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KAPITEL 10

Korperkonstruktionen

1. Korper aus irreduziblen Polynomen

DEFINITION 10.1. Eine algebraische Struktur R ist ein Korper, wenn R ein kommuta-
tiver Ring mit Eins ist, R zumindest zwei Elemente hat, und alle Elemente x € R\ {0}
invertierbar sind.

SATZ 10.2. Set R ein Hauptidealbereich, und sei f ein irreduzibles Element von R. Dann
ist R/(f) ein Kérper.

Beweis: Sei x € R so, dass 2+ (f) # 0+(f). Wir zeigen, dass z+(f) invertierbar in R/(f)
ist. Sei dazu I das von {z, f} erzeugte Ideal, und sei z € R so, dass (z) = I. Dann gilt
z | f, also ist z entweder assoziiert zu f oder invertierbar. Wenn z assoziiert zu f ist, so
gilt wegen z | z auch f | x. Dann gilt aber x € (f), und somit z+ (f) = 0+ (f). Folglich
ist z invertierbar. Dann gilt 1 € I, und es gibt somit u,v € R, sodass uz+vf = 1. Dann

gilt (u+ () (@ + () + (w+ (N + () =1+ (f), also (u+ ()@ +(f)) = 1+ (f).
Folglich ist « + (f) invertierbar. O

KOROLLAR 10.3. Sei p eine Primzahl. Dann ist Z,, ein Korper.

KOROLLAR 10.4. Sei K ein Korper und sei f ein irreduzibles Element aus dem Poly-
nomring K[t|. Dann ist K[t]/(f) ein Korper.

Wir definieren den Grad des Nullpolynoms als —1.

LEMMA 10.5. Sei K ein Kérper, und sei f € K|t]. Das Polynom f ist ein invertierbares
FElement von K[t], wenn deg(f) = 0. Das Polynom f ist ein irreduzibles Element von
K|[t], wenn deg(f) > 1 und fir alle g,h € K[t] mit f = g - h gilt deg(g) = 0 oder
deg(h) = 0.

Fiir einen Korper K nennen wir ein irreduzibles Element von Kt] auch ein dber K
wrreduzibles Polynom.
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2. IRREDUZIBLE POLYNOME UBER Q 61

2. Irreduzible Polynome iiber Q

DEFINITION 10.6. Sei R ein kommutativer Ring mit Eins, sei n € Ny, und sei f =
o fitt € R[t]. Das Polynom f ist primitiv, wenn es kein primes p € R gibt, das alle
Koeffizienten f; (1 =0,...,n) teilt.

LEMMA 10.7 (Gaufssches Lemma). Sei R ein kommutativer Ring mit Fins, und seien
f,g € R[t] primitiv. Dann ist f - g ebenfalls primitiv.

Beweis: Wir nehmen an, dass f - ¢ nicht primitiv ist. Dann gibt es ein primes p € R, das
alle Koeffizienten von f-g teilt. Da f und g primitiv sind, teilt p weder alle Koeffizienten
von f noch alle Koeffizienten von ¢. Sei & maximal, sodass p 1 f, und sei [ maximal,
sodass p 1 g;. Wir berechnen den Koeffizienten von t**! von f-g und erhalten (f-g)xy =
S Foern—igi. Fiir i < 1 gilt p | fera)—s, und fir i > 1 gilt p | gi. Dap | (f - 9)psss gilt
also p | frg;.- Da p prim ist, teilt es daher einen der beiden Faktoren, im Widerspruch
zur Wahl von k£ und [. O

DEFINITION 10.8. Sei a = Y a;it" € Z[t], a # 0. Wir definieren den Inhalt von a
durch c(a) := ggT(ag, a1, .., an).

SATZ 10.9. Sei f € Z[t]\{0}, seien g, h € Q[t] so, dass f = g-h, und seien a, § € Z\{0}
so, dass avg € Z[t] und B h € Z[t]. Wir setzen:

v = a5 clag)-c(Bh),
! _ 1
9/ = C(O{g) ag,

Beweis: Die Gleichung f = v (¢’ - #') erhélt man unmittelbar durch Nachrechnen. Wir
zeigen nun, dass v € Z. Seien d,¢ € Z\ {0} so, dass v = g und ggT(0,¢) = 1. Dann gilt
ef=0(g-h). Da f € Zlt], teilt ¢ alle Koeffizienten von § (¢' - h’). Wegen ggT(d,¢) =1
teilt ¢ alle Koeffizienten von ¢’ - A’. Nun sind ¢’ und A’ primitiv. Wegen des Gauftschen
Lemmas (Lemma 10.7) ist ¢’ - ' ebenfalls primitiv, also gilt ¢ € {1, —1}. Folglich gilt
v € L. [

SaTz 10.10 (Eisenstein-Kriterium). Seien n € N, p Primzahl, a = > a; t" € Z[t] so,
dass

(1) plag,...,p| an_1,
(2) pt an,
(3) P>t ao.

