Algebra

4. Übungsblatt für den 30. Oktober 2007

Wir besprechen am 30.10. auch die Beispiele 4 und 5 vom 3. Übungsblatt.

- (1) (Spezielle Elemente) Sei $n \in \mathbb{N}$. Wieviele idempotente Elemente hat (\mathbb{Z}_n, \cdot) ?
- (2) (Idempotente Elemente) Sei (H, \circ) eine Halbgruppe, und sei $b \in H$ so, dass $b^{307} = b^{318}$. Bestimmen Sie ein idempotentes Element von H!
- (3) (Hintereinanderausführung von Funktionen) Wir schreiben $f^{(1)}$ für f, und $f^{(k)}$ für $f \circ f^{(k-1)}$. Die Funktion $f^{(k)}$ ist also die k-malige Hintereinanderausführung von f. Sei T_n die Menge aller Funktionen von $\{1, 2, \ldots, n\}$ nach $\{1, 2, \ldots, n\}$.
 - (a) Sei $n \in \mathbb{N}$ und sei $f \in T_n$. Zeigen Sie, dass es $k, l \in \mathbb{N}$ gibt, sodass k < l und $f^{(k)} = f^{(l)}$.
 - (b) Sei $n \in \mathbb{N}$. Zeigen Sie, dass es $K, L \in \mathbb{N}$ gibt, sodass K < L, und für alle $f \in T_n$ gilt $f^{(K)} = f^{(L)}$.
- (4) (Bonusbeispiel zur Hintereinanderausführung von Funktionen) Wir schreiben $f^{(1)}$ für f, und $f^{(k)}$ für $f \circ f^{(k-1)}$. Die Funktion $f^{(k)}$ ist also die k-malige Hintereinanderausführung von f. Sei T_n die Menge aller Funktionen von $\{1, 2, \ldots, n\}$ nach $\{1, 2, \ldots, n\}$.
 - (a) Sei $n \in \mathbb{N}$. Zeigen Sie, dass es $M \in \mathbb{N}$ gibt, sodass für alle $f \in T_n$ gilt: $f^{(M)} \circ f^{(M)} = f^{(M)}$.
 - (b) Sei $n \in \mathbb{N}$. Zeigen Sie, dass es ein M gibt, sodass für jede Halbgruppe H mit $|H| \leq n$ und für alle $h \in H$ das Element h^M ein idempotentes Element der Halbgruppe H ist.
- (5) (Freie Halbgruppen) Ist die von $A = \{a, c, ad, abb, bad, deb, bbcde\}$ erzeugte Unterhalbgruppe von $W_{\{a,b,c,d,e\}}$ frei über A?