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Results



Outline

In these lectures, we will present the proofs of:

Theorem (2009) [AMM14]

Every clone with edge operation on a finite set is finitely related.

Theorem (2014) [AM14]

Every subvariety of a finitely generated variety with edge term

is finitely generated.



Classic Clone Theory



Clones

Operations

O(A) :=
⋃

k∈N{f ||| f : Ak → A}.

Clones
A subset C of O(A) is a clone on A if

1. ∀k , i ∈ N with i ≤ k :
(
(x1, . . . , xk ) 7→ xi

)
∈ C,

2. ∀n ∈ N,m ∈ N, f ∈ C[n],g1, . . . ,gn ∈ C[m]:

f (g1, . . . ,gn) ∈ C[m].

C[n] . . . the n-ary functions in C, C[n] ⊆ AAn
.



Relational Description of Clones

Definition
I a finite set, ρ ⊆ AI, f : An → A. f preserves ρ (f ⊲ ρ) if

∀v1, . . . , vn ∈ ρ:

〈f (v1(i), . . . , vn(i)) ||| i ∈ I〉 ∈ ρ.

In other words:

f AI

(v1, . . . , vn) ∈ ρ.

Remark
f ⊲ ρ ⇐⇒ ρ is a subuniverse of (A, f )I .

Definition (Polymorphisms)

Let R be a set of finitary relations on A, ρ ∈ R.

Pol({ρ}) := {f ∈ O(A) ||| f ⊲ ρ},

Pol(R) :=
⋂

ρ∈R

Pol({ρ}).



Relational Description of Clones

Theorem
Let R be a set of finitary relations on A, and let ρ1, ρ2 ∈ R with

ρ1 6= ∅, ρ2 6= ∅. Then

1. Pol(R) is a clone.

2. Pol({ρ1, ρ2}) = Pol({ρ1 × ρ2}).



Every clone can be described by relations

Theorem (see [PK79])

Let C be a clone on the finite set A. Then there is a set R of

finitary relations such that C = Pol(R).

Proof:

◮ Observe C[n] ⊆ AAn
.

◮ Take In := An, ρn := C[n]. Then ρn ⊆ AIn .

◮ Set R := {ρ1, ρ2, . . . , . . .}.

◮ Prove C ⊆ Pol(R): f ∈ C[n], g1, . . . ,gn ∈ ρm implies

f (g1, . . . ,gn) ∈ ρm by the closure properties of clones.

◮ Prove Pol(R) ⊆ C: Let f : An → A in Pol(R). Then f ⊲ ρn,

hence f (π1, . . . , πn) ∈ ρn, thus f ∈ C[n].



Finitely related clones vs. DCC

Definition
A clone C is finitely related if there is a finite set of finitary

relations R with C = Pol(R).

Theorem [PK79, 4.1.3]

Let C be a clone on the finite set A. TFAE:

1. C is not finitely related.

2. There is a strictly decreasing sequence

C1 ⊃ C2 ⊃ C3 ⊃ · · · with C =
⋂

i∈N Ci .



Finitely related clones vs. DCC

Theorem
Let C be a clone on the finite set A. TFAE:

1. C is not finitely related.

2. There is a strictly decreasing sequence

C1 ⊃ C2 ⊃ C3 ⊃ · · · with C =
⋂

i∈N Ci .

Proof of (1)⇒(2):

◮ We know C = Pol({ρ1, ρ2, . . .}).

◮ Hence Pol({ρ1}) ⊇ Pol({ρ1, ρ2}) ⊇ Pol({ρ1, ρ2, ρ3}) ⊇ · · · .

Proof of (2)⇒(1):

◮ Suppose C = Pol({ρ}), |ρ| = N.

◮ Then for some n ∈ N, Cn
[N] = C[N].

◮ We show ∀f ∈ Cn : f ⊲ ρ on the next slide.

◮ Then Cn ⊆ Pol({ρ}) = C ⊆ Cn+1, a contradiction.



Finitely related clones vs. DCC

Proof of (2)⇒(1) (continued):

◮ Assumptions: C = Pol({ρ}), ρ = {b1, . . . ,bN},

Cn
[N] = C[N].

◮ We want to show: ∀f ∈ Cn : f ⊲ ρ .

◮ To this end, let f ∈ Cn, r -ary, and let a1, . . . ,ar ∈ ρ.

◮ Goal: f (a1, . . . ,ar ) ∈ ρ.

◮ We have f (a1, . . . ,ar ) = f (bi(1), . . . ,bi(r)) with

i(k) ∈ {1, . . . ,N} for all k ∈ {1, . . . , r}.

◮ Define g(y1, . . . , yN) := f (yi(1), . . . , yi(r)) for all y ∈ AN .

◮ Then f (bi(1), . . . ,bi(r)) = g(b1, . . . ,bN).