Dann ist a ein irreduzibles Element von Q[t] (also ein tiber Q irreduzibles Polynom).
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Beweis: Wenn a nicht irreduzibel ist, gibt es b, ¢ € Q[t] vom Grad > 1, sodass a = be.
Wegen Satz 10.9 gibt es dann auch r, s € Z[t] sodass a = r s und deg(r) > 1, deg(s) > 1.
Sei k := deg(r), | := deg(s). Dann gilt k + 1 = n. Wegen p { a,, gilt p{ry und pt s;. Wir
zeigen nun, dass fiir alle k; € Ny mit k; < k£ und fiir alle [; € Ny mit [; < [ gilt, dass
p | ry, und p | s;,. Sei dazu ke minimal mit p { ry,, und sei Iy minimal mit p { s;,. Dann
ist der Koeffizient von t*2*2 des Polynoms a nicht durch p teilbar. Somit gilt ky+1y = n,
und somit ko = k, Iy = [. Also gibt es Polynome u,v € Z|[t], sodass r = r t* + pu und
s = s t'+ pv. Somit gilt ag = (r - s)o = T(0) - 5(0) = p-u(0) - p-v(0). Folglich ist ay ein
Vielfaches von p?, im Widerspruch zur Annahme. O

UBUNGSAUFGABEN 10.11.

(1) Seien f,g € Z[t] \ {0}. Zeigen Sie, dass c(f - g) = c(f) - c(g)-
(2) Sei a € Z[t], n := dega, und sei r eine rationale Nullstelle von a = agt® + - - - + a,t™
Zeigen Sie, dass es p,q € Z gibt, sodass r = % und p | ag, q | ap.

3. Quotientenkorper

Wir verallgemeinern jetzt die Konstruktion von Q aus Z.

Sei dazu D ein Integrititsbereich. Auf der Menge {(a,b) € D? |b # 0} definieren wir eine
Relation durch (a,b) ~ (c,d) 1< ad = bc. Diese Relation ist eine Aquivalenzrelation,

und wir kiirzen die Klasse (a,b)/~ mit ¢ ab. Mit (D) bezeichnen wir die Faktormenge
{(a,b) € D?|b # 0}/~. Auf Q(D) definieren wir + durch % + £ := 2t durch

bd
—3 = 75 und - durch ¢ - 5= 3%
SATZ UND DEFINITION 10.12. Sei D ein Integrititsbereich. Dann ist (Q(D),+, —, -, %, %)

ein Korper. Er heifit der Quotientenkorper von D.

SATZ 10.13. Sei D ein Integrititsbereich, sei K ein Kdrper, und sei o ein Ring-mit-Eins-
Monomorphismus von D nach K. Dann ist ¢ : Q(D) — K, ¢($) == ¢(a) - (p(b))~"
wohldefiniert und ein Ring-mit-Eins-Monomorphismus vom Quotientenkorper von D
nach K.

Sei K ein Kérper. Den Quotientenkérper des Polynomrings K¢y, .. ., t,| bezeichnet man
als den Korper der rationalen Funktionen vom Transzendenzgrad n tiber K, und kiirzt
ihn mit K (¢y,...,t,) ab.



KAPITEL 11

Korpererweiterungen

1. Unterkorper und Primkorper

DEFINITION 11.1. Sei £ = (E,+,—,+,0,1) ein Korper, und sei K C E. Die Menge K
ist dann ein Unterkorper von E, wenn

(1) 0e K, 1€ K,
(2) firallez,ye Kgilte+ye K,o—ye K,z -y € K,
(3) fiir alle x € K gilt 27! € K.

Wenn K ein Unterkorper von E ist, so ist (K, +|xxx, —| i, |k xx, 0, 1) selbst ein Kérper.
Wir bezeichnen dann E' als Erweiterung von K.

UBUNGSAUFGABEN 11.2.

(1) Zeigen Sie: Der Durchschnitt beliebig vieler Tragermengen von Unterkdérpern eines
Korpers ist wieder Tragermenge eines Unterkorpers.

(2) Sei E ein endlicher Korper, und sei K C F mit |K| > 2 so, dass fir alle z,y € K
auch r +y und z - y in K liegen. Zeigen Sie, dass K ein Unterkorper von FE ist.

Der Durchschnitt aller Unterkorper eines Korpers E ist wieder ein Korper, er heifst
Primkorper von E.

