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KAPITEL 10

Körperkonstruktionen

1. Körper aus irreduziblen Polynomen

Definition 10.1. Eine algebraische Struktur R ist ein Körper, wenn R ein kommuta-
tiver Ring mit Eins ist, R zumindest zwei Elemente hat, und alle Elemente x ∈ R \ {0}
invertierbar sind.

Satz 10.2. Sei R ein Hauptidealbereich, und sei f ein irreduzibles Element von R. Dann
ist R/(f) ein Körper.

Beweis: Sei x ∈ R so, dass x+(f) ̸= 0+(f). Wir zeigen, dass x+(f) invertierbar in R/(f)

ist. Sei dazu I das von {x, f} erzeugte Ideal, und sei z ∈ R so, dass (z) = I. Dann gilt
z | f , also ist z entweder assoziiert zu f oder invertierbar. Wenn z assoziiert zu f ist, so
gilt wegen z | x auch f | x. Dann gilt aber x ∈ (f), und somit x+(f) = 0+(f). Folglich
ist z invertierbar. Dann gilt 1 ∈ I, und es gibt somit u, v ∈ R, sodass ux+vf = 1. Dann
gilt (u+ (f))(x+ (f)) + (v+ (f))(f + (f)) = 1+ (f), also (u+ (f))(x+ (f)) = 1+ (f).
Folglich ist x+ (f) invertierbar. □

Korollar 10.3. Sei p eine Primzahl. Dann ist Zp ein Körper.

Korollar 10.4. Sei K ein Körper und sei f ein irreduzibles Element aus dem Poly-
nomring K[t]. Dann ist K[t]/(f) ein Körper.

Wir definieren den Grad des Nullpolynoms als −1.

Lemma 10.5. Sei K ein Körper, und sei f ∈ K[t]. Das Polynom f ist ein invertierbares
Element von K[t], wenn deg(f) = 0. Das Polynom f ist ein irreduzibles Element von
K[t], wenn deg(f) ≥ 1 und für alle g, h ∈ K[t] mit f = g · h gilt deg(g) = 0 oder
deg(h) = 0.

Für einen Körper K nennen wir ein irreduzibles Element von K[t] auch ein über K

irreduzibles Polynom.
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2. Irreduzible Polynome über Q

Definition 10.6. Sei R ein kommutativer Ring mit Eins, sei n ∈ N0, und sei f =Pn
i=0 fi t

i ∈ R[t]. Das Polynom f ist primitiv , wenn es kein primes p ∈ R gibt, das alle
Koeffizienten fi (i = 0, . . . , n) teilt.

Lemma 10.7 (Gaußsches Lemma). Sei R ein kommutativer Ring mit Eins, und seien
f, g ∈ R[t] primitiv. Dann ist f · g ebenfalls primitiv.

Beweis: Wir nehmen an, dass f ·g nicht primitiv ist. Dann gibt es ein primes p ∈ R, das
alle Koeffizienten von f ·g teilt. Da f und g primitiv sind, teilt p weder alle Koeffizienten
von f noch alle Koeffizienten von g. Sei k maximal, sodass p ∤ fk, und sei l maximal,
sodass p ∤ gl. Wir berechnen den Koeffizienten von tk+l von f ·g und erhalten (f ·g)k+l =Pk+l

i=0 f(k+l)−igi. Für i < l gilt p | f(k+l)−i, und für i > l gilt p | gi. Da p | (f · g)k+l, gilt
also p | fkgl. Da p prim ist, teilt es daher einen der beiden Faktoren, im Widerspruch
zur Wahl von k und l. □

Definition 10.8. Sei a =
Pn

i=1 ait
i ∈ Z[t], a ̸= 0. Wir definieren den Inhalt von a

durch c(a) := ggT(a0, a1, . . . , an).

Satz 10.9. Sei f ∈ Z[t]\{0}, seien g, h ∈ Q[t] so, dass f = g ·h, und seien α, β ∈ Z\{0}
so, dass α g ∈ Z[t] und β h ∈ Z[t]. Wir setzen:

γ := 1
αβ

· c(α g) · c(β h),

g′ := 1
c(α g)

α g,

h′ := 1
c(β h)

β h.

Dann gilt f = γ (g′ · h′) und γ ∈ Z, g′ ∈ Z[t], h′ ∈ Z[t].

Beweis: Die Gleichung f = γ (g′ · h′) erhält man unmittelbar durch Nachrechnen. Wir
zeigen nun, dass γ ∈ Z. Seien δ, ε ∈ Z \ {0} so, dass γ = δ

ε
und ggT(δ, ε) = 1. Dann gilt

ε f = δ (g′ ·h′). Da f ∈ Z[t], teilt ε alle Koeffizienten von δ (g′ ·h′). Wegen ggT(δ, ε) = 1

teilt ε alle Koeffizienten von g′ · h′. Nun sind g′ und h′ primitiv. Wegen des Gaußschen
Lemmas (Lemma 10.7) ist g′ · h′ ebenfalls primitiv, also gilt ε ∈ {1,−1}. Folglich gilt
γ ∈ Z. □

Satz 10.10 (Eisenstein-Kriterium). Seien n ∈ N, p Primzahl, a =
Pn

i=0 ai t
i ∈ Z[t] so,

dass

(1) p | a0, . . . , p | an−1,
(2) p ∤ an,
(3) p2 ∤ a0.