◮ Now g ∈ C
[N]
n , hence g ∈ C[N]. Thus g(b1, . . . ,bN) ∈ ρ.



How to establish “finitely related”

Theorem
Let M be a clone on A. If

({C |C clone on A ,M ⊆ C}, ⊆)

satisfies the DCC, then every clone containing M is finitely

related.

Definition
(X ,≤) has the DCC :⇔ there is no (xi)i∈N with

x1 > x2 > x3 > · · · .

Theorem
(X ,≤) has the DCC ⇔ Every nonempty subset Y of X has a

minimal element.



Forks



Groups

Let G be a group, n ∈ N.

Goal: represent subgroups of Gn. The following lemma will

motivate the definition of forks and the formulation of the fork

lemma.

Lemma
Let G be a group, n ∈ N, A ≤ B ≤ Gn subgroups. Assume

1. A ⊆ B

2. ∀i ∈ {1, . . . ,n}, ∀g ∈ G, ∀ri+1, . . . , rn ∈ G:

(0, . . . ,0
︸ ︷︷ ︸

i−1

,g, ri+1, . . . , rn) ∈ B ⇒

∃si+1, . . . , sn ∈ G : (0, . . . ,0,g, si+1, . . . , sn) ∈ A.

Then A = B.



Mal’cev algebras I

A is a Mal’cev algebra ⇔ ∃d ∈ Clo3A ∀a,b ∈ A:

d(a,a,b) = d(b,a,a) = b.

Definition of Forks
Let A be an algebra, let m ∈ N, and let F be a subuniverse of

Am. For i ∈ {1, . . . ,m}, we define the relation ϕi(F ) on A by

ϕi(F ) :={(ai ,bi) ||| (a1, . . . ,am) ∈ F , (b1, . . . ,bm) ∈ F ,

(a1, . . . ,ai−1) = (b1, . . . ,bi−1)}.

If (c,d) ∈ ϕi(F ), we call (c,d) a fork of F at i .

If
u = (a1, . . . ,ai−1, c,ai+1, . . . ,am) ∈ F and

v = (a1, . . . ,ai−1,d ,bi+1, . . . ,bm) ∈ F ,

then (u,v) is a witness of the fork (c,d) at i .



Mal’cev algebras II

Forks have not been called forks, but are used, e.g., in:

[BD06, p.21], [BIM+10], [Aic00, p.110]



The fork lemma

Lemma (cf. [BIM+10, Cor. 3.9], [Aic10, Lemma 3.1])

Let A be an algebra with Mal’cev term d , and let m ∈ N. Let

F ,G be subuniverses of Am with F ⊆ G. We assume

∀i ∈ {1, . . . ,m}: ϕi(G) ⊆ ϕi(F ). Then F = G.

Proof:

◮ For each k ∈ {1, . . . ,m}, let

Fk := {(f1, . . . , fk ) ||| (f1, . . . , fm) ∈ F}
Gk := {(g1, . . . ,gk ) ||| (g1, . . . ,gm) ∈ G}.

◮ We prove ∀k ∈ {1, . . . ,m} : Gk ⊆ Fk .

◮ k = 1: X



The fork lemma

◮ k ≥ 2: Let (g1, . . . ,gk ) ∈ Gk .

◮ Then (g1, . . . ,gk−1) ∈ Gk−1.

◮ By the induction hypothesis, (g1, . . . ,gk−1) ∈ Fk−1.

◮ Hence ∃fk :

(g1, . . . ,gk−1, fk ) ∈ Fk .

◮ Since (fk ,gk ) ∈ ϕk (G), we have (fk ,gk ) ∈ ϕk (F ).

◮ Thus ∃: a1, . . . ,ak−1 ∈ A such that

(a1, . . . ,ak−1, fk ) ∈ Fk

(a1, . . . ,ak−1,gk ) ∈ Fk .

◮ By Mal’cev: (g1, . . . ,gk ) ∈ Fk .



Limitation of forks

Fact
Let A be an algebra, α ∈ Aut(A). Then

B = {(a,a) ||| a ∈ A}
C = {(a, α(a)) ||| a ∈ A}

have the same forks.

Fact [BD06, BIM+10]

(Forks + one witness per fork) represent subalgebras if we have

a Mal’cev term. Can be modified to edge terms.



Representing Clones By Forks



Representing clones by forks

Let C := Clo((Z3,+)); A := Z3. We represent the binary part

C[2].

C[2] = {(x , y) 7→ ax + by ||| a,b ∈ Z3}.

◮ Order A: 0 < 1 < 2.

◮ Order A2 lexicographically:

00 < 01 < 02 < 10 < 11 < 12 < 20 < 21 < 22.