SATZ 11.3. Sei E ein Koérper. Dann ist sein Primkérper entweder isomorph zu Q oder
zu 2, mit einer Primzahl p.

BEWEIS. Offensichtlich sind alle a x 1 mit @ € Z in jedem Unterkérper von E ent-
halten. Die Abbildung
o : Z — F
z — zx1

ist ein Ring mit Eins-Homomorphismus. Da E' ein Integritétsbereich ist, ist im(®) auch
ein Integritdtsbereich und das Ideal I = ker(®) daher prim. Falls I = 0, so ist ® ein
Monomorphismus. Wegen Satz 10.13 kann daher auch der Quotientenkoérper von Z, also
Q, in F eingebettet werden. Somit enthélt E einen zu Q isomorphen Unterkdrper Q).
Da Q keinen echten Unterkorper enthélt, ist ¢ der Primkorper von E.
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Falls I # 0, so gibt es eine Primzahl p mit ker(®) = (p). Dann ist im(®) isomorph zu Z,,.
Also enthélt E einen zu Z, isomorphen Unterkorper P. Da P keinen echten Unterkorper
enthélt, ist P der Primkorper von F. O

Sei E ein Korper. Das kleinste p € N mit p x 1 = 0 heiltt Charakteristik von E. Wenn
es kein solches p € N gibt, dann definieren wir die Charakteristik von E als 0.

2. Algebraische und Transzendente Elemente in Korpern

Fiir Korper schreiben wir K < L, um auszudriicken, dass L eine Erweiterung von K
ist.

DEFINITION 11.4. Seien K < L Korper, und sei a € L. Dann ist a algebraisch iiber K,
wenn es [ € K[t] \ {0} gibt, sodass f(a) = 0. Wenn a nicht algebraisch ist, so ist es
transzendent iiber K.

Beispiel: 2, v/2 und %= sind algebraisch iiber @, I = 3°,%," ist transzendent (Liouville

(2

1844), e ist transzendent (Hermite 1873), in R gibt es iiberabzéhlbar viele Zahlen, die
transzendent {iber Q sind (Cantor 1874), 7 ist transzendent (Lindemann 1882).

DEFINITION 11.5. Seien K < L Korper, und sei S C L. Die Korpererweiterung K (.S)
ist der Durchschnitt aller Unterkérper K’ von L mit K US C K.

Es gilt dann

S1y.-vySn
K(S):{gésl—si]nEND,f,geK[xl,...,a:n],sl,...,snGS,g(sl,...,sn)%O}.
1y 59n

Wenn S = {a}, so schreiben wir K(a) fir K({a}) und nennen K ({a}) eine einfache
Korpererweiterung von K.

SATZ 11.6. Seien K < L Korper und sei a € L. Dann gilt genau eine der folgenden
Alternativen:

(1) a ist algebraisch iber K und es gibt ein Polynom irreduzibles Polynom m, €
K[x], sodass K (a) isomorph zu K|x]/(m,) ist und dimg (K (a)) = deg(my,).

(2) a ist transzendent tiber K, K(a) ist isomorph zum rationalen Funktionenkdrper
K(x) und dimg (K (a)) ist nicht endlich.

DEFINITION 11.7. Sei K < L. Der Grad der Korpererweiterung [L : K] ist dimg(L).
Die Korpererweiterung ist endlich, wenn [L : K| endlich ist. L ist algebraisch iiber K,
wenn jedes a € L algebraisch {iber K ist.

SATZ 11.8. Sei K < L. Wenn [L : K] endlich ist, so ist L algebraisch tiber K.
SATZ 11.9. Seien K < L und L < M. Dann gilt [M : K| =[M : L] - [L: K].
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SATZ 11.10. Sei K < L, und sei K die Menge der Elemente von L, die algebraisch iiber
K sind. Dann ist K ein Unterkérper von L.

Beweis: Seien a,b € K. Da a algebraisch iiber K ist, ist [K(a) : K] endlich. Da b
algebraisch tiber K ist, ist b algebraisch iiber K(a), und daher ist [K(a)(b) : K(a)]
endlich. Also erhalten wir, dass [K(a,b) : K] = [K(a)(b) : K| = [K(a)(b) : K(a)]-[K(a) :
K] endlich ist. Somit ist K(a,b) eine endliche Erweiterung von K, und folglich gilt
K(a,b) C K. Also gilt ab,a +b € K und wenn a # 0 auch ™! € K. O



KAPITEL 12

Endliche Korper

1. Grundlegende Eigenschaften endlicher Korper

Ein Koérper E ist endlich, wenn er nur endlich viele Elemente hat.

SATZ 12.1. Sei E ein endlicher Korper. Dann gibt es eine Primzahl p, sodass der Prim-
korper von E isomorph zu Z.,, ist.