Dann ist a ein irreduzibles Element von Q[t] (also ein über Q irreduzibles Polynom).
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Beweis: Wenn a nicht irreduzibel ist, gibt es b, c ∈ Q[t] vom Grad ≥ 1, sodass a = b c.
Wegen Satz 10.9 gibt es dann auch r, s ∈ Z[t] sodass a = r s und deg(r) ≥ 1, deg(s) ≥ 1.
Sei k := deg(r), l := deg(s). Dann gilt k+ l = n. Wegen p ∤ an gilt p ∤ rk und p ∤ sl. Wir
zeigen nun, dass für alle k1 ∈ N0 mit k1 < k und für alle l1 ∈ N0 mit l1 < l gilt, dass
p | rk1 und p | sl1 . Sei dazu k2 minimal mit p ∤ rk2 , und sei l2 minimal mit p ∤ sl2 . Dann
ist der Koeffizient von tk2+l2 des Polynoms a nicht durch p teilbar. Somit gilt k2+ l2 = n,
und somit k2 = k, l2 = l. Also gibt es Polynome u, v ∈ Z[t], sodass r = rk t

k + p u und
s = sl t

l + p v. Somit gilt a0 = (r · s)0 = r(0) · s(0) = p · u(0) · p · v(0). Folglich ist a0 ein
Vielfaches von p2, im Widerspruch zur Annahme. □

Übungsaufgaben 10.11.

(1) Seien f, g ∈ Z[t] \ {0}. Zeigen Sie, dass c(f · g) = c(f) · c(g).
(2) Sei a ∈ Z[t], n := deg a, und sei r eine rationale Nullstelle von a = a0t

0 + · · ·+ ant
n.

Zeigen Sie, dass es p, q ∈ Z gibt, sodass r = p
q und p | a0, q | an.

3. Quotientenkörper

Wir verallgemeinern jetzt die Konstruktion von Q aus Z.

Sei dazu D ein Integritätsbereich. Auf der Menge {(a, b) ∈ D2 | b ̸= 0} definieren wir eine
Relation durch (a, b) ∼ (c, d) :⇔ ad = bc. Diese Relation ist eine Äquivalenzrelation,
und wir kürzen die Klasse (a, b)/∼ mit a

b
ab. Mit Q(D) bezeichnen wir die Faktormenge

{(a, b) ∈ D2 | b ̸= 0}/∼. Auf Q(D) definieren wir + durch a
b
+ c

d
:= ad+bc

bd
, − durch

−a
b
:= −a

b
, und · durch a

b
· c
d
:= ac

bd
.

Satz und Definition 10.12. Sei D ein Integritätsbereich. Dann ist (Q(D),+,−, ·, 0
1
, 1
1
)

ein Körper. Er heißt der Quotientenkörper von D.

Satz 10.13. Sei D ein Integritätsbereich, sei K ein Körper, und sei φ ein Ring-mit-Eins-
Monomorphismus von D nach K. Dann ist ψ : Q(D) → K, ψ( a

b
) := φ(a) · (φ(b))−1

wohldefiniert und ein Ring-mit-Eins-Monomorphismus vom Quotientenkörper von D

nach K.

Sei K ein Körper. Den Quotientenkörper des Polynomrings K[t1, . . . , tn] bezeichnet man
als den Körper der rationalen Funktionen vom Transzendenzgrad n über K, und kürzt
ihn mit K(t1, . . . , tn) ab.



KAPITEL 11

Körpererweiterungen

1. Unterkörper und Primkörper

Definition 11.1. Sei E = (E,+,−, ·, 0, 1) ein Körper, und sei K ⊆ E. Die Menge K

ist dann ein Unterkörper von E, wenn

(1) 0 ∈ K, 1 ∈ K,
(2) für alle x, y ∈ K gilt x+ y ∈ K, x− y ∈ K, x · y ∈ K,
(3) für alle x ∈ K gilt x−1 ∈ K.

Wenn K ein Unterkörper von E ist, so ist (K,+|K×K ,−|K , ·|K×K , 0, 1) selbst ein Körper.
Wir bezeichnen dann E als Erweiterung von K.

Übungsaufgaben 11.2.

(1) Zeigen Sie: Der Durchschnitt beliebig vieler Trägermengen von Unterkörpern eines
Körpers ist wieder Trägermenge eines Unterkörpers.

(2) Sei E ein endlicher Körper, und sei K ⊆ E mit |K| ≥ 2 so, dass für alle x, y ∈ K

auch x+ y und x · y in K liegen. Zeigen Sie, dass K ein Unterkörper von E ist.

