Algebra

5. Übungsblatt für den 6. November 2007

Wir besprechen am 6.11.07 auch die Beispiele 4 und 5 vom 4. Übungsblatt.

- (1) (Präsentationen von Halbgruppen) Berechnen Sie die Anzahl der Elemente der durch $E = \{a, b, c\}$ und $R = \{(ab, c), (ba, c), (a^2, a), (b^2, b), (c^2, c)\}$ präsentierten Halbgruppe **H**. Geben Sie die Verknüpfungstafel an!
- (2) (Präsentationen von Halbgruppen) Zeigen Sie, dass die durch $E = \{a, b\}$, $R = \{(ab, ba), (b^3 = b)\}$ präsentierte Halbgruppe unendlich ist.

In den folgenden beiden Beispielen definieren wir eine Gruppe als eine algebraische Struktur

$$(G,\cdot,i,e)$$
,

wobei \cdot eine zweistellige Verknüpfung, i einstellig, und e nullstellig ist, und in der für alle $x,y,z\in G$ die Gleichungen $(x\cdot y)\cdot z=x\cdot (y\cdot z),$ e $\cdot x=x$ und $i(x)\cdot x=e$ gelten.

- (3) Sei $(G, \cdot, i, \mathbf{e})$ eine Gruppe. Zeigen Sie, dass für alle $x \in G$ die Gleichungen $x \cdot \mathbf{e} = x$ und $x \cdot i(x) = \mathbf{e}$ gelten.
- (4) Finden Sie eine Menge H, eine Funktion \cdot von $H \times H$ nach H, eine Funktion i von H nach H, und ein Element $\mathbf{e} \in H$, sodass alle folgende Eigenschaften erfüllt sind:
 - (a) Für alle $x,y,z\in H$ gelten: $(x\cdot y)\cdot z=x\cdot (y\cdot z),$ $\mathbf{e}\cdot x=x,$ $x\cdot i(x)=\mathbf{e}.$
 - (b) (H, \cdot, i, e) ist keine Gruppe.
- (5) (Halbgruppen) Sei H eine endliche Unterhalbgruppe einer Gruppe. Zeigen Sie, dass auch H eine Gruppe ist.
- (6) Finden Sie alle Normalteiler der Gruppe S_3 .