SATZ 12.2. Die Anzahl der Elemente eines endlichen Kdérpers ist eine Primzahlpotenz.

Wir beweisen folgende stirkere Aussage:

SATZ 12.3. Sei K ein Unterkérper des endlichen Kérpers E. Dann gibt es ein n € N,
sodass |E| = |K|".

Beweis: Durch die skalare Multiplikation * : K X E — E| kxe := k-e wird (E, 4, —, 0; *)
zu einem Vektorraum iiber K. Wegen der Endlichkeit von K hat K eine endliche Basis
B = (by,...,b,). Die Abbildung, die jedem e € E sein Koordinatentupel (e)p zuordnet,
ist eine Bijektion von E nach K™. O

Satz 12.3 folgt nun, wenn man als K den Primkorper von E wéhlt.

SATZ 12.4. Sei E' ein Korper der Charakteristik p mit ¢ = p™ Elementen. Dann gilt fir
alle v,y € E:

(1) (z +y)" = 2" + o,
(2) x7=z.

Beweis: (1): Nach dem binomischen Lehrsatz gilt

p—1
(x+ )y =ab+ Y (1) xay™ +y

i=1
Da () fiir alle 7 € {1,2,...,p — 1} Vielfache von p sind, gilt (z 4 y)? = 2P + y*.

(2): Wir verwenden den Satz von Fermat fiir die Gruppe (E*, ) und erhalten, dass alle
x # 0 die Gleichung 2771 = 1 erfiillen. O

UBUNGSAUFGABEN 12.5.
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(1) Sei K ein Korper der Charakteristik p, sei m € N, und seien z,y € K. Zeigen Sie:
(z+y)P" =aP" +y?".

(2) Sei K ein Korper, und sei f € K|z|. Seien aq, s, ...,qr € K paarweise verschiedene
Nullstellen von f. Zeigen Sie, dass [[(x — «;) ein Teiler von f in K[z] ist.

(3) Zeigen Sie, dass ein Polynom in K[z] vom Grad < n, das n+1 verschiedene Nullstellen
hat, automatisch das Nullpolynom sein muss.

(4) Sei K ein Korper der Charakteristik p und sei § € K.

(a) Zeigen Sie mithilfe des Satzes, dass fiir alle z € Z die Kongruenz 2P = z (mod p)
gilt, dass das Polynom

f@) =@+ —a? = ¢

zumindest p Nullstellen hat (probieren Sie n * £ mit n € Z).

(b) Bestimmen Sie den Grad dieses Polynoms.

(c) SchlieRen Sie daraus, dass p | (¥) fiir alle ¢ € {1,2,...,p — 1}, und dass fiir alle
a, B € K gilt: (a+ B)P = af 4 [P.

Aus dem Hauptsatz iiber endlich erzeugte abelsche Gruppen erhalten wir (Korollar 7.11):
SATZ 12.6. Die multiplikative Gruppe eines endlichen Kdérpers ist zyklisch.

Wenn man nicht auf den Hauptsatz zuriickgreifen will, so kann man diesen Satz auch
aus folgender Beobachtung beweisen:

SATZ 12.7. Sei A = (A, ") eine abelsche Gruppe mit neutralem Element 1. Wenn es fir

jedes n € N hdochstens n Elemente in A mit x™ = 1 gibt, dann ist A zyklisch.

Beweis: Sei h = |A|. Falls h = 1, ist A klarerweise zyklisch. Wir nehmen also nun
h > 2 an. Wir bilden die Primfaktorzerlegung von A und finden also N € N, Primzahlen
P1, P2, .-, pn und 71,79, ..., 7y € N sodass

N
h = H P’ ™
m=1

Wir werden nun fiir jedes i € {1,2,..., N} ein Element a; und ein Element b; € A

h
wahlen: Da z% < h, gibt es ein Element a; € A, sodass a;» # 1. Wir setzen

i

b := a;ri

Es gilt dann (Satz von Fermat)
bP = 1. (12.1)

Sei nun £ die Ordnung von b;, also das kleinste n € N, sodass (b;)” = 1. Da k | p;" gibt
esein s; € {0,1,...,7;}, sodass k = p;%. Wir zeigen nun
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Nehmen wir an s; < r; — 1. Dann gilt

r;—1

bipi ’ - ].,

also
h
a; 7 = 1.
Das widerspricht der Wahl von a;; dieser Widerspruch beweist (12.2). Die Ordnung von
b; ist also p;"i. Wir bilden nun

Klarerweise gilt ¢ = 1. Wir zeigen nun, dass ¢ wirklich Ordnung h hat. Wenn ¢ kleinere
h
Ordnung hétte, dann gibt es ein j € {1,..., N}, sodass ¢? = 1. Daher gilt
N

67 =1 (12.3)

=1

z%. Wegen (12.1) sind also Faktoren in (12.3) mit ¢ # j gleich 1.