Der Durchschnitt aller Unterkörper eines Körpers E ist wieder ein Körper, er heißt
Primkörper von E.

Satz 11.3. Sei E ein Körper. Dann ist sein Primkörper entweder isomorph zu Q oder
zu Zp mit einer Primzahl p.

Beweis. Offensichtlich sind alle a ∗ 1 mit a ∈ Z in jedem Unterkörper von E ent-
halten. Die Abbildung

Φ : Z −→ E

z 7−→ z ∗ 1
ist ein Ring mit Eins-Homomorphismus. Da E ein Integritätsbereich ist, ist im(Φ) auch
ein Integritätsbereich und das Ideal I = ker(Φ) daher prim. Falls I = 0, so ist Φ ein
Monomorphismus. Wegen Satz 10.13 kann daher auch der Quotientenkörper von Z, also
Q, in E eingebettet werden. Somit enthält E einen zu Q isomorphen Unterkörper Q.
Da Q keinen echten Unterkörper enthält, ist Q der Primkörper von E.
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Falls I ̸= 0, so gibt es eine Primzahl p mit ker(Φ) = (p). Dann ist im(Φ) isomorph zu Zp.
Also enthält E einen zu Zp isomorphen Unterkörper P . Da P keinen echten Unterkörper
enthält, ist P der Primkörper von E. □

Sei E ein Körper. Das kleinste p ∈ N mit p ∗ 1 = 0 heißt Charakteristik von E. Wenn
es kein solches p ∈ N gibt, dann definieren wir die Charakteristik von E als 0.

2. Algebraische und Transzendente Elemente in Körpern

Für Körper schreiben wir K ≤ L, um auszudrücken, dass L eine Erweiterung von K

ist.

Definition 11.4. Seien K ≤ L Körper, und sei a ∈ L. Dann ist a algebraisch über K,
wenn es f ∈ K[t] \ {0} gibt, sodass f(a) = 0. Wenn a nicht algebraisch ist, so ist es
transzendent über K.

Beispiel: 2,
√
2 und 1

3√2
sind algebraisch über Q, l =

P10−i!

i=1 ist transzendent (Liouville
1844), e ist transzendent (Hermite 1873), in R gibt es überabzählbar viele Zahlen, die
transzendent über Q sind (Cantor 1874), π ist transzendent (Lindemann 1882).

Definition 11.5. Seien K ≤ L Körper, und sei S ⊆ L. Die Körpererweiterung K(S)

ist der Durchschnitt aller Unterkörper K ′ von L mit K ∪ S ⊆ K ′.

Es gilt dann

K(S) = {f(s1, . . . , sn)
g(s1, . . . , sn)

| n ∈ N0, f, g ∈ K[x1, . . . , xn], s1, . . . , sn ∈ S, g(s1, . . . , sn) ̸= 0}.

Wenn S = {a}, so schreiben wir K(a) für K({a}) und nennen K({a}) eine einfache
Körpererweiterung von K.

Satz 11.6. Seien K ≤ L Körper und sei a ∈ L. Dann gilt genau eine der folgenden
Alternativen:

(1) a ist algebraisch über K und es gibt ein Polynom irreduzibles Polynom ma ∈
K[x], sodass K(a) isomorph zu K[x]/(ma) ist und dimK(K(a)) = deg(ma).

(2) a ist transzendent über K, K(a) ist isomorph zum rationalen Funktionenkörper
K(x) und dimK(K(a)) ist nicht endlich.

Definition 11.7. Sei K ≤ L. Der Grad der Körpererweiterung [L : K] ist dimK(L).
Die Körpererweiterung ist endlich, wenn [L : K] endlich ist. L ist algebraisch über K,
wenn jedes a ∈ L algebraisch über K ist.

Satz 11.8. Sei K ≤ L. Wenn [L : K] endlich ist, so ist L algebraisch über K.

Satz 11.9. Seien K ≤ L und L ≤ M . Dann gilt [M : K] = [M : L] · [L : K].
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Satz 11.10. Sei K ≤ L, und sei K die Menge der Elemente von L, die algebraisch über
K sind. Dann ist K ein Unterkörper von L.

Beweis: Seien a, b ∈ K. Da a algebraisch über K ist, ist [K(a) : K] endlich. Da b

algebraisch über K ist, ist b algebraisch über K(a), und daher ist [K(a)(b) : K(a)]

endlich. Also erhalten wir, dass [K(a, b) : K] = [K(a)(b) : K] = [K(a)(b) : K(a)]·[K(a) :

K] endlich ist. Somit ist K(a, b) eine endliche Erweiterung von K, und folglich gilt
K(a, b) ⊆ K. Also gilt ab, a+ b ∈ K und wenn a ̸= 0 auch a−1 ∈ K. □



KAPITEL 12

Endliche Körper

1. Grundlegende Eigenschaften endlicher Körper

Ein Körper E ist endlich, wenn er nur endlich viele Elemente hat.

Satz 12.1. Sei E ein endlicher Körper. Dann gibt es eine Primzahl p, sodass der Prim-
körper von E isomorph zu Zp ist.

