Therefore, the number of such 01-words equals the numberetdment
subsets oA, which is
m-+n
(")

Here is the other way to see this. Consider a string-éfn empty boxes which are
to be filled bym zeros ana ones:

15t ond 3rd (m+ n)th
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We can choosmboxes in which to write zeros i) ways. Then the remaining
n boxes have to be filled by ones. O

Theorem 1.11 (a) (E) = <ni k> foralln> k> 0;

(b) (E) - (E: D + (n; 1) for alln> k > 1 (Pascal’s identity).

Proof. (a) This follows by an easy calculation:

(nnk>::ammm;“(nk»!:(nllﬁm::<g>

Such proofs are usually calledigebraic proofs

Most combinatorial identities can be proven in another way: we find an ap-
propriate collection of objects and then count the elements of the collection in two
different ways. The resulting expressions have to be equal because the collection
is the same. Such proofs are usually cattechbinatorial proofs

Let us provide a combinatorial proof of the same identity. Consider 01-words

. ) n
of lengthn with preciselyk zeros. There ar i) ways to choosé places out
of n in which to write zeros, so the number of the words under consideration is

<E) On the other hand, we can first choase k places in which to write ones
in nik ways, so the number of the words under consideratioénisz k>'
n n
Therefore, )= \nok)
(b) The algebraic proof of the Pascal’s identity is easy:

n—1 n-1\  (n-1)! (n—1)!

<k—1)+< k >_(k—l)!(n—k)!+k!(n—k—1)!
(n—1)! 1 1

" (k—1)!I(n—k-1)! (n—k+k>

(n—1)! n _/n
~(k 1)!(n—k—1)!.k(n—k)<k>

For the combinatorial proof, I8 = {1,2,...,n} be ann-element set and let

/n
us countk-element subsets & Clearly, the number df-element subsets Iék) .
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On the other hand, ak-element subsets @& split into two classes: those that
contain 1, and those that do not. The numbét-efement subsets &that contain

. (n .
1is k_1) Since we have to choode— 1 elements from arin — 1)-element

setS = {2,...,n}. The number ok-element subsets d that do not contain

. n .
1lis K1 since now we have to choose #llelements fromS. Therefore,

n n—1 n—-1
()= ()= (") :
Theorem 1.12 (Newton’s binomial formula) For alln € Ny we have

D /n
(a+b)" = < )a”"‘b".
2\
Proof. The proof proceeds by induction onThe first few cases are trivial:
0
0_1_
(a+b)y"=1= <0>
1 1
1_ _
(a+b)*=a+b= <O>a+ <1>b

(a+b)? =a?+2ab+b? = <§> a’+ <i) ab+ <§) b2

Assume that the claim is true farand let us computga -+ b)*1. By the induction
hypothesis:

n+1_ . n_ . - (N n—kpnk
(a+b)"=(a+b)-(a+b)"=(a+Db) k;<k>a b~.

After distributing the sum and multiplying we obtain:

n n
atb n+l _ n> an—k+1bk <n) an—kbk+1‘
( " ) k;) (k " k;) k

Next, we take out the first summand in the first sum and the last summand in the
second sum to obtain:

(a+ b)n+1 _ an+1 + i <E> anfk+lbk+ nil <E> anfkbkle + bn+1
k=1 k=0
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and reindex the second sum, which is a standard trick:
(a+b n+1 n+l+ Z ( ) n—k+1bk+ i ( n >an—m+1bm_|_bn+1‘
m=1 m—1

Putting the two sums together we obtain:

(a+b) n+1 atl z (( ) (kil>> ah—k+1pk | L

Finally, we apply the Pascal’s identity and wrap it up:

(a+b) n+1 n+1+§ n+1 an ke pk y bn+1:n+1 n+1 an—k 1k
2\ |

The combinatorial proof of the Newton’s binomial formula is based on a simple
observation. Clearly,

(a+b)"=(a+b)-(a+b)-...-(a+b)

ntimes

so if one multiplies out and writes down the summands as words of lengktat
is, without the usuall abbreviations suchaas-a = a3), one obtains all possible
words od lengthm in lettersa andb. For example,

(a+b)* = aaaa+ aaab+ aaba+ aabb+ abaa+ abab+ abba+ abbb
+ baaa+ baab+ baba+ babb-+ bbaa+ bbab+- bbba+ bbbhb

There are(E) words that abbreviate &' *bX since this is the number of ways we

can choosé places fob (Problem 1.10). Therefora *b* appears<'l:> times in

n
the sum, whencga+b)" = <E) a" bk, O
o

Combinatorial proofs in Theorem 1.11 are just two instances of another simple
but nevertheless very useful fact:

Double Counting: If the same set is counted in two different ways, [the
answers are the same.

We use it again in the proof of the following theorem:
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n n n n\ .,
Theorem 1.13 (0) + <1> + (2) +...+ <n> =2".

Proof. For the algebraic proof, just note that

2= (1+1)"= ki (E) 1nkgk = kio (D

by the Newton’s binomial formula. The combinatorial proof is also not very com-
plicated. LetA be an arbitratyr-element set and let us count the number of subsets
of A. According to Theorem 1.6 this number2% On the other hand, let us split
Z(A) into disjoint collections¥p, .71, ..., -%h SO that# contains alk-element
subsets oA. Clearly

|Z(A)| = |2+ |2+ ...+ |

But, |.%| = (E) according to Theorem 1.9. This concludes the proof. O

1.4 Multisets

Two sets are equal if their elements are the same, or more precisely:
A=B ifandonlyif V¥x(xe€ A< xeB).

As a consequencéb,a,n,a,n,a} = {a,b,n}. We usually say that “in a set one can
omit repeating elements”. But what if weishto put several copies of an object
into a set? Well, we have to invent a new type of mathematical object.

Definition 1.14 Let A= {a;,ay,...,a,} be a finite set. Amultiset over Ais any
mappinga : A— Ng.

The idea behind this definition is simpler(ay) tells us how many copies of
ax we have in the multisedr. This is whya is sometimes called thaultiplicity
function anda (ax) is themultiplicity of ax. In particular,a (ax) = 0 means thady
does not belong to the multiset, whitga,) = o means that we have an unlimited
supply of copies oé.

A multiseta : A — N7 can be compactly represented as

a:<a1 a ... an>
m M ... My
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or, even more conveniently, as

{my-ay,mp-ay,...,mM-an},

wherem; = a(a;j), j € {1,2,...,n}.

Definition 1.15 A multiseta = {my-a1,mp-ap,...,My-a,} isemptyif m =... =
my, = 0. The multisetn isfiniteif my,...,m, < . The number of elements ofis
denoted byar| and we define itbya| = S a(a).

acA

A multiseta = {my -a1,Mp- ay,...,My - an} is asubmultisebf a multiset =
{ki-ag,ko-ay,...,kn-an} if mj <k; forall j.

Example 1.16 Let A= {a,b,c}. Thena ={3-a,2-b,1-c} andf3 = {0-a,5-b,
-} are two multisets ovek. Clearlya is a finite multiset with 6 elements, while
B is infinite and|3| = . Both a andf are submultisets of = {«-a,5-b, - c}.
Also, B is a submultiset o0& = {1-a,-b,-c}, while a is not.

A word over a multisetr = {my -a3,my - az,...,M,-ay} is any wordw over
A= {a,...,an} such thatw|y, <m; forall j.

Example 1.17 Leta = {3-a,2-b,2-n}. The following are some words over.
banana abba aa, butabbbais not. As another example, talge= {1-a,« -b}.
Then all these are words ovgr a, ab, abb, abbh and so on.

Problem 1.18 Leta = {m;-a,mp-ay,...,My-ay} be a multiset and l&tc Ny be
arbitrary.

(a) Supposem, = mp = ... = m, = . How many words witfk letters overx
are there?

(b) Supposex is finite. How many wordsv over a have the property that
\W|a, = mj forall j?

Solution.(a) Since each letter comes in more than sufficiently many copies, it turns
out that the number of such wordsi& Compare with Problem 1.3).

(b) Let N = |a| = m + ...+ m,. Then the words we are interested are of
lengthN:

1St 2nd 3rd Nt h

and each letter; occurs preciselyn; times. Let us now distribute the letters
from a. Out of N free places we can choose places to put the copies af

in N ways:
my ys:
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1St 2nd 3I’d Nt h
a a a

Out of N — my remaining free places we can choasgplaces to put the copies of

az in <N—m1> ways:
> m ;

1St 2nd 3rd Nt h
b a a a

Out of N — my — mp remaining free places we can choasg places to put the

. . (N—m —
copies ofag in LM ways, and so on. At the end, outf- my —m, —
...—my_1 remaining free places we can choasgplaces to put the copies af;
 (N—m—mp—...—my_
in ( LM h 1) ways:
My
1st 2nd 3rd Nth
b a n a n a

Therefore, the number fo words we are interested in is given by

() o) (T ™) (™ ™)

B N! . (N—nmy)! o (N—m—mp—...—my_q)! _
m!(N—mg)! mp!(N—mp—mp)! " my!(N—mp—mp—... —my)!
N!
_m1!-mz!-...-mn!’
where at the end we use the factthee m +mp +... + M. O

A permutation of a finite multiset = {my -a;,my-ay,...,My-a,} is any word
w over a such thatjw|,, = m; for all j. As we have just seen, the number of
permutations over a finite multisatis

< N )_ N!
my, My, ...,M, m!-npl-...-my!

whereN = m +nmp + ... + my. Finding the number df-letter words for arbitrary
k and over an arbitrary multiset istarribly complicated problem and shall not be
discussed here.
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We shall now prove an analogon on the Newton’s binomial formula in case a
sum of more than two expressions is raised to a certain power.

Theorem 1.19 (Multinomial formula) For alln > 0 we have

n |
armeal = <| | |>a'fa'22makk
|1,|2,‘ ,kENO 1,12,..-51k

l1+2+...+lk=n

Proof. The proof proceeds by induction &inln casek = 2 this is just the Newton’s
binomial formula given in Theorem 1.12, see Homework 1.9. Suppose the theorem
holds whenever there are less thesummands whose sum we wish to raise to the
n-th power and consider the case wktstummands. Then by the Newton’s binomial

formula
n

(g t+ap+...+a)" = (a1 + (a2 +...+ &))"= z (In)a'll(a2+...+ak)”'l.
li=o \'1

The induction hypothesis now yields

n__ . n Iy n_ll P Ik
(a1+a2+...+ak) = Z | ay Z | | as ... 8
11=0 1 l2,...,IkeNg 2;--+51k

lo+...+l=n—I1
n
n n—I1 \ j, i |
— 14l2 k
=0 Iy, TreNo 1/ \l2,--, 1k
|2+»~-+|k:n—|1
n
n Iy |
= 14l2 k
=2 2 (I | |>a1a2'“ak
11=0 Ip,....IxkeNg 1,125--.51k
I2+~~‘Hk:n7|1
n . [
= ataz...ak.
Z (Illz... |k) 185 -
11,12, ]k€Ng A
l1+l2+...+lk=n

The combinatorial proof is analogous to the combinatorial proof of Theorem(1.12.

Problem 1.20 Leta = {«-a;,0-ay,...,%-an} be a multiset and ldt € Ng be
arbitrary. How manxk-element submultisets doashave?

Solution. If B = {X1-a1,%2-&,...,% -an} is ak-element submultiset af, then
X1+ X2+ ...+ X, = k. Becausex has an infinite supply of each of its letters, one
easily comes to the following conclusion:

Number ofk-element Number of solutions of
subsets ofx X1 +Xo+...+X% = kin Ng
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So, we have reduced the problem to counting nonnegative integer solutions of an
equation im unknowns. Although not at all straightforward, this problem is rather
easy to solve. Let

S ={(X1,X2, -, %) € (No)" 1 Xg + X2+ ...+ Xy =k}
be the set of all the solutions of the above equatiomumknowns and let

W ={we {0,111 |wjp=kandw|; =n—1}

be the set of all 01-words of lengk- n— 1 with preciselyk zeros andh— 1 ones.
Now define¢ : . — # as follows:

¢ (X1,X2,...,%)=00...0100...01 ... 1 00...0.
X1 X2 Xn
It is easy to see thap is well defined and bijective. Thereforgy’| = |#/|, and
we know from Problem 1.10 thay/ | = <k+n— 1

k
number ofk-element subsets af. O

) . This is at the same time the

A k-combination of a finite multisedr is any k-element subset ofr. It is
againterribly complicated to find a number &fcombinations of an arbitrary mul-
tiset, but as we have just seen,dif= {0 -a;,0-ay,...,0-a,}, the number of

_— o K+n—1
k-combinations is given b( K >

Homework
1.1. For a real numbek, by |x| we denote the greatest integet x. E.g,
11.99] =1, |4] =4, |0.65] =0, while | -1.02] = —-2.
Letn be an integer and a prime. Show that the greatédstuch that* | n!

is given by
LN
p p p

The numbed 000! ends with a lot of zeros. How many?
1.2. Show thaty in proof of Theorem 1.6 is a bijection.

1.3. Let A be a set of all 01-wordsv of length 2005 with the property that
|wjo = |w|1 + 1, and letB be a set of all 01-worde of length 2005 with
the property thatw|; = |w|o+ 1. Show that|/A] = |B|. (Hint: use the
Bijection Principle.)
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1.4. Forne N, let 1(n) denote the number of positive divisors of E.g,
1(12) =6 since 1, 2, 3, 4, 6 and 12 are all positive divisors of 12. Let
n=p. pk..... pis be the factorisation of, wherel < p; < po < ... < ps
are primes. Prove that

T(n) = (1+Ky) (14 ka)... (14 k).

(Hint: note that ifm| nthenm= p'll : p'22 -...-ps where0 < I; <k for all i.)
1.5. Prove Corollary 1.8.
1.6. Show thatp defined in the solution to Problem 1.20 is a bijection.
11.7. What do you think, how do “usual” sets fit into the theory of multisets?

11.8. Define the notion of union and intersection for multisets. (Note that there
are several possibilities; choose any one you like). Pick a few of your
favourite set-theory identities such as

ana=a aua=a

aNg=yg aug=a
anB=pna auB=pBuUa
(anB)ny=an(Bny) (aUB)Uy=aU(BUY)

(anB)uy=(auy)n(Buy) (auB)ny=(any)u(Bny)
and show that they hold for operations you have defined.

1.9. (a) Explain the relationship betwee(r\(n> and <k nn_ k)'

n n-1 n—-1 S
(b) Show that(k,n— k) = (k—l,n—k) + (k,n—k—1> (Hint: this is
the Pascal’s identity in disguise.)

1.10. Letmy,...,m, € N be positive integers and &t = m; + ...+ m,. Show
that

(mmee ) = (L) * (1)
= + +...
My, My, ...,M, m—1m,...,m, m,m—1,...,m,

(e m 1)
+ .
mlarnZV"am’]_l

1.11. Provide a combinatorial proof of Theorem 1.19.
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Exercises

1.12.

1.13.

1.14.

1.15.

1.16.

T1.17.

1.18.

How much memory can address a processor whose address bus is 32 bits
wide?

FORTRAN 1V, being one of the oldest programming languages, had many
limitations. One of them concerned identifiers (words used to hame vari-
ables and procedures). An identifier in FORTRAN IV consists of at most
6 symbols, where each symbol is a figure (0, 1, ..., 9) or an uppercase
letter of the English alphabet (A, B, ..., Z), with the exception that the
first symbol is obliged to be a letter. How many different identifiers can
one declare in FORTRAN IV?

Two rooks on a chess board are said to be independent if they do not attack
each other. In how many different ways can one arrangéd. independent
identical rooks onto an x n chess board?

In how many different ways can one arrarige 1 independent identical
rooks onto am x mchess board, wherem > k?

In how many ways can students form a queue in front of a mensa so that
studentsA andB

(a) are next to each other in the queue?
(b) arenot next to each other in the queue?

In how many ways can boysB;, ...,B, andngirls G, ..., G, form a
gueue in front of a mensa so tHat is next toG; in the queueB; is next
to G, in the queue, .. .B;, is next toG, in the queue?

The round table has entered combinatorial practice at the time of King
Arthur and his Knights of the Round Table and has remained an important
combinatorial object ever since. Since there is no throne, the trick with the
round table is that two arrangements are indistinguishable if it is possible
get one of them by rotating the other. For example, the following three
arrangements are indistinguishable:

al €]
g WL B b @

e & e

In how many ways cam people be seated around a round table with
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seats?

1.19. Theinteger gridconsists of all points in the plane with integer coordinates,
which we refer to amteger points y
An increasing pathin the integer grid
is a sequence of integer poir(ts, y1),
(X2,¥2), .., (X, Yk) such that for each
ie{l,...,k—1} we have:

H

e eitherx,1 =X+ 1landyi 1 =Y,
e Orxy1=Xandyi+1=yi+1

Find the number of increasing paths in
the integer grid that start 40,0) and
end at(p,q), wherep,q € N.

1.20. Show that
n n/n-1
= — >K=>1
(a) <k> k<k—1) foralln> k> 1;

o ()(2)- ()3 ) manmav
RN AN RETAS Il Rty

forallnm>k> 0.
(d) (g)er <2>2+ <2>2+...+ <:>2: <2nn> foralln> 0.
00+ (1)2 (59 (1) (1)

for all k, j > 0. (Hint: use mathematical induction grand(b).)

1.21. Find the number of 01-words of leng®m which have the following prop-
erty: the number of zeroes on the firgblaces equals the number of zeros
on the lash places.

1.22. (a) Using the fact that two points determine precisely one straingt line, find
the greatest number of straignt lines that can be drawn throypgints in
a plane.

(b) Find the greatest number of diagonals a convex polygonmirtices
can have.



20

1.238.

1.24.

1.25.

1.26.

CHAPTER 1. WORDS AND SETS

(c) Let Aq, ..., Ay ben points on a circlen > 4, and draw all the line
segmentsAAj, i # j. Find the greatest possible number of intersection
points of these line segments.

Find the number of integer solutions of the equatioa-xo + ... + X, = K
in nunknownsxy, Xo, ..., X, wherex; > 1 for all i.

Find the number of integer solutions of the inequatity- xo + ... + X, <K
in n unknownsxy, Xz, ..., X, wherex; > 0 for all i. (Hint: Sincek € Ny,
this inequality is equivalent to

X1+Xo+...+X =0 or Xg+Xo+...+%Xy=1 or...
.of Xgt+Xo+...+X=k

Find the number of solutions of each of thésel equations and then sum
up using 1.2qf).)

A sequence of numbesg, Xy, ..., X, is nondecreasing f; <xo <... <
Xn. Find the number of nondecreasing sequengeso, ..., X, where
X €{1,...,k} foralli.

Show that Z ( n ) v
I1,l2,....IkeNg |17|27"'7|k

l1+lo+...+lk=n



Chapter 2

Blocks and Cycles

The simplest way to introduce a structure onto a set is to split it into blocks. In this
chapter we consider two such possibilities:

e partitions, where a set is divided into disjoint subsets, and

e permutations (again), which partition a set into cycles.
Counting partitions and permutations leads to Stirling numbers of the second and

the first kind, respectively. Stirling numbers of the second kind show up more often
than those of the first kind, so we shall consider last things first.

Stirling numbers of the second kind are usually denote&oyr {E} while

Stirling numbers of the first kind are usually denotedshyr E . The notation

with braces and brackets, in analogy to the binomial coefficients, was introduced
in 1935 by Jovan Karamata, a famous Serbian mathematician, and promoted later
by Donald Knuth. It is referred to asaramata notation Following Knuth, we

verbalise{ n} as ‘n blockk” and [n

K k] as ‘ncyclek”.

2.1 Partitions

A partition of a finite setA is every finite sefBy,...,Bx} of subsets ofA which
fulfills the following:

e B £ oforalli,
e BiNBj =2 whenevei # |, and
e BiU...UB«=A.

21
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SetsB; are referred to as thaocksof the partition.

Example 2.1 Let A= {1,2,3,4,5,6,7}. Then{{l, 3,5},{2, 6},{4}} is a parti-
tion of A into three blocks. Instead df{1,3,5},{2,6},{4}} we can also write
135264, although this notation is not always convenient.

n " .
Let{ k} denote the number of ways to partitionraelement set int& blocks.

The number{ E} is called theStirling number of the second kind

5
Example 2.2 For example,{ 3} =25

12]345 23|145 34|125 45|123 12345 21345 31245 41235

1/3/245 24|135 35/124 12435 214/35 31425 413)25
1/4|235 25124 125[34 21534 31524 41523
1/5/234

Theorem 2.3 Stirling numbers of the second kind fulfill the following:
ny _[n 1 and nl [n-1 LK n—1
1/ \nf kf lk—1 k |-
Proof. The only way to partition a set so that in the end we get only one block is

to put everything in that block, therefor : = 1. Similarly, the only way to

partition ann-element set intm blocks is to put every element in a separate block,
n

so{ } =1
n

A partition wherea, is alone in its block

A partition wherea, has some company

Figure 2.1: Proof of Theorem 2.3 — two types of partitions

Now, let 2K denote the set of all partitions of a fixedelement set, say

n .
} = |2X|. Considera, and note

{a1,a2,a3,...,an}, into k blocks, so that{ K
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that all partitions from#ZX fall into two disjoint categories: those wheag is the
only element of its block, and those whexgis not the only element of its block,
Fig. 2.1. Let.”1 C 22X be the set of all partitions whew is the only element
of its block, and let#, C 9”,'? be the set of all partitions whegg is not the only
element of its block. Clearly”s N.% = @ and.1 U.% = 2, i.e. {A, S} isa
partition of 7K.

N e

e o e o O e o °

Figure 2.2: Proof of Theorem 2.3 — the second case

For each partition fron##; the blocks that do not contai, form a partition of

. n—1
{a1,...,8n_1} intok— 1 blocks, sq.#1| = { K

& and remove,. What remains is a partition ¢y, ...,a,-1} into k blocks. On

the other hand, each partition {dy, . ..,an_1} into k blocks determinek different

partitions of{ay,...,a,_1,an} into k blocks since we can put the missiaginto

each of thek blocks, Fig. 2.2. Therefore,,| = k{ n; 1}1 and finally{ E} =

o (n-1 n—1
2 =1+ 1= {1y b T n

n 1 X /K
. 2 > ] = T - ! . —j r]-
Theorem 2.4 Forn>k > 1 {k} i J;)( 1) <J>(k j)

Proof. We shall count surjective mappings froft,...,n} onto{1,... ,k} in two
different ways. First, note that every mappihgA — B determines an equivalence
relation~¢ on A as follows:

a~¢b ifandonlyif f(a)= f(b),

which is usually referred to as theernel of f. This equivalence relation then
determines a partition @ in the usual way: blocks in the partition are equivalence

}. Now, take any partition from
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B; B, Bs o By
|

ISR RNEE YRR RN

V

k k—1 k—2 1
choices choices choices choice

Figure 2.3: Counting surjective mappings

classes ofv¢. So, for every surjectivé : {1,...,n} — {1,...,k} the partition of
{1,...,n} that corresponds te+ has preciselk blocks.

Let us now take a look at a somewhat different problem: given a partition
{Bu,...,Bx} of {1,...,n}, how many surjective mappinds {1,...,n} — {1,...,k}
have the property that partitions{1,...,n} into {By,...,B¢}? We can choose
f(B1) in k different ways, f(B>) in k— 1 different ways, since (B;) and f(B;)
have to be distinct whenevet£ j, f(Bs) in k— 2 different ways, and so on upto
f(Bx) for which only one choice remains, Fig. 2.3. Therefore, given a partition
{B4,...,Bx}, there arek! surjective mapping$ : {1,...,n} — {1,...,k} such that
the equivalence classes of are{By,...,Bx}. Since every surjective mapping is
uniquely determined by its kernel and its values on the equivalence classes of the

, n I .
kernel, it follows that there are { k} surjective mappings from amelement set

onto ak-element set.
On the other hand, let us count surjective mappings using another approach.
Clearly,

Number of sur- Number of all Number of nonsur
jective mappings mappings jective mappings

The number of all mappingkl, ..., n} — {1,...,k} isk" (Homework 2.1). As for
the nonsurjective mappings, l&; denote the set of all mappinds {1,...,n} —
{1,...,k} such thatf (x) = j fornox € {1,...,n}:

Aj={fe{1,... LK f(x) £ j for all x},
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j€{1,...,k}. ThenAjU...UAis the set ofll nonsurjective mappingdl,...,n} —
{1,...,k}, so

Number of nonsurA

jective mappings | ALU. . UA.

According to the special case of Principle of Inclusion-Exclusion, Corollary 1.8,
k ) Kk
AU UA| = Z (_1)11(j> AN .. .NA|.
=1

But A;N...NAj is the set of all mapping$l,...,n} — {j+1,...,k}, so Home-
work 2.1 yieldslA1N...NAj| = (k— j)". Putting it all together, we get

Number of sur-

k . k ‘
jective mappings| K= (- (T) (k=10)"= J;(—l)J (T) (k—=D"

=

k .
Thereforek! {E} = Z)(—l)J (T) (k— j)" which concludes the proof. O
J:

2.2 Permutations

Recall that a permutation of a finifeset is a worcqyay . .. a, over A where every
letter from A appears precisely once (and hemce |A|). However, note that a
worda;az...an overAis just a mapping : {1,...,n} — Agiven by

‘_ ( 1 2 ...n >
dp A ... an
Therefore, permutations @ correspond to bijective mappindd,...,n} — A,
which in case oA = {1,...,n} leads to the following important observation:

Observation. A permutation of(1,...,n} is any bijective mapping ofl,...,n}
onto itself.

This simple insight allows us to draw permutations: take any permutation
f:{1,...,n} — {1,...,n}, taken points in the plane and draw an arrow from
i tojif f(i) = j. For example, Fig. 2.4 depicts the permutation

f_12345678910111
- \8 912 7 5 11 10 2 1 3 6 4)°

We see that the permutation splits irdgcles The following theorem claims
that this is a general phenomenon.
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2 9 2
12 10 Q
5
6 11
4 7 1

Figure 2.4: A permutation of1,2,...,12}

Theorem 2.5 Every permutation of a finite set splits into cycles.

Representing a permutation via its cycles is very popular and extremely useful.
It is called thecycle representationf the permutation. To write a cycle represen-
tation of a permutation is easy — just list the elements of each cycle. For example

(7 10 3 12 4 (11 6 (8 2 9 1) (5

is a cycle representation of the permutation in Fig. 2.4. Since the order of cycles in
the cycle representation is not significantand sigge2 9 1,(2 9 1 8,

(9 1 8 2and(l 8 2 9 are equivalent representations of one and the
same cycle, the cycle representation of a permutation is not unique. So, all these
are valid cycle representations of the permutation in Fig. 2.4:

(7 10 3 12 4 (11 6 (8 2 9 1) (5),
2 918 (5 (6 1) (4 7 10 3 12,
(5 (9 1 8 2 (11 6 (7 10 3 12 4.

In order to make our lives easier, we shall introduceddueonical cycle represen-
tation of a permutatioras follows:

e each cycle starts with the smallest element in the cycle (call itehéing
element of the cycJg

e the cycles are arranged according to the increasing leading elements.

So, the canonical cycle representation of the permutation in Fig. 2.4 is:

(1829 (312 4 7 10 (5 (6 11).

The Stirling number of the first kind[E], is the number of permutations of

{1,...,n} with preciselyk cycles.
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Example 2.6 [:} = 35since

349 (2)(3)(149 (3)(4)(129 (4)(5)(123)
245 (2)(4)(139 (3)(5)(124)
235 (2)(5)(124)

Theorem 2.7 Stirling numbers of the first kind fulfill the following:
n n n n—1 n—1
= —_ ' = = —_
[1] (n—1)!, [n} 1, and[k] [k_1]+(n 1)[ K ]

n . , nj .
Proof. In order to show tha 1l = (n—1)! it suffices to note tha 1]1s the
number of permutations dfl,...,n} with presicely one cycle. In other words,

n .
[1] counts the number of ways to arrang@eople around a round table with

L n , .
seats, which ign—1)!. To show that al = 1is even more easy: there is exactly

one permutation of1,...,n} that maps eacke {1,...,n} onto itself, namely, the
identity.

>

(60 00) (s 0o0ase) (s0) (soeesa) (

A partition wheren is alone in its cycle

(60 0 0) (o0 0 o) (o) (o) (oo

A partition wheren has some company

)

Figure 2.5: Proof of Theorem 2.7 — two types of permutations

Now, let @,‘1‘ denote the set of all permutations df, 2, ..., n}, into k cycles,

n _ . ,
o] that[k} = |2X|. Considem and note that all permutations fromX fall into

two disjoint categories: those whemas the only element in its cycle, and those
wheren is not the only element in the cycle, Fig. 2.5. Le§ C 27K be the set
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of all permutations whera is the only element in its cycle, and let, C 2K be
the set of all permutations whereis not the only element in the cycle. Clearly
ANS2 =T and.AU. % = P, i.e. {.71,.7} is a partition of 7K.

n— 1 possibilities to insenh

AN
e A

L L D

Figure 2.6: Proof of Theorem 2.7 — the second case

For each permutation fron¥; the cycles that do not contamform a permu-
, , -1
tation of {1,...,n— 1} with k— 1 cycles, sq.#1| = {E_ J . Now, take any per-

mutation from.#, and removen. What remains is a permutation ¢f,...,n—1}

with k cycles. On the other hand, each permutatioflof..,n— 1} with k cycles
determines — 1 different permutations of1,...,n—1,n} with k cycles since we
can put the missing after every element of every cycle to produce a new per-

mutation, Fig. 2.6. Thereforé7s| = (n— 1) [n; 1], and finally[E] = | 2K =

AL+ =]+ - " 0

We have now seen two important representations of permutatidris.of , n}:
representation by words where each letter in the alphabet appear exactly once, and
representation by bijective functiodq,...,n} — {1,...,n}, and from this point
on we shall not distinguish between the two. We shall treat permutations as words
or as bijective mappings, whichever is more convenient at that point, since one can
easily switch from one representation to another, e.g.

(12345678

371286 4 5><—>37128645

Definition 2.8 Let f = aya,...a, be a permutation of1,2,...,n}. Aninversion
of the permutatiorf is a pair(a;,a;) such thai < j anda > a;. The number of
inversions off is denoted bynv( ). A permutation is calledvenor oddaccording
asinv(f) is an even or an odd integer.

Example 2.9 Let f = 37128645 Then the inversions of are(3,1), (3,2), (7,1),
(7,2),(7,6), (7,4), (7,5), (8,6), (8,4), (8,5), (6,4) and(6,5), Fig. 2.7. Therefore,
inv(f) = 12and this permutation is even.
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8 6 4
Y/ N N\

Figure 2.7: The inversions of the permutat®nl28645

Theorem 2.10 Let f = a;...an be a permutation ofl,...,n}.

(a) Letg=a;...a-18+188+2...an be a permutation obtained from by
exchanging two adjacent letters. Tham(g) = inv(f)+ 1.