Representing clones by forks

◮ For each x ∈ A2, compute

F (C,x) := {f (x) ||| f ∈ C,∀z < x : f (z) = 0}.

x F (C, x) Reason



Representing clones by forks

◮ For each x ∈ A2, compute

F (C,x) := {f (x) ||| f ∈ C,∀z < x : f (z) = 0}.

x F (C, x) Reason

00 {0}



Representing clones by forks

◮ For each x ∈ A2, compute

F (C,x) := {f (x) ||| f ∈ C,∀z < x : f (z) = 0}.

x F (C, x) Reason

00 {0}
01 A f (x , y) := y witnesses 1 ∈ F (C, 01)



Representing clones by forks

◮ For each x ∈ A2, compute

F (C,x) := {f (x) ||| f ∈ C,∀z < x : f (z) = 0}.

x F (C, x) Reason

00 {0}
01 A f (x , y) := y witnesses 1 ∈ F (C, 01)
02 0 f (02) = f (01) + f (01)



Representing clones by forks

◮ For each x ∈ A2, compute

F (C,x) := {f (x) ||| f ∈ C,∀z < x : f (z) = 0}.

x F (C, x) Reason

00 {0}
01 A f (x , y) := y witnesses 1 ∈ F (C, 01)
02 0 f (02) = f (01) + f (01)
10 A f (x , y) := x witnesses 1 ∈ F (C, 10)



Representing clones by forks

◮ For each x ∈ A2, compute

F (C,x) := {f (x) ||| f ∈ C,∀z < x : f (z) = 0}.

x F (C, x) Reason

00 {0}
01 A f (x , y) := y witnesses 1 ∈ F (C, 01)
02 0 f (02) = f (01) + f (01)
10 A f (x , y) := x witnesses 1 ∈ F (C, 10)
11 0 f (11) = f (01) + f (10)



Representing clones by forks

◮ For each x ∈ A2, compute

F (C,x) := {f (x) ||| f ∈ C,∀z < x : f (z) = 0}.

x F (C, x) Reason

00 {0}
01 A f (x , y) := y witnesses 1 ∈ F (C, 01)
02 0 f (02) = f (01) + f (01)
10 A f (x , y) := x witnesses 1 ∈ F (C, 10)
11 0 f (11) = f (01) + f (10)
12 0

20 0

21 0

22 0



Representing clones by forks

◮ For each x ∈ A2, compute

F (C,x) := {f (x) ||| f ∈ C,∀z < x : f (z) = 0}.

x F (C, x) Reason

00 {0}
01 A f (x , y) := y witnesses 1 ∈ F (C, 01)
02 0 f (02) = f (01) + f (01)
10 A f (x , y) := x witnesses 1 ∈ F (C, 10)
11 0 f (11) = f (01) + f (10)
12 0

20 0

21 0

22 0



From groups to Mal’cev algebras

◮ (A,+) group, C clone on A, x ∈ An.

F (C,x) := {f (x) ||| f ∈ C,∀z < x : f (z) = 0}.

◮ A set with a Mal’cev operation, C clone on A, x ∈ An.

ϕ(C,x) := {(f1(x), f2(x)) ||| f1, f2 ∈ C,∀z < x : f1(z) = f2(z)}.

Call ϕ(C,x) the forks of C at x.

Fork lemma for clones [Aic10]

Let C,D clones on A containing a Mal’cev operation. If C ⊆ D

and ϕ(C,a) = ϕ(D,a) for all a ∈ A∗, then C = D.



Consequence

From a linearly ordered set of clones with the same Mal’cev

term, the mapping

C 7→ 〈ϕ(C,a) ||| a ∈ A∗〉

is injective.



Connections between forks at

different places



Connections between forks

C . . . constantive clone on Z2. We observe 0110 ≤e 0011101.
Claim: F (C,0011101) ⊆ F (C,0110).

Proof

◮ Let a ∈ F (C,0011101).

◮ Let f ∈ C[7] such that f (0011101) = a, f (z) = 0 for all

z ∈ {0,1}7 with z <lex 0011101.

◮ Define g(x1, x2, x3, x4) := f (0, x1, x2,1, x3, x4,1).

◮ Then g(0110) = f (0011101) = a and g(z) = 0 for

z ∈ {0,1}4 with z <lex 0110.

◮ Thus a ∈ F (C,0110).



The Embedded Forks Lemma

Abstract from Z2:

Clones on A = {0, . . . , t − 1}.

Word embedding

hen ≤e achievement, austria ≤e australia

Embedded Forks Lemma (with constants) [Aic10]

Let C be a constantive clone on A. a,b ∈ A∗. Then

a ≤e b ⇒ ϕ(C,b) ⊆ ϕ(C,a).



Connections between forks

Limitations of the Embedded Forks Lemma
In the proof of the Theorem, we used constants:

g(x1, x2, x3, x4) := f (0, x1, x2,1, x3, x4,1).

Without constants:

g(x1, x2, x3, x4) := f (x4, x1, x2, x2, x3, x4, x2).

Then g(0110) = f (0011101), but

0001 <lex 0110 and 1000010 6<lex 0011101.