Satz 12.2. Die Anzahl der Elemente eines endlichen Körpers ist eine Primzahlpotenz.

Wir beweisen folgende stärkere Aussage:

Satz 12.3. Sei K ein Unterkörper des endlichen Körpers E. Dann gibt es ein n ∈ N,
sodass |E| = |K|n.

Beweis: Durch die skalare Multiplikation ∗ : K×E → E, k∗e := k ·e wird (E,+,−, 0; ∗)
zu einem Vektorraum über K. Wegen der Endlichkeit von K hat K eine endliche Basis
B = (b1, . . . , bn). Die Abbildung, die jedem e ∈ E sein Koordinatentupel (e)B zuordnet,
ist eine Bijektion von E nach Kn. □

Satz 12.3 folgt nun, wenn man als K den Primkörper von E wählt.

Satz 12.4. Sei E ein Körper der Charakteristik p mit q = pm Elementen. Dann gilt für
alle x, y ∈ E:

(1) (x+ y)p = xp + yp.
(2) xq = x.

Beweis: (1): Nach dem binomischen Lehrsatz gilt

(x+ y)p = xp +

p−1X

i=1

( p
i ) ∗ xiyp−i + yp.

Da ( p
i ) für alle i ∈ {1, 2, . . . , p− 1} Vielfache von p sind, gilt (x+ y)p = xp + yp.

(2): Wir verwenden den Satz von Fermat für die Gruppe (E∗, ·) und erhalten, dass alle
x ̸= 0 die Gleichung xq−1 = 1 erfüllen. □

Übungsaufgaben 12.5.
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(1) Sei K ein Körper der Charakteristik p, sei m ∈ N, und seien x, y ∈ K. Zeigen Sie:
(x+ y)p

m
= xp

m
+ yp

m .
(2) Sei K ein Körper, und sei f ∈ K[x]. Seien α1,α2, . . . ,αk ∈ K paarweise verschiedene

Nullstellen von f . Zeigen Sie, dass
Q
(x− αi) ein Teiler von f in K[x] ist.

(3) Zeigen Sie, dass ein Polynom in K[x] vom Grad ≤ n, das n+1 verschiedene Nullstellen
hat, automatisch das Nullpolynom sein muss.

(4) Sei K ein Körper der Charakteristik p und sei ξ ∈ K.
(a) Zeigen Sie mithilfe des Satzes, dass für alle z ∈ Z die Kongruenz zp ≡ z (mod p)

gilt, dass das Polynom

f(x) := (x+ ξ)p − xp − ξp

zumindest p Nullstellen hat (probieren Sie n ∗ ξ mit n ∈ Z).
(b) Bestimmen Sie den Grad dieses Polynoms.
(c) Schließen Sie daraus, dass p | ( pi ) für alle i ∈ {1, 2, . . . , p− 1}, und dass für alle

α,β ∈ K gilt: (α+ β)p = αp + βp.

Aus dem Hauptsatz über endlich erzeugte abelsche Gruppen erhalten wir (Korollar 7.11):

Satz 12.6. Die multiplikative Gruppe eines endlichen Körpers ist zyklisch.

Wenn man nicht auf den Hauptsatz zurückgreifen will, so kann man diesen Satz auch
aus folgender Beobachtung beweisen:

Satz 12.7. Sei A = (A, ·) eine abelsche Gruppe mit neutralem Element 1. Wenn es für
jedes n ∈ N höchstens n Elemente in A mit xn = 1 gibt, dann ist A zyklisch.

Beweis: Sei h := |A|. Falls h = 1, ist A klarerweise zyklisch. Wir nehmen also nun
h ≥ 2 an. Wir bilden die Primfaktorzerlegung von h und finden also N ∈ N, Primzahlen
p1, p2, . . . , pN und r1, r2, . . . , rN ∈ N sodass

h =
NY

m=1

pm
rm .

Wir werden nun für jedes i ∈ {1, 2, . . . , N} ein Element ai und ein Element bi ∈ A

wählen: Da h
pi
< h, gibt es ein Element ai ∈ A, sodass ai

h
pi ̸= 1. Wir setzen

bi := ai
h

pi
ri .

Es gilt dann (Satz von Fermat)
bi

pi
ri
= 1. (12.1)

Sei nun k die Ordnung von bi, also das kleinste n ∈ N, sodass (bi)n = 1. Da k | piri gibt
es ein si ∈ {0, 1, . . . , ri}, sodass k = pi

si . Wir zeigen nun

si = ri. (12.2)
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Nehmen wir an si ≤ ri − 1. Dann gilt

bi
pi

ri−1

= 1,

also
ai

h
pi = 1.

Das widerspricht der Wahl von ai; dieser Widerspruch beweist (12.2). Die Ordnung von
bi ist also pi

ri . Wir bilden nun

c =
NY

i=1

bi.