Falls i # j, so gilt p;"
Wir erhalten also X
bj? = 1.

Da b; wegen (12.2) die Ordnung p;™ hat, gilt p;"7 | ]%' Daher gilt p;"i*! | h, was im
Widerspruch zur Primfaktorzerlegung von h steht. Das Element ¢ hat also wirklich
Ordnung h, und ist somit ein erzeugendes Element fiir die Gruppe A. 0

Aus dem Satz 12.7 folgt nun direkt der Satz 12.6, da in jedem Korper und fiir jedes n
das Polynom ™ — 1 hochstens n Nullstellen hat.

UBUNGSAUFGABEN 12.8.

(1) Sei (A,-) eine Gruppe, und sei @ € A und n € N so, dass a™ = 1. Zeigen Sie, dass n
ein Vielfaches der Ordnung von « ist.

2. Irreduzible Polynome

Wenn K ein endlicher Kérper mit ¢ Elementen ist, und f ein iiber K irreduzibles
Polynom vom Grad n, dann ist K[z|/(f) ein Kérper mit ¢" Elementen. Wir brauchen
also zunéchst irreduzible Polynome.

SATZ 12.9. Ser K ein endlicher Kéorper mit q Elementen, und sei f ein irreduzibles

Polynom vom Grad n. Dann gilt f | 29" — .

Wir betrachten den Kérper K[x]/(f). Dieser Korper hat ¢ Elemente. Es gilt also wegen
Satz 12.4 (2) (z + (f))?" = z + (f). Das bedeutet f | 27" —x. O

SATZ 12.10. Sei K ein Kdrper mit ¢ Elementen. Dann gilt ], cp(x —v) = 27 — x.
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Beweis: Beide Polynome haben ¢ Nullstellen: fiir das linke Polynom ist das offensichtlich;
fiir das rechte eine Konsequenz aus dem Satz von Fermat bzw. aus Satz 12.4. Die
Differenz dieser beiden Polynome hat also mindestens ¢ Nullstellen, und einen Grad
< q — 1. Die Differenz ist also das Nullpolynom. [

LEMMA 12.11. Sei K ein endlicher Korper mit ¢ Elementen, sei m € N, und sei f ein
tber K irreduzibles Polynom vom Grad m. Seir E ein Erweiterungskdrper von K mit ¢™
FElementen. Dann zerfillt f in E[x] in ein Produkt lauter linearer Polynome.

Beweis: Da deg f = m, gilt nach Satz 12.9, dass f das Polynom 27" — x teilt. Nach

Satz 12.10 gilt

H(a:—a) = 27" — 1.

acE
Das Polynom f ist auch ein Polynom in E|z]. Jeder iiber E irreduzible Teiler von f
in F[z] teilt also eines der Polynome in {z — b|b € E}. Das bedeutet, dass f in E|x]
vollstéandig in Linearfaktoren zerfallt. O

Wir bezeichnen ein Polynom f als normiert, wenn sein fithrender Koeffizient (also der
Koeffizient von 29°¢(/)) gleich 1 ist.

SATZ 12.12. Sei p eine Primzahl, setm € N, und set ¢ = p™. Sei f ein normiertes, tber
Z,, irreduzibles Polynom in Zyx] vom Grad m. Dann ist jeder Korper mit ¢ Elementen

2u Zplz)/(f) isomorph.

Beweis: Sei E ein Korper mit ¢ Elementen. Wegen Lemma 12.11 wissen wir, f eine
Nullstelle in E[z] hat. Sei b € E so, dass f(b) = 0. Wir bilden nun die Abbildung

¢ : Zyx] — E
g +— g(b).

Die Abbildung @ ist ein Ring mit Eins-Homomorphismus. Ihr Kern ist {g € Z,[z] | g(b) =
0}. Sei h der normierte Erzeuger des Ideals ker . Da f € ker @, gilt h | f. Da f irredu-
zibel iiber Z, ist, ist h entweder von Grad 0 oder gleich f. Im Fall, dass h vom Grad 0
ist, gilt wegen h(b) = 0, dass h das Nullpolynom ist, was h | f widerspricht. Also ist
h = f. Es gilt also nach dem Homomorphiesatz, dass Z,[x]/(f) isomorph zu E ist. [

3. Existenz irreduzibler Polynome

Wir geben im folgenden einen Beweis dafiir, dass es fiir jedes n und fiir jeden endlichen
Koérper K ein irreduzibles Polynom vom Grad n {iber K gibt.