Hence g(0001) = 0 not guaranteed.



Connections between forks

Connection between forks
C . . . clone on Z2. We observe 0110 ≤E 0011101.
Claim:

F (C,0011101) ⊆ F (C,0110).

Proof
Let a ∈ F (C,0011101),
f ∈ C[7] such that f (0011101) = a, f (z) = 0 for all z ∈ {0,1}7

with z <lex 0011101.

Define

g(x1, x2, x3, x4) := f (x1, x1, x2, x2, x3, x4, x2)
(recall: f (x4, x1, x2, x2, x3, x4, x2) was no help)

Then g(0110) = f (0011101) = a and g(z) = 0 for z ∈ {0,1}4

with z <lex 0110. Thus a ∈ F (C,0110).



The new embedding ordering: from ≤e to ≤E

◮ A+ :=
⋃
{An ||| n ∈ N}.

◮ For a = (a1, . . . ,an) ∈ A+ and b ∈ A, we define the index of

the first occurrence of b in a, firstOcc (a,b), by

firstOcc (a,b) := 0 if b 6∈ {a1, . . . ,an}, and

firstOcc (a,b) := min{i ∈ {1, . . . ,n}||| ai = b} otherwise.

Definition
Let A be a finite set, and let a = (a1, . . . ,am) and

b = (b1, . . . ,bn) be elements of A+. We say a ≤E b (read: a

embeds into b) if ∃ injective and increasing function

h : {1, . . . ,m} → {1, . . . ,n} such that

1. for all i ∈ {1, . . . ,m} : ai = bh(i),

2. {a1, . . . ,am} = {b1, . . . ,bn},

3. for all c ∈ {a1, . . . ,am}: h(firstOcc (a, c)) = firstOcc (b, c).

We will call such an h a function witnessing a ≤E b.



The new embedding ordering

Informal description

a ≤E b iff b can be obtained from a by inserting additional

letters anywhere after their first occurrence in a.



Embedded Forks Lemma

Clones on A = {0, . . . , t − 1}.

Theorem (Embedded Forks Lemma without constants)
[AMM14]

Let C be a clone on A, and let a,b ∈ A∗ with a ≤E b.

Then ϕ(C,b) ⊆ ϕ(C,a).



Short representation of all forks



Facts on the embedding orderings

Let A be a finite set.



Facts on the embedding orderings

Let A be a finite set.

1. (A∗,≤e) has no infinite descending chains.
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Facts on the embedding orderings

Let A be a finite set.

1. (A∗,≤e) has no infinite descending chains.

2. (A∗,≤E ) has no infinite descending chains.

3. (A∗,≤e) has no infinite antichains [Hig52].



Facts on the embedding orderings

Let A be a finite set.

1. (A∗,≤e) has no infinite descending chains.

2. (A∗,≤E ) has no infinite descending chains.

3. (A∗,≤e) has no infinite antichains [Hig52].

4. (A∗,≤E ) has no infinite antichains [AMM14].



Facts on the embedding orderings

Let A be a finite set.

1. (A∗,≤e) has no infinite descending chains.

2. (A∗,≤E ) has no infinite descending chains.

3. (A∗,≤e) has no infinite antichains [Hig52].

4. (A∗,≤E ) has no infinite antichains [AMM14].



Facts on the embedding orderings

Definition
Let (X ,≤) be an ordered set, Y ≤ X . Y is upward closed if

∀y ∈ Y , x ∈ X : y ≤ x ⇒ x ∈ Y .

The set of upward closed subsets

Let (X ,≤) be an ordered set. Let

U(X ) := {A |||A ⊆ X ,A upward closed}.

Fact
(X ,≤) has no infinite descending chain and no infinite anitchain

(wpo) =⇒ (U(X ),⊆) has no infinite ascending chain.



Facts on the embedding orderings

Fact
(X ,≤) has no infinite descending chains and no infinite

anitchain (wpo) ⇒ (U(X ),⊆) has no infinite ascending chain.

Proof:

1. Let U1 ⊂ U2 ⊂ U3 ⊂ be an ascending chain.

2. U :=
⋃

i∈N Ui .

3. U has finitely many minimal elements (they form an

antichain!).

4. There is j such that these minimal elements are in Uj .

5. Then U ⊆ Uj because every element in U is ≥ some

minimal element in U.



Facts on the embedding orderings

A a finite set.

Theorem
The set of upward closed subsets of (A∗,≤e) has no infinite

ascending chain with respect to ⊆.

Theorem
The set of upward closed subsets of (A∗,≤E ) has no infinite

ascending chain with respect to ⊆.

Question
Is there an infinite antichain of upward closed subsets of

(A∗,≤e)?



Forks of clones and upward closed sets

◮ Let C1 ⊃ C2 ⊃ C3 ⊃ · · · be a chain of Mal’cev clones.