Klarerweise gilt ch = 1. Wir zeigen nun, dass c wirklich Ordnung h hat. Wenn c kleinere
Ordnung hätte, dann gibt es ein j ∈ {1, . . . , N}, sodass c

h
pj = 1. Daher gilt

NY

i=1

bi
h
pj = 1. (12.3)

Falls i ̸= j, so gilt piri | h
pj

. Wegen (12.1) sind also Faktoren in (12.3) mit i ̸= j gleich 1.
Wir erhalten also

bj
h
pj = 1.

Da bj wegen (12.2) die Ordnung pj
rj hat, gilt pj

rj | h
pj

. Daher gilt pj
rj+1 | h, was im

Widerspruch zur Primfaktorzerlegung von h steht. Das Element c hat also wirklich
Ordnung h, und ist somit ein erzeugendes Element für die Gruppe A. □

Aus dem Satz 12.7 folgt nun direkt der Satz 12.6, da in jedem Körper und für jedes n

das Polynom xn − 1 höchstens n Nullstellen hat.

Übungsaufgaben 12.8.

(1) Sei (A, ·) eine Gruppe, und sei a ∈ A und n ∈ N so, dass an = 1. Zeigen Sie, dass n

ein Vielfaches der Ordnung von a ist.

2. Irreduzible Polynome

Wenn K ein endlicher Körper mit q Elementen ist, und f ein über K irreduzibles
Polynom vom Grad n, dann ist K[x]/(f) ein Körper mit qn Elementen. Wir brauchen
also zunächst irreduzible Polynome.

Satz 12.9. Sei K ein endlicher Körper mit q Elementen, und sei f ein irreduzibles
Polynom vom Grad n. Dann gilt f | xqn − x.

Wir betrachten den Körper K[x]/(f). Dieser Körper hat qn Elemente. Es gilt also wegen
Satz 12.4 (2) (x+ (f))q

n
= x+ (f). Das bedeutet f | xqn − x. □

Satz 12.10. Sei K ein Körper mit q Elementen. Dann gilt
Q

ν∈K(x− ν) = xq − x.
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Beweis: Beide Polynome haben q Nullstellen: für das linke Polynom ist das offensichtlich;
für das rechte eine Konsequenz aus dem Satz von Fermat bzw. aus Satz 12.4. Die
Differenz dieser beiden Polynome hat also mindestens q Nullstellen, und einen Grad
≤ q − 1. Die Differenz ist also das Nullpolynom. □

Lemma 12.11. Sei K ein endlicher Körper mit q Elementen, sei m ∈ N, und sei f ein
über K irreduzibles Polynom vom Grad m. Sei E ein Erweiterungskörper von K mit qm

Elementen. Dann zerfällt f in E[x] in ein Produkt lauter linearer Polynome.

Beweis: Da deg f = m, gilt nach Satz 12.9, dass f das Polynom xqm − x teilt. Nach
Satz 12.10 gilt Y

a∈E
(x− a) = xqm − x.

Das Polynom f ist auch ein Polynom in E[x]. Jeder über E irreduzible Teiler von f

in E[x] teilt also eines der Polynome in {x − b | b ∈ E}. Das bedeutet, dass f in E[x]

vollständig in Linearfaktoren zerfällt. □

Wir bezeichnen ein Polynom f als normiert, wenn sein führender Koeffizient (also der
Koeffizient von xdeg(f)) gleich 1 ist.

Satz 12.12. Sei p eine Primzahl, sei m ∈ N, und sei q = pm. Sei f ein normiertes, über
Zp irreduzibles Polynom in Zp[x] vom Grad m. Dann ist jeder Körper mit q Elementen
zu Zp[x]/(f) isomorph.

Beweis: Sei E ein Körper mit q Elementen. Wegen Lemma 12.11 wissen wir, f eine
Nullstelle in E[x] hat. Sei b ∈ E so, dass f(b) = 0. Wir bilden nun die Abbildung

Φ : Zp[x] −→ E

g 7−→ g(b).

Die Abbildung Φ ist ein Ring mit Eins-Homomorphismus. Ihr Kern ist {g ∈ Zp[x] | g(b) =
0}. Sei h der normierte Erzeuger des Ideals kerΦ. Da f ∈ kerΦ, gilt h | f . Da f irredu-
zibel über Zp ist, ist h entweder von Grad 0 oder gleich f . Im Fall, dass h vom Grad 0

ist, gilt wegen h(b) = 0, dass h das Nullpolynom ist, was h | f widerspricht. Also ist
h = f . Es gilt also nach dem Homomorphiesatz, dass Zp[x]/(f) isomorph zu E ist. □

3. Existenz irreduzibler Polynome

Wir geben im folgenden einen Beweis dafür, dass es für jedes n und für jeden endlichen
Körper K ein irreduzibles Polynom vom Grad n über K gibt.

Satz 12.13. Sei K ein Körper, und sei f ein normiertes Polynom in K[x] vom Grad n.
Dann gibt es einen Erweiterungskörper E von K, sodass jeder in E[x] irreduzible Teiler
von f Grad 1 hat.
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Wir beweisen folgende Aussage durch Induktion nach n:

Für jeden Körper K und jedes Polynom f ∈ K[x] vom Grad n gibt
es einen Erweiterungskörper E von K, sodass jeder in E[x] irreduzible
Teiler von f Grad 1 hat.