(b) Letg=ay...q_18j811...8j—1&aj,1. .. 8y be a permutation obtained from
f by exchanging two not necessarily adjacent letters. Tinig) andinv(f) are
not of the same parity (i.e. one of them is even and the other is odd).

Proof. (a) Note that exchanging two adjacent letters affects neither inversions of
the form(a;j, ax) wherej,k ¢ {i,i+ 1}, nor inversions of the forrfa;, &), (&, a;),
(aj,a11), (a+1,8j) wherej ¢ {i,i+1}. So we either add a new inversioraif <
ai+1 in which casenv(g) = inv(f) + 1, or take away an inversion & > a1 in
which casenv(g) = inv(f)—1.

(b) Exchanging letters; anda; wherei < j can be reduced t(j —i —1)+1
operations of exchanging adjacent letters (swaps) as follows:

swap letters af andj — 1
swap lettersaj—1andj—2 |
. j—i—1swaps
swap letters at+ 2 andi + 1
swap letters ait-+ 1 andi } 1 swap
swap letters ait+1andi +2 )
: _ j—i—1swaps
swap lettersafj —2andj—1
swap letters af — 1 and|

Thereforeinv(g) = inv(f) £1+1... £ 1 (where the number oftl’s is
2(j—i—1)+1), soinv(f) andinv(g) are not of the same parity. O

Theorem 2.11 If n > 2, the number of even permutations{df ...,n} is equal to
the number of odd permutations of the same set.
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Proof. Let E, be the set of even permutations abglthe set of odd permutations
of {1,...,n}. Define¢ : E, — O, by

¢ (a1apa3...an) = axaya@z. .. an.

Then one can easily see thais a bijection. O

Each permutatiorfi of {1,...,n} being a bijective mapping has the inverfse
which is also a permutation ¢, ..., n}. We conclude this chapter by showing that
a permutation and its inverse have the same number of inversions.

Theorem 2.12 Let f be a permutation of1,...,n}. Theninv(f) =inv(f~1).

Proof. Let us first note that every permutation{d,...,n} can be represented by

an arrangement af independent rooks on anx n chess board. E.g., the repre-
sentation of the permutation 37128645 as an arrangement of 8 independent rooks
is given in Fig. 2.8(a). Interestingly enough, it is easy to get a representation of
the inverse permutation: just take the mirror image with respect to the main diag-
onal of the chess board. The inverse of 37128645 is 34178625 and it is given in
Fig. 2.8(b).

O 1 O
O o]
® o I
® o1+
37128645 34178625

(@) (b)

Figure 2.8: A permutation and its inverse represented by an arrangement of inde-
pendent rooks

This representation is also very suitable for the study of inversions. Note that
inversions of a permutation correspond to those fields of the chess board where
there is a rook below and a rook to the right. The inversions of the permutation in
Fig. 2.8(a) are marked by a in Fig. 2.9(a).

The final step in the proof is to observe that the arrangement of stars on the
chess board for the inverse permutation is a mirror image with respect to the main
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O Q-]
* x| |O * % |x| |O
O ol | [
@) oL [
37128645 34178625"

(@) (b)

Figure 2.9: Inversions of a permutation and its inverse

diagonal of the chess board of the arrangement of stars for the original permuta-
tion, as demonstrated on Fig. 28). The reason is simple: as we have seen, an
inversion corresponds to an L-shaped structure as the one in Fig(&d.1irror

image of such a configuration is again a configuration of the same kind, and hence
an inversion. Thereford, and f ~1 have the same number of inversions. O

(a) "" (b)

Figure 2.10: An inversion and its mirror image

Homework

2.1. Show thak" is the number o&ll mappings{1,...,n} — {1,...,k}.

N _ on1 n _(n
2.2. Showthat{z}_z 1, and{n_l}_ <2>
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2.3. LetS, denote the set of all permutationsfh...,n} (understood as bijec-
tions{1,...,n} — {1,...,n}), and leto denote the function composition.
Prove tha(S,,0) is a group, that is
e if f andg are permutations fror§,, then so isf og;
e fo(goh)=(fog)oh,forall f,g,he S,
e thereis a permutatiope S, suchthatfoe=eof =f forall f € §;;
o foreveryf € S there age Sy suchthatf og=gof =e.
This group is commonly referred to as tfgmmetric group
2.4. Prove Theorem 2.5.
n 11 n n
= —_ | — =
2.5. Show that[z} (n—1)! k; K and {n— J <2>
2.6. Show that the mapping defined in the proof of Theorem 2.11 is well
defined and that it is bijective.
Exercises
2.7. An orderedk-partition of a finite sefA is ak-tuple (By,...,Bx) such that
{Bu,...,Bg} is a partition ofA. Letn, ...,nx be positive integers such that
N1+ ...+ ng=|A|. Find the number of orderddpartitions(By, ..., By) of
Asuch thatiB;| = n; for all i.
D [n
2.8. Find [ } .
2 i
n n
2.9. Show that{ k} < [k] foralln>k> 1.
n
12.10. Show that{ "y <n> { 1
m+1 S \k/ Im
12.11. A Bell numbemB(n) is the number of equivalence relations omaglement

set. Show that

>B(k) (note thatB(0) = 1).
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2.12.

2.13.

2.14,

2.15.

2.16.

12.17.

A transpositionis a permutation of the form

1...i—1 j i+1...j—1 i j+1...n
Show that every permutation can be represented as a composition of trans-
positions.

Using 2.12 show thatE,, o) is a subgroup ofS,, o) (for the definition of
E, see the proof of Theorem 2.11). What is the index of this subgroup? Is
it a normal subgroup d§,?

Letaiay...azo0sbe a permutation of1,2,...,2005;. Show that
(a1+1)(az+2)...(az005+ 2005

is an even number.

Find the number of permutatiomsa, . .. a, of {1,2,...,n}, n > 3, having
the property thata; — ap| > 1.

Find the number of permutatiomsay . .. a, of {1,2,...,n}, n > 3, having
the property thas < a;o foralli € {1,...,n—2}.

Find the number of permutatiorfsof {1,2,...,n} such thainv(f) = 2.
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Chapter 3

SDRs and Latin Squares

In this chapter we first introduce systems of distinct representatives (SDRs for
short) and show the celebrated Hall’'s Marriage Theorem. We apply the theorem
to show that every Latin rectangle can be extended to a Latin square and estimate
the number of Latin squares of order We then orthogonal Latin squares and
there exists a complete system of orthogolan Latin squares of nrdbenevem

is a power of a prime. Finally, we show the famous result due to Euler that for
everyn > 3such thanh# 2 (mod 4) there exists a pair of orthogonal Latin squares

of ordern and conclude the chapter by showing that each system-d mutu-

ally orthogonal Latin squares of ordercan be extended to a complete system of
orthogonal Latin squares.

3.1 Systems of distinct representatives

Let.o/ = (Aq,...,An) be a sequence of finite sets.sistem of distinct representa-
tives (or SDR for shortor <7 is a sequencéey, ..., e,) such that

e & # ej whenevei # j (i.e.,g’s are distinct) and

e g c A foralli (i.e., g is a representative &).

The problem we address in this section is: given a finite sequence of finite sets, is
there a system of distinct representatives for this sequence?

Example 3.1 (a) Five good friends, Anne, Betty, Cecilia, Dorothy and Emanuela
would like to get married to one of the six local boys Fred, George, Horatio, lan,
John and Kevin, and each girl has a list of candidates:

35
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Anne’s wish list: Fred, George, Kevin
Betty’s wish list: Fred, Horatio
Cecilia’s wish list: Fred, lan, John

Dorothy’s wish list: George, lan, Kevin
Emanuela’s wish list:  Horatio, John

Is it possible to arrange the marriages so that each girl gets married to a boy from
her list? Yes itis. There are many possibilities and one of the solutions to the prob-
lem is: Anne-Fred, Betty-Horatio, Cecilia-lan, Dorothy-George and Emanuela-
John.

(b) Assume now that the wish lists of the five girls are

Anne’s wish list; Fred, George, Kevin
Betty’s wish list: Fred, Horatio
Cecilia’s wish list: George, Horatio

Dorothy’s wish list: George, Kevin
Emanuela’s wish list:  George, Kevin, Horatio

Weeell, the situation is a bit tight this time. Consider Cecilia, Dorothy and Emanuela.
Their wish lists all together contain three boys, George, Horatio and Kevin, so if
there is a feasible arrangement of marriages, these three girls will have to marry
these three boys (say, Cecilia-George, Dorothy-Kevin and Emanuela-Horatio). But
now take a look at Anne and Betty. George, Horatio and Kevin are already married
to Cecilia, Emanuela and Dorothy, so there is only one candidate left on two wish
lists:

Anne’s wish list: Fred,GeergeKevin
Betty’s wish list: Fred,Heratio
Cecilia’s wish list: @@ . Horatio
Dorothy’s wish list: ~ GeorgeKevin)

Emanuela’s wish list:  George, Kevi

and hence there is no feasible arrangement of marriages. A closer look reveals that
the five wish lists contained only four boys altogether, so it was impossible from
the beginning to make a feasible arrangement of marriages.

It is easy to see that if there is an SOR,,...,e,) for (Aq,...,An) then the
union of everyk sets in the sequence has at ldastements, for alk € {1,...,n}.
The remarkable theorem due to Phillip Hall shows that this necessary condition is
also sufficient. Forr = (Aq,...,Ay) ande #J C {1,...,n} let

()= JA;.
jed
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Theorem 3.2 (Hall's Marriage Theorem) Let.o/ = (A4,...,An) be a sequence of
finite sets. Theny has an SDR if and only if

|7 ()| = || forall o #J C {1,...,n}. (%)

Proof. (=) This is easy. If(ey,...,€n) is an SDR fore then.s (J) = UjesAj 2
{ej : j € I} and since alk;’s are distinct|.«/(J)| > |{gj : j € I}| = |J|.

(<) The proof proceeds by induction an the length of«Z. If n=1, the
condition (x) guarantees tha#\;| > 1, so there is a representativeAyf. If n=2
then|A1| > 1, |A2| > 1 and|A1 UA,| > 2 so we can easily find an SDR 04, Ay).
Assume now thatx) implies the existence of an SDR of every sequence with less
thann sets and consider a sequenge= (A, ...,A,) with n sets.

If |e7(J3)| > || for all @ #J C {1,...,n}, we have enough elements to play
with and an SDR can be constructed easily. TakesarmyA, and letB; = A\ {en},
je{l,...,n—1},and# = (By,...,By_1). Let us show that? satisfiegx). Take
any@ #JC{1,...,n—1} and note that#(J)| = |/ (J)| — L or |[B(J)| = |«/(J)|
according as, € <7(J) or not. Therefore|#(J)| > |«/(J)| —1 > |J| — 1 since
|<7 (J)| > |J| by assumption. Since we are working with integers hgzgJ)| >
|| — 1 means that#(J)| > |J| and thusZ satisfiegx). By the induction hypoth-
esis# has an SDR, sayey,...,en—1) and it is easy to see théy,...,e,_1,€) is
an SDR fore/.

Assume now that the situation is tight, that|is/(J)| = |J| for someg # J C
{1,...,n}. Without los of generality we can takde= {1,...,s} forsomel <s<n.
Then (Aq,...,As) satisfies(x) and by the induction hypothesis there is an SDR
(e1,...,6) for (Aq,...,As). Since|.eZ(J)| = |J| it follows that.e/ (J) = {ey,...,&s}.
LetBi =A\ /(J),s+1<i<n,and letus show tha# = (Bs.1,...,By) satisfies
(x). Take any@ # K C {s+1,...,n}. Then it follows immediately tha®(K) =
</ (JUK)\ Z(J) so|B(K)| = |/ (JUK)|— |7 (J)|. Now, |«Z(JUK)| > |JUK]|
since« satisfies(x), and|.<7(J)| = |J| by the assumption. Thereforgz(K)| >
|JUK]| —|J] = |K]| sinced andK are disjoint. This shows tha® satisfies(x)
and by the induction hypothesis there is an SER 1,...,&,) for #. Finally,
(e1,...,€s65:1,...,6n) IS an SDR fores. O

Next, we estimate the number of different SDRs of a sequence of finite sets
that has an SDR. For integarg < mp < ... <m, let

Fa(my,...,mp) = (M) T (mp—1)T(mg—2)*...(my— (n—1))"
=[]m -1y

where(k)™ = max{1,k}. Our goal is to show the following theorem:
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Theorem 3.3 Let o = (A4,...,An) be a sequence of finite sets that has an SDR
and letSDR(.«7) denote the number of different SDRs fof. Assume also that
|A1| < ... < |An|. ThenSDR(«) = Fa(|Adl,-- -, |An])-

The proof of the theorem requires some preparation. Défin&" — N by
fa(as,...,an) = Fa(my,...,my)

wheremy, ..., m, is a permutation ofy,...,a, such thatm < ... <m,. So, we
can now writef,(a, . ..,an) whenever we are not certain that< ... < a,.

Lemma 3.4 Letay, ...,8_1, 811, ---,8n, b, C € Z and assume that< c. Then

fn(a,...,&-1,b,811,...,an) < fn(aa,...,@-1,C,a41,...,8n).

Proof. Letmy < ...<mg s <me=b<mg1 <...<cm<m <...<mand
m<...S<mep <M <...<im e myg <... <my be nondecreasing
rearrangements @, ...,a_1,b,a1,...,a,andas,...,a_1,C,a&1,...,a,. Then

fa(a1,...,a-1,C,81,...,n)

fn(ag,...,a_-1,b,841,...,an)
(M1 — (k=1)" - (M2 —K) ... (m — (1 =2))" - (c—
(b—(k=1))* (M1 —K)T-...- (Mg — (1 =2))" - (m —(

"
)*

which is clearly> 1 sincemy.1 > b, Mo > Myq, ...,m>m_gandc>m. O

Proof. (of Theorem 3.3)he proof closely follows the outline of the proof of The-
orem 3.2. We proceed by induction an If n = 1 thenSDR(./) = |A1] and we
are done. Suppose the claim holds for sequences with lessntbats and let
o = (Ag,...,An).

If |/ (J)| > |J| forall@#J C {1,...,n}, then take ang; € A; and letA;(e;) =
Ai\{e1}. We know from the proof of Theorem 3.2 that(e;) = (A2(e1), ..., An(€1))
has an SDR for everg, € A;, and sincee; can be combined with every SDR of
</ (e1) to produce and SDR of/, we have that

SDR(&) = Z\ SDR(« (e1)).
€1 e
By the induction hypothesiSDR(<7 (e1)) > fr_1(|A2(€1)], ..., |An(€1)|) and since
|Ai(e1)| = |A| — 1, Lemma 3.4 yields

SDR( (€1) = fa-1(|A2(€1)];- -, |An(e1)])
> fooa(|Ao] =1, [An| = 1) = F1(|A2| = 1,..., |An| = 1)
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due to the assumption thgy| < ... < |An|. Putting it all together,
SDR(.«#/) = ZA SDR(«/ (e Z\ Fro1(lA2l —1,...,[An[ = 1)
= ‘Al‘ ' Fn—l(|A2| - 7" ) ’An’ - ) = Fn(’Aﬂv |A2|7 (K ’AFID
Assume now thate7 (J)| = |J| forsomez #J C {1,...,n}. Letd={]j1,..., jk}
and{1,...,n}\J={m,...,m}, k+1 = n. Without loss of generality we may as-
sume thatAj, | < ... < |Aj, | and|An| < ... < |[Am|. LetE =Aj, U...UA, and
An(E)=An \E,i€{1,...,1}. From the proof of Theorem 3.2 we know that each

SDR for .« consists of an SDR fofA,,,...,A;,) and an SDR fo(An, (E), ...,
An (E)), so, by induction hypothesis

SDR(M):SDR(AJ'M"'?AJ'k)'SDR(Am( )y Am(E))
2 RlALL - [AKD - fi([Am (B, - - [Am (E)]).

Since|lE| =k and|An (E)| = |An| — |E| = |Am| —k, Lemma 3.4 yields
SDR() = Fe([Ajss- - [Aj D) - R (A | =K [Am | = K).

Applying Lemma 3.4 once again, this time to the first factor on the left-hand side
of the inequality, we obtain

SDR(«) = Fc([Adl;- - [AD) - F (1A [ =K, . [Am | = K)

since|Aj;| > |A| for 1 <i < k. Next, letus remark thah, | < |Aj, U...UA; | =K,
so fork <i < jx we have thatAj| < |A;, | < kand thugAj| — (i—1) < 1. Therefore,
(|A|—(i—1))" = 1whence

ik

Fe(lAal, - 1AD) = ]](IAa! —(@i-1)".

On the other hand,

|
B (An =K [Am [ —K) = rl(lAml—(k+i—1))+-

i=
Now if my < jk then|Am| < |A, | <K, so(JAn| — (k+i—1))" = 1. Since

({jlv"'7jk}>{m1""7m})
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is a partition of{1,...,n} it follwos that{Am : m > jk} = {Aj11,...,An} and thus

|
B ([Am | =k [Am | = K) rllAm\— (k+i—1))"

= 1 (Al-

|:Jk+1

The last equality is a bit tricky, so we show an example to demonstrate the main

idea. Suppose that= 10, (j1, j2,J3) = (3,5,6) and (my, My, Mz, My, Ms, Me,
my) =(1,2,4,7,8,9, 10), so that

= (AmlaAmzaAj17AmgaAj2,Aj37Am47Am37AnbaAm7)-
Then|Ajl UAJ'2 UAJ‘3| =3and

Fs(1Amy | = 3,|Am,| = 3, [Amg| = 3, [Amy| = 3, |Amg| = 3, [Ame| — 3, |Amy | = 3) =
= (|An | =3)" (|Am| = 4" ([Ame| =5) " (|Am,| —6) "
(A =7 (|As| = 8)" - (1A —9) ™

Since|Am | < |Am| < |Amg| < |Aj;] < 3we have that
(IAm | =3)" = (|Am,| = 4)" = (|Am| = 5)" =1,

hence

Fs(1Amy | = 3,|Am,| = 3, [Amg| — 3, [Amy| = 3, |Ams| = 3, [Ame| — 3, |Amy | - 3) =
= (|Am| =6)" - (|Ams| = 7)™ (|Amg| = 8) " (|Am, | —9)"
(1A7]—6)" - (|Ael = 7)™ - (|Ao| = 8)" - (|A20] —9)™"

So much for the example. Finally, putting it all together we get

SDR(#) = Fc([Aal,- - A - R (|Amy [ =K, - [Am | = K)

I n
- (_rlw-(i—l))*) - ( I <\A-|—<i—1>>+)
i= i=jk+1

= Fn(|A1|>' coy |Af'l|)

This completes the proof. O
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Corollary 3.5 Let« = (A4,...,Ay) be a sequence of finite sets that has an SDR
and supposg;| > r for alli. Then

rl, r<n

SDR(&/) > l

(r—n)t’

Recall that a determinant of &< nreal matrixA = [g;] is a number defined by
det(A) = %(_1)inv(f>‘alf(l)‘~--‘anf(n)

fe

r>n.

where the summation goes over all permutatidnsf {1,...,n}. The signless
version of the determinant is callecdoarmanenbf A. Hence the permanent éf
is defined by

perA) = %alf(l)‘“-‘anf(ny
1€

Although aparently simpler, permanents are almost impossible to compute effec-
tively, which stands in sharp contrast to determinants that can be computed very
easily.

Let o = (A4,...,An) be a sequence of subsets{df...,n}. Theincidence
matrix of <7 is then x n matrix M, = [mjj] where

{1, A ]
mj =

0, otherwise.

An example of the incidence matrix of a sequence of sets is given in Fig. 3.1.

1 2 3 45 6
{1,34}|1/0[1/1]/0]0
{2,345} 0|1|1]| 1|10
{1,5})/1]/0/0|0|1]0
{245/ 0/1]0|1|1]0
{236}|0|1]1/0]| 0|1
{1,356}1]0| 1|0 1|1

Figure 3.1: The incidence matrix of a sequence of sets
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Theorem 3.6 Let o7 = (Aq,...,An) be a sequence of subsets{df...,n}. Then
SDR(«/) = per(M,,).

Proof. Note first that every SDR of/ is a permutation of1,...,n} and thatM,,

is a 01-matrix. In the sum that defines the permanent, therefore, some summands
are 0 and others are 1. A summand that evaluates to 1 corresponds to a permutation
fof {1,...,n} such thaty¢q)-... Myt = 1. Thereforemy ;) = 1for all i which

is equivalent t\; > f (i) for alli, so(f(1),...,f(n))is an SDR fore/. Since every

SDR of &7 arises from such a permutation, we get the equality. O

We now see that computing the number of SDRs of a sequence of finite sets
is as complicated as calculating a permanent of a 01-matrix, which is in general
extremely complicated.

The following theorem is a typical example of thitnimax phenomenaomhich
is one of the most fundamental insights in discrete mathematics. Suppose we are
given an arrangement of rooks on a rectangular chess board where some rooks may
attack each other. We would like to find the maximal number of independent rooks
in this arrangement. Recall that rooks on a chess board are independent if no two
of them are on the same lineliae of a chess boartieing a row or a column. In
the arrangement of 11 rooks ori@x 7 chessboard in Fig. 3.@&) one can find at
most four independent rooks, e.g., those four in Fig.(B)2 Interestingly enough,
all the rooks can be covered by four lines, Fig. @R The following theorem tells
us that this is not a coincidence.
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Figure 3.2: Eleven rooks onl® x 7 chess board

MAMNGNNN

Theorem 3.7 Suppose we are given an arrangement of rooks on a rectangular
chess board. Then the maximum number of independent rooks in the arrangement
is equal to the minimum number of lines that cover all the rooks.
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Proof. Let mbe the minimum number of lines that cover all the rooks aniliée
the maximum number of independent rooks. Since independent rooks are no two
on the same line, we have > M. We have to show thah= M.

1 ... s 1 ... s i1 J2 s

1 11 pzz7zzz7722227770777277/007727 /57228777
P IS A N N I
P Io P722222277722227277772277/080727/ 17724727772
N I A N N
la P72z777222272277722277227247/277/8172 /%7772

(a) (b)
Figure 3.3: The proof of Theorem 3.7

Take any minimal collection of lines that cover all the rooks and suppose it
consists of rows ands columnsy +s= m. Without loss of generality, let these be
the firstr rows and the firss columns. Let us show that the regiBrnn Fig. 3.3(a)
containsr independent rooks. For each rowd <i <r, letA = {j > s: there is
a rook at the positiori, j)} and let us show thatAs,...,A;) has an SDR. Take
anyk € {1,...,r} andk indicesiy,...,ix € {1,...,r}. If [A;U...UA,| <Kk, the
rooks in rowsiy, ..., ix which are not in the firs¢ colums are arranged in less
thatk columns. Hence, we can replace the rawys. ., ix by somek — 1 columns
and still cover all the rooks, Fig. 3.®). But this is impossible since we have
chosen the minimal number of covering lines. This showstAat .., A;) has an
SDR and consequently there aréendependent rooks in regidd. By the same
argument, there aindependent rooks in regid®, so the number of independent
rooks is at least+ s= m. SinceM is the maximum number of independent rooks,
M>r+s=m. O

We conclude the section by an important theorem due to G. Birkhoff from
1946. Apermutation matrixs a square 01l-matrix where each row contains pre-
cisely one 1, and each column contains precisely one 1.

Theorem 3.8 Let A = [a;j] be am x n matrix whose entries are nonnegative inte-
gers and with the property that the sum of every row and every columnTéen
A is the sum o permutation matrices.



44 CHAPTER 3. SDRS AND LATIN SQUARES

Proof. We use induction om. If m= 1 the claim is trivially true. Assume the
claim is true for all sums less thamand letA be a matrix where the sum of every
row and every column imn > 1. Define§, 1<i<n, by S = {j:a; > 0}. Take
anyk indicesl <i; < ... <ix<nand let us show thd§, U...US,| > k. The
sum of thesd& rows is clearlyjkm Since every column ok has summ, the nonzero
entries in the rows, ..., ix must spread over at ledstolumns (otherwise, if all
the nonzero entries in thekaows are concentrated ki— 1 columns, the sum of
the rows could not exceedk — 1)m). Therefore|S, U...US,| > k for all k and
all choices ofij, .. .,ix. This shows thatS,,...,S,) has an SDRs,...,s,) which
corresponds to the permutation matfix= [p;;| whereps, = 1 and all other entries
of P are zero. The sum of every row and every columAefP ism— 1, so by the
induction hypothesisA — P is the sum oim— 1 permutation matrices. Therefore,
Ais a sum ofm permutation matrices. a

3.2 Latin squares

Let Q be a finite set withn > 2 elements and let < r < n. A Latinr x nrectangle
overQ is anr x n matrix with entries fromQ such that in every row all elements
are distinct and in every column all elements are distincL.afin square of order
noverQ is a Latinn x n rectangle ove. Fig. 3.4 shows a Lati3 x 5 rectangle

and a Latin square of order 6. The construction of the Latin square in Fig. 3.4
also shows that for evenythere is a Latin square of ordarand hence, for every

1 <r < nthereis a Latirr x nrectangle.

1/2|3/4|5|6
175721413 2/3|4/5/6|1
3/4|5/6/1|2
3/14/5/1|2
411325 4/5/6/1/2|3
5/6/1/2/3|4
6/112/3/4|5

Figure 3.4: A Latin rectangle and a Latin square

Let ¢ : Q — Q be a bijection and leR = [a];xn be a Latinr x n rectangle
overQ. By ¢ (R) we denote the matrig (R) = [¢ (& )]rxn.

Lemma 3.9 LetR be a Latin rectangle ové).
(a) A matrix obtained fronR by permuting rows is again a Latin rectangle.
(b) A matrix obtained fronR by permuting columns is again a Latin rectangle.
(c) If  : Q — Qs a bijection, therp (R) is a Latin rectangle.
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LetQ={a,...,an} be a set of integers and lef < ... < a,. A Latin square
over Q is said to bestandardif the elements of the first row of the square are
linearly ordered. Itis said to bdoubly standardf the elements of the first row and
of the first column of the square are linearly ordered. Fig. 3.5 show a standard and
a doubly standard Latin square of order 5.

112/3/4|5 1/2|3|4|5
3/1/4/5|2 2|/5/13/4
413|5/2]|1 3/1/4(5|2
2/5/1|3/4 4/3/5|2]1
5/4/2[1]3 5/4/2/1|3

Figure 3.5: A standard and a doubly standard Latin square of order 5

Lemma 3.10 (a) Every Latin square can be turned into a standard or a doubly
standard Latin square by permuting rows and columns of the original square.

(b) For every Latin squark overQ there is a bijectiod : Q — Q such that
¢ (L) is a standard Latin square.

The following theorem is yet another important application of the Hall’'s Mar-
riage Theorem 3.2.

Theorem 3.11 Let1 <r < n. Then every Latim x n rectangle can be extended to
a Latin(r +1) x n rectangle.

Proof. Consider a Latirr x n rectangleR over ann element seQ and for each
ie{l,...,n} put

S = {x€ Q:xdoes not appear in theth column ofR}.

ThenR can be extended by one row if and only(8,...,S,) has an SDR, so let
us show thatS,, . ..,S,) has an SDR. Take arkyindicesj,..., jk € {1,...,n}, let
S,U...USj, ={a,...,a} and let us show thdt> k. Fora < Q let N(a) denote
the number of set$§y, ..., S, that containa. Sincea appears in every row dR
precisely oncelN(a) = n—r for alla € Q. It is easy to see that

S|+ +Sj | <N(az) +...+N(a) =I(n—r).
On the other hand evef§ has preciselyn —r elements, so
1Si,| + ... +1Sj | =k(n—r).

Therefore)(n—r) > k(n—r) and thud > k. This shows thatS,...,S,) satisfies
the requirementx) in the Hall's Marriage Theorem 3.2, and hence has an SDR.
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Corollary 3.12 Every Latin rectangle can be extended to a Latin square.

We conclude the section with an estimate on the number of Latin squares.

Theorem 3.13 Let A, denote the number of distinct Latin squares om afement

set. Then
n-1

n
K< An< [](N —K).
[ == [ =

Proof. We count Latin squares by adding rows one at a time. Each row of a Latin
square is a permutation @ so there are! possibilities for the first row, then there
are at mosh! — 1 possibilities for the second row since the permutation chosen for
the first row must not be used again, at mast 2 possibilities for the third row
and so on. Thereford, < n=3(n! — k).

As for the lower bound, let us first note that there are at léastr)! possi-
bilities to extend a Latirm x n rectangle to a Latirfr + 1) x n rectangle. To see
this, form setsS as in the proof of Theorem 3.11. EaShhasn—r elements, so
by Corollary 3.5 the sequend&,,...,S,) has at leastn—r)! SDRs. Now, there
aren! possibilities to choose the first row of the Latin square, then at (east)!
posibilities to find an SDR that consitutes the second row, at [@as2)! SDRs
for the third row, and so on. Therefork, > |‘|E:1 kl. O

3.3 Orthogonal Latin squares

Let us start with an old card game which was rather popular in the Middle Ages.
From a deck of playing cards take all aces, kings, queens and jacks, and arrange
them in a4 x 4 array so that each row and column of the array contains an ace (A),

a king (K), a queen (Q) and a jack (J), but also a spak)e & heart ¥), a club

(%) and a diamond<). One possible solution to this ancient problem is given in

AB KD |Qe| IO A|lK|Q|J ! IRV IR
QOIBAVKA QI JJA|K 2 A JRVAR )
JO|QM KO A JIQ K|A VAR BN
K& AO| I QD KIA|J|Q L IR R

Figure 3.6: A medieval problem vs. Latin squares

Fig. 3.6. A careful look reveals that the arrangement of the 16 cards splits into two
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Latin squares of order 4: one taking care of ranks and the other one taking care of
colours.

Definition 3.14 Latin square$.; = [ajj]nxn OverQq andL, = [bjj]nxn OverQ, are
orthogonal in symbolsLy L Lo, if {(&;j,bij) :1,j € {1,...,n}} = Q1 x Qo.

In other wordsL; andL, are orthogonal if thé., overlaid withL; contains
every pair fromQ; x Qz. We shall mainly work with Latin squares over the same
setQ, although in some exampl€¥ might differ from Q..

Lemma 3.15 LetL; andL, be orthogonal Latin squares ov@r Then
(a) ¢(L1) L Ly for every bijectionp : Q — Q;
(b) ¢(L1) L Y(Ly2) for every pair of bijectiong, Y : Q — Q.

Definition 3.16 Latin squared s, Lo, ..., Lx are mutually orthogonal ik; L L;
whenevel # j.

Theorem 3.17 Let Ly, Ly, ..., Ly be mutually orthogonal Latin squares ow@r
where|Q| =n. Thenk < n—1.