Then we can determine i if we know

ϕ(Ci ,a) for every a ∈ A∗.

◮ Let S ⊂ A × A. Since a ≤E b ⇒ ϕ(Ci ,b) ⊆ ϕ(Ci ,a),

Ψ(Ci ,S) := {a ∈ A∗ |||ϕ(Ci ,a) ⊆ S}

is an upward closed subset of (A∗,≤E ).

◮ Recover the forks from Ψ(Ci ,S):

(c,d) ∈ ϕ(Ci ,a) ⇔ ϕ(Ci ,a) 6⊆ (A × A) \ {(c,d)}
⇔ a 6∈ Ψ(Ci , (A × A) \ {(c,d)}).

Hence: if we know Ψ(Ci ,S) for all S ⊆ A × A, we can

recover all forks.



Short representation of clones

1. Let C be a linearly order set of clones on A with the same

Mal’cev operation.

2. We can “store” each C ∈ C by

〈Ψ(C,S) |||S ⊆ A × A〉.

3. Each Ψ(C,S) is an upward closed set of (A∗,≤E ) and has

only finitely many minimal elements

4. Hence C is countable!



Chain conditions for sets of clones



DCC for Mal’cev clones

Lemma
Let L be a linearly order set of Mal’cev clones. Then the

mapping

r : L −→ (U(A∗,≤E))
2A

C 7−→ Ψ(C,S) = 〈 {x ∈ A∗ ||| ϕ(C,x) ⊆ S} ||| S ⊆ A 〉

is injective and inverts the ordering.

Consequence

Let A be a finite set, d a Mal’cev operation. There is no infinite

descending chain of clones on A that contain d .

Proof: Such a chain produces an infinite ascending chain in

(U(A∗,≤E ))
2A

, and hence in U(A∗,≤E). Contradiction.



Mal’cev clones on finite sets are finitely related

Theorem [AMM14]

Let A be a finite set, and let M be the set of all Mal’cev clones

on A. Then we have:

1. There is no infinite descending chain in (M,⊆).

2. For every Mal’cev clone C, there is a finitary relation ρ on A

such that C = Pol({ρ}).

3. The set M is finite or countably infinite.



Consequences

Mal’cev algebras

1. Up to term equivalence and renaming of elements, there

are only countably many finite Mal’cev algebras.

2. Every finite Mal’cev algebra can be represented by a single

finitary relation.

Corollary – The clone lattice above a Mal’cev clone

Let C be a Mal’cev clone on a finite set A.

1. The interval I[C,O(A)] has finitely many atoms.

2. every clone D with C ⊂ D contains one of these atoms,

3. If I[C,O(A)] is infinite, it contains a clone that is not finitely

generated (cf. König’s Lemma).



From Mal’cev terms to edge terms



Edge terms

Edge operations
For k ≥ 3, a (k + 1)-ary operation is a k-edge operation on A if
for all a,b ∈ A:

t(a, a, b, b, b, . . . , b) = b

t(b, a, a, b, b, . . . , b) = b

t(b, b, b, a, b, . . . , b) = b
. . .

t(b, b, b, b, b, . . . , a) = b

(still wrong!)



Edge terms

Edge operations
For k ≥ 3, a (k + 1)-ary operation is a k-edge operation on A if
for all a,b ∈ A:

t(a, a, b, b, b, . . . , b) = b

t(a, b, a, b, b, . . . , b) = b

t(b, b, b, a, b, . . . , b) = b
. . .

t(b, b, b, b, b, . . . , a) = b



Examples of edge operations

Edge operation

t(a, a, b, b, b, . . . , b) = b

t(a, b, a, b, b, . . . , b) = b
t(b, b, b, a, b, . . . , b) = b

. . .

t(b, b, b, b, b, . . . , a) = b

◮ d Mal’cev. Then t(x , y , z) := d(y , x , z) is 2-edge.

◮ m majority. Then t(x1, x2, x3, x4) := m(x2, x3, x4) is 3-edge.

◮ f n-ary near-unanimity. Then t(x0, . . . , xn) := f (x1, . . . , xn)
is n-edge.



Edge terms and few subpowers

Theorem - Edge terms and few subpowers [BIM+10]

Let A be a finite algebra. TFAE:

◮ A has an edge term.

◮ ∃ polynomial p ∈ R[t]:

∀n ∈ N : |Sub(An)| ≤ 2p(n).



The fork lemmas

F ≤ Am, i ∈ {1, . . . ,m}.

ϕi(F ) := {(ai , bi) |||
(a1, . . . , ai−1, ai , ai+1, . . . , am) ∈ F and
(a1, . . . , ai−1, bi , bi+1, . . . , bm) ∈ F

}.

Fork Lemma - Mal’cev
Let k ,m ∈ N, k ≥ 2, and let A be an algebra with a Mal’cev term. Let

F ,G be subuniverses of Am with F ⊆ G. Assume

◮ ϕi(G) = ϕi(F ) for all i ∈ {1, . . . ,m}.