Für n = 1 ist die Aussage klar. Wir fixieren nun einen Körper K und ein Polynom
f ∈ K[x] mit deg f = n > 1. Wir zerlegen f in ein Produkt von normierten, über
K irreduziblen Polynomen in K[x]. Sei g einer der irreduziblen Faktoren. Wir bilden
den Körper L := K[x]/(g). Wir zeigen nun, dass x+ (g) eine Nullstelle von f ist. Dazu
berechnen wir f(x+(g)) =

Pdeg f
i=0 fi ·(x+(g))i. Wir wissen, wie man in Quotienten, also

in K[x]/(g) rechnet, und erhalten
Pdeg f

i=0 fi ·(x+(g))i = (
Pdeg f

i=0 fi ·xi)+(g). Wir wissen,
das jedes Polynom f = (f0, f1, f2, . . . , fdeg f , 0, 0, . . .) die Eigenschaft f =

Pdeg f
i=0 fi · xi

erfüllt, da ja x0 = (1, 0, 0, . . .), x1 = (0, 1, 0, 0, . . .), x2 = (0, 0, 1, 0, 0, . . .), . . .. Also gilt
(
Pdeg f

i=0 fi · xi) + (g) = f + (g). Da g | f , gilt f + (g) = 0 + (g). Also ist x + (g)

eine Nullstelle von f in L. Da f eine Nullstelle l in L hat, gibt es h ∈ L[x], sodass
f = (x−l)·h. Da h kleineren Grad als f hat, gibt es nach nach Induktionsvorraussetzung
einen Erweiterungskörper M von L, sodass jeder in M [x] irreduzible Teiler des Polynoms
h Grad 1 hat. In M [x] hat jeder irreduzible Teiler von f also Grad 1. □

Satz 12.14. Sei K ein endlicher Körper, und sei n ∈ N. Dann gibt es ein über K

irreduzibles Polynom vom Grad n in K[x].

Beweis: Sei q := K. Es gibt einen Erweiterungskörper E von K, in dem xqn−x in lauter
Linearfaktoren zerfällt. Wir bilden

L := {e ∈ E | eqn − e = 0}.

Mit Satz 12.4 (1) erhalten wir, dass L ein Unterkörper von E ist; mit mit Satz 12.4 (2),
dass L ein Erweiterungskörper von K ist. Da xqn − x über E in lauter Linearfaktoren
zerfällt, gibt es e1, e2, . . . , eqn ∈ E, sodass

xqn − x =

qnY

r

(x− er).

Mithilfe der Ableitung zeigt man wieder, dass xqn − x quadratfrei ist, und dass daher
alle ei verschieden sind. Alle ei liegen in L. Der Körper L hat daher mindestens qn

Elemente. Da xqn − x in E höchstens qn Nullstellen haben kann, hat L höchstens qn

Elemente.

Sei nun α ein erzeugendes Element der multiplikativen Gruppe (L∗, ·) von L, und sei
f ∈ K[x] ein normiertes, erzeugendes Element des Ideals

I = {g ∈ K[x] | g(α) = 0}.
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Wegen xqn − x ∈ I gilt I ̸= {0}. Wir zeigen nun:

f ist ein irreduzibles Element von K[x]. (12.4)

Wir nehmen an, es gibt normierte f1, f2 ∈ K[x] sodass f = f1 · f2. Dann gilt f1(α) ·
f2(α) = 0. Wenn nun f1(α) = 0, so gilt f | f1, und somit f2 = 1. Das beweist (12.4).

Die Abbildung

Φ : K[x] −→ L

g 7−→ g(α)

ist surjektiv (Φ(xk) = αk für alle k); ihr Kern ist I. Wir wissen, das L genau qn Elemente
hat. K[x]/I hat daher ebenfalls genau qn Elemente, und somit gilt deg f = n. Das
Polynom f ist also irreduzibel vom Grad n. □

Definition 12.15 (Möbiusfunktion). Wir definieren µ : N → {−1, 0, 1} durch

µ(n) =





(−1)k, falls n = p1 · p2 · · · pk mit pi ̸= pj für i ̸= j,

1 falls n = 1,

0 sonst.

Satz 12.16. Die Anzahl N der irreduziblen Polynome vom Grad n über einem Körper
mit q Elementen ist gegeben durch

N =
1

n

X

d|n
µ(d)q

n
d .

Beweis: [Wil99, p.49].

Übungsaufgaben 12.17.

(1) Leiten Sie aus diesem Satz her, dass es über jedem endlichen Körper für jedes n ein
irreduzibles Polynom vom Grad k gibt.

Für Polynome f, g ∈ K[x] bezeichnen wir mit f ◦ g das Polynom, das man erhält, wenn
man g in f einsetzt.