Proof. Without loss of generality we can assime tiat {1,...,n}. According to
Lemma 3.1Q(b), for everyi € {1,...,k} there is a bijectiorg; : Q — Q such that
L{ = ¢i(L;) is a standard Latin sqaure and from Lemma 3.15 it followslthat. .,

Li are mutually orthogonal:

Ly Ly ... Lg Li L L
¢1l ¢2l - ld’k ¢il ld’j
L L .. L TRNIRT

Let b; € Q be the element i} at the position(2,1), j € {1,...,k}, Fig. 3.7.
Thenb; # 1 for all j since in eacrL’j there is an 1 in the first row, just abote.

Ly L Lk

Figure 3.7: The proof of Theorem 3.17

Let us now show thalti # b; whenever # j. Since bothL{ andL] are standard,
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overlaying the first row ot with the first row ofLj produceq(1,1), (2,2), ...,
(n,n). FromL] L L’j it follows that every pair ofQ? appears exactly once when
Li is overlaid withLj so (bi,bj) ¢ {(s,s) : s€ Q} and hencéy; # bj. Therefore,
{ba,...,b} is ak-element subset df2,...,n} whencek < n— 1. O

We see from the above theorem that any system of mutually orthogonal Latin
squares has at most- 1 elementsn = |Q|. Systems achieving the upper bound
are said to be complete.

Definition 3.18 A complete system of orthogonal Latin squares @& a system
of n— 1 mutually ortogonal Latin squares—= |Q).

Theorem 3.19 Let |Q| = p® wherep is a prime andx € N. Then there exists a
complete system of orthogonal Latin squares &Yer

Proof. This proof heavily relies on a nontrivial fact that for every primand every
a € N there exists a finite field witp” elements. Recall that a field is an algebraic
structure where we can add, subtract, multiply and divide byaagy0 (0 being
the neutral element for addition). Therefore, in a field we can perform all the usual
arithmetic, regardless of the fact that it need not be one of the number systems we
are used to work with, such &or Q. In particular, we can solve systems of linear
eguations using the same strategies we use when solvig systems of linear equations
in Q orR.

So, letQ be a finite field witn = p® elements and let us denote the operations
in Q in a usual way. Let 0 denote the neutral elementffo~or eactk € Q\ {0}
we define am x n matrix L = [a& ] overQ indexed by{0,...,n— 1} as follows:

af =i+j-k

and let us show that eadlf is a Latin square. I&f; = af; theniy + jk = i2+ jk
whencei; = iz, S0 in each column df* all elements are distinct. & = a¥_ then
i+ jik =1+ joki.e. jik= jok. Sincek # 0 we can divide byk whencej; = j».
Therefore, in each row df* all elements are distinct.

Finally, let us show that® | L™ for k ## m. Take any(a, ) € Q% and let us
find indicesi and j such that(a,!‘j,a,-”j“) = (a,B). We have to solve the following

system of linear equations in unknowirend j:
i+kj=a, i+mj=p.
But we are in a field, so this is easy:

. kB—ma . a—-pB
i=—),
k—m
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This shows that eactur, 3) appears wheh* is overlaid withL™ soLX L L™, O

For a matrixL = [bjj]nxn and analeta® L = [(a,bij)]nxn. For matriced ; =
[@ijJmxm and Lo = [bij]nxn let L1 ® Lo be themnx mn matrix given in a block
representation by

a1®Lly ap®ly ... am®L:
Lioly = a1®ly ap®ly ... am®l:
am®Ly ap®l: ... anm®L2

Clearly, ifL1 is a Latin square oveD; andL, is a Latin square ovep, thenL; ® L,
is a Latin square oveD; x Q2 (Homework 3.9).

Lemma 3.20 LetLy,...,Lx be mutually orthogonal Latin squares o@andL1, ... L,
mutually orthogonal Latin squares ov@r. ThenL1 ®L],...,Lk®L; are mutually
orthogonal Latin squares overx Q.

Lemma 3.21 Letn = p{*p5... po« wherepi’s are distinct primes and; > 0 for
alli, and lety be the minimum ofS*, p3?, ..., py*. Then there exist— 1 mutually

orthogonal Latin squares of order

Proof. Let g = p” andq = min{qy,...,0}. We know that for eachthere exists

a complete system of orthogonal Latin squares of oggle6ince any subset of a
complete system of orthogonal Latin squares is a set of mutually orthogonal Latin
squares and sinog < q; for all i, it follows that for each there is a seL‘l, Liz,

e Liq,l of g— 1 mutually orthogonal Latin squares of oragr Lemma 3.20 now
yields that

Li®..olf, Li®..ols .., Li;®.0L%,

is a set ofg— 1 mutually orthogonal Latin squares of oradgQ,...qgx = n. O

Theorem 3.22 (Euler) If n# 2 (mod 4), there exists a pair of orthogonal Latin
squares of ordar.

Proof. Let n= p{*p52... pg« wherepy’s are distinct primes and; > 0 for all i,
and letq = min{p{*, p5?,..., pg*}. If g=2thenn= 2. pj?... pc* wherep;'s are
odd primes whence follows that= 2 (mod 4), which contradicts the assumption.
Thereforeq > 3. According to Lemma 3.21 there exists a sefjefl > 2 mutually
orthogonal Latin squares of orderand in particular, there exists a pair of mutually

orthogonal Latin squares of order O
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Ll L2 Ln72
1/2] [i] [n] [1]2] [i] [n i[2] [i] [n

i — ajj & aj

Figure 3.8: The se

Theorem 3.23 Every set oh— 2 mutually orthogonal Latin squares of oraecan
be extended (by adding “a missing square”) to a complete system of orthogonal
Latin squares.

Proof. LetL* = [a};], ..., L""2 = [af} %] be mutually orthogonal Latin squares over
{1,2,...,n}. Without loss of generality we can assume that & are standard (if
this is not the case, we can find permutatigns. .., ¢, _» such that eackp; (L")

is standard, ang1 (L), ..., ¢n_2(L"2) are still mutually orthogonal; if a Latin
squareL* is orthogonal to eactp; (L), it will be orthogonal to each' as well).

Let Sj = {a},a%,...,a] °}, see Fig. 3.8. Since?, ..., L""2 are mutually
orthogonal standard Latin squares, it is easy to show|fiat=n— 2 and that
j¢S;foralliandj. Leta’ij =j,1<j<n, and fori > 2 let ai*j be the only
elementof{1,...,n} that does not appear & U{j}. PutL” = [&]j]. We are going
to show that* is a Latin square and that L L* for all i. Note that by construction
the first row ofL* is 12...n.

Let us first show that* is a Latin square. Suppose that an element, say 1, is
missing in the rowi > 2 of L*. ThenSy, ..., Sy all contain 1. From each square
L, ..., L"2 take thei-th row without its first cell and arrange these rows in a
matrix as in Fig. 3.9. The matrix has— 1 columnsSy, ..., S, and each column
contains a 1. On the other hand, the matrix clearlymha< rows, so there has to
be a row which contains two 1's. But this is impossible because these are rows of
Latin sqaures. Therefore, each rowldfcontains each element ¢1,... n}. The
proof that each column df* contains each element ¢1,...,n} is analogous, so
L* is a Latin square.

Now let us show that! | L*. Supposd. / L*. Then there is a paiix,y) €
{1,...,n}? such that(x,y) ¢ {(I1,15;) : 1 <i,j <n}. Since bothL* andL* are
standard we have# y, so without loss of generality we can assume tay) =
(1,2). We can also assume that 1's are on the main diagoniat @f this is not
the case, we can simultaneously permute rowstof..,L"2 L* to achieve this).

Since(1,2) does not appear i{1(|i1j,li*j) :1<i,j < n} we see that there are no 2's
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Ll L2 Ln72
1/2|3 n 112|3 n 112|3 n
| —
S2 Ss Sn
Ll
L2

Ln—2 /

Figure 3.9: The proof thdt* is a Latin square

on the main diagonal df*, which, by the construction df*, means thaR € Ss3,
2€Su4, ...,2€ S Fromeach squaié', . .. ,L"2 take the main diagonal without

its first two cells and write these diagonals as rows of a matrix, see Fig. 3.9. The
matrix hasn — 2 columnsSzs, . .., S\n and each column contains a 2. On the other
hand, the matrix clearly has— 2 rows and the first row is 11...1. So all the
2's appear in the remaining— 3 rows and hence there has to be a row, say row
s, which contains two 2's. But the! / LS since(1,2) appears twice when we
overlayL! with LS. The contradiction shows that L L*. The proof that.' 1 L*

for the remaining’s is analogous, sa?, ..., L"?, L* is a complete system of
orthogonal Latin squares. O
Homework

3.1. Prove the following generalisation of Hall's Marriage Theorem:
Let o = (A4,...,An) be a sequence of finite sets, ket 0 be an integer
and assume that

|/ ()| = 3| —rforall @ #JC{1,...,n}.

Then there are indicels< i1 < ... <ip_r < nsuchtha(A,,...,A, ) has
an SDR. (Hint: take distinct elementsq, ...,% ¢ UL; Al and consider
o' = (A,...,A,) whereA' = A U{Xq, ..., % }.)



52

3.2.

3.3.
3.4.

3.5.
3.6.
3.7.

3.8.
3.9.

3.10.

Ln—2
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Ll L2 Ln72

i 0| . ul

S33 s Shn
LZ .o

Figure 3.10: The proof that® | L*

Letl<m <m2<...<m, Show thatm -F1(My—1,...,my—1) =
Fn(mb m27 ceey m’])
Prove Corollary 3.5.

Let Q= {1,2,...,mn} wheremn > 2. Let {Aq, ..., Aq} be a partition
of Q into n blocks of sizem, and let{By, ..., By} be another partition
of Q into n blocks of sizem. Show that there is a permutatidrof {1, ...,
n} such thatAy N By ;) # @ for all i. (Hint: Take then x n integer matrix
M = [m;] wherem; = |AiNB;| and apply Theorem 3.8.)

Prove Lemmas 3.9 and 3.10.
Find all doubly standard Latin squares of order 4.

Let A;«n denote the number of distinct Latinx n rectangles on an ele-
ment set. Show that

r—1

rL(n—k)! < Arxn <

k= k

=

-1
(nl —Kk).

Prove Lemma 3.15.

Show that ifL; is a Latin square oveD; andL; is a Latin square oveD;
thenlL; ® L, is a Latin square ove®; x Q-.

Prove Lemma 3.20.
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Exercises

3.11.

3.12.
3.13.

3.14.

13.15.

3.16.

3.17.

13.18.
3.19.

3.20.
3.21.

Find an SDRfor{1},{1,2,3}, {3,4},{2.4,5},{3,6},{1,4,7},{6}). How
many SDRs does this sequence of sets have?

Find subset#\, B, C of {1,2,3} such thaSDR(A,B,C) = 3.

For eachn > 3find n subsetd\, ..., Ay of {1,2,...,n} such thaiA;| =
...=|An| @andSDR(Ay, ..., Ay) = 2.

Find SDR(«/) where« = ({1,2,3},{1,4,5},{1,6,7},{2,4,6},{2,5, 7},
{3,4,7},{3,5,6}).

LetA ={1,....,n}\{i}, 1<i<nandletf(n) = SDR(A,...,An).

(a) Find f(n). (Hint: Use the Principle of Inclusion-Exclusion.)

. f(n)
(b) Computerl]moT.
Let &7 = (Aq,...,Ay) be a sequence of subsets{df...,n}. Show that
if M., is a regular real matrix, thenZ has an SDR. (Hint: iM,, is a
regular real matrix thewlet{M,, ) # 0; conclude that at least one of the
summands in the expression foerM,,) is nonzero using the fact that
M., is a 01-matrix.)

Turn the followingpartial Latin squaresnto Latin squares:

(@) (b) |1
2[1 1

1 2

Find the number of Lati2 x n rectanglesn > 2. (Hint; Use 3.15.)

LetL be a Latin square of orderwheren is an odd integer and suppdse
is symmetric with respect to its main diagonal. Show that all the elements
on the main diagonal df are distinct.

Find all pairs of orthogonal Latin squares of order 3.
LetL™ = [a;] andL™ = [bjj] be Latin squares ovét, = {0,1,...,n—1}
indexed byZ, i.e.

aoo ao1 ... don-1

L+ aio an ... A1n-1

an-10 @n-11 .- Sn-1n-1
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3.22.

3.23.
3.24.

3.25.
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and similarly forL™. Assume that
gj=Ii+nj and bjj=i—nj

where+, and—, are addition and subtraction #,. Show that.™ 1 L~
if n> 3is odd.

We say that Latin squarég andL, overQ areisotopicand writeL; ~ Lo
if there is a permutatiog : Q — Q such thal, can be obtained frorh;
by permuting rows and columns ¢fL1).

(a) Show that there are two nonisotopic Latin squares of order 4. (Hint:
Use 3.6.)

(b) Show that one of them has an orthogonal “mate” and the other does not.
Prove that ifL; ~ L, andL; has an orthogonal “mate”, then so ddes

A cross-sectiomf a Latin squaré. = [I;;] of ordernis a setd = {(1,ky),
(2,k2), ..., (n,ky)} such thatks,... k) is a permutation of1,...,n} and

li, # lj; whenevei # j. In other words, a cross-section is a selection of
cells inL such that there is one cell in each row and each colunin ahd

all the entries in these cells are distinct.

Show that a Latin squaie of ordern has an orthogonal mate if and only

if L hasn pairwise disjoint cross-sections. (Hint: if there isldrsuch that
LLL,putd={(,j): Ii’j =k} and show thady, ..., o, are pairwise dis-

joint cross-sections; the other implication uses the same idea to reconstruct
an orthogonal mate df from n pairwise disjoint cross-sections.)

A Latin squareL = [l;;] over Q is said to berow-completeif for every
(p,q) € @ such thatp # q there is exactly one paif, j) such thatj; = p

andli 1 = q (that is, every pair of distinct elements Qf occurs ex-
actly once in consecutive positions in the same row). The definition of
the column-completéatin square is analogous.

Show that for every even > 4 there exists a Latin square of ordethat
is both row-complete and column-complete. (Hint: et 2k and let
(X1,...,X%n) be the following sequence:

(0,1,2k—1,2,2k—2,3,2k—3,....k— Lk+1,k).

Show that for evens € {1,...,n— 1} there is a uniqué such thats =
Xi+1—X. DefineL = [ljj] over{0,1,...,n—1} by lij = X +n X, where
+n denotes addition module, and show that is both row-complete and
column-complete.)



Chapter 4

Finite Geometries and Designs

In this chapter we first present some basic facts about finite geometries. More pre-
ciesly, we shall consider finite planes only. We show that the existence of a finite
projective plane is equivalent to the exisence of a complete system of orthogonal
Latin squares. We then move on to designs, one of the most important combina-
torial configurations, which are straightforward generalisations of geometries. We
characterize projective and affine planes as some special designs, but also show
that other structures (such as Hadamard matrices) appear to be designes.

4.1 Projective planes

A finite projective planés a pair(7,.#) wherertis a nonempty set whose elements
are calledpoints .Z is a set of nonempty subsets mfvhose elements are called
lines and the following four conditions called tlaioms of projective planimetry
are satisfied:

(P1) For every pair of distinct point8, B € 1T there exists one and only one line
| € Zsuchthath el andB <.

(P2) For every pair of distinct linesm € . there exists one and only one point
A€ rrsuch that > Aandm>s A.

(P3) There exist four distinct points such that no three are on the same line.
(P4) mtis finite.

A finite projective plane with 13 points and 13 lines is given in Fig. 4.1. Note
that each line consists of exactly four points in this finite projective plane, and the
curved lines in the figure are just used as an illustration.

For distinct pointsA andB, by A- B or justAB we denote the unique line that
contains bottA andB. Similarly, for distinct lined andm, by | - mwe denote the

55
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Figure 4.1: A finite projective plane with 13 points and 13 lines

unique point that belongs to bothand m. If three or more points belong to the
same line, we say that the points amlinear. If three or more lines pass through
the same point, we say that the lines epacurrent

Theorem 4.1 Every finite projective plane has atE =
least 7 points.

Proof. Let A, B, C, D be the four distinct points in
the plane which exist by (P3). Thé= AB-CD

is distinct fromA, B, C andD (e.qg., ifE = Athen
A, D, C have to be collinear, which is impossible).
Furthermore, leF = AD-BC andG = AC- BD.

It is easy to see thdt ¢ {A,B,C,D,E} andG ¢ B
{A,B,C,D,E,F}. ThereforeA B,C,D,E, F, G

are seven distinct points. O

A

There exists a finite projective plane with exaclty
seven points. It is called tHeano planeand clearly this is
the smallest finite projective plane.

Theorem 4.2 Every line in a finite projective plane contains at least three points.
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Theorem 4.3 All lines in a projective plane have
the same number of points.

Proof. Let | andm be two distinct lines in a pro-
jective plane. Take a poir@ such thatS¢ | Um
and defineps : | — mby ¢s(X) = SX-m. Then
$sis bijective and hencg| = |m|. O

Definition 4.4 The order of a projective plane
(r,.¥) is a positive integeq such thatl| = q+ 1
foralll e .

So, the order of the Fano plane is 2, while the order of the projective plane in
Fig. 4.1 is 3. One can easily show that in a projective plane of ar@sery point
belongs to preciselg+ 1 lines (Exercise 4.13).

Theorem 4.5 Let(1,.¥) be a finite projective plane of ordgr Then|m| = |.Z| =
o +qg+1.

Proof. Let Sbe a point in the plane. Then there aye- 1 linesly, ..., lq1 that
containS Now |l1| + ...+ [lg+1] = (g+ 1)2. Note that every point in the plane
appears only once in this sum, except &which was counted + 1 times, once
for each line. Therefore, the number of pointgiis (q+1)2—q=g¢?+q+ 1.

For A € mmlet A denote the set of all lines that contain Theny ac ;|-Za| =
(9°+9g-+1)(g+1). In this sum each line was countgd- 1 times, once for each
of its points. Thereford,Z| = ¢? 4+ q+ 1. O

The axioms of the finite projective plane (projective space of dimension 2) can
easily be extended to alow for higher dimensional projective spaces. Projective
space of dimensiod and order is denoted byPG(d,q). So, projective plane of
orderqis PG(2,q) and in particular the Fano plane is ji&§(2,2). Higher dimen-
sional projective spaces have many properties that resemble the projective plane,
e.g.an appropri%telform of the Duality Principle is always valid (see Exercise 4.15),

+
or |PGd,q)| = qq_ 11.

Finite projective geometry is a source of very hard problems, e.g., it was shows
only recently that #G(2,10) does not exist (a long computation by Lam, Swierz,
Thiel in 1989). The question fd?G(2,12) is still unresolved. On the other hand,
we know that ifq is a prime power then there exists a unique projective plane of
orderg. We show the existence of such planes in the next section.
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4.2 Affine planes

A finite affine planéds a pair(a,.Z) wherea is a nonempty set whose elements
are calledpoints . is a set of nonempty subsets @fwhose elements are called
lines and the following four conditions called tlaioms of affine planimetrgre
satisfied:

(A1) For every pair of distinct pointd, B € a there exists one and only one line
| € Zsuchthatrel andB e l.

(A2) Forevery lind and every poinA ¢ | there is a unique linexsuch thatA € m
andlNnm=g.

(A3) There exist three distinct points not on the same line.
(A4) ais finite.

We say that line$ andm areparallel and writel | mif [ =morlnm= 2.
Axiom (A2) is therefore called the Parallel Postulate. It is easy to sed|tisadn
equivalence relation a’ and hence the lines i can be divided into equivalence
classes of parallel lines, callgzhrallel pencils An affine plane with 9 points is
depicted in Fig. 4.2. It has 9 points, 12 lines and 4 parallel pencils one of which
is outlined in the figure. Each parallel pencil in this geometry consists of three
parallel lines.

Figure 4.2: A finite affine plane with 9 points and 12 lines

Lemma 4.6 Let (a,.Z) be a finite affine plane.
(a) If a,b € . anda J{ b thena andb have a unique common point.
(b) a has at least four points such that no three are on the same line.
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We are now going to show that affine planes are closely related to projective
planes. Let(rr,.¥) be a projective plane and let € . be any line inft. Let
m—m= 1\ mand defineZ —mby

Z—-m={l\m:l €. Z andl # m}.

So, (m—m,.¢ —m) is a structure obtained from the projective plame.¥) by
removing the linen and all its points.

Theorem 4.7 Let (11,.¢) be a projective plane and letc £ be arbitrary. Then
(m—m, ¥ —m) is an affine plane.

Proof. Let us show tha{rmr—m,.Z — m) satisfies (A1)—(A4). (A4) is obvious,
while (Al) is a direct consequence of (P1). Let us show (A3). By (P3) there
exist distinct pointsA, B, C, D € mt such that no three are on the same line. If
ImN{A,B,C,D}| < 1then at least three of these four points lie outsigehat is
in T—mand we are done. Assume now that {A,B,C,D}| = 2, say,A,Bem.
ThenC,D ¢ m. It is easy to see thd = AC-BD does not lie orm and that
{C,D,E} C mare three distinct points.
Finally, let us show (A2). Take arye .¥ —
m and anyA € m—m such thatA ¢ |. By the
construction ofZ — m there is arl’ € . such a
thatl =1"\ m. Sincel’ £ mthe two lines intersect
and letL =1"-m. Clearly,l’ =1 U{L}. Puta = >
ALanda=4a\me.Z—m. Thenas Aanda]|.
Letb € .Z —mbe any other line parallel tothat
containsA and takey' € . such thab=b'\ m. '
Now, b/ and!l’ have an intersection imr while
b andl do not. Therefore, the intersection lof
andl’ is a point onl’ that does not belong g and hencdy -1” = L. This shows
thath’ = AL = a whenceb = a, and the parallel through is unique. O

This construction is based on the idea that |1

“parallel lines intersect at infinity”, where “in- ~

finity” is the line m. Using the same idea we 2 o0

can reverse the construction: starting from an | B %Mi‘”
affine plane, for each parallel pencil we add -
one new “point at infinity” and assume that all |, -
these “points at infinity” lie on a new line, the
“line at infinity”. Each old line goes through all its old points plus the one new

point corresponding to its parallel pencil.
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More precisely, lef{a,.#) be a finite affine plane and lef* = .Z/|| = {M7’,
M2, ..., Mg} be the set of parallel pencils (so that et is a set of lines parallel
to each other). Just for the record note thit ¢ o for all i since these are sets
of lines, and that™ ¢ .Z. Leta* = aU{M7,...,M}. For each lind € .Z let
*=1U{M"} whereM> =1/||, and letZ* = {I* : 1 € Z}U{m™}, Fig 4.3.

Figure 4.3: Extending an affine plane to a projective plane

Theorem 4.8 If (a,.%) is an affine plane, thefu*, £*) is a projective plane.

Proof. Let us show thata*, £*) satisfies (P1)—(P4). Poink4™ will be referred
to as points at infinity. Firstly, note that (P4) is obvious and (P3) is a direct conse-
quence of Lemma 4.@).

To show that (P1) holds, take adyB € a*, A# B. If A|B € a then there is
a unique lind € .Z such thatA,B € | sol* is a unique line inZ* that containA
andB. If A= M;” andB = M7* for somei # j then clearlym” is the only line in
Z* that containsA andB since all other lines inZ* contain precisely one point
at infinity. Finally, letA € a andB = M;” for somei. Recall thatV;” is a parallel
pencil, so take anye M. If A | thenl* is the unique line inZ* that containg
andB. If A¢ | letabe the unique line inZ parallel tol which passes through.
Thena* is the unique line inZ* that containsh andB = M;”.

To show that (P2) holds, take aayb € .Z*, a # b. If one of them ism”™, say
b=m", thena= a; for someag € . anda- b= M;* whereM;” is the parallel pencil
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of ag. If a# m” # b thena = a; for someag € . andb = by, for somebg € .Z.
If ag || bg then they have the same point at infinl® soa-b = M. Otherwise
apNbo # @. Sinceag # by, it follows by Lemma 4.6a) thatagnbg = {A} for some
A€ a, soa-b= A. The uniqueness of the point of intersection is immediaté]

Corollary 4.9 For every finite affine planex, %) there is a positive integersuch
that|a| = o?, |.Z| = q(q+ 1), each line has precisetypoints, each point belongs
to preciselyq+ 1 lines, each parallel pencil hgdines and there arg+ 1 parallel
pencils.

Proof. Let g be the order of the finite projective platie*,.£*). Then clearly
a| =|a*| — || = (P +q+1)—(a+1) =q, | Z| = |£*| - 1= ¢"+q and for
eachl € £ we havell| = |I*| —1=q. Since each point ir* is incident withq+ 1
lines, and since né € a is incident tom™ we get that each point from belongs
to preciselyq+ 1 lines from_#. The number of parallel pencils jg”| = q+ 1.
Since each point ir* belongs tag+ 1 lines, the same holds for points at infinity.
But one of thesg+ 1 lines that pass through a point at infinitywmg ¢ .#, so each
parallel pencil of lines inZ consists ofj lines. 0

Definition 4.10 The integerg from Corollary 4.9 is called therder of the finite
affine plang(a,.?).

We conclude the section on affine planes by showing that the existence of pro-
jective and affine planes of a given order is equivalent to the existence of a complete
system of orthogonal Latin squares.

Theorem 4.11 The following statements are equivalent for every integer2:

(1) There exists a finite projective plane of order
(2) There exists a finite affine plane of oragr
(38) There exists a complete system of orthogonal Latin squares of@rder

Proof. The equivalence of (1) and (2) has been established in Theorems 4.7 and 4.8.
Let us show the equivalence of (2) and (3).

(3)=(2): LetL* =[If],...,.L9 = [|ﬂ*1] be a complete system of orthogonal
Latin squares ove® = {1,2,...,q}. For the points we take “coordinates”, that is,
we leta = Q%> = {(i, ) :i,j € Q} and (A4) is obviously satisfied. Fa¥ we take
three types of lines, Fig. 4.4:

e horizontal linesh; = {(i, ]) : j € Q}, for eachi € Q,
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(@)

Figure 4.4: The three types of line&) horizontal,(b) vertical, (c) skew

—~
=)
N—

e vertical lines:v; = {(i, ) : i € Q}, for eachj € Q, and
o skew lines:sk = {(i, j) : I = a}, for eachk € {1,...,g— 1} and eacta € Q.

Let us first note that no skew line contains two points from the same row, or two
points from the same column @ contains(i, j1) and (i, j2) thenlf =a=1f ,
which is impossible sinckX is a Latin square).

Let us show that (A1) is valid. Take two distinct poirtts, j1) and(iz, j2). If
i1 =i =i thenh; contains both points. No other horizontal line contains these two
points, and clearly no vertical line and no skew line can contain two points from
the same row. Sdy; is the only line that contains the two points. The proof is
analogous in casg = j2. Assume now that # i, andji # j». To show that there
is a unique skew ling that contains botffis, jl) and(ip, j2) it suffices to show
that there is a uniquieand a unique such thatIljl = I,‘;J = a. But this is true due
to Homework 4.4.

To show (A2) take any ling and a point(i, j) not on the line. Ifp = hy for
somei’ thenh; contains(i, j) and it is parallel tah,. It is easy to see thdt is
the only such line: neither the vertical ling nor skew lines that contaifi, j) are
parallel toh;.. The proof is analogous in cagds a vertical line. Assume now that
pis a skew linesk for somek anda. By the assumptior(j, j) ¢ &5 sob=1f
Now, s contains(i, j) and it is parallel taf (if (u,v) € émé; thenb = Il‘j\, =a,
which is not the case). Let us show that no other line throug} is parallel to
k. Clearly, no horizontal and no vertical line is parallefcand let us show that
no s =  that containgi, j) is parallel tosf. Take anys?' such that(i, j) € SI'and
sM £ &, Thenm# k and hencaX L L™ Therefore, there exists i, jo) such
that(I;,1M,) = (&,¢). So,(io, jo) € 5N, i.e. <k Jf sT', and hencey is the only
line parallel tos that containgi, j).

To see that (A3) is valid, takgl, 1), (1,2) and(2,1). No horizontal or vertical
line contains all three points, and no skew line contéing) and(1,2).

(2) = (3): Let (a,.%) be a finite affine plane of ordey It hasg? points and
g+ 1 parallel pencils. In order to produce Latin squares out of this configuration,
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we shall first introduce “coordinates” as follows. Take two distinct parallel pencils
H ={hy,...,hq} and? = {vy,...,vq}. The two pencils will serve as “horizontal”
lines and “vertical” lines. Every poinA € a lies on a unique “horizontal” line

hi and a unique “vertical” lines;, so we say thati, j) are the coordinates .

Let f: {1,...,9}%> — a be the mapping that takes coordinates to their respective
points. Clearly,f is a bijection. Each of the remainirgg— 1 parallel pencils
Zm={am,..,amq} determines a matrik™ = [I{fq«q over{1,...,q} as follows:

I{}1 =kif f(i,]) € ank. Let us show that™ is a Latin square. Suppose that some
k appears twice in a row df™, say,l{j“l =k andl{}‘2 =k. Thenf(i, j1) € amx and
f(i,j2) € amk and hencdy andani have two distinct points in commorf:(i, j1)
andf (i, j2). Thereforeh; = am, but this implies that two distinct parallel pencils
2 and Zy, have a line in common, which is not possible. Therefore, for each of
the remainingy — 1 parallel pencils#y, ..., Zq_1 the matriced !, ..., L9 1 are
Latin squares. Finally, let us show tHat | LK for m# k. Take anyiy, j1, i2, j2

and suppose thgt™ 1%, )= (I 1K, ) = (t,u). Thenf(i1, j1) € am, f(iz, j2) €

amt, f(i1,j1) € ag and f(ia, j2) € aku. If (i1, j1) # (i2, j2) then botham: anday,
contain these two distinct points, ag; = ax,. But if this is true, then the parallel
pencils«Zy, and.e7 have a line in common, which contradicts the assumptiefk.
Therefore(is, j1) = (i2, j2). This shows that every pa(t,u) € {1,...,q}? appears

at most once when we overlay with L, whence follows that™ L LK. 0

4.3 Designs

Assume that we wish to compavevarieties of wine. In order to make the testing
procedure as fair as possible it is natural to require that each person participat-
ing tastes the same number (dQyof varieties being tested so that each person’s
opinion has the same weight, and each pair of varieties of wine is compared by
the same number of persons (skyso that each variety of wine gets the same
treatment. One possibility would be to let everyone taste all the varieties. But if
v is large, this is very impractical. We would like to design a fair experiment so
thatk < v.

Definition 4.12 Let X be a finite set witlv elements, and |2 < k < vandA > 0.
A pair (X, %) whereZ is collection of distinct subsets of is called a(v,k, A )-
designif

e each set i contains exactlk elements, and

e each 2-element subsetXfis contained in exactly sets in4.

The elements oX are calledverticesand the sets ¥ are called thélocksof the
design. The number of blocks 0K, %) is usually denoted b.
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Example 4.13 (a) LetX ={1,...,7} and# = {{1,2,4}, {2,3,5}, {3,4,6}, {4,5,7},
{5,6,1}, {6,7,2}, {7,1,3}}. Then(X, %) is a(7,3,1)-design.