Then F = G.

Fork Lemma - Edge [BIM+10, Cor. 3.9], [AM15,
Lemma 4.2]

Let k ,m ∈ N, k ≥ 2, and let A be an algebra with a k -edge term. Let
F ,G be subuniverses of Am with F ⊆ G. Assume

◮ ϕi(G) = ϕi(F ) for all i ∈ {1, . . . ,m} and

◮ πT (F ) = πT (G) for all T ⊆ {1, . . . ,m} with |T | ≤ k − 1.

Then F = G.



Fork lemma for clones

Fork lemma for clones with Mal’cev operation [AMM14]

Let C,D clones on A containing a Mal’cev operation. Assume:

◮ C ⊆ D,

◮ ϕ(C,a) = ϕ(D,a) for all a ∈ A∗,

Then C = D.

Fork lemma for clones with edge operation [AM14]

Let C,D clones on A containing a k-edge operation, t := |A|.
Assume:

◮ C ⊆ D,

◮ ϕ(C,a) = ϕ(D,a) for all a ∈ A∗,

◮ C[tk−1] ⊆ D[tk−1].

Then C = D.



DCC for clones with fixed edge operation

Consequence

A finite set, e edge operation. There is no C1 ⊃ C2 ⊃ C3 ⊃ · · ·
of clones on A containing e.

Proof:

◮ There are only finitely many tk−1-ary parts of clones on A.

◮ One of those appears infinitely often in

C1 ⊃ C2 ⊃ C3 ⊃ · · · .

◮ Taking only those clones, we obtain a strictly ascending

chain of upward closed subsets of (A∗,≤E ).

◮ Contradiction to order theory.



Clones on finite sets with edge terms

Theorem [AMM14]

Let A be a finite set, let k ∈ N, k > 1, and let Mk be the set of

all clones on A that contain a k-edge operation. Then we have:

1. For every clone C in Mk , there is a finitary relation R on A

such that C = Pol(A, {R}).

2. There is no infinite descending chain in (Mk ,⊆).

3. The set Mk is finite if |A| ≤ 3 and countably infinite

otherwise.



Varieties



Varieties

Question
Are subvarieties of finitely generated varieties again finitely

generated?

Answer

◮ Sometimes yes.

◮ Sometimes no.



Classes of algebras

We will study:

◮ classes of algebras of with the same operation symbols (of

the same type) F .

◮ Example: F := {·,−1,1}, K := class of all groups.

◮ identities: s(x1, . . . , xk ) ≈ t(x1, . . . , xk ).

◮ Example:

Φ = {(x ·y) ·z ≈ x · (y ·z), 1 ·x ≈ x , x−1 ·x ≈ 1, x6 ≈ y15}.

◮ Validity of identities in an algebra A of type F .

◮ Example: A |= Φ ⇔ A is a group of exponent 1 or 3.



Varieties

Theorem [Bir35, Theorem 10]

Let K be a nonempty class of algebras of the same type F .

TFAE:

1. ∃ set of identities Φ : K = {A |||A is of type F and A |= Φ}.

(Meaning: K can defined using identities.)

2. K is closed under taking
◮ H homomorphic images
◮ S subalgebras
◮ P cartesian products.

A class K of algebras that can be defined by a set of identities

is called a variety.



Finitely generated varieties

Definition
A algebra. V(A) := the smallest variety that contains A.

Theorem
V(A) = HSP(A).

Theorem
B ∈ V(A) if and only if ∀s, t : A |= s ≈ t ⇒ B |= s ≈ t .

Definition
A variety V is finitely generated :⇔ there is a finite algebra A

with V = V(A).



Finite Generation of Subvarieties

Theorem [Jón67]

Let L be a finite lattice. Then every subvariety of V(L) is finitely

generated.

Proof: V(L) contains, up to isomorphism, only finitely many

subdirectly irreducible lattices (Jónsson’s Lemma).

Theorem [OP64]

Let G be a finite group. Then every subvariety of V(G) is finitely

generated.

Proof: V(G) contains, up to isomorphism, only finitely many

groups H with H 6∈ V({A ||| A ∈ V(H), |A| < |H|}). (Long proof

using “critical groups”.)

Note that both V(G) and V(L) contain only finitely many

subvarieties.



Finite Generation of Subvarieties

Theorem [Bry82]

There is an expansion of a finite group with one constant

operation such that the variety generated by this algebra has

infinitely many subvarieties.

They might all be finitely generated, though.