SATZ 12.13. Sei K ein Kérper, und sei f ein normiertes Polynom in K[z] vom Grad n.
Dann gibt es einen Erweiterungskorper E von K, sodass jeder in E|x] irreduzible Teiler
von f Grad 1 hat.
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Wir beweisen folgende Aussage durch Induktion nach n:

Fiir jeden Korper K und jedes Polynom f € K[z] vom Grad n gibt
es einen Erweiterungskorper £ von K, sodass jeder in E[z] irreduzible
Teiler von f Grad 1 hat.

Fir n = 1 ist die Aussage klar. Wir fixieren nun einen Kérper K und ein Polynom
f € Klz] mit deg f = n > 1. Wir zerlegen f in ein Produkt von normierten, iiber
K irreduziblen Polynomen in Klx]. Sei g einer der irreduziblen Faktoren. Wir bilden
den Korper L := K[z]/(g). Wir zeigen nun, dass = + (g) eine Nullstelle von f ist. Dazu
berechnen wir f(z+(g)) = 32087 f;- (z+(g))’. Wir wissen, wie man in Quotienten, also
in K[z]/(g) rechnet, und erhalten >0/ f;- (x4 (9))" = (32087 fi-2%) + (g). Wir wissen,

1

das jedes Polynom f = (fo, f1, fas - faeg £, 0,0, ...) die Eigenschaft f = Z?ﬁ%f fi- ot
erfiillt, da ja z° = (1,0,0,...), 2! = (0,1,0,0,...), 22 = (0,0,1,0,0,...),.... Also gilt
(il fi-a') + (9) = f+(9). Dag | f, gt f+(g9) = 0+ (g). Also ist = + (g)
eine Nullstelle von f in L. Da f eine Nullstelle [ in L hat, gibt es h € L[z], sodass
f = (x—=1)-h. Da h kleineren Grad als f hat, gibt es nach nach Induktionsvorraussetzung
einen Erweiterungskérper M von L, sodass jeder in M [z] irreduzible Teiler des Polynoms

h Grad 1 hat. In M[z] hat jeder irreduzible Teiler von f also Grad 1. O

SATZ 12.14. Ser K ein endlicher Korper, und set n € N. Dann qibt es ein tiber K
irreduzibles Polynom vom Grad n in K|x].

Beweis: Sei q := K. Es gibt einen Erweiterungskorper E von K, in dem 29" —z in lauter
Linearfaktoren zerfallt. Wir bilden

L:={ecE|e” —e=0}.

Mit Satz 12.4 (1) erhalten wir, dass L ein Unterkorper von F ist; mit mit Satz 12.4 (2),
dass L ein Erweiterungskorper von K ist. Da 29" — x iiber E in lauter Linearfaktoren
zerféllt, gibt es ey, eq,..., ¢4, € E, sodass

n

q

7" —x = H(:L‘ —ep).

T

Mithilfe der Ableitung zeigt man wieder, dass 9" — 2 quadratfrei ist, und dass daher
alle e; verschieden sind. Alle e; liegen in L. Der Korper L hat daher mindestens ¢"
Elemente. Da 29" — 2 in E hochstens ¢ Nullstellen haben kann, hat L hochstens ¢”
Elemente.

Sei nun « ein erzeugendes Element der multiplikativen Gruppe (L*,-) von L, und sei
f € K|[xz] ein normiertes, erzeugendes Element des Ideals

1= {g € K] |g(a) = 0}.
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Wegen 29" — x € I gilt I # {0}. Wir zeigen nun:
f ist ein irreduzibles Element von K|x]. (12.4)

Wir nehmen an, es gibt normierte fi, f, € K[z] sodass f = fi - f,. Dann gilt f(a) -
fala) = 0. Wenn nun fi(a) = 0, so gilt f| fi, und somit f, = 1. Das beweist (12.4).

Die Abbildung

® : K] — L
g — g(a)
ist surjektiv (®(z%) = o* fiir alle k); ihr Kern ist I. Wir wissen, das L genau ¢" Elemente
hat. K[z]/I hat daher ebenfalls genau ¢" Elemente, und somit gilt deg f = n. Das

Polynom f ist also irreduzibel vom Grad n. 0

DEFINITION 12.15 (Mé&biusfunktion). Wir definieren p: N — {—1,0, 1} durch

(—1)%, falls n = py - pa - - - pp mit p; # p; fiir i # j,
p(n) =< 1falls n =1,
0 sonst.

SATZ 12.16. Die Anzahl N der irreduziblen Polynome vom Grad n tber einem Kdorper
mit q Elementen ist gegeben durch

1 n
N = EZM(d)qd-
d|

Beweis: |[Wil99, p.49|.
UBUNGSAUFGABEN 12.17.