(b) Every finite projective plane of ordeyis a(g? +q+ 1,9+ 1, 1)-design.

(c) Every finite affine plane of orderis a(g?,q,1)-design.

Theorem 4.14 Let (X, A) be a(v,k,A)-design. Then each vertex of the design
occurs irr blocks, where satisfies the following two equalities:

rtkk—1)=A(v—-1) and  bk=vr.
Proof. Consider aa € X and assume thatoccurs inrg blocks. Let
A ={(xB):a#xBe 2 {ax} CBY,

and let us find#|. There arev— 1 possibilities to choosg (sincex # a), and
once we have chosery a, there are\ blocks that contain bothandx. Therefore,
|##| = (v—1)A. On the other hand, there argblocks that contaim and each
block hask elements. Therefore, in each of theblocks that contairma there are
k— 1 possibilities to choose# a, so0|.7#’| =ra(k—1). So, we see thay(k—1) =
(v—1)A, i.e.rais uniquely determined by by, k andA. This means that,, =ra,
for all a3,a, € X and we have the first equality. For the second equality, let

H'={(x,B):Be %B,xe B}.

Since the design hdsblocks and each block h&selements|.#’| = bk. On the
other hand, there areways to choos&, and once we fix, there arg blocks that
contain it. Therefore|,7#”’| = vr and finallybk = vr. O

This theorem also shows thaandr are uniquely determined by k andA. A
main problem in design theory is to determine for which valueg kfandA there
is a(v,k, A )-design. Certainly, designs do not exist for every choice &fandA.

We have seen in Example 4.13 that every affine planéns,a, 1)-design. But
the converse is also true:

Theorem 4.15 A (v, k, A )-design is an affine plane if and only if this i§&,n, 1)-
design for soma > 2.

Proof. Every affine plane of ordegis a(qg?,g,1)-design. To show the implication
from right to left take anyn?,n,1)-design(X, %), n > 2, and let us show that it
satisfies (A1)—(A4). (A1) is satisfied sinC¥, ) is a design, while (A3) and (A4)
are obvious, so let us show (A2). Take any bl&k- {a,...,an} € & and any
x ¢ B. For everyi € {1,...,n} there is a unique blocB; containingx anda;, and
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)
I8

o(laf (2] (2] - 2]

Bl BZ B3 Bn

Figure 4.5: The proof of Theorem 4.15

clearly Bj # Bj whenever # j. According to Theorem 4.14 we have= n+1,
i.e. every point lies im+ 1 blocks. Now, there are blocks that contairx and
intersectB, so the remainingn+ 1)-th block containing has to be disjoint from
B, Fig. 4.5. Therefore, this is the unique block disjoint frBthat containx. [

The incidence matrixof a design(X, %) whereX = {xq,...,%/} and Z =
{By,...,Bp} is the incidence matrix of of the family, that is, anb x v matrix
A= [a;] over{0,1} such that

ai = 1, Bi>X;
Y70, otherwise

Lemma 4.16 LetA be an incidence matrix of@,k, A)-design, leE be the iden-
tity matrix andJ a square matrix in which every entry is 1. Then

rA A ... A
AroA LA

ATA=| A A 1 ... A |=0=-2E+AJ,
A A A r

Theorem 4.17 (Fisher’s inequality) If there exists v, k, A )-design thef > v.
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Proof. Let us calculatelef A" A). We first subtract the first row from the others:

r A A A r A A A

AT A LA A—r r—A 0 0
defA"A)=| A A r ... Al=lA-r 0 r-=A 0

A A A r A—r 0 0 r—A

and then add all other columns to the first column:

r+(v—1A A Ao A

0 r-A 0 ... ©

detATA) = 0 0 r—A ... 0
0 0 0 r—A

Thereforedet ATA) = (r+(v—21)A)(r —A)"-1. Now fromr(k—1) = A (v—1) we
obtain thatdef AT A) = rk(r — A)¥~1. We have assumed thit< v, sor(k—1) =
A(v—1) impliesr > A which, together wittv > 2 yieldsdet AT A) > 0.

Assume now thab < v. Then there are fewer rows than columnginLet A;
be av x v matrix obtained by adding— b rows of zeros tdA. It is easy to see that
Al A1 = ATA. But sinceA; is a square matrix, the product rule for determinants
implies that

detATA) = det(A] A;) = detA] )det{A;) =0

because there is at least one row of zeroAin This contrardictslet A’ A) > 0
and hencd > v. 0O

A (v,k,A)-design issymmetricif b =, i.e., its incidence matrix is a square
matrix. Note that the incidence matrix of a symmetric design does not have to be a
symmetric matrix!

Lemma 4.18 In a symmetridv,k, A )-design we havik =r andA < k.

In a symmetric design we dendte- A by n. A symmetric design is said to be
trivial if n= 1.

Lemma 4.19 In a trivial symmetric design eveffy — 1)-element subset of is a
block. For a nontrivial symmetric design we have v — 2.

Theorem 4.20 Let A be an incidence matrix of a symmettick, A )-design. Then
ATA = AAT and the intersection of any two distinct blocks of the designXas
elements.
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Proof. Let J be thev x v matrix whose all entries are 1. The following is clearly
true: AJ=JA=kJ, ATJ =JA"T =kJsincek =r, andJ? = vJ. Using Lemma 4.16,
k=randA'J = JA=kJ we see that

(AT — \FJ> <A+ \FJ> =ATA+ \/X(ATJ —JA) — A
\Y \Y \Y) \
=A"TA-AJ=(k—A)E.

Sincek > A, the above calculation means thglt — \/gJ has an inverse and the

inverse is.t; <A+ ﬂ‘]) Now,
1 A - \/7 B
— (A+ \/:J> (A . VJ) —E

AAT + \/é(JAT —~AJ) - %JZ = (k—=A)E
AAT —AJ=(k—-A)E
AAT = (K—A)E+AJ,
so Lemma 4.16 yield8BA" = ATA. The second part of the theorem follows imme-

diately fromAA" = (k—A)E +AJ. O

Let (X, %) be a(v,k, A )-design such thai—2r + A >0, and let% = {X \ B:
B < #}. Then(X,%) is a(v,v—k,b—2r + A)-design called theomplement
of (X, %).

Not every design has a complement simply because it may happdntRat-
A < 0. However, every nontrivial symmetrig/, k, A )-design has a complement
and its complement is a symmetr(g,k, A )-design wherev = v, k = v—k and
A =v—2k+A. Moreovern = n, wheren = k— A (Exercise 4.21).

Theorem 4.21 If a nontrivial symmetriqv, k, A )-design exists, then
An—-1<v<n’+n+1l

Proof. Suppose there exists a nontrivial symmetrick, A )-design. Then it has a
complement and it is &k, A )-design wher@ = v, k=v—kandA =v—2k+A.
Let us calculaté A:
A =ANV—2k+A)=A(V=1)+A —2kA +A?
=k(k—1)+A —2kA +A2 [sinceA(v—1) =r(k—1) andr =K]
=(k=2)?=(k=A)=n*—n.
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FromA > 1andA > 1 we get

0KA-DA-1D)=AA-A+A)+1=(M—n)—(v—2k+2A)+1
=(M?—n)—(v=2k—=A))+1=n*—n—v+2n+1

whencev < n?+n-+ 1. For the lower bound let us first note thatt-y)? > 4xy for
every pair of realx andy. Now forx = A andy = A we obtain

(A+A)2>4XX =4n(n—1) > (2n—2)?

sincen > 2. Having in mind that + A > 1 and2n— 2 > 1 taking the square root
of the above inequality yields

V=2n=A+A>2n-2
i.e.v—2n>2n—1,sov>4n—1. O

We say that a nontrivial symmetrig, k, A )-design ismaximalif v=n?+n+1
and that it isminimalif v =4n— 1. We conclude this section by showing that max-
imal symmetric designs correspond to finite geometries. We give the interpretation
of minimal symmetric designs in the next section.

Theorem 4.22 A (v,k,A)-design is a finite projective plane if and only if it is a
maximal nontrivial symmetri¢v,k, 1)-design.

Proof. (=) Let (X, %) be a projective plane of ordgr Then itis a(¢? +q+1,q+
1,1)-design. Since a projective plane has the same number of points and lines, it
is a symmetric design where=k—A = (q+1) —1=q> 1. Hence, this is a
nontrivial symmetric design whose maximality is obvious simeen?+n+ 1.

(<) Let (X, Z#) be a maximal nontrivial symmetriw, k, 1)-design. Therv =
n?+n+1andk=n+A =n+ 1 Hence, this is &> +n+1,n+1,1)-design. Let
us show that this is a projective plane. (P4) is trivially satisfied, while (P1) follows
from A = 1. From Theorem 4.20 we know that in a nontrivial symmetric design
the intersection of every two distinct blocks haglements, so (P2) is valid since
A = 1. Finally, to show that (P3) holds, take any two distinct bloBkB' € %,
B+#B'. Then|BNB'| =A =1 and letx be the only element dNB'. Since the
design is nontrivialn > 2s0|B| = |B'| =n+1 > 3. Takeyi, Y» € B\ {x} such that
y1 # Yo and takeys,ys € B\ {x} such that/s # ya. Now, y1, y», y3 andy, are four
distinct points no three in the same block. g
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4.4 Hadamard matrices

One of the important results due to the famous French mathmatician Jacques Sa-
lomon Hadamard (1865-1963) is the answer to the following questionA ket
[aij] be a real square matrix such thag | < 1; how large caridetA)| be?

Theorem 4.23 (Hadamard) LetA = [a;j] be a reah x n matrix such thaffa;; | < 1.
Then|det(A)| < n"/2. The equality holds if and only &; = +1 for alli andj, and
ATA=nE.

Proof. (Sketch]t is well known that|det(A)| is the volume of the parallelepiped

in n-dimensional Euclidean space whose sides are verctors that correspond to the
columns ofA. If |g;| < 1for alli andj, then the Euclidean length of such vectors

is at mosty/n. The volume of the parallelepiped is at most the product of the
lengths of its edges, s@letA)| < (,/n)" = n"2. The equality holds if and only

if the edges of the parallelepiped are mutually orthogonal and of maximal length
v/N. The edges can achieve the length\af just in cases;; = +1 for all i and

i, while the orthogonality requirement means that the scalar product of any two
distinct columns imA is zero. ThereforeA” A= nE. O

Definition 4.24 An Hadamard matrix of orden is ann x n matrix H with entries
+1 such thaH "H = nE.

Note thatH "H = nE means thaH is invertible andH 1 = %HT. Therefore,
a matrixH with entries+1 is an Hadamard matrix if and only HH " = nE. We
say that an Hadamard matrixn®rmalizedif its first row and its first column are
11...1

Lemma 4.25 If H is an Hadamard matrix and’ is a matrix obtained froni

by multiplying a row or a column by-1, thenH’ is also an Hadamard matrix.
Every Hadamard matrik can be transformed to a normalized Hadamard matrix
by multiplying some of its rows and columns bl.

Theorem 4.26 Let H be a normalized Hadamard matrix of order- 1. Then
every row other than the first row on the matrix 42 entries equal to 1 angj/2
entries equal te-1. If n > 2 then any two rows other than the first row have exactly
n/4 1's in common. The analogous statements hold for columns.

Consequently, if there exists an Hadamard matrix of ondéenn=1,n=2
orn=0 (mod 4.

Proof. The inner product of the first row with any other row is 0. Therefore, in any
other row the number of entries equal to 1's and the number of entries equal to
are the same. Henceis even.
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Take any two rows # j other than the first row. Let be the number of 1's
these two rows have in common and tidie the number of-1's these two rows
have in common:

1trow 1 1 11 1.. 11 1.. 11 1.. 1

i"row1 1 ..12 1 1.. 1-1 -1 ... -1-1 -1 ... -1

jfrow 1 1 1-1 -1 ... .11 1 .. 1-1 -1 ... -1
s n/2—s n/2—t t

The number of 1’s in the third row i8/2 sos+ (n/2 —t) = n/2, whence follows
thats=t. The inner product of the second and the third row is 8-66 = (n/2—
S)+(n/2—t) and sinces=t we immediately obtais=n/2—s. Therefores=n/4
and hencae is divisible by 4. a

The existence of Hadamard matrices is still an open problem. However, it is
easy to show that an Hadamard matrix of ondexists wheneven is a power of 2.
It is conjectured that an Hadamard matrix of ordee 4 exists if and only ifn is
divisible by 4.

Example 4.27 Let us show that an Hadamard matrix of ordeexists whenever
n= 2% Clearly,H; = [1] andH, = [ i _i are Hadamard matrices of order
1 and 2. Now, ifH, is an Hadamard matrix of orderit is easy to show that
_ | Hn Hn
Fan = [ Hy —Hy
Hadamard matrices of ordaiwheneven is a power of 2.

} is an Hadamard matrix of ord@n. Therefore, there exist

Each normalized Hadamard matrix gives rise {ds— 1,2s— 1,s— 1)-design
as follows. Remove the first row and the first column of the matrix (they carry no
information so we don’t need them) and in the remaining truncated matrix replace
each—1 with 0. The new matrix is an incidence matrix of4s— 1,2s—1,s— 1)-
design called théedadamard design The reverse construction shows that every
Hadamard design gives rise to an Hadamard matrix.

Theorem 4.28 A (v,k, A )-design is an Hadamard design witk: 7 if and only if
it is a minimal nontrivial symmetri¢v,k,n— 1)-design (heren is not the order of
the Hadamard matrix but a parameter of the symmetric design).

Proof. (=) If a design is an Hadamard design arising from an Hadamard matrix of
order4sthen its parameters ave=4s— 1, k= 2s— 1 andA = s— 1. According
to Theorem 4.14;, = 2s— 1 andb = 4s— 1 = v, so the design is symmetric. Then
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n=Kk—A =s>2sincev> 7. Soitis minimal { = 4n— 1), nontrivial (h > 2) and
A=s—1=n-1

(<) In a minimal symmetrigv, k,n — 1)-design we have = 4n—1 andk =
n+A =2n—1. Sothisis g4n—1,2n—1,n—1)-design, i.e. an Hadamard design.
Since the design is nontriviad,> 2 and hence/ > 7. O

Corollary 4.29 There exists an Hadamard matrix of order 8 if and only ifn is
divisible by 4 and there exists an Hadamand- 1, n— 1, 2n — 1)-design.

Homework

4.1. (a) Prove Theorem 4.2. (Hint: take any line and consider the four points
that exist by (P3).)

(b) Show that every point in a finite projective plane belongs to at least
three distinct lines.

4.2. (a) Show that for every pair of linels mthere is a point such thatS ¢
lum.

(b) Show that the mappings in the proof of Theorem 4.3 is bijective.

4.3. Show Lemma 4.6. (Hint: fofa) use (Al); for(b) take three pointé, B,C
not on the same line using (A3), lebe a line througIC parallel toAB and
let mbe a line througB parallel toAC; show that andm have a point of
intersectiorD and thatA, B, C andD are the points we have been looking
for.)

4.4, Letlt=[1], ... L9t =q1 Y be a complete system of orthogonal Latin
squares ove{l, ...,q}. Let (|1, j1) and(iz, j2) be two pairs of indices such
thatiy # i and j; # jo. Show that there is a unigleand a unique such
thatl¥; =1¥; =a. (Hint: Define.s/ and.# as follows:

o = {(k,a,{(u1,v1), (U, \2) }) ke {1,...,q—1}, ac Qand

k _ 1k
|U1V1 IU2V2 }

B = {{(u1,v1), (Uz,V2)} 1 Uy, V1, Up, Vo € {1,...,0} anduy # Up, V1 # V2 }

and let

¢ (k,a, {(ug,v1), (Uz,v2)}) = {(u1,v1), (U2, \2) }.

)=
(a) Show thaty is well defined, i.e (k,a,{(u1,v1), (U2, V2)}) belongs to
% for all (k,a,{(u1,v1), (U2, V2)}) € 7.
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4.5.
4.6.

4.7.
4.8.
4.9.

4.10.
4.11.
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(b) Show thatg is injective.
(c) Show thaf.<7| = |#| and conclude thap is bijective.)
Show that the design in Example 4.4 is the Fano plane.

Let X be a finite set withv elements andZ is collection ofb distinct
subsets oK such that

e each set i contains at mogt elements,

e every element fronX belongs to exactly sets in#, and

e each 2-element subsetXfis contained in at leagt sets in%.
Show thatok > rv andr(k—1) > A(v—1).
Prove Lemma 4.16
Prove Lemma 4.18. (Hint: Use Theorem 4.14 and the assumiption)

Prove Lemma 4.19. (Hint: Show that in a symmetric design we have
k—A =1ifandonly ifk=v—1.)
Prove Lemma 4.25.

Show that ifH, is an Hadamard matrix of orderit is easy to show that

Hon, = Ho o Hy is an Hadamard matrix of ordén.
Ho —Hn

Exercises

4.12.
4.13.

4.14.

4.15.

Is there a finite projective plane with 9 points? And with 12 points?

Show that in a projective plane of ordgevery point belongs to precisely
g+1lines.

How many noncollinear triples of poin{#\, B,C} are there in a finite pro-
jective plane of ordeq?

(a) Show that in every finite projective plane there exist four distinct lines
such that no three of them are concurrent.

(b) The Duality Principle for projective planes is a metatheorem of pro-
jective geometry. Take any statement about a projective plane and inter-
change words and phrases as follows: “poiat™line”, “belongs to )"

+— “contains )", “the point of intersection of the two lines™ “the line

that passes through the two points” etc. The statement you obtain is said
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4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

to bedual to the original statement. The Duality Principle states that a
statement is true in a projective plane if and only if its dual is true.

Show the Duality Principle for projective planes. (Hint: Recall that a proof
of a statemen§is a sequence of statemel®s S, ..., S, = Ssuch that
every§ is either an axiom or there exiktj < i such thatS, = §; = S.

Let S? denote the dual statement®fShow that the dual od all the axioms
are true and show that®;, S, ..., S is a proof ofSthens], S5, ..., S

is a proof of9.)

LetV be a 3-dimensional vector space over a finite figjdwvith g = p*
elements. Lett be the set of all 1-dimesional subspace¥ and.Z the
set of all 2-dimensional subspaces/of

(a) Show that(rt, ) is a projective plane.
(b) Find| . What is the order ofrm, £)?
Is there an(11, 6, 2)-design?

Show that for gv, k, A )-designb/A = <\2/> / (:)

Let (X, %) be a(v,k, A )-design such thdi—2r +A > 0. Show tha( X, %)
isa(v,v—k,b—2r+A)-design.

Let (X,%) be a(v,k,A)-design and let#* = {D C X : |D| = k and
D ¢ #}. Show that(X,#*) is a (v,k,A*)-design for somel*. What
is the value oA *?

Show that every nontrivial symmetri@,k, A )-design has a complement
(,e.b—2r +A > 0) and its complement is a symmeti(ig, k, A )-design
wherev=v, k=v—k andA =v—2k+A. Moreover,n = n, where
n=k—A.

Show that if (X, %) is a maximal nontrivial symmetric design, then one
of the designgX, %), (X, %) is a finite projective plane. (Hint: show that
v=n?+n+1limpliesA = 1orA = 1; see proof of Theorem 4.21.)

Show that if (X, %) is a nontrivial symmetriqv,k;, A )-design withv =
4n— 1, then one of the designiX, %), (X, %) isa(4n—1,2n—1,n—1)-
design. (Hint: Recall thadA =n(n—1) andA +A =v—-2n=2n—1.
Conclude tha{A, A} = {n,n— 1} and discuss the two possibilities.)
Show that for every nontrivial symmetri, k, A )-design there exists a

Latin k x v rectangle whose columns are blocks of the design. (Hint; Use
Theorem 3.8.)
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4.25. A (v,k,A)-design(X, Z) is resolvableif there is a partition A1, ..., % }
of Z inr classes such that each consists ofb/r blocks, and for each
i € {1,...,r} and eachx € X there is exactly on8 € %, that contain.
The classes; are called theparallel classe®f the resolvable design.

Show that for every > O there exists a resolvab{én, 2, 1)-design. (Hint:
TakeX = {0,1,...,2n— 1} and define the parallel classé, ..., %Bon_1
as follows: {0,i} € %;, and ifx,y > 0 andx+y = 2i (mod Zh— 1) then
{X, y} S <@i.)

4.26. (a) Show that the definition of an Hadamard design is correct, i.e. that the
configuration obtained by the construction is indeed a design.

(b) Show that every Hadamard design indeed gives rise to an Hadamard
matrix.



Chapter 5

Graphs and Digraphs

Graphs represent one of the most popular tools for modeling discrete phenomena
where the abstraction of the problem involves information about certain objects
being connected or not. For example, crossings in a city transportation model
are joined by streets, or cities in a country are joined by roads. We will examine
two types of such models: graphs which correspond to situations where all the
“roads” are bidirectional, and digraphdifectedgraph9 where one-way “roads”

are allowed.

5.1 Graphs

A graphis an ordered paiG = (V,E) whereV is a nonempty finite set arielis an

arbitrary subset of ® = {{u,v} CV : u=#v}. Elements ok are calledvertices

of G, while elements o are callededgesof G. We shall often write/(G) and

E(G) to denote the set of vertices and the set of edgé&s, @ndn(G) andm(G)

to denote the number of vertices and the number of edg& df e = {u,v} is

an edge of a graph, we say thatindv areadjacent and thate is incidentwith

u andv. We also say that is aneighbourof v. Theneighbour-set o¥ is the set

Ng(v) = {x € V(G) : xis a neighbour of}. Thedegree of a vertex, denoted by

d(Vv), is the number of edges incidentvo dg(v) = |[Ng(V)|. If Gis clear from

the context, we simply writél(v) andd(v). By 6(G) we denote the least, and by

A(G) the greatest degree of a vertexGn A vertex with degree 0 is said to be an

isolated vertex A vertex of degree 1 is calledlaaf of G. A vertex is said to be

evenresp.oddaccording a®(v) is an even or an odd integer. A graphagular if

0(G) = A(G). In other words, in a regular graph all vertices have the same degree.
The graphs are called graphs because of a very natural graphical representation

they have. Vertices are usually represented as (somewhat larger) points in a plane,

75
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S U leaf
isolated this isnot
vertex a vertex

—

N(v)

Figure 5.1: An example of a graph

while edges are represented as (smooth non-selfintersecting) curves joining the
respective vertices, so that adjacent vertices are joined by a curve.

Example 5.1 Fig. 5.1 depicts a grafG with V = {st,u,v,w,x,y,z} and
E={{t,u}, {ux}, {uv}h {wy}, {(wv}, {v.x}, {vy} {v.z}, {xy} {x 2}, {y.2}}.
We see that

vertex| s t u v
5|0 135

w
2

i<

X z
4 3

s0d6(G) = 0andA(G) =5. Also, N(v) = {u,w,x,y,z}.
Example 5.2 Two black and two white knights are placed o8 a 3 chessboard

as in Fig. 5.2a). Is it possible to reach the configuration in Fig. 82 following
the rules of chess?

a A A

A
(@) (b)
Figure 5.2: Example 5.2
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11 2|3
4 | 5| 6
71819

Figure 5.3: Solution to the problem in Example 5.2

Answer:No. Let us enumerate the fields of the chess board by 1, ..., 9 as in
Fig. 5.3(a). To this chess board we can now assign a graph {dith. ., 9} as the
set of vertices by joiningandj if an only if it is possible for a knight to jump fromn
to j following the general rules of chess. The graph is given in Fig(t9.3Clearly,
regular movements of a knight on tBex 3 chess board correspond to movements
of the knight along the edges of the graph in Fig. @B We see now that it is not
possible to start from the initial position of the knights given in Fig. &Band
reach the final position in Fig. 5.@1) by moving one knight at a time along the
edges of the graph simply because the white knights separate the black knights in
Fig. 5.3(d), which is not the case in the initial position.

Theorem 5.3 (The First Theorem of Graph Theory) If G= (V,E) is a graph with
m edges, thefy oy (V) =2m.

Proof. Since every edge is incident to two vertices, every edge is counted twice in
the sum on the left. O
Corollary 5.4 In any graph the number of odd vertices is even.

Theorem 5.5 If n(G) > 2, there exist vertices,w € V(G) such thatv # w and

o(v) = o(w).

Proof. LetV(G) = {v1,...,Va} and suppose that # v; whenevei # j. Without
loss of generality we may assume tiddt;) < d(v2) < ... < 8(vn). Since there

are onlyn possibilities for the degree of a verte®; @, ..., n—1) it follows that
o(v1) =0, d(v2) =1, ...,d(vn) = n—1. But thenv, is adjacent to every other
vertex of a graph, including the isolated vertgx Contradiction. d

A graphH = (W,E’) is asubgraphof a graphG = (V,E), in symbolsH < G,
if WCV andE’ C E. A subgraphH of G is aspanning subgrapif W =V (G).
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A subgraphH is aninduced subgraplbf G if E/ = ENW@. Induced subgraphs
are usually denoted b®W|. The edges of an induced subgraphGoére all the
edges ofG whose both ends are W. A set of verticeV C V(G) is independent
if E(G|W]) = &, i.e. no two vertices iW are adjacent ils. By a(G) we denote
the maximum carinality of an independent set of verticeS.if A,B C E(G) are
disjoint, by E(A, B) we denote the set of all edges@whose one end is iA and
the other inB.

Theorem 5.6 a(G) < n(G) — 6(G).

Proof. Let A C V(G) be an independent set of vertices®8uch thatr (G) = |A|.
Take any € A. SinceAis independent all vertices adjacenttare inV (G) \ A, so
O(V) <|V(G)\A =n(G)—|Al. Now d(G) < d(v) < n(G) — |A| and the statement
follows. O

@O

Figure 5.4:K7, Cg andP;

A complete graph onvertices(or ann-clique) is a graph witm vertices where
each two distinct vertices are adjacent. A complete graph\@rtices is denoted
by K. A cycleof lengthn, denoted byC,, is the graph witm vertices where the
first vertex is adjacent to the second one, and the second vertex to the third one, and
S0 on, the last vertex is adjacent to the firsppa&hwith n vertices is a graph where
the first vertex is adjacent to the second one, and the second vertex to the third one,
and so on, and the penultimate vertex is adjacent to the last one, but the last vertex
is not adjacent to the first. We say that the path witlaertices has length — 1.
Fig. 5.4 depict¥7, Cg andPs.

Theorem 5.7 If 5(G) > 2 thenG contains a cycle.

Proof. Letx; ...X1 Xk be the longest path i6. Sinced(xx) > 8(G) > 2, x has
a neighbouw distinct fromx_1. If vi¢ {x1,..., %2} thenxy ... X1 X vis a path
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with more vertices than the longest path, which is impossible. Thereferex;
for somej € {1,..., k—2} sox; ...x are vertices of a cycle iG. O

Theorem 5.8 If C3 £ G thenn(G) < a(G)(a(G) +1).

Proof. Let S be an independent set of vertices&fsuch thata (G) = |§ and
let T =V(G)\S SinceSis maximal, every vertex fronT has a neighbour in
S so|E(ST)| > n—a(G). This impliesy,csd6(v) > n—a(G). Letve She
the vertex of the greatest degreeSnThena (G) - d(v) > Syes0(v) > n—a(G)

whenced(v) > ”;‘(’é();). Vertices inT adjacent tos form an independent set since
G does not have @z as its subgraph. Nowg (G) is the maximum cardinality of an

independent set whenégv) < a(G). Therefore,%G()G) < 0(v) < a(G) and thus

n
a
n<a(G)(a(G)+1). O
GraphsG; and G, areisomorhic and we writeG; = G, if there is a bijec-
tion ¢ : V(G1) — V(Gy) such that{x,y} € E(G1) < {¢(x),(y)} € E(G). For
example graph& andGs; in Fig. 5.5 are isomorphic, whil& andG; are not.

G G Gy

Figure 5.5:G = Gy, butG 22 G;

Theorem 5.9 LetG; = G, and letg be an isomorphism betwe&y andG,. Then

N(G1) = n(Gz), M(G1) = M(G2) anddg, (X) = dg, (¢ (X)) for everyx € V(Gy).
The complemenbf a graphG = (V,E) is the graphG = (V,E) whereE =

V(@\ E. A graphG is selfcomplementariy G = G. Clearly,m(G) +m(G) = <2> :

Lemma 5.10 LetG andH be graphs.
(a) G=H ifand only ifG=H.
(b) g(x) = (N(G) —1) — &(x) for allx e V(G).

Theorem 5.11 If G is a selfcomplementary graph withvertices them > 4 and
n=0,1 (mod 4). Conversly, for every integar > 4 such thah = 0,1 (mod 4
there exists a selfcomplementary graph witvertices.
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t
u
\Y
w

(a) (b)
Figure 5.6: The proof of Theorem 5.11

Proof. Let G be a selfcomplementary graph witl> 4 vertices ananedges and let

_ _ — -1

m=m(G). Thenm+m= <2> andm=msinceG = G. Therefor&m= n(n2 )
n(n—1)

i.e.m=
so4|nord|n—1.

For the other part of the statement, for every integer 4 such than=0,1
(mod 4 we shall construct a selfcomplementary gr&ah= (Vin, En) with n ver-
tices. It is obvious that we can také&y = P, and Gs = Cs. Now let G, be a
selfcomplementary graph withvertices and constru@, 4 as follows. Take four
new verticeg, u, v, w and put

. Butmis an integer and andn— 1 are not of the same parity,

Vihta =VaU{t,u,v,w}
Enta = EnU{{t,u},{u,v},{vyw}}U{{t,x} : xe Vo JU{{w, X} : X € Vin},

see Fig;S.E(a). ThenGy 4 is given in Fig. 5.6(b) and it is easy to establish that
Gnya = Gnya. O]

5.2 Connectedness and distance

A walkin a graphG is any sequence of vertices and edgesy Vi € Vo .. Vi1 € Vk
suchthat = {vi_1,v;} foralli € {1,... k}. Note that an edge or a vertex may ap-
pear more than once in a walk. We say thatthelengthof the walk. Ifvp # vk we

say that thavalk connectsy andvy. A closed wallis a walkvp €1 v1 ... Vik_1 & Wk
wherevp = v. Clearly, a path is a walk where neither vertices nor edges are al-
lowed to repeat, and a cycle is a closed walk where neither edges nor vertices are
allowed to repeat, except for the first and the last vertex.
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(a) (b)
Figure 5.7:(a) A connected graph(p) A graph withw =4

Lemma 5.12 If there is a walk inG that connects two vertices then there is a path
that connects them. Every closed walk of odd length contains an odd cycle.

We define a binary relatiol onV (G) by x0y if x =y or there is a walk that
connectx andy. Clearly,0 is an equivalence relation 8(G) and hence partitions
V(K) into blocksS,, ..., S. These blocks or the corresponding induced subgraphs
(depending on the context) are callednnected components G. The number
of connected components & is denoted byw(G). A graphG is connectedf
w(G) = 1. An example of a connected graph and of a graph with four connected
components are given in Fig. 5.7.