Theorem [OMVL78]

There is a three-element algebra M = (M, ∗, c) such that V(M)
has subvarieties that are not finitely generated



Recognizing finitely generated subvarieties

Lemma [OMVL78]

V finitely generated variety. TFAE:

1. The subvarieties of V , ordered by ⊆, satisfy (ACC).

2. Every subvariety of V is finitely generated.

Proof of (1)⇒(2):

1. Let W be not finitely generated. Pick a finite A1 ∈ W .

2. Since V (A1) is f.g., V (A1) ⊂ W .

3. Since W is generated by its finite members, there is a finite

A2 ∈ W , A2 6∈ V (A1).

4. V (A1) ⊂ V (A1 × A2) ⊂ V (A1 × A2 × A3) ⊂ · · · is a failure

of (ACC).



The equational theory of subvarieties



Equational theory of W in A

Definition [AM14]

A algebra, W subvariety of V(A).

ThA(W ) := {(a1, . . . ,ak ) 7→

(
sA(a)

tA(a)

)

||| k ∈ N,

s, t are k-variable terms in the language of A

with W |= s ≈ t}.

Examples



Equational theory of W in A

Definition [AM14]

A algebra, W subvariety of V(A).

ThA(W ) := {(a1, . . . ,ak ) 7→

(
sA(a)

tA(a)

)

||| k ∈ N,

s, t are k-variable terms in the language of A

with W |= s ≈ t}.

Examples

1. ThA(V(A)) = {(t , t) ||| t ∈ Clo(A)}.



Equational theory of W in A

Definition [AM14]

A algebra, W subvariety of V(A).

ThA(W ) := {(a1, . . . ,ak ) 7→

(
sA(a)

tA(a)

)

||| k ∈ N,

s, t are k-variable terms in the language of A

with W |= s ≈ t}.

Examples

1. ThA(V(A)) = {(t , t) ||| t ∈ Clo(A)}.

2. A := S3, W := {G ∈ V(S3) |||G is abelian}. Then

(( π1
π2
) 7→

(
π
−1
1

◦π2◦π1
π2

)

) ∈ ThS3
(W ).



Equational theory of W in A

Definition [AM14]

A algebra, W subvariety of V(A).

ThA(W ) := {(a1, . . . ,ak ) 7→

(
sA(a)

tA(a)

)

||| k ∈ N,

s, t are k-variable terms in the language of A

with W |= s ≈ t}.

Examples

1. ThA(V(A)) = {(t , t) ||| t ∈ Clo(A)}.

2. A := S3, W := {G ∈ V(S3) |||G is abelian}. Then

(( π1
π2
) 7→

(
π
−1
1

◦π2◦π1
π2

)

) ∈ ThS3
(W ).

3. W := class of one element algebras of type F . Then

ThA(W ) = {(s, t) ||| k ∈ N, s, t ∈ Clok (A)}.



Kernels

Definition [AM14]

A algebra, W subvariety of V(A).

ThA(W ) := {(a1, . . . ,ak ) 7→

(
sA(a)

tA(a)

)

||| k ∈ N,

s, t are k-variable terms in the language of A

with W |= s ≈ t}.

Remark:
Let F := FreeW (ℵ0). ThA(W ) is something like the “kernel” of

the “homomorphism”

ω : Clo(A) −→ F

sA 7−→ [s].



Distinguishing subvarieties of V(A) inside A

Lemma
A be algebra, W1 and W2 subvarieties of V(A). Then we have:

W1 ⊆ W2 if and only if ThA(W2) ⊆ ThA(W1).



Clonoids

What is

ThA(W ) = {(a1, . . . ,ak ) 7→

(
sA(a)

tA(a)

)

||| k ∈ N,

s, t are k-variable terms in the language of A

with W |= s ≈ t} ?

ThA(W ) is a clonoid with source set A and target algebra A×A.



Definition of Clonoids

A . . . set

B . . . algebra

C . . . finitary functions from A to B, hence

C ⊆
⋃

n∈N BAn

C[k ] := C ∩ BAk
(k-ary functions in C).



Definition of Clonoids

Definition
B algebra, A nonempty set, C ⊆

⋃

n∈N BAn
. C is a clonoid with

source set A and target algebra B if

1. for all k ∈ N: C[k ] is a subuniverse of BAk
, and

2. for all k ,n ∈ N, for all (i1, . . . , ik ) ∈ {1, . . . ,n}k , and for all

c ∈ C[k ], the function c′ : An → B defined by

c′(a1, . . . ,an) := c(ai1 , . . . ,aik )

satisfies c′ ∈ C[n].



Representation of Clonoids

We represent a clonoid C with source set A = {a1, . . . ,at} and

target algebra B using forks.

Definition (forks of BAn

at a)

For a ∈ An, let

ϕ(C,a) := {
(
f1(a), f2(a)

)
∈ B × B |||

f1(z) = f2(z) for all z ∈ An with z <lex a}.



Representation of Clonoids by forks

Fork Lemma for Clonoids - Mal’cev term
A finite set, B finite algebra with Mal’cev term, C,D clonoids

with source set A and target algebra B. Assume

1. C ⊆ D,

2. ϕ(C,a) = ϕ(D,a) for all a ∈ A∗.