(1) Leiten Sie aus diesem Satz her, dass es iiber jedem endlichen Korper fiir jedes n ein
irreduzibles Polynom vom Grad k gibt.

Fiir Polynome f, g € K|x] bezeichnen wir mit f o g das Polynom, das man erhélt, wenn
man ¢ in f einsetzt.

SATZ 12.18. Sei K ein Kérper mit g Elementen, sein € N, und sei f € K[x]. Dann gilt

2" =27 o f.
o1 q
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Beweis: Sei p die Charakteristik von K. Es gibt dann ein m, sodass ¢ = p™. Es gilt
dann

77" o f= fq”
deg f 4
- (Z fiz)
i=0
deg f

= (Z fiat)®™)
1=0

deg f

=5
1=0
degg
=
1=0

deg f

=2 Sy
i=0
=fo 29" 0O

In einem Euklidischen Bereich kann man einen grofsten gemeinsamen Teiler von a,b
definieren, zum Beispiel als einen Erzeuger des von a und b erzeugten Ideals. Wenn wir
aus jeder Klasse konjugierter Elemente einen Repréisentanten auswéahlen, so kénnen wir
gg'T sogar als Funktion definieren.

SATZ 12.19. Sei E ein FEuklidischer Bereich, und sei f € E, f nicht invertierbar, und
seien n,m € Ny, nicht beide 0. Dann gilt ggT(f™ — 1, f* — 1) = feeTlrm) _ 1,

Beweis: Wir beweisen den Satz durch Induktion nach max(m,n). Wenn m = n = 1,
dann gilt der Satz offensichtlich. Sei nun max(m,n) > 1.

e Fall m = 0 oder n = 0: offensichtlich.

o Fall m > n > 1: Es gilt ggT(f™ —1,f" —1) = ggT(f™ —1— fm - (f" —
1), f* — 1), da beide Polynompaare die gleichen gemeinsamen Teiler haben.
Durch ausrechnen erhalten wir ggT(f™ — 1, f* — 1) = ggT(f™ " — 1, f* — 1).
Da m > n, gilt max(m —n,n) < max(m,n). Nach Induktionsannahme gilt also
g (/7" =1, [" — 1) = feTmonm) 1 = pesTlonn)

e Fall n > m > 1: analog.

e Fuall m = n: offensichtlich. O

KOROLLAR 12.20.

(1) Sei K ein Korper, sei f ein normiertes Polynom in K[z| mit deg(f) > 1, und
seien m,n € N. Dann gilt ggT(f™ — 1, f* — 1) = feetlom) 1,
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(2) Seien f,m,n € N mit f > 2. Dann gilt ggT(f™ — 1, f* — 1) = feeTnm) 1,

SATZ 12.21. Sei K ein endlicher Korper mit q Elementen, und set n € N. Sei ' die
Menge aller iber K irreduziblen, normierten Polynome in K|x], deren Grad ein Teiler

Hf:an—x.

fer

von n ist. Dann gilt

Beweis: Wir zerlegen 29" — x in ein Produkt normierter, iiber K irreduzibler Polynome;
wir finden also £ € N und normierte irreduzible Polynome g1, gs, ..., gx, sodass

k
n
x? —x:Hgi.
i=1

Als erstes zeigen wir, dass alle g; verschieden sind. Nehmen wir an, dass es ein Polynom
h mit degh > 1 gibt, sodass h? | 7" — x. Dann gibt es a € K|x], sodass

n

R a=2" —2x.

Durch Differenzieren erhalten wir

2hha+ had = ¢« 27 71— 1,
und da ¢" ein Vielfaches der Charakteristik von K ist, gilt

h(2h'a + ha') = —1.
Das ist aber nicht moglich, weil degh > 1. Sei also G = {g;|i € {1,2,...,k}}. Dann
gilt, weil alle g; verschieden sind, 29" — z = [] gec 9- WIr zeigen nun noch
F=G. (12.5)

C:Seialso f € F ein normiertes, iiber K [z] irreduzibles Polynom, dessen Grad (=: d) ein
Teiler von n ist. Wir miissen zeigen, dass f das Polynom 29" — z teilt. Dazu betrachten
wir den Kérper K [z]/(f). Dieser Korper hat ¢? Elemente. Es gilt also wegen Satz 12.4 (2)
(2 + (f))?" =z + (f). Das bedeutet