Lemma5.13 SC V(G) is a connected component Gfif and only if no proper
superse8 D Sinduces a connected subgraphzof

Theorem 5.14 A graphG is connected if and only E(A,B) # & for every parti-
tion {A,B} of V(G).

Proof. (=) Let G be a connected graph afé, B} a partition ofV(G). Take any
a€ Aandb € B. Now G is connected, so there is a path .. x that connecta
andb. Sincex; = aandx = b, there is aj such thak; € A andx;.1 € B whence

E(AB) # @.
(<) Supposes is not connected and I1&, . . ., S, be the connected compo-
nents. Then Lemma 5.13 yiel&S;, U, Sj) = @. O

Theorem 5.15 At least one of the graph3, G is connected.
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Proof. Suppose thab is not connected and I&, .. ., S,, w > 2, be the connected
components of. Let us show that there is a path that connects any two vertices in
G. Take any,y € V(G), x #y. If xandy belong to distinct connected components
of G then{x,y} ¢ E(G) and hence(x,y} € E(G), so they are connected by an
edge. If, howeverg andy belong to the same connected componerGosay§,

take anyj # i and anyz € Sj. Thenx andz are connected by an edge@and so
arey andz Thereforex z yis a path inG that connects andy. OJ

We see from the proof of previous theorem thabifs not connected, the@
is “very connected”. We shall now introduce a numerical measure that enables us
to express such statements formally.

Thedistancedg between vertices andy of a connected grap@ is defined by
dg(x,x) =0, and in case # Y,

ds(x,y) = min{k: there is a path of lengththat connects andy}.

Theorem 5.16 Let G = (V,E) be a connected graph. Théy,dg) is a metric
space, i.e. for alk,y,z €V the following holds:

(D1) dg(x,y) = 0;

(D2) dg(x,y) =0 ifand only ifx=y;

(D3) da(x,y) = da(y,Xx), and

(D4) ds(x,2) < ds(x,y) +da(Y,2).

If G is obvious, instead ofic se simply writed. The diameterd(G) of a
connected grap is the maximum distance between two of its vertices:

d(G) =max{d(x,y) : x,yeV(G)}.

Example 5.17 (a) d(G) = 1if and only if G is a complete graph.
n—-1

A graphG is bipartite if there is a partition{ X,Y} of V(G) such that every
edge inG has one end iX and the other iy, i.e. E(G) = E(X,Y). Therefore X
andY are independent sets. domplete bipartite grapis a bipartite graph with
partition {X,Y} of vertices such that its edges a pairs{x,y} with x € X and
yeY. If [X| = pand|Y| = g, the complete bipartite graph with the partitipd,Y }
is denoted by 4. A star with n vertices, denoted b&,, is a complete bipartite
graphKyn-1. A bipartite graph, &34 and a staf;o are depicted in Fig. 5.8.

Lemma 5.18 A graphG with at least two vertices is a bipartite graph if and only
if every connected component @fis either an isolated vertex or a bipartite graph.
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Kz 4 Sio

Figure 5.8: A bipartite graph, léiz 4 and a sta;o

Theorem 5.19 A graphG with at least two vertices is bipartite if and only&
does not contain an odd cycle.

Proof. According to Lemma 5.18 it suffices to give the proof for connected graphs.
So, letG be a connected graph an(iG) > 2.

(=) Let G be a bipartite graph and suppdSecontains an odd cycle whose
vertices arev, Vo, ..., V1. S0V, is adjacent tos,; for all i € {1,...,2k} and
Vo1 is adjacentta. Let{X,Y} be a partition o¥ (G) showing thaG is bipartite,
i.e. such thaE(G[X]) = E(G]Y]) = @. Now v; belongs taX orY, so assume that
vy € X. Thenv; €Y sincev; is adjacent tor, andG is bipartite, and this forces
vz € X, vz €Y and so on. We see that vertices with odd indices belony,to
S0 V1 € X. But we havex; € X too, sOE(G[X]) contains{xy,Xa1} which
contradicts the assumptid(G[X]) = @.

(<) Supposes does not contain an odd cycle. Take any V(G) and define
Ao, A1, ... CV(G) as follows:

An={xeV(G):d(v,x) =n},

for n > 0. SinceG is connected, there is a path connectirtig any other vertex of
G, so each vertex db appears in at least one of tAgs. TheA;’s are disjoint by
the construction and the fact tha{G) is finite now yields that there is asuch

that{Ao, A, ...,As} is a partition oV (G) andA; = @ for all t > s. Let

X = U Aj, and Y= UAj

j even j odd

and let us show that botK andY are independent sets (. First, let us note
that E(Aj,Aj12) = @, for if x e Aj andy € Aj» were adjacent thed(v,y) <
d(v,x) +d(x,y) = j + 1 which contradicts/ € Aj,». Next, let us show that each
Aj is an independent set. Assume that there jsaad verticex,y € A;j such that

x andy are adjacent, Fig. 5.9. By the construction/¥% there is a pathv...x
with j edges, and there is a path .v with j edges. By chaining these two paths



84 CHAPTER 5. GRAPHS AND DIGRAPHS
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Figure 5.9: The proof of Theorem 5.19

together with the edge= {x,y} we obtain awalk...xey...vof length2j +1, so

by Lemma 5.125 contains an odd cycle, which is impossible. ThereforeAgd

are independent and consequently, bétandY are sets of independent vertices.
This shows thats is a bipartite graph and one possible partition of its vertices
is {X,Y}. O

Note that this theorem does not imply that bipartite graphs have to have cycles.
A graph with no cycles is a bipartite graph, and this follows from the theorem since
it hasno odd cycles

Let e be an edge and a vertex of a graplis. By G — e we denote the graph
obtained fromG by removing the edge, while G — v denotes the graph obtained
from G by removingv and all the edges d@ incident tov. A cut-vertexof a graph
Gis a vertexv € V(G) such thatw(G—v) > w(G). A cut-edgeof a graphG is an
edgee € E(G) such thatw(G —e) > w(G). Cut-vertices and cut-edges are weak
points in the graph since removing one of these makes the graph split. Intuitively,
they look like this:

A B A B
e
C OO CoHE D
a cut-edge a cut-vertex

Theorem 5.20 Lete be an edge of a grafgh. The following are equivalent:

(1) eis a cut-edge of;
(2) there is a partitiofA,B} ofV(G) such thaE(A,B) = {e};
(3) e belongs to no cycle d&.
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Proof. We give the proof in cas€ is connected. If5 is not connected it suffices
to consider the connected componenGahat containg.

(2) = (1): If E(A,B) = {e} in GthenE(A,B) =2 in G—e¢, soG—eis not
connected by Theorem 5.14. Therefdtes w(G—e) > w(G) = 1.

(1) = (3): Suppose that appearsinacycl€ =vopewv e Vs ... Vk_1 & Vo Of
G. To show thatG — e is connected take any+# y. SinceG is connected, there is
a pathP that connectx to y. If P does not contaie, it is also a path ifG — e that
connects toy. If, however,P containse, sayP = x...vp e v...y, then removes
from P and replace it witlC — e to obtain the following walk:

W=X...Vo&Vk_1...Vo & V1...Y,
C—e

Fig. 5.10. Sincez appears once iR and once irC it follows thate does not appear
in W, soW is awalk fromxtoyin G—e.

X Vo e V1 y
=X e

Vk—1 C Vo

P

Figure 5.10: The walkV

(3) = (2): Suppose that = {a,b} belongs to no cycle ob and defineA and
B as follows: A= {a} U{x € V(G) : there is a path froma to x that does not pass
throughe} andB =V (G) \ A. If b ¢ Bthenb € Aand there is a path fromto b that
does not pass through This path together witle forms a cycle that contains
Since there are no such cycles we hbweB. So,{A, B} is a partition oV (G) and
ec E(A,B). Suppose now that there is ere E(A,B), € # e, and lete = {&,b'},
a € A b €B, Fig. 5.11. We will assume further that# & andb # b’ since these
two cases follow by similar arguments. There is a fath= a...a’ that does not
pass througle and there is a patRs = b'...b that does not pass through Now
these two paths together wighande formacycle a...a € b'...bea which

N—— N——

Pa Ps
containse. This contradiction shows th&(A,B) = {e}. O

Theorem 5.21 Letv be a vertex ofs. Thenv is a cut-vertex ofs if and only if
there is a partitiod A,B} of V(G) \ {v} such thaE(A,B) = @, E(A,{v}) # @ and
E(B,{v}) # 2.
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Figure 5.11: A cycle that contaires

Theorem 5.22 If e is a cut-edge ofs thenw(G —e) = w(G) + 1. If vis a cut-
vertex ofG thenw(G —v) < w(G) + d(v).

Theorem 5.23 If G is a connected graph with at least three vertices aichiés a
cut-edge, thefs has a cut-vertex.

Proof. Let e be a cut-edge o6s. Then there is a partitiogA,B} of V(G) such
thatE(A,B) = {e} (Theorem 5.20). Le¢ = {a,b} and leta € Aandb € B. From
n(G) > 3 it follows that|A| > 2 or |B| > 2, say|A| > 2. Since the graph is con-
nected,a has a neighbouc in A, Fig. 5.12. Now letA’ = A\ {a} and note that

B

Figure 5.12: The proof of Theorem 5.23

E(A,B) =g, E(A,{a}) # @ andE(B,{a}) # @. Therefore,a is a cut-vertex
according to Theorem 5.21. O

We have seen in Theorem 5.20 that a graph has no cut-edges if and only if
every edge belongs to a cycle. The analogous statement for cut-vertices is the
famous Whitney Theorem.

Theorem 5.24 (Whitney 1932)Let G be a connected graph with at least three
vertices. G has no cut-vertices if and only if any two vertices lie on a common
cycle.
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Proof. (<) Since any two vertices andv lie on a common cycle, removing one
vertex from the graph cannot separatifom v, and hencés — x is connected for
all x.

(=) For the converse, suppose that G has no cutvertices. We say that two paths
ux ... XV anduys ...y;v connectingu to v are internally disjoint if{x, ..., X} N
{y1,...,¥1} = @. Now take anyu andv in G, u # v, and let us show by induction
ond(u,v) thatG has two intenally disjoint paths connectin@ndv. Clearly, the
two paths will then form a cycle containing batfandv.

Let d(u,v) =1 and lete = {u,v}. The graphG — e is connected by Theo-
rem 5.23 so there is a path @— e from u to v. This is also a path i and it is
internally disjoint from the trivial pathi v consisting of the edgeitself.

For the induction step, led(u,v) = k > 1 and assume thds has internally
disjoint paths connecting every pair of vertioey such thatl < d(x,y) < k. Let
ux ... X1 Vthe a path of length (i.e. one of the shortest paths that connect
to v). We haved(u,xc_1) = k— 1, and hence by the induction hypothe&isas
internally disjoint pathd® andQ joining u to Xc_1, Fig. 5.13. Sinceé5 — xi_1 is

Figure 5.13: The proof of Whitney’s theorem

connectedG — x_1 contains a patiR that joinsu andv. If this path is internally
disjoint from P or Q we are done, so assume tlRashares internal vertices with
bothP andQ. Let z be the last vertex oR belonging toP U Q. Without loss of
generality we may assume that P. We now combine the subpath Bfjoining

u to z with the subpath oR joining z to v to obtain a path fronu to v internally
disjoint from the patly = Q € vwhere€ = {X¢_1,V}. O
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5.3 Trees

A treeis a connected graph with no cycles. By Theorem 5.20 we see that every
edge of a tree is a cut-edge. Therefore, a tree is a minimal connected graph with
the given set of vertices. The following theorem shows that in a way trees capture
the essence of the property of being connected.

Recall that a spanning subgraph of a gr&pk (V,E) is a graptH = (W,E’)
such thatW =V andE’ CE. If H is a tree, we say thai is aspanning tree 06.

Theorem 5.25 A graph with at least two vertices is connected if and only if it has
a spanning tree.

Proof. Clearly, if a graphG contains a connected subraghthenG is also con-
nected. Therefore if a graph has a spanning tree, it is connected. For the converse,
take any connected gra@hand construct a sequence of gra@s G1, G, ... as
follows: Gg = G; if G;j has a cycle, take any edgethat lies on a cycle and let

Gi 1= G — g, otherwise puG; 1 = G;. EachG; is a spanning subgraph &and

eachG; is connected since an edge that lies on a cycle cannot be a cut-edge (Theo-
rem 5.20). Moreover, iG; = Gi;1 thenG; = G; for all j > i. Letmbe the number

of edges ofG. Since we cannot remove more tharedges froms, we conclude
thatGm:1 = Gm:2. By construction of the sequence this means tat; has no
cycles. ThereforeGn,, 1 is a spanning tree d. O

We will now show that each tree withvertices hasn — 1 edges and that each
two of the three properties listed below implies the remaining one:

e being connected,
¢ having no cycles, and
e m=n—1

Lemma 5.26 Each tree with at least two vertices has at least two leaves.

Proof. Let G be a tree witin > 2 vertices and levy, v, ..., be the longest path
in the tree. Therk > 2 sinceG is a connected graph with at least two vertices.
If d(v1) > 1thenv; has a neighboux distinct fromv,. If x is a new vertex, i.e.

X ¢ {vs,..., W%}, then the patlx, v1, vz, ..., W is longer than the longest path in
G, which is impossible. If, howevek € {vs,...,V} thenG has a cycle, which
contradicts the assumption th@tis a tree. Thereforey; is a leaf. The same
argument shows that is another leaf. a

Theorem 5.27 Let G = (V,E) be a tree withn vertices andn edges. Then
m=n-—1, and consequently,., 6(v) =2(n—1).
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Proof. The second part of the theorem follows from the First Theorem of Graph
Theory, so let us show that = n— 1. The proof is by induction on. The cases
n=1andn = 2 are trivial. Assume that the statement is true for all trees with less
thenn vertices and consider a tr€with nvertices. By Lemma 5.26 there is a leaf
xin G. According Theorem 5.21 the degree of a cut-vertex is at least twojsso
not a cut-vertex and hené&— x is connected. Clearly — x does not have cycles
(removing vertices and edges cannot introduce cyclesh-sa is a tree with less
thann vertices. By the induction hypothesid,=n'— 1, wherem/ = m(G—x) and

n =n(G—x). Butm' = m—1andn’ = n—1sincexis aleaf, whencen=n— 1.

Theorem 5.28 Let G be a graph with vertices anan edges. Iim=n—1 andG
has no cycles theB is connected (hence a tree).

Proof. Suppose thain=n— 1, G has no cycles, an@ is not connected. L&,
..., S, be the connected components®@f w > 2. Each connected component
is a tree, sany = n; — 1 for all i, wherem; = m(§) andn; = n(S). Therefore
SPim =3 n—wie.m=n—w(sincem=y3y*;mandn=3y“;n). Now,

w > 2leads to contradictiorn=n—w<n—1=m. O

Theorem 5.29 Let G be a connected graph with> 2 vertices andn edges and
letm=n—1. ThenG has no cycles (and hence itis a tree).

Proof. According to Theorem 5.25 the gragh= (V,E) has a spanning tree
H = (V,E’). SinceH is a tree Theorem 5.27 yields(H) =n(H)—1=n—-1.
Assumptionm = n— 1 now impliesm(H) = mand thus fronE’ C E we conclude
E’ = E. ThereforeG=H and soG is a tree. O

Corollary 5.30 A connected graph with vertices andin edges is a tree if and only
ifm=n-1

We shall conclude the section by a result on the number of distinct trees. Let us
first note that when counting structures we can count distinct structures and non-
isomorphic structures. For example, there are 16 distinct trees on a four element
set, but only two nonisomorphic, see Fig. 5.14. It is not surprising that counting
nonisomorphic structures is more difficult.

Theorem 5.31 (Cayley 1889)There aren" 2 distinct trees wit vertices.

Proof. LetV = {1,...,n} be a finite set that serves as a set of vertices. The proof
we are going to present is due to H. PréfeThe idea is to encode each tree on
V by a sequence of integefay, ...,a,—2) and thus provide a bijectiog : 7, —
{1,2,...,n}"2, where.Z, denotes the set of all trees ¥n

IH. Priifer, Neuer Beweis eines Satzes lber Permutatipienhiv der Math. und Phys. (3)
27(1918), 142-144
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We first show how to construct the Prifer code of a tree.TLbe a tree with
the set of vertice¥. We shall construct a sequence of tré&$ and two sequences
of integers, the codgg;) and an auxiliary sequengb;). Let Ty = T. GivenT;, let
b be the smallest leaf of the tree (vertices are integers, so out of all integers that
appear as leaves we choose the smallest) arag et its only neighbour. Now put
Tir1 =T — bj and repeat until a tree with two vertices is obtained. The code of the
tree is now(ag, az,...,an—2). An example is given in Fig. 5.15. Thus, we have a
function¢ : 7, — {1,...,n}"2 that takes a tree onto its Priifer code.

Conversely, given a sequenta,...,a,_2) we can construct the tree as fol-
lows. ForSC {1,...,n} letmixS=min({1,...,n}\S) denote the minimal number
not in S (mimimal excluded). Puf,_1 = nand then construdi, by, ...,b,_1 by

bi = mix{a,...,an_1,b1,...,bi_1}

(for i = 1 there are nd;’s in the set). For example in case @ 7,3,4,1,4,4) we
haveag = 9 and:

by = mix{4,7,3,4,1,4,4,9} =2

by =mix{ 7,3,4,1,4,4,9,2} =5

bs=mix{ 3,4,1,4,4925} =6

bs = mix{ 41,449,256} =3

bs = mix{ 1,4,4,9,2,5,6,3} = 7
be = mix{ 4,4,9,2,5,6,3,7} =1
by = mix{ 4,9,2,5.6,3,7,1} =8
bg = mix{ 9,2,5,6,3,7,1,8} =4

This process is called theconstruction procedursince, as we shall see, it pro-
duces a tree whose Prifer codé€as, . ..,an_2).

Let us show thaf{bi,a} : 1 <i < n} is the set of edges of a tree. ilk ]
then, by constructiorhj = mix{a;,...,an—1,b1,...,b;,...,bj_1}, sob; # b;. We
see that alb;’s are distinct and smaller than= a,_1. Therefore{bs,...,by_1} =
{1,...,n—1} and hencgby,...,bn_1,an-1} = {1,...,n—1,n}. Moreover, ifi <
j thena; ¢ {by,...,b;} sinceb; = mix{a;,...,a;,...,8,-1,b1,...,bi_1}, so from
{b]_, ey bn,]_,an,]_} = {1, o,n=1 n} it follows thataj € {bj+1, ceey bn,]_, an,]_}.
To summarize,

aj € {bj11,bj;2,...,bn-1,a80-1} and

bj §§ {aj+la bj+17 aj+27 bj+27 A bnfl}v
To build the graph we start froffib,_1,a,—1} and then add edgedn_2,an_2},
{bn_3,an-3}, ..., {b1,a1} one by one. Frontx) it follows that at each step we

for all j. (%)
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extend the graph by one new vertexand one new edgéb;,a} that connects

the new vertex to an existing one. Therefore, the graph we obtain at the end is
connected, and a connected graph witvertices andh — 1 edges has to be a tree
(Corollary 5.30). Thus, we have a functign: {1,...,n}""2 — .7, that takes a
code and produces a tree.

To complete the proof, we have to show tlfatand ¢ are inverses of one
another, i.,e¢ oy =id andy@o ¢ =id. We show onlypod =idi.e. y(¢(T)) =T
forall T € . For atre€l, a vertexv € V(T) is aninternal vertexT if or(v) > 1.
Letint(T) denote the set of all internal verticesf

Take anyT € %, let (a1,...,an_2) be its Prufer code anfby,...,b,_2) the
auxiliary sequence. At the end of the procedure of constructing the Prifer code
two vertices remain the the graph, the verdgx; = n and its neighbour whom we
denote byb,_;. Starting from(ay, ..., a_1) the reconstruction procedure produces
a sequence of integebs, ..., b/, ;. We will show thath; = b} for all i. Assume
also thain > 3.

Sinceb; is adjacentt@; in T andn > 3, a; cannot be a leaf of soa; € int(T).
The same argument shows trete int(T — by), ag € int(T — by — by), and in
general,giy1 € int(T —by —... —b;). Sinceint(T —v) C int(T) whenever is a
leaf of T andn(T) > 2, it follows thatint(T —b; —... — b)) = {@j+1,...,8-2}. In
particular,int(T) = {ay,...,an_2}. Since each vertex of a tree with at least two
vertices is either a leaf or an internal vertex we obtain that

V(T —by—...—b)\int(T—by—...—by)
is the set of leaves of —b; —... —b;. NowV(T —b; —...—bj) ={1,...,n}\
{ba,...,b} andint(T — by —... — b)) = {&+1,...,an_2}, SO the set of leaves of
T—-bi—...—bis

(1L om\ br b} ) \ @i, 802} =
= {1,...,n}\{a+1,...,an,z,bl,...,bi}.

Itis now easy to show thdt = b by induction oni. As we have seeiy is a leaf of
T,soby € {1,...,n}\{ay,...,an_2}. Butb; is the smallest such integer, whence
bi=min({1,...,n}\{a,...,an_2}) = mix{ay,...,an_2} = b}. Assume thab; =

b’j forall j € {1,...,i} and consideb;, ;. It is the smallest leaf iT —b; —... —b;

so, with the help of induction hypothesis

biy1=min({1,...,n}\ {&+1,...,an—2,b1,...,bi})
= mix{aj;1,...,an-2,b1,....b} = mix{ai;1,...,a2,b},...,b} =bi 4

Therefore {a;,bi} = {a;,b{} for all i and the tree produced by the reconstruction
procedure i, the tree we started with. O
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5.4 Digraphs

A digraphis an ordered paib = (V,E) whereV is a nonempty finite set ard
is an arbitrary subset &f? such that(x,x) ¢ E for all x € V. Elements oV are
calledverticesof D, while elements ok are callededgesof D. We shall often
write V(D) andE(D) to denote the set of vertices and the set of edgds3, @nd
n(D) andm(D) to denote the number of vertices and the number of edgé&s of
Instead of(x,y) € E we often writex — y or x =V If X —ywe say thai is a

predecessoof y andy is asuccessoof x. The number of edges that go outvoiz
called theout-degreef v and will be denoted by (v). The number of edges that
go intov is called thendegreeof v and will be denoted by, (v). Further, let,

Ip(v) ={xeV :x—v}, Op(v) ={xeV:v—x},

denote the set of predecessors and the set of successarsCiéarly, &, (V)
Ip(v)| and &5 (V) = |Op(Vv)|. Thetotal degreeof a vertexv is dp(v) = &5 (V)
o5 (v). If D is clear from the context, we simply wri@ (v), 3" (v), I(v), O(v)
ando(v).

A sourceof a digraphD is a vertexv € V(D) such tha®~(v) = 0andd " (v) >
0. A sinkof a digraphD is a vertexv € V(D) such thad—(v) > 0andd*(v) = 0.

A back-edgen a digraphD is an edgé€x,y) € E(D) such thatly,x) € E(D). If D
has no back-edges thétv) NO(v) = & for everyv € V(D).

If vis a vertex and an edge of a digrap® thenD — e denotes the digraph
obtained fromD by removing the edge, while D — v denotes the digraph obtained
from D by removingv, the edges that go intoand the edges that go outwf

Digraphs also have a very natural graphical representation. Vertices are repre-
sented as points in a plane, while an edge y is represented as a directed curve
(usually an arrow) going fromtoy. Fig. 5.16(a) depicts a digraf with 10 vertices.

+

Theorem 5.32 (The First Theorem for Digraphs) Let D = (V,E) be a digraph
with medges. ThelJ oy 0~ (V) = Syey 07 (V) =m.

DigraphsD; = (Vi1,E1) andD, = (V,, E») areisomorphidf there exists a bijec-
tion ¢ : Vi1 — Vo such thatx,y) € E; ifand only if (¢ (X), ¢ (y)) € E2. The bijection
¢ is referred to as d@asomorphismand we writeD1 = D».

The notions of the oriented path, oriented cycle and oriented walk in a di-
graph are straightforward generalizations of their “unoriented” versionsorAn
ented walkis a sequence of vertices and edge®: Xi...X_1 & Xk such that
e = (Xi—1,%). We say thak is the length of the walk. Armriented pathis an
oriented walk where all vertices and all edges are distinct.oAented cycles
an oriented walk where all edges and vertices are distinct, with the exception of

Xp = Xk
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~_source

Figure 5.16: Two digraphs

Theorem 5.33 Let D be a digraph with at least one edgeDlhas no sinks, then
it has an oriented cycle. Dually,if has no sources, it has an oriented cycle.

A digraph isacyclicif it has no oriented cycles. Fig. 5.16) is an example of
an acyclic digraph.

Corollary 5.34 Each acyclic digraph with at least one edge has both a source and
a sink.

Theorem 5.35 A digraphD with n vertices is acyclic if and only if it is possible
to arrange its vertices &1, . ..,Vn) in such a way that, — v; impliesi < j.

Proof. («=) If such an arrangement of vertices exists then cleatas no oriented
cycles.

(=) We use induction on. Cases = 1 andn = 2 are easy. Assume that such
an arrangement of vertices exists for all acyclic digraphs with lessrihantices
and letD be an acyclic digraph witim vertices. If there is a vertex such that
o(v) = 0 putv; = x. OtherwiseD has at least one edge, so it has a source. Let
v1 be any source db. Now, D — v; is again an acyclic digraph and by induction
hypothesis its vertices can be arranged into a sequeace.,vy,) in such a way
thatv; — vj impliesi < j foralli, j > 2. Sincel (vi) = @ andO(v1) C {vz,...,Vn},
itis easy to see thdt/, vo, ..., vy) is the required arrangement of verticeddof(]
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A digraphD’ = (V/,E’) is asubdigraphof a digraphD = (V,E) if V' CV and
E’' C E. We writeD’ < D. ForSCV, thesubdigraph induced bgis the digraph
D[S = (S $NE).

We say thatS C V(D) dominatesD if D[ has no edges and the following
holds: for everyx € V(D) \ Sthere is ars € Ssuch that eithes — xors —y — x
for somey € V(D).

Theorem 5.36 (Chvatal, Lovasz 1974 )or every digraphb there is a set of ver-
ticesSC V(D) which dominate®.

Proof. We use induction om = n(D). Forn=1 or n = 2 the claim is obvious.
Suppose the claim is true for all digraphs with less thamertices and leD be a
digraph withn > 3 vertices. Take anyc V(D) and letA=V (D) \ ({x} UO(x)). If
A= @ thenS= {x} dominateD. If, however,A # &, by the induction hypothesis
the digraphD[A] has a set of verticeS C A that dominate®]A]. If there are no
edges inD[S U {x}| thenS= S U {x} dominatesD. Otherwise, there is ac S
such thatx — zor z— x in D. Fromz ¢ O(x) we conclude thaz — x in D, so
S= S dominateD. O

There are two natural notions of connectedness for digraphs. It seems natural
to be able to go from any vertex to any other vertex respecting the orientation of
the edges, but sometimes we might wish to be able to do the same thing regardless
of the orientation of edges.

A baseof a digraphD = (V,E) is a graphG = (V,E’) whereE' = {{x,y} :

(x,y) € D}. A base of a digraph is obtained by replacing oriented edges of the
digraph by nonoriented edges, see Fig. 5.17. A diglaphweakly connected

Figure 5.17: A digraph and its base

its base is a connected graph. A digrdplis strongly connected for every pair
of verticesx,y € V, X #y, there is an oriented path going froato y, see Fig. 5.18.
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strongly weakly connected not
connected (not strongly connected) connected

Figure 5.18: Two types of connectedness for digraphs

For disjointA,BC V(D) letE(A,B) = {(x,y) € E(D) : x€ Ay € B} be the set
of all edges oD that go from a vertex i\ to a vertex inB.

Theorem 5.37 A digraphD is weakly connected if and only E(A,B) # @ or
E(B,A) # o for every partitior{ A,B} ofV (D).

A digraphD is strongly connected if and onlyl(A,B) # @ andE(B,A) # &
for every partitior{ A,B} ofV (D).

Proof. We shall prove the second part of the theorem.

(=) Let D be a strongly connected digraph and{latB} be an arbitrary parti-
tion of V(D). Take anya € A and anyb € B. The digraplD is strongly connected,
so there exists an oriented path frento b. Sincea € A andb € B, the path has
to cross fromA into B at some point, so there exists an edge/) along this path
such thak € A andy € B. ThereforeE(A,B) # @. Similarly, E(B,A) # @.

(<) Take anyx,y € V(D), x#y, and let us show that there is an oriented path
fromxtoy. LetA= {x}uU{ve V(D) : there is an oriented path frorito v}. We
wish to show thay € A. Suppose this is not the case andBet V(D) \ A. Then
y € B and soB # @. Now, {A B} is a partition ofV (D) and by the assumption
E(A,B) # @. This means that there isvac A and aw € B such thatv — w. But
v € A means that there is an oriented path froto v, sov — w implies that there
is an oriented path fromto w ¢ A. This contradiction shows thgtc A and hence
there is an oriented path frortoy. O

Every connected grapB = (V,E) can be turned into a strongly connected di-
graphD(G) = (V,E’) whereE’' = {(x,y) : {x,y} € E}, that is, by replacing each
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edge{x,y} of G by a pair of edges$x,y), (y,x). Therefore, each connected graph
is a base of some strongly connected digraph, possibly with back-edges. The fol-
lowing theorem shows that this is not the case if we forbid back-edges.

Theorem 5.38 A connected graplis with at least two vertices is a base of a
strongly connected digraph with no back-edges if and orB/filas no cut-edges.

Proof. (=) Let G = (V,Eg) be a base of a digragh = (V,Ep) and suppose that
G has a cut-edge = {u,v}. Then by Theorem 5.20 there is a partitiph, B} of
V such thaEg(A,B) = {e}. SinceD has no back-edges then eitlierv) € Ep or
(v,u) € Ep, but not both. Therefore, eithé&s (A,B) = @ or Ep(B,A) = @. In any
casepD is not strongly connected by Theorem 5.37.

(<) Let G = (V,E) be a graph with no cut-edges and &t V be a maximal
set of vertices such th&[g is a base of a strongly connected digrdp() with
no back-edges. Let us show tli& @. Note first thatG contains a cycleG has
no cut-edges, so by Theorem 5.20 every edg8 b&longs to a cycle; hence there
is at least one cycle i6). Take any cycleC in G, orient its edges to obtain an
oriented cycle and orient the remaining edge&iX (C)] arbitrarily. We thus ob-
tain a strongly connected digrapi{C) with no back-edges whose bas&l¥/ (C)].
Therefore, there exists a s8tC V with at least three vertices such ti@[S] is a
base of a strongly connected digraph with no back-edges, so the maximal such set
cannot be empty.