Satz 12.18. Sei K ein Körper mit q Elementen, sei n ∈ N, und sei f ∈ K[x]. Dann gilt

f ◦ xqn = xqn ◦ f.
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Beweis: Sei p die Charakteristik von K. Es gibt dann ein m, sodass q = pm. Es gilt
dann

xqn ◦ f = f qn

= (

deg fX

i=0

fix
i)(q

n)

= (

deg fX

i=0

fix
i)(p

mn)

=

deg fX

i=0

f pmn

i (xi)(p
mn)

=

deg gX

i=0

f qn

i (xi)(q
n)

=

deg fX

i=0

fi(x
(qn))i

= f ◦ x(qn). □

In einem Euklidischen Bereich kann man einen größten gemeinsamen Teiler von a, b

definieren, zum Beispiel als einen Erzeuger des von a und b erzeugten Ideals. Wenn wir
aus jeder Klasse konjugierter Elemente einen Repräsentanten auswählen, so können wir
ggT sogar als Funktion definieren.

Satz 12.19. Sei E ein Euklidischer Bereich, und sei f ∈ E, f nicht invertierbar, und
seien n,m ∈ N0, nicht beide 0. Dann gilt ggT(fm − 1, fn − 1) = f ggT(n,m) − 1.

Beweis: Wir beweisen den Satz durch Induktion nach max(m,n). Wenn m = n = 1,
dann gilt der Satz offensichtlich. Sei nun max(m,n) > 1.

• Fall m = 0 oder n = 0: offensichtlich.
• Fall m > n ≥ 1: Es gilt ggT(fm − 1, fn − 1) = ggT(fm − 1 − fm−n · (fn −
1), fn − 1), da beide Polynompaare die gleichen gemeinsamen Teiler haben.
Durch ausrechnen erhalten wir ggT(fm − 1, fn − 1) = ggT(fm−n − 1, fn − 1).
Da m > n, gilt max(m−n, n) < max(m,n). Nach Induktionsannahme gilt also
ggT(fm−n − 1, fn − 1) = f ggT(m−n,n) − 1 = f ggT(m,n) − 1.

• Fall n > m ≥ 1: analog.
• Fall m = n: offensichtlich. □

Korollar 12.20.

(1) Sei K ein Körper, sei f ein normiertes Polynom in K[x] mit deg(f) ≥ 1, und
seien m,n ∈ N. Dann gilt ggT(fm − 1, fn − 1) = f ggT(n,m) − 1.
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(2) Seien f,m, n ∈ N mit f ≥ 2. Dann gilt ggT(fm − 1, fn − 1) = f ggT(n,m) − 1.

Satz 12.21. Sei K ein endlicher Körper mit q Elementen, und sei n ∈ N. Sei F die
Menge aller über K irreduziblen, normierten Polynome in K[x], deren Grad ein Teiler
von n ist. Dann gilt Y

f∈F
f = xqn − x.

Beweis: Wir zerlegen xqn −x in ein Produkt normierter, über K irreduzibler Polynome;
wir finden also k ∈ N und normierte irreduzible Polynome g1, g2, . . . , gk, sodass

xqn − x =
kY

i=1

gi .

Als erstes zeigen wir, dass alle gi verschieden sind. Nehmen wir an, dass es ein Polynom
h mit deg h ≥ 1 gibt, sodass h2 | xqn − x. Dann gibt es a ∈ K[x], sodass

h2 · a = xqn − x.

Durch Differenzieren erhalten wir

2hh′a+ h2a′ = qn ∗ xqn−1 − 1,

und da qn ein Vielfaches der Charakteristik von K ist, gilt

h(2h′a+ ha′) = −1.

Das ist aber nicht möglich, weil deg h ≥ 1. Sei also G = {gi | i ∈ {1, 2, . . . , k}}. Dann
gilt, weil alle gi verschieden sind, xqn − x =

Q
g∈G g. Wir zeigen nun noch

F = G. (12.5)

⊆: Sei also f ∈ F ein normiertes, über K[x] irreduzibles Polynom, dessen Grad (=: d) ein
Teiler von n ist. Wir müssen zeigen, dass f das Polynom xqn − x teilt. Dazu betrachten
wir den Körper K[x]/(f). Dieser Körper hat qd Elemente. Es gilt also wegen Satz 12.4 (2)
(x+ (f))q

d
= x+ (f). Das bedeutet

f | xqd − x.