flat -z

Wir zeigen nun

R | 27" — . (12.6)
Dazu zeigen wir z7'~' — 1 | 2¢"~! — 1. Wir berechnen ggT(z%"~' — 1,29"~! —1). Nach
Lemma 12.20 gilt ggT (24" —1, 29" "1 —1) = geeT@"~La" =) _ ] — (@) 1 — ga' 1,
das impliziert (12.6). Wir erhalten also f | 29" — x. Somit (Fundamentallemma) liegt
f € G. D: Sei g ein normiertes irreduzibles Polynom, das 29" — x teilt. Wir miissen
zeigen, dass d := deg g ein Teiler von n ist. Der Korper K[z]/(g) hat ¢? Elemente. Es
gilt also g | 29" — z. Falls g # z, gilt ¢ | ggT(x?" "1 —1,29" 1 —1) = geeTe"-1a"-1) _ 1 —
2@ 1 Gej = ggT(n,d). Es gilt also ¢ | 27 — . Wir zeigen nun, dass jedes
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Element von K[z]/(g) eine Nullstelle von 29" — x ist. Sei dazu h € K|[x]. Wir berechnen
(h+ (9))\9"). Es gilt

Es gilt 2097 = 2 (mod g), also fiir alle i € Ny auch 29" = 2° (mod g). Insgesamt

erhalten wir also

(h+ ()" =h+(g).
und somit ist jedes Element aus K|[x]/(g) eine Nullstelle von 29 —z. Dar > 1, ist 27 —x
nicht das Nullpolynom. Es hat also hochstens ¢" Nullstellen. Der Kérper K[z]/(g) hat
q? Elemente. Es gilt also d < r, also d < ggT(n,d). Das bedeutet, dass d ein Teiler von
n ist. Das Polynom g liegt also in der Menge F'. [

4. Test auf Irreduzibilitiat

Der folgende Satz liefert einen Test, ob ein Polynom irreduzibel iiber einem endlichen
Korper mit ¢ Elementen ist.

SATZ 12.22. Sei K ein Kérper mit q Elementen, sei n € N und sei f € Klz] mit
deg(f) = n. Aquivalent sind:

(1) Fir allei e {1,2,...,[5]} gilt:

geT(f, 2% —z) = 1.
(2) f ist irreduzibel iber K.

Beweis: (1)=-(2): Wenn f nicht irreduzibel tiber K ist, so gibt es ein tiber K irreduzibles
Polynom g € K[t] mit g | f, 1 < deg(g) < [5]. Sei i := deg(g). Dann gilt wegen
Satz 12.9 g | (27 —z),und somit ¢ | ggT(f, #? —z), im Widerspruch zu ggT(f, z? —z) =
1. (2)=(1): Wenn f iiber K irreduzibel ist, ¢ € {1,..., |5}, und ggT(f, i —x) #1,
so gilt f | 29 — z. Wegen Satz 12.21 ist der Grad von f dann ein Teiler von i; somit gilt
n < i, im Widerspruch zu i < [%]. O

SATZ 12.23. Sei K ein Kérper mit q Elementen, sei n € N und sei f € Klx] mit
deg(f) = n, geT(f,f) = 1, und seien fi,...,f. tber K irreduzible Polynome mit
[T;_, fi = f. Sei Q die n x n-Matriz, an deren (i, j)-ter Stelle der Koeffizient von x*~*
des Polynoms xY=Y mod f steht. Dann ist die Dimension des Nullraums von Q — I
gleich r.
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ao

Es gilt (Q — 1) - ( : ) = 0 genau dann, wenn fiir das Polynom a := Z;.:Ol ajxqj gilt,
dass a(z?) — a(x) cin Vielfaches von f ist. Wegen Satz 12.18 gilt a(z9) = a(x)9.

Wir zeigen nun, dass f | a(x)? — a(z) genau dann gilt, wenn es ay,...,a, € K gibt,
sodass fiir alle ¢ € {1,...,r} gilt, dass f; | (a(z) — ;). Wenn es (aq,...,q,) € K" mit
dieser Eigenschaft gibt, so gilt fiir jedes i, dass f; | (a(2) — i) | [[scx(a(x) — B). Wegen
Satz 12.10 gilt also f; | (a(z)? — a(x). Da alle f; irreduzibel und paarweise verschieden
sind (wegen ggT(f, f') = 1), gilt also f | a(x)? — a(x). Sei nun umgekehrt a so, dass
fla(@)?—a(z),und i € {1,...,r}. Dann gilt f; | [[5cx(a(z) — 8). Da f; irreduzibel
iiber K ist, teilt es einen der Faktoren.

Wegen des Chinesischen Restsatzes gibt es fiir jedes r-Tupel (a4, ...,q,) € K" genau
ein Polynom a vom Grad < n—1, sodass f; | a(xz)—q fiir allei € {1,...,r}. Folglich hat
das Gleichungssystem (Q — I) -a = 0 genau ¢" Losungen, die Dimension des Nullraums
ist also 7. [J
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