Let us show thaB= V. Suppose to the S V\S
contrary thatSc V, i.e.V \ S# @. SinceG
is connected we havg(S )V \ S) # &, so take

anye= {u,v} such thau € Sandve V\S

There are no cut-edges (& so according to
Theorem 5.20 the edgebelongs to a cycle
in G. Letvw; ... wg be a part of the cycle that

belongs toV \ S and letwy,; be the vertex

that followswg on the cycle. By assumption,

w1 € S. Now orient the edges on the path

uvw ... W W, 1 to obtain an oriented path that goes frano wy; and attach the
path to the digrapB®(S). Orient the remaining edges G{SU {v,wx, ... w}| arbi-
trarily. The digraptD’ obtained this way is strongly connected, has no back-edges
and its base iS[SU{v,w1,...wy}] whose set of vertices is a proper superset.of
This contradiction shows th&=V, i.e. thatG is a base of a strongly connected
digraph with no back-edges. d
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5.5 Tournaments

A tournamentis a digraphT = (V,E) with

the property that for each pairy e V, X £,
either(x,y) € T or (y,x) € T. Equivalently, a
tournament is a digraph with no back-edges
whose base is a complete graph. Tourna
ments (as digraphs) appear as models of tour-
naments (as sprot events) where no match
ends in a draw; each arrow then represents
one match and goes from the vertex repre-
senting the winner to the vertex representing
the loser.

A tournament withn vertices has<2> edges and " (v) + & (v) =n—1 for

each vertew. Therefore, it has become customary to consider onigv). When
working with tournamentsd™ (v) is called thescoreof v and denoted bg(v). A
tournament igransitiveif x — y andy — zimpliesx — zwhenever, y andz are
three distinct vertices of the tournament.

Theorem 5.39 Let T be a tournament with vertices. Then the following are
equivalent:

(1) T is an acyclic tournament;
(2) T is a transitive tournament;
(3) the scores of vertices ih are0, 1, ...,n—1.

Proof. (1) = (2): SupposeT is not a transitive tournament. Then there exist
distinct verticesx, y andz such thatx — y andy — z but x 4 z. SinceT is a
tournamentx 4~ zmeans that — x and we obtain a cycle —y — z— x.

(2) = (3): The proof is by induction om. Casesr= 2 andn = 3 are trivial.
Suppose that in each transitive tournament withn vertices the scores of vertices
are0, 1, ..., k—1and letT be a transitive tournament withvertices. Let/; be the
vertex of T with maximal score and let us show ttst;) = n— 1. Suppose that
there is a vertex such thax — v;. Then due to transitivity; — zimpliesx — z
and hences(x) > 1+ s(v1) > s(v1), which is impossible. Thereforg; — x for all
X # vy and hences(v1) = n— 1. Itis easy to see that — v; is again a transitive
tournament and by the induction hypothesis the scores of its vertic€s hre. .,
n— 2. Therefore, the scores of verticeslimare0, 1, ...,n—2,n— 1.

(3) = (1): The proof is again by induction amand the cases= 2 andn=3
are trivial. Suppose that each tournament With n vertices and with score; 1,
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.,k—1is acyclic and lefl be a tournament with vertices and score3 1, ...,
n—1. Letv be the vertex o whose score ia— 1 and letC be an oriented cycle
in T. SinceT —vis atournament with scor€s 1, ...,n—2, itis acyclic according
to the induction hypothesis 86(C) V(T —v). ThereforeC has to pass through
v. On the other handy(v) = n— 1 means that — x for everyx # v so no cycle in
T can pass through Contradiction. O

Corollary 5.40 Two transitive tournaments are isomorphic if and only if they have
the same number of vertices.

Theorem 5.41 Every tournament with at leadt* verticesk > 2, has a transitive
subtournament with at ledstvertices.

Proof. The proof is by induction ok. If k = 2 the O(v)

tournament has at least two vertices and hence at Ieast

one edge, so each edge- yis a transitive subtourna-
ment with two vertices. Assume the claim is true for
all integers less thak and consider a tourname‘rﬁt
with at least2*1 vertices. Take any € V(T Then (
V(T)=1(v)U{v}UO(v), so one of the sel:{v

has at leasPk—2 vertices. Without loss of generallty

we can assume th#d(v)| > 2¢-2. Inductioin hypothesis now yields that there is
a transitive subtournameift of T[O(v)] with at leastk— 1 vertices. TherT’ to-
gether withv induces a transitive subtournamenflofvith at leask vertices. [

A kingin a tournamenT is a vertexv € V(T) such thafv} dominatesT. This
means that for eveny+# v eitherv — x orv— y — x for somey € V(T).

Theorem 5.42 Each tournament with at least two vertices has a king.

Proof. Letv be a vertex off whose score is maximal and X

let us show thav is a king. Suppose to the contrary thvat

is not a king. Then there is an# v such thatv 4 x and Y2
noy € V(T) satisfiessr — y — x. SinceT is a tournament,

vV 4 X meansx — Vv, while the other condition means that

if v— ythenx—y. Butthens(x) > 1+s(v) > s(v), which Vi
contradicts the maximality cf(v). o Vv
Homework

5.1. An automorphsnof a graphG is every isomorhismp : V(G) — V(G)
from the graph onto itself. Byut(G) we denote the set of all the auto-



100

5.2.

5.3.
5.4,
5.5.
5.6.
5.7.
5.8.

5.9.
5.10.
5.11.
5.12.

5.13.

5.14.
5.15.
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morphisms ofG.
(a) Show that(Aut(G), o) is a group.

(b) DescribeAut(K,), Aut(S,) andAut(R,) for n > 3.

(c) Show thatAut(G) = Aut(G).

(a) Show that for every > 6 there exists a grap8 with n vertices such
that|Aut(G)| = 1.

(b) Show that for everk > 2 and everyn > k+ 3 there exists a grapG
with n vertices such thdAut(G)| = k!.

Prove Lemma 5.12.

Prove Theorem 5.16.

If Gis not connected show thd{G) < 2. (We know thaiG is connected).
Prove Theorem 5.21.

Prove Theorem 5.22.

Show that a graph is a tree if and only if each pair of distinct vertices of of
the graph is connected by a unique path.

Find the number of distinct spanning treeKgf
Complete the proof of Theorem 5.31 by showing thaty = id.
Prove Theorem 5.33.

In the distant land of Xy¢ there arecities some of which are connected

by roads, but still it is possible to reach each city from every other city by
traveling along the roads (and possibly passing through some other cities).
The Evil Magician who rules the Xy¢ would like to terrorize his people by
making each road a one-way road in such a way that after leaving a city it
is impossible to get back. Show that it is possible to do such a thing.

Prove the first part of Theorem 5.37 (the characterization of weak connect-
edness).

Prove Corollary 5.40.

Atournament isegularif s(x) = s(y) for all xandy. Show thatin a regular
tournament each vertex is a king.
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Exercises

5.16. LetG be a graph witm vertices andn edges. Show that(G) > 27"‘

5.17. Which of the following integer sequences can be a sequence of degrees of
vertices of a graph?
(a) (1,2,2,4,5,6,7);
(b) (1,1,2,2,2,3,3);
(c) (1,1,3,3,3,3,5,6,8,9).

15.18. Show that there are
(a) 2(2) distinct graphs wittn vertices;
n-1

(b) 2( 2) distinct graphs witim vertices such that the degree of each vertex
in the graph is even.

5.19. LetG be a graph witd(G) > 2. ThenG contains a path of length &(G)
and a cycle of lengtk: 6(G) + 1.

5.20. Let G be a bipartite graph (not necessarily a complete bipartite graph!)
with n vertices andn edges. Show thah < %nz.

5.21. Show that a graplt is bipartite if and only if every subgrapH of G
satisfiesor (H) > In(H).

5.22. A k-dimensional hypercubie a graphQx = (Vk, Ex) whereV is the set of
all 01-words of lengtik anda; ... ax, b1 ... bk € Vi are adjacent if and only
if the two words differ at exactly one place. For examplek ¥ 4 then
0101 and 0001 are adjacent@ while 0101 and 0000 are not.
(a) Find the number of vertices and the number of edge3,of
(b) Show thatQy is bipartite.
(c) Find d(Q).

5.23. Show that for every even > 6 there exists a connected regular graph of
degree 3 witm vertices and with no trianlges.

5.24. Show that if6(G) > 3n(G) thenG is connected and(G) < 2.

5.25. Show that for every grap@ there exists a regular graphsuch thaG is
an induced subgraph éf andA(G) = A(H).

5.26. Show thatd(G) = (n(G) — 1) — A(G) andA(G) = (n(G) — 1) — 8(G).

5.27. Show the following:
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5.28.

5.29.

5.30.

5.31.
5.32.
5.33.

5.34.
5.35.

5.36.

5.37.

15.38.
15.39.

15.40.
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(a) If Gis connected and(G) > 3thenG is connected and(G) < 3.

(b) Every selfcomplementary graph with at least two vertices is con-
nected an@ < d(G) < 3.

Suppose that the degree of every vertex in a connected @apleven.
Show thatw(G — V) < 35(v) for all ve V(G).

Let G = (V,E) be a connected graph withvertices and leti be an arbi-
trary vertex ofG. Show thatZ/ d(u,x) < (n) .
Xe 2

Let G be a connected graph with at least two vertices. ShowGHzas at
least two vertices that are not cut-vertices.

Show that ifv is a cut-vertex of5, thenv is not a cut-vertex o6.
Show that each tre@ has at leash(G) leafs.
Let T be a treeA = A(T) and fx the number of vertices il of degreek.

A
Show thatf; =2+ % (k—2)fi.
K=3

Find all treesG such thaG is a tree.

For everyn > 4 find a graphG with n vertices such that for eadhe
{2,...,n—2} there is a spanning tree Gf'whose diameter ik.

Note first that each tree is a bipartite graph since no cycles means no odd
cycles. Let{X,Y} be a partition of the vertices of a trdewhich demon-
strates thaT is a bipartite graph and assume thét = |Y|+ p for some

p > 0. Show thatX contains at leagp+ 1 leaves ofT .

A forestis a graph whose connected components are trees. Sho® ihat
a forest if and only i15(H) < 1 for all induced subgraphd of G.

How many nonisomorphic spanning trees dkigg have?

Show that each spanning tree of a connected graph contains all cut-edges
of the graph.

A block of a connected graph is a maximal set of verticeSC V(G) such
thatG[S has no cut-vertices (that is, & D SandG|[S] has no cut-vertices
thenS =9).

(a) Show that any two blocks of a graph have at most one vertex in com-
mon.

(b) Let By, ..., Bk be blocks ofG and let%g be the graph with vertices
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{1,...,k} wherei is adjacent tg if and only ifi # j andB; andB; have a
nonempty intersection. Show th#s is a tree.

15.41. LetD = (V,E) be a weakly connected digraph. A strongly connected com-
ponent ofD is a maximal set of verticeSC V such thaD[J is strongly
connected (that is, 8 O SandD|[S] is strongly connected thesi = S).

(a) Show thatSN'S = @ wheneveiSandS are distinct strongly connected
components ob.

(b) Let SandS be distinct strongly connected componentof Show
thatif E(S S) # @ thenE(S,S) = 2.

(c) Let S, ..., & be strongly connected componentsdfand let.p
be the graph with verticefl, ..., k} wherei — j if and only ifi # j and
E(S,Sj) # @. Show that’p has no back-edges and its base is a tree.

5.42. Show that;(éJ“(v))2 = 2(5‘ (v))? in every tournament = (V,E).
ve

ve

5.43. A tournament igegularif s(x) = s(y) for all x andy. Show that for each
odd integemn > 3 there exists a regular tournament withertices.

k
. k
5.44. Scoress; < <.... < 5 0f atournament satlsfyzls = <2> for every
i=

ke {1,...,n}. Show thafT is an acyclic tournament.



104 CHAPTER 5. GRAPHS AND DIGRAPHS



Chapter 6

Eulerian and Hamiltonian graphs

In this chapter we deal with two important classes of graphs:

e Eulerian graphs, which are graphs with the closed walk in which each edge
occurs precisely once; and

e Hamiltonian graphs, which are graphs with the cycle in which every vertex
occurs precisely once.

We present an easy characterisation of Eulerian graphs and discuss several neces-
sary and sufficient conditions for a graph to be Hamiltonian. The fact that there is
no “easy” and “useful” characterisation of Hamiltonian graphs is justified by the
discussion at the end of the chapter where we argue that checking for a Hamiltonian
cycle in a graph is an NP-complete problem.

6.1 Eulerian graphs

The famous Swiss mathematician Leonhard Euler was visiting the city of Kbnigs-
berg in the year 1735. Konigsberg was a city in Prussia situated on the Pregel
River, which served as the residence of the dukes of Prussia in the 16th century.
(Today, the city is named Kaliningrad, and is a major industrial and commercial
center of western Russia.) The river Pregel flowed through the city such that in its
center was an island, and after passing the island, the river broke into two parts.
Seven bridges were built so that the people of the city could get from one part to
another. A map of the center of Kdnigsberg in 1735 looked like this:

105
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KONINGSBERGA

A favorite pastime for visitors to the city was to try to cross each of the bridges
of Kdnigsberg exactly once. Euler was told by some people that it was impossible
and by others that they doubted whether or not it could be done. No one believed
it was possible. Eventually, Euler realized that all problems of this form could
be represented by replacing areas of land by vertices, and the bridges to and from
them by edges of a graph such as:
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The problem now becomes to draw this picture without tracing any line twice
and without picking the pencil up off the paper. All four of the vertices in the
above picture have an odd degree. Take one of these vertices, say one of the ones
of degree three. We could start at that vertex, and then arrive and leave later. But
then we can't come back. So, every vertex with an odd degree has to be either
the beginning or the end of the pencil-path and thus we can have at most two odd
vertices. Therefore it is impossible to draw the above picture in one pencil stroke
without tracing some line twice.

This is the first recorded problem in graph theory, and W. Tutte, himself a
prominent graph-theorist, decided to celebrate the problem with a poem:

From Konigsberg to Kénig's book
by William T. Tutte

Some citizens of Koenigsberg
Were walking on the strand
Beside the river Pregel

With its seven bridges spanned.

O, Euler, come and walk with us
Those burghers did beseech
We’ll walk the seven bridges o’er
And pass but once by each.

“It can't be done” then Euler cried
“Here comes the Q.E.D.

Your islands are but vertices,
And all of odd degree.”

We shall now go for a more formal treatment of this and similar problems. We
shall first solve the general problem in case of oriented graphs, and then infer the
solution in case of undirected graphs.

Definition 6.1 A trail in a graph is a walk in which edges are not allowed to repeat.
An Eulerian trail in a graph is a trail that contains each edge of the graph precisely
once. A graph is said to leulerianif it contains a closed Eulerian trail, Fig. 6.1.

Definition 6.2 Analogously, aroriented trailin a digraph is an oriented walk in
which edges are not allowed to repeat. Bulerian trail in a digraph is an oriented

trail in the digraph that contains each edge of the digraph precisely once. A digraph
is said to beEulerianif it contains a closed Eulerian trail.
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(a (b) (©

Figure 6.1:(a) A graph with no Eulerian trail(b) a non-eulerian graph with an
Eulerian trail;(c) an Eulerian graph

Lemma 6.3 LetD be a digraph with no isolated vertices and with the property that
&~ (v) = 0% (v) for everyv € V(D). Then every vertex oD belongs to a closed
oriented trail inD.

Proof. LetW = v e X1...€ Xk be the longest trail ifD that
starts withv and let us show thag = v. Suppose to the con-
trary thatx, = v and assume thad appeard > 1 times on
the trailW. Each appearance & on W engages one edge
that leads intog and one edge that leads out®f except for ¥
the last appearance gf that engages one edge leading into
Xk. ThereforeW containsl edges leading inte andl — 1
edges leading out ok. Sinced~ (xx) = 0" (x), there exists u

an edge? = (X, u) € E(D) that does not appear W. Now,

Ve X1...& Xk € uis atrail that starts froma longer thatW. Contradiction. O

Theorem 6.4 LetD be a digraph with no isolated vertices. THes an Eulerian
digraph if and only ifD is weakly connected and~(v) = 6% (v) for everyv €
V(D).

Proof. (=) Let D be an Eulerian digraph with no isolated vertices and consider
a closed Eulerian tralV in D. Walking alongW we can start from any vertex

in D and reach any other vertex i which shows thabD is strongly, and hence
also weakly connected. The tr&lf can be partitioned into oriented cycl€s,

..., C¢ in such a way that every edge ih belongs to exactly one of the cycles
(Homework 6.1). Each vertex @ appears oW, so each vertex belongs to at
least one of the cycles. Now, ¥fe V(D) lies on exactlyl of these cycles, then
0~ (v) =1 =97 (v) since every edge iW belongs to precisely one of the cycles
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Ci1, ...,Ck, and each of the cycles “absorbs” one edge that goey entd one edge
that goes out of.

(«=) Take anyv € V(D). According to Lemma 6.3/ belongs to some closed
oriented trail inD. LetW be the longest closed oriented trailinthat containy
and let us show tha is an Eulerian trail irD.

Suppose thatV is not an Eulerian trail irD, i.e. E(W) C E(D). If V(W) =
V(D), take anye = (u,v) € E(D) \ E(W). If V(W) Cc V(D) then{V(W),V (D) \

V (W)} is a partition ofV (D) and sinceD is weakly connected there is an edge
e=(u,v) € E(D) \ E(W) such thatu € V(W) andv € V(D) \ V(W) (or the other
way around; the proof is analogous). In any caseSlbe the weak connected
component oD — E(W) that contain®. SinceW is a closed trall, it is easy to see
thatdg (v) = &4 (v) for everyv € V(S). Hence, by Lemma 6.3 there exists a closed
trail W' in Sthat containai. SinceE(W') C E(S) C E(D) \ E(W), it follows that
E(W)NE(W) =@, so glueingV andW’ atu provides a trail that containsand
which is longer thaiwV. Contradiction. O

The characterisation of Eulerian graphs is similar, and the proof goes along the
same guidelines as in case of digraphs.

Theorem 6.5 Let G be a graph with no isolated vertices. THeris an Eulerian
graph if and only ifG is connected and each vertex®is even.

Proof. Analogous to the proof of Theorem 6.4. O

It is now easy to characterize noneulerian graphs that contain an Eulerian trail
(which therefore cannot be a closed Eulerian trail).

Theorem 6.6 Let G be a noneulerian graph with no isolated vertices. Tadras
an Eulerian trail if and only if it is connected and has precisely two odd vertices.

Proof. (=) Let W be an Eulerian trail irG. SinceG is not EulerianW is not
closed. Denote the vertices it starts and ends withu laydv. Introduce a new
vertexx ¢ V(G) and two new edgegx, u}, {x,v}, and apply Theorem 6.5.

(<) Letuandv be the odd vertices i6. Introduce a new vertex¢ V(G) and
two new edgeg$x, u}, {x,v}, and apply Theorem 6.5. O

Finally, we conclude the section with another characterization of Eulerian graphs.

Theorem 6.7 LetG be a connected graph. Théris Eulerian if and only if every
edge ofG belongs to an odd number of cyclesGn
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Proof. We start by proving an auxiliary statement.

Claim. LetG be a connected noneulerian graph with an Eulerian trail and let
andv be the only two odd vertices iB. Then the number of trails that startuat
end inv and wheres appears only once (i.e. at the end of the trail) is odd.

Proof. The proof is by induction om(G). The claim is true for connected
noneulerian graphs with an Eulerian trail that have 1, 2 and 3 edges. Suppose the
claim holds for all such graphs witah medges, and le6 be such a graph witm
edges. Furthermore, latandv be the two odd vertices i®, letk = 6(u) and let
X1, ..., % be the neighbours af. Forj e {1,... k} letej = {u,X;} and letT; be
the set of all the trailsi g x; ... v with the property thav appears only at the end
of the trail. ThenT;U...UT is the set of all the trails we are considering and we
have to show thalT;| + ...+ |Tx| is odd. Sincek is odd, it suffices to show that
every|T;| is odd.

Take anyj € {1,...,k} and letG; = G—e;. The degree dfiin G; is even, s;
andv are the only odd vertices i@;. This is why they have to belong to the same
connected component &j. The number of edges in this connected component is
strictly less thamm, so by the induction hypothesis the number of trails that start at
Xj, end invand contairv only once is odd. It is easily seen that the number of such
trails equalgT;|, and hencgT;| is also odd. This completes the proof of the claim.

Let us now go back to the proof of the theorem.

(<) Let G be a connected graph that is not Eulerian. Tkehas an odd
vertexv. For an edge incident tov let c(e) denote the number of cycles @that
containe. Since each such cycle contains two edges that are adjacenhtsum
SveeC(€) is even (= twice the number of cycles that pass throggBut 5(v) is
odd, so this sum consists of an odd number of summands. Therefore, one of the
summands has to be even, and thus there exists aneaaitjacent tov such that
c(e) is even.

(=) Let G be an Eulerian graph and let= {u,v} € E(G) be arbitrary. Ac-
cording to Exercise 6.1%is not a cut-edge, sG — e is connected. Henc& — e
is not Eulerian, but has an Eularian trail. Let this trail statt ahd end inv. The
Claim now yields that there is an odd number of trails that stauf enhd inv and
containv only once. IfSis one such trail which is not a path, thBoontains some
vertex more than once (for otherwiSavould be a path). Let; be the first vertex
in Sthat appears more than oncedand letwig 1w, 1 ...ejw; = w; be the short-
est cycle inSthat containsy;,. “Mirroring” the cycle within S produces a new trail
S having the same properties &s

S: UetWp...Wi€1Wir1 ... € Wj...Ws 165V

S: uewi...Wj € ... Wip1€11Wi...Ws 165V
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Therefore, trails that start a, end inv, containv only once and are not paths
appear in pairs. Hence, the number of such trails which are not paths is even.
But, we know that there is an odd number of trails with these properties, whence
follows that the number of paths connectingndv in G— e is odd. Each of the
paths together witk builds a cycle inG that containg. Thereforeg belongs to an

odd number of cycles. O

6.2 Hamiltonian graphs

Sir William Rowan Hamilton, who was Astronomer Royal of Ireland, invented in
1857 a puzzle called@he Travellers Dodecahedron or A Voyage Around the World

It is not a true dodecahedron but is a “schematic” of a dodecahedron on a wooden
“mushroom”.

The 30 edges represent the only roads that one is allowed to pass along as one
visits the 20 vertices that represent cities. Two travellers were supposed to set off
visiting the cities: the first was supposed to pose a problem and start the tour by
visiting four cities that belong to the same face of the dodecahedron. The player
posing the problem then returns home and the other continues to travel around the
world trying to visit all the remaining cities only once, and eventaully return home.
The silk cord that accompanied the puzzle was used to mark the voyage and thus
prevent the voyager from visiting a city more than once.
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Until recently, only information we had ohhe Travellers Dodecahedramas
its description in a chapter on Hamilton’s Game in volume 2 of Edouard Lucas’
Récréations Mathématiquesd another mention in the 3rd edition of Ahrens’
German work on Recreational Mathematics. But then an example was recovered,
complete and in almost new condition.

In graph-theoretic terms the puzzle boils down to finding a spanning cycle of
the incidence graph of a dodecahedron. The graph shown in Fig. 6.2 is a plane
projection of a dodecahedron and we outlined a spanning cycle in this graph.

Definition 6.8 A Hamiltonian pathin a graph is a path that contains all vertices of
the graph. AHamiltonian cyclen a graph is a cycle that contains all vertices of
the graph. A graph is callddamiltonianif it has a Hamiltonian cycle.

In comparison with Eulerian graphs, Hamiltonian graphs are much more hard
to grasp. There is no “useful” characterisation of Hamiltonian graphs and we shall
see in the next section that there is a justification for this: deciding whether a graph
is Hamiltonian is one of the most complicated computational problems. We will
actually show that this decision problem is NP-complete (for the moment, think of
this as “extremely hard”).
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Figure 6.2: A solution to The Travellers Dodecahedron is a spaning cycle of the
incidence graph of the dodecahedron

Theorem 6.9 LetG be a Hamiltonian graph arml#+ SC V (G) a nonempty set of
vertices ofG. Thenw(G—-9) < |S.

Proof. Let C be a Hamiltonian cycle 06. Thenw(C —S) > w(G — S) since
G — Shas more edges th&— S, and they might connect some of the connected
components of — Stogether. On the other hand, it is easy to seedh&@— S) <
|S]. Thereforew(G—9S) < |S. O

Theorem 6.9 is useful when it comes to showing that a grapletislamilto-
nian.

Corollary 6.10 Hamiltonian graphs have no cut-vertices and no cut-edges.

Proof. If vis a cut-vertex of a grap® thenw(G—v) > 2 > |[{v}|. Theorem 6.9
now implies thaiG is not Hamiltonian. We leave the cut-edges as Homework 6.5.
O

We have already mentioned that there is no “useful” characterisation of Hamil-
tonian graphs. However, it is generally accepted that the best characterization of
Hamiltonian graphs was given in 1972 by Bondy and Chvatal who generalized ear-
lier results by G. A. Dirac and O. Ore. The idea behind their result is that a graph
is Hamiltonian if enough edges exist.

If u,v are nonadjacent vertices & ande = {u, v}, then byG + e we denote
the graph obtained by adding the edge G.
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The closure of a grap@ is a graph on the same set of vertices constructed as
follows. Define a sequence of grapB@s, Gy, ..., byGy = G and

Gi+e wheree¢ E(G;) joins two nonadjacent vertices
Giig= u,v € V(Gj) such thatg, (u) + g (v) > n(Gj),

Gi, if no such pair of vertices exists

Since we leave the set of vertices fixed and add new edges whenever possible, there
exists &k such thatGy = G j for all j > 1. Then the grapksy is called theclosure
of G and denoted bygl(G).

Theorem 6.11 (Bondy, Chvatal 1972)A graphG is Hamiltonian if and only if
cl(G) is Hamiltonian.

Proof. If G is Hamiltonian, then so isl(G) sinceE(G) C E(cl(G)). For the
converse, suppose th@tis not Hamiltonian but thatl(G) is Hamiltonian. Then
there exists a grap@; in the sequencé = Go, Gy, ..., Gk = cl(G) definingcl(G)
such thag; is not Hamiltonian and;, ; is Hamiltonian. LeiG;, 1 = G; + ewhere
e= {u,v}. Then by the construction,andv are not adjacent ani, (u) + g, (V) >
n.

SinceG; + e is Hamiltonian andG; is not, it follows that each Hamiltonian
cycle inG; + e passes through. Take any Hamiltonian cycl€ in G; +e. Then
e c E(C) and hence& — e is a Hamiltonian pathu = X3 X2 ... Xp—1 Xy = vin G;.
Now it is easy to see thatifis adjacent t; for somej > 1 thenv is notadjacent
to x;_1 for otherwise we would have a Hamiltonian cycleGn

e N

Uu=x; X Xj—1 X Xn—1 Xn=V

Therefore, ifdg, (u) = kthendg, (v) < n— (1+K) sincevis not adjacent to itself,
nor is it adjacent to predecessors of kneeighbours ofl. Hencedg, (u) + dg; (V) <
n— 1. Contradiction. O
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Corollary 6.12 LetG be a graph with vertices.

(a) If 5(u)+6(v) = n wheneveu andv are distinct, nonadjacent vertices®f
thenG is Hamiltonian. (O. Ore 1960)

(b) If &(u) > 2 for allu € V(G) thenG is Hamiltonian. (G. A. Dirac 1952)

All these statements have their analogues for digraphs. We shall, however, treat
only tournaments to show how very special digraphs they are.

Definition 6.13 A Hamiltonian pathin a digraph is an oriented path that contains
all vertices of the digraph. Adamiltonian cyclein a digraph is an oriented cycle
that contains all vertices of the digraph. A digraph is calieaniltonianif it has a
Hamiltonian cycle.

Theorem 6.14 (Rédei) Every tournament has a Hamiltonian path.

Proof. The proof is by induction on the number of vertices in the tournament. The
statement is easily seen to be true in case of tournaments with 2 and 3 vertices.
Assume now that every tournament with less timavertices has a Hamiltonian
path, and leT be a tournament omverticesV (T) = {X1,...,X,}. By the induction
hypothesisI’ =T — x; has a Hamiltonian pathk, Xi, ... X;,. If Xg — X, orx;, — X,

the Hamiltonian path of’ easily extends to a Hamiltonian path™f If, however,

X1 7 Xi, andx;, /4 X1 thenx;, — x; andx; — ;.. It is easy to see that there exists
anssuch thaki, — X — X, ,:

X1
Xi, Xis  Xigyq Xin
SOXi, ... Xig X1 Xig,, --- Xi, IS @ Hamiltonian path for . O

Theorem 6.15 A tournament is Hamiltonian if and only if it is strongly connected.

Proof. (=) If a tournament is Hamiltonian, then walking along the Hamiltonian
cycle we can get from every vertex of the tournament to every other vertex. Hence,
the tournament is strongly connected.

(<) Let T be a strongly connected tournament. THers not transitive and
hence contains an oriented cycle. Bet xg — X3 — ... — Xk — Xg be the longest
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oriented cycle inT and let us show that(C) =V (T). Suppose to the contrary that
V(C) Cc V(T). Then{V(C),B} is a partition oV (T), whereB=V(T) \V(C). If
there exists € B such thaE(V(C),{y}) # @ andE({y},V(C)) # @ then there
exists an index such that; — y — X 1:

andxg — ... —» X —Y— Xi1— ... — X — Xg IS an oriented cycle iff which is
longer tharC. Contradiction.

Therefore, for eacly € B eitherE(V(C),{y}) = @ or E({y},V(C)) = @. Let
Y={yeB:E(V(C),{y}) =2}andZ={ze B: E({z},V(C)) = @}. SinceT is
strongly connected it follows that # @, Z # @ andE(Z,Y) # 0. Takeze€ Z and
y € Y such thaz — y. FromE(V(C),{y}) = @ it follows thaty — x; for all i.

V4
Xo X1 Xk
'y

Similarly, x; — zfor all i, soxg — z— y— X1 — ... — X — Xg IS an oriented cycle
in T and it is longer thai€. Contradiction. Therefore/(C) =V(T), soT is a
Hamiltonian tournament. O

A careful analysis of the previous proof reveals that we can actually prove
much more.

Theorem 6.16 (Camion 1959)Let T be a Hamiltonian tournament with ver-
tices. For every vertexc V(T ) and everk € {3,...,n} there exists an oriented
cycle of lengttk that contains.
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6.3 Complexity issues

In this section we consider the computational complexity of deciding whether a
graph has a Hamiltonian cycle. We show that this decision problem not only falls
into theNP complexity class, but that it is &#P-complete problem, i.e. a paradigm

of anNP-hard problem.