Wir zeigen nun
xqd − x | xqn − x. (12.6)

Dazu zeigen wir xqd−1 − 1 | xqn−1 − 1. Wir berechnen ggT(xqd−1 − 1, xqn−1 − 1). Nach
Lemma 12.20 gilt ggT(xqd−1−1, xqn−1−1) = xggT(qd−1,qn−1)−1 = x(qggT(d,n))−1 = xqd−1;
das impliziert (12.6). Wir erhalten also f | xqn − x. Somit (Fundamentallemma) liegt
f ∈ G. ⊇: Sei g ein normiertes irreduzibles Polynom, das xqn − x teilt. Wir müssen
zeigen, dass d := deg g ein Teiler von n ist. Der Körper K[x]/(g) hat qd Elemente. Es
gilt also g | xqd −x. Falls g ̸= x, gilt g | ggT(xqd−1− 1, xqn−1− 1) = xggT(gd−1,qn−1)− 1 =

x(qggT(n,d)−1) − 1. Sei r := ggT(n, d). Es gilt also g | xqr − x. Wir zeigen nun, dass jedes
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Element von K[x]/(g) eine Nullstelle von xqr −x ist. Sei dazu h ∈ K[x]. Wir berechnen
(h+ (g))(q

r). Es gilt

(h+ (g))(q
r) = h(qr) + (g)

= (x(qr) ◦ h) + (g)

= (h ◦ x(qr)) + (g)

= (

deg hX

i=0

hix
i·qr) + (g).

Es gilt x(qr) ≡ x (mod g), also für alle i ∈ N0 auch xi·qr ≡ xi (mod g). Insgesamt
erhalten wir also

(h+ (g))(q
r) = h+ (g),

und somit ist jedes Element aus K[x]/(g) eine Nullstelle von xqr−x. Da r ≥ 1, ist xqr−x

nicht das Nullpolynom. Es hat also höchstens qr Nullstellen. Der Körper K[x]/(g) hat
qd Elemente. Es gilt also d ≤ r, also d ≤ ggT(n, d). Das bedeutet, dass d ein Teiler von
n ist. Das Polynom g liegt also in der Menge F . □

4. Test auf Irreduzibilität

Der folgende Satz liefert einen Test, ob ein Polynom irreduzibel über einem endlichen
Körper mit q Elementen ist.

Satz 12.22. Sei K ein Körper mit q Elementen, sei n ∈ N und sei f ∈ K[x] mit
deg(f) = n. Äquivalent sind:

(1) Für alle i ∈ {1, 2, . . . , ⌊n
2
⌋} gilt:

ggT(f, xqi − x) = 1.

(2) f ist irreduzibel über K.

Beweis: (1)⇒(2): Wenn f nicht irreduzibel über K ist, so gibt es ein über K irreduzibles
Polynom g ∈ K[t] mit g | f , 1 ≤ deg(g) ≤ ⌊n

2
⌋. Sei i := deg(g). Dann gilt wegen

Satz 12.9 g | (xqi−x),und somit g | ggT(f, xqi−x), im Widerspruch zu ggT(f, xqi−x) =

1. (2)⇒(1): Wenn f über K irreduzibel ist, i ∈ {1, . . . , ⌊n
2
⌋}, und ggT(f, xqi − x) ̸= 1,

so gilt f | xqi −x. Wegen Satz 12.21 ist der Grad von f dann ein Teiler von i; somit gilt
n ≤ i, im Widerspruch zu i ≤ ⌊n

2
⌋. □

Satz 12.23. Sei K ein Körper mit q Elementen, sei n ∈ N und sei f ∈ K[x] mit
deg(f) = n, ggT(f, f ′) = 1, und seien f1, . . . , fr über K irreduzible Polynome mitQr

i=1 fi = f . Sei Q die n× n-Matrix, an deren (i, j)-ter Stelle der Koeffizient von xi−1

des Polynoms xq·(j−1) mod f steht. Dann ist die Dimension des Nullraums von Q − I

gleich r.
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Es gilt (Q − I) ·
� a0

...
an

�
= 0 genau dann, wenn für das Polynom a :=

Pn−1
j=0 ajx

qj gilt,

dass a(xq)− a(x) ein Vielfaches von f ist. Wegen Satz 12.18 gilt a(xq) = a(x)q.

Wir zeigen nun, dass f | a(x)q − a(x) genau dann gilt, wenn es α1, . . . ,αr ∈ K gibt,
sodass für alle i ∈ {1, . . . , r} gilt, dass fi | (a(x) − αi). Wenn es (α1, . . . ,αr) ∈ Kr mit
dieser Eigenschaft gibt, so gilt für jedes i, dass fi | (a(x)−αi) |

Q
β∈K(a(x)−β). Wegen

Satz 12.10 gilt also fi | (a(x)q − a(x). Da alle fi irreduzibel und paarweise verschieden
sind (wegen ggT(f, f ′) = 1), gilt also f | a(x)q − a(x). Sei nun umgekehrt a so, dass
f | a(x)q − a(x), und i ∈ {1, . . . , r}. Dann gilt fi |

Q
β∈K(a(x) − β). Da fi irreduzibel

über K ist, teilt es einen der Faktoren.

Wegen des Chinesischen Restsatzes gibt es für jedes r-Tupel (α1, . . . ,αr) ∈ Kr genau
ein Polynom a vom Grad ≤ n−1, sodass fi | a(x)−αi für alle i ∈ {1, . . . , r}. Folglich hat
das Gleichungssystem (Q− I) · a = 0 genau qr Lösungen, die Dimension des Nullraums
ist also r. □
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