Then C = D.

Fork Lemma for Clonoids - Edge term

A finite set, B finite algebra with k-edge term, C,D clonoids

with source set A and target algebra B. Assume

1. C ⊆ D,

2. ϕ(C,a) = ϕ(D,a) for all a ∈ A∗,

3. C[|A|k−1] = D[|A|k−1].

Then C = D.



Subvarieties of finitely generated varieties

Theorem [AM14]

A finite set, B finite algebra with edge term.

C := {C |||C is clonoid with source A and target B}.

Then (C,⊆) satisfies the (DCC).

Theorem [AM14]

A finite algebra with edge term, W := subvarieties of V(A).
Then:

◮ (W,⊆) satisfies the (ACC).

◮ Every subvariety of V(A) is finitely generated.

Proof: From W1 ⊂ W2 ⊂ · · · ,
we obtain ThA(W1) ⊃ ThA(W2) ⊃ · · · ,
which is an infinite descending chains of clonoids with source A

and target B := A × A. Contradiction.



(DCC) for subvarieties

Theorem [AM14]

A finite algebra with edge term. Then every subvariety of V(A)
is finitely generated.

Corollary [AM14]

A finite algebra with an edge term. Then the following are

equivalent:

1. There is no infinite descending chain of subvarieties of

V(A).

2. Each B ∈ V(A) is finitely based relative to V(A).

3. V(A) has only finitely many subvarieties.

4. V(A) contains, up to isomorphism, only finitely many

cardinality critical members.

B is cardinality critical :⇔ B 6∈ V({C |||C ∈ V(B), |C| < |B|}).



Higher Commutators



Higher commutators

Lemma
Let V = (V ,+,−,0, F) be an expanded group. Then

◮ Every congruence α is determined by 0/α.

◮ 0-classes of congruences are called ideals.

Definition
Pol(V) is the clone generated by the (unary) constants and the

fundamental operations of V.



Higher commutators

Definition
Let p ∈ PolnV. p is absorbing :⇔ for all x1, . . . , xn ∈ V :

0 ∈ {x1, . . . , xn} ⇒ f (x1, . . . , xn) = 0.

Theorem [Hig67, BB87], cf. [Aic14]

Let V be a finite expanded group.

an(V) := log2(|{p ∈ Clon(V) ||| p is absorbing}|)
tn(V) := log2(|Clon(V)|).

Then for each n ∈ N0, we have

tn(V) =

n∑

i=0

ai(V)

(
n

i

)

.



Higher Commutators

Definition [Bul01, Mud09, AM10]

Let A1, . . . ,An be ideals of V. Then [A1, . . . ,An] is the ideal

generated by

{p(a1, . . . ,an) ||| p absorbing polynomial,a1 ∈ A1, . . . ,an ∈ An}.



Properties of higher commutators

generators = {p(a1, . . . ,an) ||| p absorbing,∀i : ai ∈ Ai}

Higher Commutator Laws [Mud09, AM10]

◮ [A1, . . . ,An] ≤ A1 ∩ A2 ∩ · · · ∩ An,

◮ (I1, . . . , In) 7→ [I1, . . . , In] preserves ⊆,

◮ [A1,A2, . . . ,An] ≤ [A2, . . . ,An],

◮ [A1, . . . ,An] = [Aπ(1), . . . ,Aπ(n)] for all π ∈ Sn,

◮ [A1 + B1,A2, . . . ,An] = [A1,A2, . . . ,An] + [B1,A2, . . . ,An],

◮ [A1, . . . ,Ak , [Ak+1, . . . ,An]] ≤ [A1, . . . ,An].



Higher Commutators and Forks: a

connection to be explored



Lemma
Let C = Clo(V), V expanded group. Let b ∈ V ∗, and let a ∈ V ∗

be the word obtained from b by eliminating all 0 entries. Sort V

such that 0 is smallest. Then

◮ F (C,a) = F (C,b),

◮ For every witness f of x ∈ F (C,a), there is a function g in

the clone generated by {f ,0} that witnesses x ∈ F (C,b).

Observation
If a ∈ (V \ {0})∗ and a = (a1, . . . ,an), then F (C,a) ∈ [V , . . . ,V ]
(n times).

Corollary

If [V , . . . ,V ] = 0 (n times), then Clo(V) is finitely generated.



Other connections

◮ F (C,a1a2a3a4a5) ≥ [F (C,a1a2a4),F (C,a2a3a5)].

◮ . . .



Where to continue

What could be added:

◮ Connections between witnesses of forks.

Open problems

◮ existence of infinite antichains of Mal’cev clones on a finite

set,

◮ existence of a finite set with infinitely many not finitely

generated Mal’cev clones (open as far as I know),

◮ bound of the size of the relation determining a Mal’cev

clone.
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