The notion of an algorithm= "effective procedure”) was recognised as one of
the essential notions in mathematics as early as 1928 when D. Hilbert and W. Ack-
ermann published their influential booklet “Grundzlige der theoretischen Logik” in
which they posed a problem of finding an algorithm (whatever that might mean)
which decides whether a first-order sentence is a consequence of the axioms of
arithmetic. At that time there was no formal notion of an algorithm, so the problem
was actually twofold: on the “philosophical” level it was required to introduce the
precise definition of an algorithm, while on the mathematical level the definition
should have been used in solving the particular problem of mathematical logic.
The problem (both on the philosophical and the mathematical level) was indepen-
dently solved in 1936 by A. Church and A. Turing. Although Church’s solution
was published a few months ahead of Turing’s, the approach taken by A. Turing
is more intuitive, and constitues a basis of what is today known as Computability
Theory.

We shall not present a formal definition of a Turing machine. For our purposes
it suffices to say that during machineis a mathematical model of a computer
program written for a modern computer with infinite memory. Since computers
actually operate on finite 01-words we shall téke= {0,1} as the alphabet in
which to carry out our considerations. ¥t denote the set of all finite 01-words,
together with the empty worel By |w| we denote the length of € Z*. A language
is any setZ C ¥* of 01-words. In particular, for every graghthere is a 01-word
(G) representing the graph, so we also have the langdagd (G) : G is a graph.

A computer programf can take any 0l-words as its input, but may fail to
produce an output. Hence, each computer proghacorresponds to a function
A:%* — 5*U{oo} such that

u, Atakesw as its input and after a finite number of computation
A(w) = steps stops and printsas a resuijt

oo, A never stops on input.

For a computer progra and a wordwv € 2* let

ta(W) = n, Atakesw as its input and stops aftarcomputation steps;
A7 1 %, Anever stops on input.
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A computer prograni runs in polynomial timef there exists a positive integér
such thata(w) = O(|w|¥) whenever\(w) # co.

The complexity classP. A language?’ C =* is decidableif there exists a com-
puter programA such thatA: * — {0,1} and

£ ={we = :AWw) =1}

(Note that the computer program which decides a language stops on all inputs
and output® or 1.) The languageZ C >* is decidable in polynomial timié there

exists a computer prografwich runs in polynomial time such thAt =* — {0,1}

and.Z = {we = : A(w) = 1}.

Definition 6.17 The complexity clas® consists of all languages ovEr= {0,1}
that are decidable in polynomial time:

P={% C X : % isdecidable in polynomial time

Equivalently, the complexity clagaconsists of all problems that can be solved
in polynomial time. Indeed, given an problepit suffices to encode each instance
| of the problem by a 01-word) and consider the languagéy = {(I) : | is an
instance 0fQ}. Then each instandeof the problem can be solved in polynomial
time (where the degree of the polynomial does not depend on the instance) if and
only if Zq is decidable in polynomial time. For example, the problem of deciding
in polynomial time whether a graph is connected corresponds to polynomial de-
cidability of the languageZconn= {(G) : G is a connected graghFor some other
problems the transformatigproblem| — | languagemay not be so obvious.

The complexity classNP. Instead of requiring a computer program to solve a
problem, we might only wish to pull a solution out of a sleeve and verify that then
solution is indeed a solution to a problem.vArification algorithmis a computer
programA with two inputs such thal : 5% x =* — {0,1}. If there exists a posi-
tive integerk such thata(p,s) = O((|p| +|s)¥) for all p,s € =* we say that is
a polynomial verification algorithm A languageZ is verified by a verification
algorithmA if

Z={pesz*:3sez (A(p,s) =1)}.

A language? C >* is verifiable in polynomial timi there exists a positive integer
¢ and a polynomial verification algorith# such that

¥ ={pez*:3sez*(]s| <|p|°andA(p,s) = 1)}.
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Definition 6.18 The complexity clasBIP consists of all languages ovErE {0, 1}
that are verifiable in polynomial time:

NP = {.Z C ¥*: Z is verifiable in polynomial timg.

Equivalently, the complexity clag¢P consists of problems for which it is easy
to check whether what we claim to be a solution is indeed a solution. For example,
Zham = {(G) : G is a Hamiltonian graphis in NP since given a grapfs and a
sequence of vertices, ..., X, itis easy to check whethey, .. ., x, is a Hamiltonian
cycle ofG.

Theorem 6.19 P C NP.

Proof. Take any.# € P. Then.# = {w e =* : A(w) = 1} for some computer
programA that decides? in polynomial time. Now take a verification algorithm
B:3* x £* — {0,1} so thatB(p,s) = A(p). ThenB clearly verifiesZ in polyno-
mial time, so.Z € NP. g

The exact relationship betwe&handNP is still unknown. It is strongly be-
lieved thatP # NP, but we still haven't got a proof. The problem is actually so
important that the Clay Mathematics Institute is offering a USD 1,000,000 prize for
the correct solutiof. Apart from the prize, the importance of the problem is also
reflected by the fact that the security of RSA, the most widely used crypto-system,
depends orP # NP. If it turns out thatP = NP the security of all transactions
based on RSA, PGP and the such will be broken and many aspects of our everyday
life would have to change.

Polynomial reducibility and NP-completeness. We say that a languag#; C
2* is polynomially reducibléo a language?, C Z* and write and write?1 <p 2>

if there exists a computer prografwhich runs in polynomial time such that
A:3* - 3* and

we % ifand only if A(w) € %.

Intuitively, regarding polynomial-time as “easy”, this means: if there is a polyno-
mial reduction from%; to .%, then_. %, cannot be harder thaff,.

Theorem 6.20 If £ € P and.?" <p £ thenZ’ € P.

Lhttp://www.claymath.org/millennium/P_vs_NP/
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Proof. If Ais a computer program that decidéé in polynomial time, and iB
is a computer program that reduc&$ to . in polynomial time, therBo Ais a
computer program that decidegg’ in polynomial time, sa?” € P. O

Definition 6.21 A language? C Z* is NP-hard if .2" <, £ for every.Z” € NP.
A language? C 2* is NP-completdf it is NP-hard and belongs tdP.

An NP-complete problem is a paradigm of BifP-problem. Moreover, if one
of them happens to be iAthenP = NP:

Theorem 6.22 Let ¥ be arNP-complete language. 1¥ € P thenP = NP.

Proof. Suppose thatZ is anNP-complete language such that € P. Take any
Z" € NP. Since.Z is NP-hard, it follows that?” <, .# and thusZ”’ € P by
Theorem 6.20. This shows thidP C P. O

The first hands-olNP-complete problem was discovered in 1971 by S. Cook.
A Boolean formulas a formula built up from Boolean variablgs,. . ., x, (each of
which can take the valudsue or falsg and Boolean connectives, A andV. A
Boolean formula= (x1, ..., X,) is said to be in @onjunctive form(CF for short) if
it has the form

F(Xt,..%n) =C1(X1,.. ., %) AC2(Xa, - ..y Xn) A v e ACK(Xa, -+ -, Xn)

where each claugg (xy, ..., Xn) is a disjuction of literals

Ci(X]_,...,Xn) = (|i1\/|i2\/...\/|imi)

and each literal;j is a variablex; or a negated variablex;;. It is a well known
fact from Boolean logic that every Boolean formula is equivalent to a CF Boolean
formula.

A Boolean formulaF (xg,...,X,) is satisfiableif there exists an assignment
T:{Xy,...,X} — {true false} of truth values to variables such thgtF) = true,
that is,F evaluates tdrue under the assignmemnt Let us fix a systematic way
of encoding CF Boolean formulas by 01-words and(lef denote an encoding
of F. Let us denote the language that corresponds to satisfiable Boolean formulas
by SAT:

SAT= {(F) : F is a satisfiable CF Boolean formyla

Theorem 6.23 (Cook 1971)SATis NP-complete.
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Now that we have an explicitdP-complete problem, it gives us a strategy to
show that other problems are alsif*-complete: if anNP-complete problem is
polynomially reducible to some other problem, this new problem also has to be
NP-complete.

Theorem 6.24 If £ is anNP-complete language and#’ € NP has the property
that.Z <, 2" then.’ is alsoNP-complete.

Proof. This is an immediate consequence of the fact hais transitive. O

Therefore, in order to show that finding a Hamiltonian cycle in a graph is an
NP-complete problem, it suffices to show tI&ATis polynomially reducible to it.
In this particular case, working with digraphs turns out to be easier than working
with graphs, so we introduce the two languages:

e HAMG= {(G) : G is a Hamiltonian graph which is a 01-language that en-
codes Hamiltonian graphs, and

e HAMD = {(D) : D is a Hamiltonian digraph which is a 01-language that
encodes Hamiltonian digraphs,

and carry out the proof in two steps:
¢ we first show thaHAMG <, HAMD andHAMD <, HAMG, and then

e we show thaBAT <, HAMD.

Lemma 6.25 HAMG < HAMD andHAMD <, HAMG.

Proof. For every graptG = (V,E) let Dg = (V,E’) denote the digraph with the
same set of vertices whose set of edges is

E'={(uv) eV2:{u,v} €E}.

Clearly, there exists a polynomial algorithm that convé@sto (Dg) and it is easy
to see thats is a Hamiltonian graph if and only iDg is a Hamiltonian digraph
(Homework 6.11). ThereforéJAMG < HAMD.

Now, letD = (V,E) be a digraph and l&bp = (V/,E’) be a graph constructed
from G as follows. For eacl € V we add three vertice®, v}, v? to V/ and two
edges{\°,v!} and {v},v?} to E’ replacing thus each vertex & by a path of
length 2 inGp. Moreover, for each edg@,v) in E we add an edgéu?,\°} to
E’. An illustration of this proces is given in Fig. 6.3. Clearly/| = 3|V| and
|E’| = |[E| +2|V|, so the reduction is polynomial. It is also easy to see Ehit a
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Figure 6.3: Two digraphs and their associated graphs

Hamiltonian digraph if and only iGp is a Hamiltonian graph (Homework 6.11).
Therefore HAMD <, HAMG. O

Theorem 6.26 HAMG is NP-complete.

Proof. According to Theorem 6.24 it suffices to show tB&(T <, HAMG. We shall
actually show thaSAT <, HAMD and then us&lAMD <, HAMG established in
Lemma 6.25. Therefore, for every Boolean formilgs, . .., X,) in CF we have to
construct a not too complicated digraph such thaf is satisfiable if and only if
De has an oriented Hamiltonian cycle.

LetF(xs,...,X,) be a Boolean formula given in its conjunctive form:

F(Xty.- %) =C1(X1,. .., %) ACo(Xa, - -+, Xn) A v o ACK(Xa, - - -, Xn)-
Recall that each claugg(xy, ... ,X,) is a disjuction of literals
Ci(Xl,...,Xn) = (|i1\/|i2\/...\/|imi)

and each literal;; is a variablexj or a negated variablex;j. We construct a
digraphDg with 2nk+ k vertices as follows. For each variabtewe have2k
verticesujy, Vi1, Uiz, Viz, . . ., Uik, Vik, and for each clausg we have a verteg;. The
verticesuj, vij are connected by edges as in Fig ¢a4. We choose a direction,
say from left to right, and say that thgtevaluates tdrue if we traverse vertices
that correspond t&; in that direction, while it evaluates to false if we traverse the
vertices that correspond ¥in the oposite direction.
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X1 —

Xo —

Xn—>

Figure 6.4: The construction of the digraph, Part I: vertices that correspond to
variables
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Cy % (€9

Figure 6.5: The construction of the digraph, Part II: vertices that correspond to
clauses
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Next, we describe how to connect vertices that correspont to clauses to vertices
that correspond to variables. If a variableappears in a claugg; and it is not
negated irC;, we add the edgas; — c; andcj — v;;. If, however,x is negated
in C; we add the edgeg; — c¢; andc; — uj. So, if a variablex is not negated
in a clauseC; we add edges that go “in the direction of truth”.x|fis negated in
Cj, we add edges that go “in the direction oposite of truth”. An example is given
in Fig. 6.5 (for clarity, the figure indicates only the edges incident to vertices that
represent clauses; edges connectifg to vi;’s have been omitted). The digraph
in Fig. 6.5 corresponds to the boolean formiai(&, X2, X3, X4) = C1 AC2 AC3z where
C1=X1 VX2 VX4, Co = =%V X3 andCz = —x1 V X3. The full graph that represents
F is given in Fig. 6.6.

Itis easy to see that this construction can be carried out in polynomial time. Let
us finally show thafF is satisfiable if and only iDg has an oriented Hamiltonian
cycle. Recall that traversing a row of vertices that corresponas from left to
right meansrt (X)) = true while traversing from right to left meangx;) = false
The idea is that an oriented Hamiltonian cycle through the digraph represents an
assignment of truth values to the variabigs. . ., X,.

Assume the formul# is satisfiable by some truth assignmentChoose one
true literal in each clause, traverse the graph moving across each variableSs path
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X1 —

X2 —

X3 —

125

Figure 6.6: The digrapg for F(x1,X2,X3,X4) = (X1 V X2 V Xq) A (—X2 V X3) A

(—X1V X3)
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in the appropriate direction, and take a diversion to a clause-node for each literal
chosen above. This oriented path is a Hamiltonian cycle.

Conversely, suppose there exists an oriented Hamiltonian EyoieDg. Then
H traverses each variableSs row either from left to right or from right to left and
thus determines an assignment of truth valués variables. Each clause-node is
visited by a side-trip from a variable row. This variable corresponds to a true literal
in the clause. Hence, each clause evaluatésieoundert and hencea (F) = true,
i.e.F is a satisfiable formula. OJ

Homework

6.1. LetD be an Eulerian digraph. Prove that each closed Eulerian wdlk in
can be partitioned into oriented cycles in such a way that every edge of
belongs to exactly one of the cycles. (Hint: use induction on the length of
the walk.)

6.2. Prove Theorem 6.5.
6.3. Complete the proof of Theorem 6.6.

6.4. There are five regular polyhedra: tetrahedron, hexahedron, octahedron,
dodecahedron and icosahedron (Fig. 6.7). Which of them could have been
used instead of the dodecahedron in the Hamilton’s Voyage Around the
World puzzle?

6.5. Complete the proof of Corollary 6.10.

6.6. Prove Corollary 6.12. (Hint: fofa) show thatcl(G) is a complete graph
and use the Bondy-Chvéatal Theorefh) follows from (a).)

6.7. (Ore 1960) LetG be a graph with vertices. Ifd(u) 4+ d(v) > n— 1 when-
everu andv are distinct, nonadjacent vertices®@thenG has a Hamilto-
nian path. (Hint: add a new vertex @and connect it by an edge to every
vertex ofG; show that the new graph is Hamiltonian using a similar result
for Hamiltonian graphs.)

6.8. Show that a transitive tournament has exactly one Hamiltonian path.

6.9. Show that each tournament which is not strongly connected can be turned
into a strongly connected tournament by changing the orientation of only
one edge.

6.10. Prove Theorem 6.16. (Hint: induction &rusing the fact that a Hamilto-
nian tournament is strongly connected; ket 3 show tha€(O(v), 1 (v)) #
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HE

Figure 6.7: The five regular polyhedra

@, for the induction step modify slightly the idea used in the proof of The-
orem 6.15.)

6.11. Complete the proof of Lemma 6.25 by showing that
e G is a Hamiltonian graph if and only D¢ is a Hamiltonian di-
graph; and

e D is aHamiltonian digraph if and only &p is a Hamiltonian graph.

Exercises
6.12. (a) For eachn > 2 give an example of a graph withvertices which is
neither Eulerian nor Hamiltonian.

(b) For eachn > 3 give an example of a graph withvertices which is
both Eulerian and Hamiltonian.

(c) For eacm > 4 give an example of a Hamiltonian graph witlvertices
which is not Eulerian.
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Figure 6.8: Exercise 6.19

(d) For eachn > 5 give an example of an Eulerian graph wittvertices
which is not Hamiltonian.

6.13. Prove that an Eulerian graph with no isolated vertices has no cut-edges.

6.14. For adigraptD and a set of edgds C E(D) letW be the set of all vertices
of D incident to an edge iR and letD[F| = (W, F) denote thesubdigraph
of D induced byF.

Let D be a weakly connected digraph. Prove thas Eulerian if and only
if there exists a partitiodF, ..., K} of E(D) such that eacD[F] is an
oriented cycle.

6.15. LetAbe afinite set with at least three elements\Oa Z(A)\ {2,A} as
a set of vertices we define a gra@tas follows: two proper subsexsand
Y of A are adjacent if and only X C Y orY C X (i.e., if and only if one
of them is a proper subset of the other one). Show G an Eulerian
graph.

6.16. Let G be an Eulerian graph with no isolated vertices and w{8) odd.
If A(G) < [5] show thaiG is an Eulerian graph.

6.17. Let G ne an Eulerian graph with no isolated vertices and w{i&) odd.
If d(G) > 3 show thatG is an Eulerian graph.

6.18. Let G be a connected graph wiftk odd vertices. Show th&(G) can be
partitioned intok edge-disjoint trails.

6.19. Is it possible to partition the edge-set of the graph in Fig. 6.8 into five
edge-disjoint paths of legth 87

6.20. Which of the graphs in Fig. 6.9 are Hamiltonian?
6.21. (a) Let G be a bipartite Hamiltonian graph and iX,Y} be a partition
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(@)
(b) (©) (d)

Figure 6.9: Exercise 6.20

of the set of its vertices that demonstrates tBas bipartite. Show that
X| = [Y].

(b) Is the graph in Fig. 6.10 Hamiltonian?

6.22. A vertex cover of a grapls is a set of verticeV C V(G) such that every
edge inGis incident to a vertex frorilV. Show that ifG has a vertex cover
W such thaiw/| < 2n(G) thenG is not Hamiltonian.

6.23. Let G be a graph witm vertices andm edges such that > (",%) + 2.
Show thatG is a Hamiltonian graph.

Figure 6.10: Exercise 6.21
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6.24.

6.25.

6.26.

6.27.

16.28.
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Show that the complement of a regular disconnected graph is a Hamilto-
nian graph.

Show that a hypercube of dimensikp: 2 is a Hamiltonian graph.
Show that every strongly connected tournament with 4 vertices con-

tains a vertex such that after changing the orientation of all the edges
incident tov we again obtain a strongly connected tournament.

Show that a strongly oriented tournament witk: 3 vertices has at least
n— 2 oriented triangles. (An oriented triange is an oriented cycle of length 3.)

Lets; < s <... < s be the scores in a tournameéntwith n vertices. If
SS—S1 < g show thatT is a Hamiltonian tournament. (Hint: show that
Sj—s < 5 whenevei < j and conclude thal is strongly connected.)



Chapter 7

Planar graphs

The main point about graphs is that we can draw them. Speaking about graphs
as abstract objects without the appropriate accompanying drawing is unheard of.
Because drawing graphs is so important, graphs with particularly nice drawings are
particularly important.

Planar graphs are graphs that can be drawn in the Euclidean plane in such a way
that no two edges have a common internal point. Planarity is therefore introduced
as a geometric concept. However, one of the deepest results in graph theory tells
us that there is a combinatorial characterisation of planar graphs, showing that,
although introduced as a geometric concept, planarity is a combinatorial property
of graphs.

In this chapter we first introduce planar graphs as graphs which have “nice”
drawings and then present the results of Kuratowski (1930) and Wagner (1937)
that characterise planar graphs in a purely combinatorial fashion. At the end of the
chapter we discuss regular polyhedra. Euler’s proof that there are only five regular
polyhedra is in the heart of Euler’s formula for planar graphs.

7.1 Planarity as a geometric concept

An arc (or aJordan curvg in R? is any injective continuous mapping [0,1] —
R?, where the real intervgD, 1] andR? are endowed with the usual topologies.
Pointsy(0) and y(1) are called theend-points ofy. Arcsy,y :[0,1] — R? are
internally disjointif {y(x):0<x<1}N{y(x):0<x< 1} =&, Fig. 7.1. Let
Arc(R?) denote the set of all arcs R?. A drawing of a graphG = (V,E) is a pair

of mappingg v, €) wherev :V — R?is injective,& : E — Arc(R?) is injective, and
the following compatibility requirement is satisfied (see Fig 7.2):

if e={u,v} ande(e) = ythen{y(0),y(1)} = {v(u),v(v)}.

131
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Figure 7.2: The compatibility of andv

A planar representation of a grapB is a drawing(v, €) of G such that(e;)
ande(ey) are internally disjoint arcs wheneverande, are distinct edges @. A
graphG is planar if there is a planar representation®f

Example 7.1 In 1884 Edwin A. Abbott wrote a fascinating novehatland: A ro-
mance of many dimensiomswhich two-dimensional beings live in a two-dimensional
universe. Here is an excerpt from the introduction:

“| call our world Flatland, not because we call it so, but to make
its nature clearer to you, my happy readers, who are privileged to live
in Space.

Imagine a vast sheet of paper on which straight Lines, Triangles,
Squares, Pentagons, Hexagons, and other figures, instead of remain-
ing fixed in their places, move freely about, on or in the surface, but
without the power of rising above or sinking below it, very much like
shadows — only hard with luminous edges — and you will then have a
pretty correct notion of my country and countrymen. [...]

The most common form for the construction of a house is five-
sided or pentagonal [...]. The two Northern sides [...] constitute the
roof, and for the most part have no doors; on the East is a small door
for the Women; on the West a much larger one for the Men; the South
side or floor is usually doorless. [...]"

In the twnetieth century, the Flatlanders were faced with the Water-Gas-Electricity
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(@) (b)
Figure 7.3: The Water-Gas-Electricity problem in Flatland

problem: provide each house with water, gas and electricity. It is easy to provide
two houses with all of the three resources (Fig. (@B, but is it possible to do

it with three houses (Fig. 7.@))? Of course, water pipes, gas pipes and electric
wires are not allowed to intersect. [Answer: No, see below.]

Example 7.2 (a) K4 is a planar graph; see
the adjacent figure for a nonplanar and a pla-
nar representation f,.
(b) Ks—eis a planar graph, see Fig. 7).
(c) Kzz—eisaplanar graph, see Fig. 1i4).

ZEN
o/

Figure 7.4: Planar representationdkgf— eandKz 3 — e

Lemma 7.3 Every subgraph of a planar graph is a planar graph.

A subsetQ C R? of the real plane isrcwise connectei for everya,b € Q,
a#b, thereisanarg: [0,1] — Q such thaty(0) = aandy(1) = b. A regionis an
open, arcwise connected subseR3f Fig. 7.5(a). A closed Jordan curvia R? is
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any continuous mapping: [0, 1] — R? such that the restrictiop g 1) : [0,1) — R?
is injective andy(0) = y(1).

exterior ofy

S interior of y

T 0 l y

(@) (b)

Figure 7.5:(a) A region;(b) Jordan’s Theorem

Theorem 7.4 (Jordan) Every closed Jordan curwesplits the plane into two re-
gions. One of them is bounded and is called itfterior of y. The other is un-
bounded and is called thexterior ofy. (Fig. 7.5(b))

A planar graph has many planar representations and from Jordan’s Theorem
it follows that every planar representation of a planar graph splits the plane into
regions calledacesof the representation. The famous result of Euler shows that
although the geometry of planar representations may differ significantly, the num-
ber of faces does not depend on the representation.

Figure 7.6: Three planar representations of the same graph

Example 7.5 In Fig. 7.6 we have three distinct planar representations of the same
graph with 7 vertices and 9 edges. Each of the three representations has 4 faces
(three bounded regions, and one unbounded region).
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Fact 7.6 Let (v,€) be a planar representation of a planar gr@pWwhich is not a
tree and leebe an edge db that belongs to a cycle @. According to Lemma 7.3,
G—eisaplanar graph. LW, ') be a representation &— e obtained by restrict-
ing e to E\ {e}. This is clearly a planar representation®¥-e. If f is the number
of faces of(v, €) and f’ the number of faces di/,¢’) thenf = '+ 1, see Fig. 7.7.

this representation @& this representation @& — e
hasf faces had — 1 faces

Figure 7.7: Removing an edge on a cycle increases the number of faces of the
representaiton

Theorem 7.7 (Euler 1792) Let (v, €) be a planar representation of a connected,
planar graphs with n vertices andn edges. Iff is the number of faces of the
representation, them— m+ f = 2.

Proof. The proof is by induction om. If m=0thenn=1andf =1, so the
claim is obviously true. Suppose that the claim of the theorem is true for all planar
representations of all connected, planar graphs witin edges and leG be a
connected planar graph withedges. Letv, €) be any planar representation®f
and letf be the number of faces of this representatios i a tree therf = 1 and
m=n-—1son—m+ f = 2. Assume now thab is not a tree. Then there is an edge
e that belongs to a cycle @. According to Lemma 7.35 — eis a planar graph.
Let (v,€’) be a representation @ — e obtained by restricting to E \ {e}. This

is clearly a planar representation®f- e. Let m' be the number of edges &f— e
and letf’ be the number of faces ¢9, ¢’). According to the induction hypothesis,
n—m + f' =2. Fact 7.6 implies = f’ + 1 which together withm= m' + 1 gives
n—m+f=2 O

Theorem 7.8 Let (v,€) be a planar representation of a planar gr&hvith n
verticesm edges ando connected components. fifis the number of faces of the
representation, tham— m+ f —w = 1.
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Figure 7.8: Boundaries of faces

As we have just seen, the number of fa¢etepends on the planar graph itself,
rather than on the planar representation of the graph. In the sequel we therefore
refer to f as thenumber of faces of the planar grafgh and denote the number
by f(G).

The boundanb(Q) of a faceQ of a planar representation of a planar gr&ph
consists of arcs representing some edgés.df b(Q) consists ofp edges and if
of them are cut-edges, thent q is thelength ofQ and it is denoted bi(Q). Note
that cut-edges count twice!

Example 7.9 (a) Consider the plane representation of a planar graph given in
Fig. 7.8. It has three faces whose lengthsléfg ) = 6, | (Q2) = 3andl(Q3) = 9.

(b) The graph A, & has three faces; two of them have length 3, and the
length of the third face is 6.

(c) An extreme example is the graph-+ «—e with only one faceQ. Here
1(Q) =4

Fact 7.10 Let G be a planar graph with at least two edges(let) be any planar
representation ob and letQ be a face ofv, ). Thenl(Q) > 3. If G is bipartite
thenl (Q) > 4 sinceG has no odd cycles.

As a main corollary of Theorem 7.7 we shall now show that a planar graph
cannot have “too many edges”.

Corollary 7.11 LetG be a planar graph with> 2 vertices anamn edges such that
G #P,. Thenm < 3n— 6. Moreover, ifG is bipartite, thetm < 2n— 4.

Proof. Let G = (V,E) be a planar graph with vertices,m edges,w connected
components and faces. Ifm=1thenG 2 P, impliesn > 3andm< 2n—4 <
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3n— 6 trivially holds.

Assume now tham > 2. First, from Theorem 7.8 we know that-m+ f =
w+ 1> 2. Let us estimate the number of faces terms ofnandm. Let (v, ¢) be
a planar representation Gfand letQ;, ..., Q be the faces of this representation.
Since each edge which is not a cut-edge belongs to boundaries of exactly two faces,
it follows that

[(Q1)+...+1(Qf) =2m.
On the other hand{Q;) > 3for all i (Fact 7.10), so

1(Q1) +...+1(Qf) > 3.

Therefore2m > 3f i.e. %m) f. Now

2
n—m+§m>n—m+f>2

whencem < 3n— 6 as required. The proof of the other part of the theorem is
analogous. Just use the fact th@;) > 4. O

Corollary 7.11 is our main tool for showing that graphsm@oéeplanar. The idea
behind all such proofs is that if a graph has “too many edges” it cannot be a planar
graph (see Lemma 7.15).

Corollary 7.12 If G is a planar graph, thed(G) < 5.

Proof. Let G = (V,E) be a planar graph with vertices andn edges. Ifn=1 or
G~ P, thend(G) < 1. Otherwise, we have thah < 3n— 6, so the assumption
0(G) > 6yields2m= .y, 8(v) > 6n, which contradictsn < 3n—6. O

Figure 7.9: A planar Hamiltonian graph
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We close this section by a discussion of planar Hamiltonian graphsG bet
a planar Hamiltonian graph with the Hamiltonian cy€land let(v, €) be a planar
representation o&. Then the representation 6funder(v, ¢) is a closed Jordan
curve which splits the plane into two regions, the interio€@nd the exterior of,
Fig. 7.9. Letintc(l) denote the number of faces @f, €) of lengthl which are in
the interior ofC, and letexic(l) denote the number of faces 0f, ) of lengthl
which are in the exterior of.

Example 7.13 For the planar representation of the Hamiltonian graph in Fig. 7.9
we haveintc(3) = 2, intc(4) = 1, intc(5) = 1, exic(4) = 2, exic(5) = 1, and all
otherintc andexic values are 0.

Theorem 7.14 (Grinberg 1968) LetC be a Hamiltonian cycle of a planar Hamil-
tonian graphs with n > 3 vertices. Take any planar representatiooil hen with
respect to this represention,

n

3 (1-2)ito(1) —exe(1)) =0

Proof. Let (v,€) be a planar representation @fand lete(C) denote the closed
Jordan curve that represeftsThe cycleC contains all the vertices @. Some of
the edges fronk(G) \ E(C) belong to the interior of(C), and the others belong to
the exterior ofe(C). Assume thas edges fronE(G) \ E(C) belong to the interior
of £(C). Theses edges divide the interior a&f(C) into s+ 1 regions, whence

n

zgintc(l) =s+1 (7.1)

|=
Each of theses edges belongs to the boundary of two faces in the interie(©j
while each of the edges frof(C) belongs to the boundary of exactly one face in
the interior ofe(C). Therefore,

n
[-intc(l) = 2s+n. (7.2)
2
Multiplying (7.1) by 2 and subtracting from (7.2) yields
n
Z(I —2)-intc(l) =n—-2.
=3

By the same argument,
n

I;(I —2)-extc(l)=n-2,

and the theorem follows by subtracting the last two equalities. O
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7.2 Combinatorial characterization of planar graphs

We are now going to present two deep results that show that, although defined in
geometric terms, planarity is a purely combinatorial property of graphs. We start
by showing that two small graphs are nonplanar.

Lemma 7.15 The graph&s andKs 3 are not planar graphs.

Proof. For Ks we havem= 10 andn =5. Sincem > 3n— 6 it follows from
Corollary 7.11 thaKs is not a planar graph. Similarly, fé€; 3 we havem= 9 and
n=6, som> 2n—4andKs3 is not a planar graph. g

The graphXs andKz 3 are paradigms of nonplanar graphs: theorems of Ku-
ratowski and Wagner (see below) show that a graph is nonplanar if and only if it
contains a sort of a copy &fs or K3 3. In order to make this notion more precise,
we introduce two graph editing operations: edge splitting, and edge contraction,
Fig. 7.10.

Edge splitting: Letec E(G), e= {u,v}, and letx ¢ V(G) be a new vertex. Let
Gx* e be a new graph obtained fro@ by replacing the edge by the path
u e x & vwheree; = {u,x} ande; = {x,v}. More precisely,

V(Gxe)=V(G—e)U{x}
E(Gxe) =E(G—e)U{e1,e}.

The we say tha6 x eis obtained fronts by splitting the edge.

Edge contraction: Let e € E(G), e= {u,v}, and letx ¢ V(G) be a new vertex.
Let G/e be a new graph obtained fro@ by replacing verticesi andv by
the vertexx and joining the neighbours afandv to x. More precisely,

V(G/e)=V(G—u—v)U{x}
E(G/e) =E(G—u—-Vv)U{{x,w} :we (Ng(u)UNg(v)) \ {u,v}}.

The we say tha®/eis obtained fronG by contracting the edge.

A graphH is asubdivision of a graplG if H can be obtained fron® by a
finite sequence of edge spilttings. A graghis a contraction of a graptG if H
can be obtained fror® by a finite sequence of edge contractions. A graph, one of
its subdivisions and one of its contractions is depicted in Fig. 7.11.

Planarity is invariant under edge splittings and edge contractions, as the fol-
lowing lemma shows.



140 CHAPTER 7. PLANAR GRAPHS

G Gxe G G/e

S ks |

<
<
<

Figure 7.10: Edge splitting and edge contraction

G a subdivision ofG a contraction of5

Figure 7.11: A subdivision and a contraction of a graph

Fact 7.16 If H is a subdivision of5, thenG is planar if and only iH is planar. A
contraction of a planar graph is a planar graph. The converse of the last statement
does not hold: just takiés and any of its contractions.

Finally, the following pair of theorems shows that the presend&afr K3 3 is
the main reason for nonplanarity of a graph.

Theorem 7.17 (Kuratowski 1930) A graph is planar if and only if it does not have
a subgraph that is a subdivisionf or Kz 3.

Theorem 7.18 (Wagner 1937)A graph is planar if and only if it does not have a
subgraph that is a contractiont&f or Kz 3.

Example 7.19 Finding subdivisions oKs or K33 in a nonplanar graph can be
tricky. For example, the Petersen graph is easily seen to h&yasits contraction,
while it is not so easy to find a subgraph that is a subdivisioKzgf, Fig. 7.12.
Surprisingly, no subgraph of the Petersen graph is a subdivisikg. of



7.3. REGULAR POLYHEDRA 141

Figure 7.12: The Petersen graph and a subdivisidfzgfas its subgraph

7.3 Regular polyhedra

The five regular polyhedra, or Platonic bodies: tetrahedron, hexahedron, octahe-
dron, dodecahedron and icosahedron (see Fig. 7.13), had been known to geometers
of Ancient Greece, but there was no proof that these are the only ones until L. Euler
proved a version of Theorem 7.7. We shall now demonstrate the application of the
graph-theoretic version of the Euler’s result to show that these are indeed the only
regular polyhedra.

To each regular polyhedrdhwe can in an obvious way assign a planar graph
G(P): vertices ofP correspond to vertices @(P), and edges o correspond to
the edges o6(P). Clearly, faces of every planar representatio® @) correspond
to faces ofP. Now, regularity of the polyhedron translates to the requirement that
G(P) be a regular graph and that all faces of a planar representat®(P9fbe of
the same length. Graphs of the five regular polyhedra are given in Fig. 7.14.

Lemma 7.20 LetP be a regular polyhedron. Then
(a) 3< d(v) < 5for every vertex of G(P), and
(b) 3<1(Q) < 5 for every faceQ of every planar representation@(P).

Proof. (a) Take any vertex of G(P). For geometric reasons we hadév) > 3,
while &(v) < 5 follows from Corollary 7.12 sinc&(P) is a regular graph.

(b) Take any face&Q of a planar representation &(P). Thenl(Q) > 3 for
geometric reasons. All faces Bfhave the same length sinBes a regular poly-
hedron, so in order to prov€Q) < 5 it suffices to show that there exists a face
whose length is< 5. Using the ideas from proofs of Corollaries 7.11 and 7.12 it
is easy to show thah < 3f — 6 whence there exists a fa€® such that (Q') <5
(Homework 7.10). O

Let P be a regular polyhedron withverticesmedges and faces. Thers(P)
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(DHES

Figure 7.13: The five regular polyhedra

Figure 7.14: Graphs of the five regular polyhedra
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is a planar connected graph, se- m+ f = 2 by Theorem 7.7. Moreove6(P)

is a regular graph and every face of every planar representati@rhat the same
length. Letd be the common degree of vertices@(fP) and letl be the common

length of faces of planar representation&39P). Then from the First Theorem of
Graph Theory and by the counting argument we used to prove Corollary 7.11,

n-o=I-f=2m

Now, 4n — 2m— 2m+ 4f = 8 together withn- 6 =1 - f = 2myields4n—n-d —1-
f +4f =8 whence
n(4—-9)+ f(4—1)=8.

From Lemma 7.20 we know that € {3,4,5} andl € {3,4,5}, so there are nine
cases to discuss.

(1) d=1=3: thenn+ f =8 and3n = 3f, whencen= f =4 andP is the
tetrahedron.

(2) 0 =3,1 =4: thenn=8and3n=4f, whencef =6 andP is thehexahedron

(3) 0 =3,1 =5: thenn— f =8 and3n=5f, whencen= 20, f =12andP is
thedodecahedron

(4) 0 =4,1 =3: thenf =8and4n= 3f, whencen= 6 andP is theoctahedron
(5) 0 =1 =4: then0= 8- impossible.
(6) 0 =4,1 =5: then—f =8 —impossible.

(7) 6 =5,1 =3: then—n+ f =8and5n=3f, whencen=12, f =20andPis
theicosahedron

(8) 0 =5,1 =4: then—n= 8- impossible.
(9) 0 =1=5:then—n— f =8 —impossible.

Therefore, there are only five regular polyhedra.

Homework

7.1. Prove Lemma 7.3.
7.2. Prove Theorem 7.8.
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7.3. Complete the proof of Corollary 7.11 by showing tinatl 2n—4if G is
a bipartite planar graph withvertices andn edges.

7.4. A maximal planar graphis a graphG = (V,E) such that

e Gis aplanar graph, and
e if G =(V,E’)is aplanar graph with the same set of vertices and with
E’' D E thenE' =E.
Show that every maximal planar graghis connected ant{Q) = 3 for
every faceQ of every planar representation Gf

7.5. Let G be a planar graph with > 3 vertices andn edges. Show th#s is a
maximal planar graph if and only h= 3n— 6.

7.6. Show that among nonplanar gragfshas the smallest number of vertices
andKs 3 has the smallest number of edges.

Q

Figure 7.15: An outer planar graph

7.7. A graphG is calledouter planarif there exists a planar representation
(v,€) of G and a face of this representation such that all vertices®f
belong to the boundary @. An example of an outer planar graph is given
in Fig. 7.15.

For a graphG let G* denote the graph obtained by adding a new vertex
to G and joining the new vertex to every vertex@f More precisely, if
x¢V(G), let

V(G") =V(G)U{x}

E(G") =E(G)U{{x,v}:veV(G)}.

Show thatG is an outer planar graph if and only@®* is a planar graph.

7.8. Show that a graph is outer planar if and only if it does not have a subgraph
that is a subdivision oK4 or K3 3.
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7.9.

7.10.

Show that a graph is outer planar if and only if it does not have a subgraph
that is a contraction df4 or Kz 3.

Let G be a connected planar graph withedges and faces such that
o0(G) = 3.

(a) Show thatm < 3f — 6. (Hint: Use the idea of the proof of Corol-
lary 7.11 together with the fact tham > 3n.)

(b) Show that every planar representation®fas a faceQ such that
[(Q) < 5. (Hint: Use(a) and the idea of the proof of Corollary 7.12.)

Exercises

7.11.

7.12.

7.13.

7.14.

7.15.
7.16.

7.17.

7.18.

(a) Show that the two graphs in
the adjacent figure are not planar.

(b) Show thatQjs is not a planar
graph.

Find two 3-regular graphs with the same number of vertices such that one
of them is planar and the other is not.

(a) Let G be a planar graph such thatG) > 5. Show thaiG has at least
12 vertices whose degree is exactly 5.

(b) Find an example of a planar graph with 12 vertices such that the degree
of every vertex of the graph is exactly 5.

Let G be a graph witm > 10vertices. Show that at least one of the graphs
G, Gis not planar.

Find all treesT such thafl is a planar graph.

Let G be a connected planar graph witiG) > 4. Show that every planar
representation ob has a face of length 3.

Let G be a planar graph with vertices andn edges and leg > O be the
minimal length of a cycle ifts. Show that
9
m< ——(n—2).
g (n—=2)

(a) Show thatQ, contains a subdivision d€y, 1.

(b) Find alln such tha, is a planar graph.



146

7.19.

7.20.

7.21.

7.22.

7.23.

CHAPTER 7. PLANAR GRAPHS

LetG = (V,E) be a nonplanar graph. Thieickness o6, denoted byg(G),
is the smallest positive integ&mwith the property that there is a partition
{Ex1,...,Ex} of E such thatV, E;) is a planar graph for alil

(a) Let G be a graph witi > 3 vertices andn edges. Show that

m
3n—6

6(G) >

(b) Show thatd(Kes-1) > s.

Let T be a tree with at least 4 vertices andégete,, e3 € E(T) be three
edges not inT. Show thafl +e; + €+ €3 is a planar graph.

(a) Show that a graph with three edge-disjoint spanning trees cannot be
planar.

(b) Show that a bipartite graph with two edge-disjoint spanning trees can-
not be planar.

Is there a convex polyhedron (not necessarily a regular one) whose faces

are hexagons?

The graphGin Fig. 7.16 is clearly a Hamiltonian graph. Is there a Hamil-
tonian cycle ofG which contains edges ande,?

Figure 7.16: A planar Hamiltonian graph

7.24. For a connected graph let 1(G) denote the number of distinct (possibly

isomorphic) spanning trees & Show thatt (G) =1(G—e)+1(G/e) for
anyec E(G).



Chapter 8

Graph colourings

Colouring vertices and edges of graphs is one of the most popular topics in graph
theory. Popularity aside, applications of graph colourings range from scheduling
meetings of committees to compiler optimizations.

In this chapter we address some basic problems concerning colouring vertices
and colouring edges of graphs. We discuss the famous Four Colour Problem which
states that every planar graph is 4-colourable.

8.1 Colouring vertices

Supposep senators«, ..., Xp are members off committeesMy, ..., Mg, of the
University Senate and suppose that a senator can be a member of more than one
committee. Then a schedule of meetings ofdlsemmittees has to be made in such

a way that committees that share members cannot meet at the same time. When
planning committee meetings, one of the fundamental parameters of the schedule
is the number of time slots that have to be allocated.

A graph-theoretic interpretation of this problem can be made as follows. Con-
sider a graptG with verticesMy, ..., Mq whereM; is adjacent td; if i # j and
committeedvl andM; share a member. If we enumerate time slotd by .,k and
assign a committedl; a time slots then clearlys # s; whenevenV; is adjacent
to M;j. This is because adjacent verticesartorrespond to committees that share
members and hence the meetings are not allowed to be scheduled at the same time.

Let B be a finite nonempty set that we think of as #&t of colours A vertex
colouring of a graphG = (V, E) is any mappind :V — B. A vertex colouringf :

V — B is calledproperif adjacent vertices are coloured by distinct colours, that is,
{u,v} e Eimpliesf(u) # f(v), forallu,ve V. AgraphG = (V,E) is k-colourable
if there exists a proper colourinfy: V — {1,...,k}. Thechromatic number o6

147
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Figure 8.1: A graph withia) a proper vertex colouring with 5 colourd)) a proper
vertex colouring with 3 colourgc) no proper vertex colouring with 2 colours

denoted byx (G) is the least positive integérsuch thats is k-colourable.

We see that if a grap@ is k-colourable, then it i$-colourable for every > k.
This is because we aret obliged to use all the colours froB It is also easy to
see that iH < Gthenx(H) < x(G).

Example 8.1 Consider a grapks in Fig. 8.1(a). As we can see, the graph is 5-
colourable. It is also easy to see that the same graph in 3-colourable, Fif)8.1
and that it isnot 2-colourable, Fig. 8.1c). Therefore x(G) = 3.

Note thatx (G) < kis equivalent to the fact th& is k-colourable. On the other
hand, to show thax(G) = k we have to show

e thatk colours suffice for proper vertex colouring @f that isx (G) < k; we
usually show this by exibiting an explicite proper vertex colouringatith
k colours; and

e thatk colours are necessary for proper vertex colourin@ahat isy (G) >
k; we usually show this by assuming thatolours suffice and then deriving
a contradiction, or by showing thK( is a subgraph o6.

Lemma 8.2 (a) x(G) =1 ifand only ifE(G) = @.
(b) x(G) =2 ifand only ifE(G) # @ andG is a bipartite graph.
(€) X(Kn) =n.
(d) If Ks < G thenx(G) > s.
() X(Cas) =2 andx (Cosy1) = 3.
Proof. We shall provegc) and the second part ¢é).

To show(c) note first thah colours suffice to colour vertices Bf, sox (Kn) <
n. On the other hand, we need at leasblours to colour the vertices &, prop-
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erly since every pair of vertices &, is adjacent, whencg(K,) > n. Therefore,
X(Kn) =n.

To show the second part ¢€), note first that from(a) and(b) it follows that
X(Cosi1) # 1,2, sox(Cosi1) = 3. On the other hand, it is easy to see that three
colours suffice to coloug (Cys11), whencex (Cosi1) = 3. O

Finding the exact value gf(G) is usually a very complicated task. We shall
therefore present two standard upper bounds. For a ggdeh

inf(G) =max{d(H) : H < G}.
Theorem 8.3 x(G) < inf(G) + 1.

Proof. The proof is by induction om = n(G). The claim is trivially true for
n=1,2,3. Assume thaty(H) < inf(H) + 1 for all graphsH with less thann
vertices and leG be a graph witn vertices. Letv € V(G) be a vertex ofc such
thatd(v) = 6(G), letd = &(v) andN(v) = {wy,...,Wq}. PutH = G—v. By the
induction hypothesis we have(H) < inf(H) + 1, so there is a proper colouring
f:V(H) — B of H with |B| = inf(H) + 1 colours. In order to complete the proof
we are going to extend the colourifigo a proper colouring o6.

FromH < Gt follows thatinf(H) < inf(G) (Homework 8.2) so leB' O B be
a superset oB such thatB'| = inf(G) + 1 and letf’ : V(H) — B’ be a mapping
such thatf’(v) = f(v) forallve V(H). Clearly, f" is a proper vertex colouring of
H with inf(G) + 1 colours. The colourindg’ uses at mostl colours for colouring
the neighboursvy,...,wy of v. Now d = 6(G) < inf(G), so at least one of the
inf(G) + 1 colours fromB' is not used for colouring of neighbourswfTherefore,
B\ {f'(wy),...,f'(Wq)} # 2. Take anyc e B'\ {f'(wy),..., f'(wy)} and define

f*:V(G) — B by
F(x) = C, X=V |
f’(x), otherwise.
It is easy to see thdt" is a proper vertex colouring @ by inf(G) + 1 colours, so

X(G) <inf(G) + 1. O

The parametenf(G) is not one of the “standard” parameters. Although rather
easy to compute (see Homework 8.3), we prefer to replace it by more convenient
ones.

Corollary 8.4 x(G) <A(G)+1.

Proof. Sinced(H) < A(H) < A(G) for everyH < G, itis easy to see thatf(G) <
A(G). O
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The following theorem shows that odd cycles and complete graphs are the only
classes of graphs where the upper bound in the above corollary is reached. The
proof of this fact is surprisingly complicated and we shall omit it.

Theorem 8.5 (Brooks, 1941)LetG be a graph which is neither the complete graph,
nor the odd cycle. Ther(G) < A(G).

Finally, we shall present an upper bound on the chromatic numbg(®¥
which depends on the number of edges of the graph.

Theorem 8.6 LetG be a graph withm edges. Thex (G) < %Jr \/2m+ %1

Proof. Let k= x(G) and letf : V(G) — {1,...,k} be a proper vertex colour-
ing of G. Fori e {1,...,k} letV, ={veV(G): f(v) =i} be the set of all ver-
tices of G coloured by the colour. ThenE(V;,V)) # @ wheneveri # j (Home-

work 8.5), whencen > (;) = %k(k— 1). Solving fork we obtain (G) = k <

1 1
- 2m-+ —. O
2+ +4

8.2 The Four Colour Problem

Around 1850, Francis Guthrie (1831-1899) showed how to colour a map of all
the counties in England using only four colours so that any two neighboring re-
gions have different colours. He became interested in the general problem and
conjectured that the smallest number of colours needed to colour any planar map
so that any two neighboring regions have different colours is four. Guthrie talked
about his conjecture with his brother, Frederick. Frederick talked about it with his
mathematics teacher, Augustus DeMorgan (from the DeMorgan’s laws in logic),
who sent the problem to William Hamilton (for whom Hamiltonian mechanics is
named). Hamilton was evidently too interested in other things to work on the four
colour problem, and it seemed to have been forgotten for about 25 years. In 1878,
Arthur Cayley made the scientific community aware of the problem again, and
shortly thereafter, British mathematician Sir Alfred Kempe devised a “proof” that
was unquestioned for over ten years. However, in 1890, another British mathemati-
cian, Percy John Heawood, found a mistake in Kempe’s work. The Four Colour
Problem remained unsolved until 1976, when Kenneth Appel and Wolfgang Haken
produced a proof involving an intricate computer analysis of 1936 different con-
figurations. Although some mathematicians have expressed dissatisfaction with
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Figure 8.2: A political map of Europe and its associated planar graph

Appel's and Haken'’s proof, there is still no proof of the Four colour Problem that
does not involve computer analysis.

Colouring maps is closely related to colouring vertices of planar graphs. To
each region of a planar map we assign a vertex of a graph and join two vertices by
an edge if the two regions have a common border. The main observation is that
if a map is not too weird (i.e. no country has a hole, which is the case with Italy
where Vatican makes a hole, or no country consists of two or more parts, which
is the case with Russia where the region around Kaliningrad is detached from the
rest of the country) then the graph associated to the map is planar and every proper
colouring of the map uniquely determines a proper vertex colouring of the graph.
For example, a political map of Europe (as of year 2001, and ignoring Vatican and
the region around Kaliningrad to make Italy and Russia simply connected) together
with the associated planar graph is given in Fig. 8.2. The Four Colour Problem now
becomes a statement about planar gragli&) < 4 for every planar graplG.

As an easy consequence of Theorem 8.3 we immediately obtain the solution to
the “Six Colour Problem”:
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Corollary 8.7 x(G) < 6 for every planar grapf.

Solving the “Five Colour Problem” requires a little bit more work:

Theorem 8.8 (Heawood 1890)x (G) < 5 for every planar grap.

Proof. The proof is by induction on the number of verticesofFor planar graphs
with 1, 2, 3, 4 and 5 vertices the statement is obviously true. Assume that every
planar graph with< n vertices satisfiey < 5 and letG be a planar graph with
n vertices. As we have seed(G) < 5 so there is a vertex € V(G) such that
dc(v) <5.

If dc(v) < 4,letG =G —v. ThenG' is a planar graph
with < nvertices and by the induction hypothesis there is a (1)
proper vertex colouring’ : V(G') — {1,...,5} of G’ with
5 colours. Since has at most four neighbours, at least one (©)
colour c doesnot appear as a colour of one of the neigh- »@
bours ofv, so (3)

f(x):{c’ X=V

f’(x), otherwise.

is a proper vertex colouring @ with 5 colours.

o ok

(G/er)/e3

Figure 8.3: The “Five Colour Problem” for planar graphs

Assume now thadg(v) =5 and letws, ..., ws be all the neighbours of.
There existi # j such thatw; andw; are not adjacent, for otherwisg{ws, ...,
ws| would be isomorphic tds. Suppose thatv; andws are not adjacent and let
er = {v,w;} ande; = {v,wz}. ConsideiG’' = (G/e;)/e;3 and denote the new vertex
obtained by contracting edges andes by z, Fig. 8.3. TherG' is a planar graph
(since planarity is invariant under contracting edges) with vertices and by the
induction hypothesis there is a proper vertex colourihgV (G') — {1,...,5} of
G with 5 colours. Take a€ {1,...,5}\ {f'(2), f'(w2), f'(wa), f'(ws)} and define
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f*:V(G) — {1,...,5} by

c, X=V
f'(x) =< f'(2, X=wporx=ws
f’(x), otherwise.

It is easy to see thdt" is a proper vertex colouring @& with five colours, whence
X(G) <5. O

However, even more is true:
Theorem 8.9 (Appel, Haken 1976)x(G) < 4 for every planar grap.

Theorem 8.10 (Grotzsch 1959)Let G be a planar graph such tha¢ £ G. Then
X(G) <3

8.3 Colouring edges

Let B be a finite nonempty set of colours. Adge colouring of a grapls = (V,E)

is any mappingf : E — B. A colouring f : E — B is calledproper if adjacent
edges are coloured by distinct colours, thatesne,| = 1 implies f(e1) # f(e),
for all e1,e; € E. A graphG = (V, E) is k-edge-colourabléf there exists a proper
colouringf : E — {1,...,k}. Thechromatic index o6 (sometimes also called the
edge chromatic number &) denoted byx’(G) is the least positive integérsuch
thatG is k-edge-colourable.

@ @
@ @@ 5 5 @)@ >
AN AN
(a) (b) (©)

Figure 8.4: (a) K4 is 6-edge-colourable(b) K4 is 3-edge-colourable(c) Ks is
5-edge-colourable
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Example 8.11 The graphK, is 6-edge-colourable (Fig. 8(4)), but also 3-edge-
colourable (Fig. 8.4b)). K, is not 2-edge-colourable since it has a vertex of de-
gree 3, sox’(K4) = 3. The graphKs is 5-edge-colourable (Fig. 8(&)), but not
4-edge-colourable as we shall see below. Therefg(&s) = 5.

Clearly, x'(G) > A(G). A surprising theorem due to Vizing states thatG)
is eitherA(G) or A(G) + 1.

Theorem 8.12 (Vizing, 1964)For every grapls, A(G) < x'(G) < A(G) + 1.

While there are only rough estimates fpfG), the “dual” notion ofx’(G) is
strictly bounded. Therefore, determining the chromatic index of a graph reduces to
deciding which of the two possible values occurs. A general strategy for fiding
is to try to construct an edge colouring wiitolours. From Vizing’s Theorem 8.12
it follows that if such a colouring exists thegi = A, otherwisex’ = A+ 1.

n—1 niseven

Theorem 8.13 Letn > 3. Theny'(K,) = ,
n, nis odd.

Proof. Let n be an even integer. To show thatKn) = n—1 = A(Kp) it suffices
to produce a proper edge colouringkyf with n— 1 colours. Let{0,1,...,n—1}
be the set of vertices d&f, and let us consider a particular representatiokpin
Euclidean plane where vertices 0, .n.+- 2 are vertices of a reguldn — 1)-gon
andn—1is its center, Fig. 8.%a) and(b). For eachj € {0,...,n—2} letE; be
the following set of edges df,.:

E ={{i,n-1}u{{uv}:u+v=2j (modn-1)},

see Fig. 8.5¢p), ..., (Cs) WhereEy, ..., Eg are depicted in case #f;. Note that
the set of edgek; understood as a geometric configuration is a rotatidey@bout

n— 1 through the anglep; = j - % The edges in eadB; are independent (i.e.

no two are adjacent), ande, ...,En_2} is a partition ofE(K,) (Homework 8.8).
Therefore, the edge colourifg: E(K,) — {0,...,n— 2} given by

f(e)=j ifandonlyif ecE;

is a proper edge colouring &, with n— 1 colours.

For the second part of the proof, letoe an odd integer and let us show that
X' (Kn) # A(Kn) = n—1. Then by Vizing’s Theorem 8.12 it follows that(K) =
A(Kp) +1=n. Assume to the contrary that (Kn) = A(K,) =n—1and letf :
E(Kn) — {1,...,n—1} be a proper edge colouring &f, with n— 1 colours. Let
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Figure 8.5: A proper edge colouring kg with 7 colours



156 CHAPTER 8. GRAPH COLOURINGS

Ei ={ec E(Kn): f(e) = 1}. Since every vertex df, is of degreen— 1 and since
edges incident to the same vertex have to be coloured by distinct colours, it follows
that every vertex oK, is incident with an edge fror;. Thereforen = 2. |E|

which is an even integer—contradiction. a

Theorem 8.14 (Konig 1916)If G is a bipartite graph theg/ (G) = A(G).

Proof. We use induction oimm = m(G). If m= 0 the claim is obviously true.
Assume thaix’(H) = A(H) for all bipartite graphdd with < m edges and leG
be a bipartite graph witm edges. Take ang= {u,v} € E(G) and letH =G —e.
ThenH is a bipartite graph with< m edges, sg¢'(H) = A(H) by the induction
hypothesis. Sinc&(H) < A(G) we obtain thaty/(H) < A(G), i.e. H is A(G)-
edge-colourable.

Let f: E(H) — {1,...,A} be a proper edge colouring bf whereA = A(G).
ForxeV(G) =V (H) let B(x) denote the set of all colours that occur as colours of
edges incident ta, that is, the set of alt € {1,...,A} such that there is an edge
d € E(H) incident tox and f (d) = c. If c € B(x) we say that the colouris present
at x; otherwise we say thatis absent atx. The colouringf takes care of all the
edges ofG except for the edge= {u,v}. Our intention is to adjust so as to turn
it into the edge colouring of entir@.

Sincedy (u) = dg(u) —1 < Aanddy(v) = dg(v) — 1 < A, at least one colour is
absent atiand at least one colour is absenvalf there is a colouc € {1,...,A}\
(B(u) UB(v)) that is absent both atand atv, we can straightforwardly extent
to f*:E(G) — {1,...,A} given by

f*(d):{c’ d=e

f(d), otherwise

which is a proper edge colouring &fwith A colours.

Assume now thaB(u) UB(v) = {1,...,A}, i.e., that every colour is present
atuoratv. Letbe {1,...,A}\B(u) be a colour that is absent atandc €
{1,...,A} \ B(v) a colour that is absent &t According to the assumptiob,# c,

b € B(v) andc € B(u). Lete; = {v,w;} be an edge incident withwith f(e;) =b
and let
P=vew ewews...e W

be the longesélternating b/c-path that starts withv e, that is, the longest path
starting withv e such thatf (e;) =b, f(ex) =c, f(e3) =b, f(e4) = cetc, Fig. 8.6.

Let us show that ¢ {v,w1,...,wk}. Suppose to the contrary thatappears
as a vertex oP, sayu=w, and letP’ =ve w; &... wi_; § u. Note first that
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Figure 8.6: A maximal alternatinig/c-path

f(g) = c becausd ¢ B(u). SinceP, and hencé”, is an alternatindp/c-path that
starts with an edge coloured byfrom f(g) = cit follows that the length oP’ is
even. Therefore?’ + eis a cycle of odd length—contradiction with the fact tiat
is a bipartite graph.

Figure 8.7: Recolouring the path

Let us recolour all the edges Bfby swapping the colouidsandc, Fig 8.7. By
the maximality ofP the adjacent edges i are still coloured by distinct colours
and thus we obtain another proper edge colouring gHomework 8.9). Sinc®
does not pass throughno edge incident to was recoloured. Therefore, in this
new colouringb is absent both ai and atv, so we can usb to colour the edge.
More precisely, the required edge colouring®is given by

b, d=e
F(d) = b, deE(P)andf(d)=c
e, deE(P)andf(d)=b

f(d), otherwise

which concludes the proof. O
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Homework

8.1. Show Lemma 8.2b) and(d).

8.2. Show thatnf(H) < inf(G) wheneveH < G.

18.3. Let G be a graph wittm(G) > 0. Letv; be a vertex with the least positive
degree inG andd; = dg(v1), let vo be a vertex with the least positive de-
gree inG—vy andd; = dg_y, (V2), letvz be a vertex with the least positive
degree irG —v; — vz andds; = ds_v,—v,(V3), and so on as long as there are
edges inG—vi — ... —Vvj. We thus obtain a sequence of positive integers
di, do, ...,ds. Show thainf(G) = max{ds, d, ..., ds}.

8.4. Give a direct proof of Corollary 8.4. (Hint: take a vertex V(G) such
thatd(v) = A(G) and use induction o — v.)

8.5. Letk= x(G) and letf : V(G) — {1,...,k} be a proper vertex colouring
of G. Forie {1,...,k} letV, ={veV(G): f(v) =i} be the set of all
vertices ofG coloured by the colour. Show thatE(V;,V;) # @ whenever
i .

8.6. Prove Corollary 8.7. (Hint: use Theorem 8.3 and the fact &{&) < 5
for every planar grapfs.)

8.7. Complete the proof of Theorem 8.8 by showing tlais a proper vertex
colouring ofG.

8.8. Complete the proof of Theorem 8.13 by showing that the edges inEgach
are independent and thfiy, ..., E,_2} is a partition ofE(Kp).

8.9. Complete the proof of Theorem 8.14 by showing that swapping the colours
along a maximal alternatirtg/ c-path in a bipartite graph produces a proper
edge colouring.

Exercises

8.10. Recall that for a grapks by G* we denote the graph
obtained by adding a new vertex®and joining the
new vertex to every vertex @e. Then graplC;_; is
called thewheel withn verticesand denoted b\,
see the adjacent figure. FindW,) and x’(Ws) for
n=4. Wio

8.11. Find x andy’ of: (a) the Petersen grapfbh) Q.
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8.12. Show thaty(G) + x(G) < n+ 1, wheren = n(G).
8.13. Show thatx(G) - x(G) = n, wheren=n(G).
8.14. Show thaty(G) + x(G) > 2,/n, wheren = n(G).

8.15. Let G be % regular graph with vertices and le® = 6(G). Show that

X(G) = n_o

8.16. Letey, ...,& bekindependent edges i,. Find x(Kn—e1 —... —&).
8.17. Let G be a graph such th&(G) # @. Show that there exists a regular

graphH such thaty(H) = x(G), A(H) = A(G) andG is an induced sub-
graph ofH.

8.18. Let G be a graph with the property that every pair of odd cycles hmas a
common vertex. Show that(G) < 5.

8.19. Letn> 4 be an even integer and ldtbe a Hamiltonian cycle df,. Find
X(Kn—E(H)).
18.20. Let D be a digraph@ its base andi(D) the length of the longest oriented
path inD. Show that (D) > x(G) — 1.
8.21. Find x’'(G) whereG is a regular Hamiltonian graph wi(G) = 3.
8.22. LetG be aregular graph withvertices wherais odd. Show thag’(G) =
AG) +1.

8.23. Let G be a graph such th&(G) # @. Show that there exists a regular
graphH such thaty/(H) = x/(G), A(H) = A(G) and G is an induced
subgraph oH.

8.24. Let B(G) denote the greatest cardinality of an independent set of edges
of G. Show thaty’(G) = A(G) + 1if m(G) > A(G) - B(G).



