Forks, finitely related clones, and finitely generated varieties

Erhard Aichinger

Department of Algebra Johannes Kepler University Linz, Austria

53rd SSAOS, Srní, September 2015

Supported by the Austrian Science Fund (FWF) in P24077

Results

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

In these lectures, we will present the proofs of:

Theorem (2009) [AMM14]

Every clone with edge operation on a finite set is finitely related.

Theorem (2014) [AM14]

Every subvariety of a finitely generated variety with edge term is finitely generated.

Classic Clone Theory

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

Clones

Operations $O(A) := \bigcup_{k \in \mathbb{N}} \{ f \mid f : A^k \to A \}.$ Clones A subset C of O(A) is a clone on A if 1. $\forall k, i \in \mathbb{N}$ with $i \leq k$: $((x_1, \ldots, x_k) \mapsto x_i) \in C$, **2**. $\forall n \in \mathbb{N}, m \in \mathbb{N}, f \in C^{[n]}, g_1, \ldots, g_n \in C^{[m]}$: $f(q_1,\ldots,q_n)\in C^{[m]}.$

 $C^{[n]}$...the *n*-ary functions in C, $C^{[n]} \subseteq A^{A^n}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Relational Description of Clones

Definition *I* a finite set, $\rho \subseteq A^{I}$, $f : A^{n} \to A$. *f* preserves ρ ($f \rhd \rho$) if $\forall v_{1}, \ldots, v_{n} \in \rho$:

$$\langle f(\mathbf{v}_1(i),\ldots,\mathbf{v}_n(i)) | i \in I \rangle \in \rho.$$

In other words:

$$f^{\mathcal{A}'}(v_1,\ldots,v_n)\in
ho.$$

Remark

 $f \triangleright \rho \iff \rho$ is a subuniverse of $(A, f)^{I}$.

Definition (Polymorphisms)

Let *R* be a set of finitary relations on *A*, $\rho \in R$.

Theorem

Let *R* be a set of finitary relations on *A*, and let $\rho_1, \rho_2 \in R$ with $\rho_1 \neq \emptyset, \rho_2 \neq \emptyset$. Then

1. Pol(R) is a clone.

2.
$$Pol(\{\rho_1, \rho_2\}) = Pol(\{\rho_1 \times \rho_2\}).$$

Theorem (see [PK79])

Let *C* be a clone on the finite set *A*. Then there is a set *R* of finitary relations such that C = Pol(R).

Proof:

- Observe $C^{[n]} \subseteq A^{A^n}$.
- Take $I_n := A^n$, $\rho_n := C^{[n]}$. Then $\rho_n \subseteq A^{I_n}$.
- Set $R := \{\rho_1, \rho_2, \dots, \dots\}.$
- ▶ Prove $C \subseteq \text{Pol}(R)$: $f \in C^{[n]}, g_1, \ldots, g_n \in \rho_m$ implies $f(g_1, \ldots, g_n) \in \rho_m$ by the closure properties of clones.
- ▶ Prove $\operatorname{Pol}(R) \subseteq C$: Let $f : A^n \to A$ in $\operatorname{Pol}(R)$. Then $f \triangleright \rho_n$, hence $f(\pi_1, \ldots, \pi_n) \in \rho_n$, thus $f \in C^{[n]}$.

Definition

A clone *C* is finitely related if there is a finite set of finitary relations *R* with C = Pol(R).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Theorem [PK79, 4.1.3]

Let C be a clone on the finite set A. TFAE:

- 1. C is not finitely related.
- 2. There is a strictly decreasing sequence $C_1 \supset C_2 \supset C_3 \supset \cdots$ with $C = \bigcap_{i \in \mathbb{N}} C_i$.

Finitely related clones vs. DCC

Theorem

Let C be a clone on the finite set A. TFAE:

- 1. *C* is not finitely related.
- 2. There is a strictly decreasing sequence $C_1 \supset C_2 \supset C_3 \supset \cdots$ with $C = \bigcap_{i \in \mathbb{N}} C_i$.

Proof of (1) \Rightarrow (2):

- We know $C = Pol(\{\rho_1, \rho_2, ...\}).$
- ► Hence $\mathsf{Pol}(\{\rho_1\}) \supseteq \mathsf{Pol}(\{\rho_1, \rho_2\}) \supseteq \mathsf{Pol}(\{\rho_1, \rho_2, \rho_3\}) \supseteq \cdots$.

Proof of (2) \Rightarrow (1):

- Suppose $C = Pol(\{\rho\}), |\rho| = N.$
- Then for some $n \in \mathbb{N}$, $C_n^{[N]} = C^{[N]}$.
- We show $\forall f \in C_n : f \rhd \rho$ on the next slide.
- ► Then $C_n \subseteq \text{Pol}(\{\rho\}) = C \subseteq C_{n+1}$, a contradiction.

Finitely related clones vs. DCC

Proof of (2) \Rightarrow (1) (continued):

- Assumptions: $C = \text{Pol}(\{\rho\}), \rho = \{b_1, \dots, b_N\}, C_n^{[N]} = C^{[N]}.$
- We want to show: $\forall f \in C_n : f \triangleright \rho$.
- ▶ To this end, let $f \in C_n$, *r*-ary, and let $a_1, \ldots, a_r \in \rho$.
- Goal: $f(a_1, \ldots, a_r) \in \rho$.
- ▶ We have $f(a_1, ..., a_r) = f(b_{i(1)}, ..., b_{i(r)})$ with $i(k) \in \{1, ..., N\}$ for all $k \in \{1, ..., r\}$.
- Define $g(y_1, \ldots, y_N) := f(y_{i(1)}, \ldots, y_{i(r)})$ for all $\mathbf{y} \in A^N$.
- Then $f(b_{i(1)}, \ldots, b_{i(r)}) = g(b_1, \ldots, b_N)$.
- ▶ Now $g \in C_n^{[N]}$, hence $g \in C^{[N]}$. Thus $g(b_1, \ldots, b_N) \in \rho$.

Theorem Let *M* be a clone on *A*. If

```
(\{C \mid C \text{ clone on } A, M \subseteq C\}, \subseteq)
```

satisfies the DCC, then every clone containing M is finitely related.

Definition (X, \leq) has the DCC : \Leftrightarrow there is no $(x_i)_{i \in \mathbb{N}}$ with $x_1 > x_2 > x_3 > \cdots$.

Theorem

 (X, \leq) has the DCC \Leftrightarrow Every nonempty subset *Y* of *X* has a minimal element.

Forks

Groups

Let *G* be a group, $n \in \mathbb{N}$.

Goal: represent subgroups of G^n . The following lemma will motivate the definition of forks and the formulation of the fork lemma.

Lemma

Let *G* be a group, $n \in \mathbb{N}$, $A \leq B \leq G^n$ subgroups. Assume

1.
$$A \subseteq B$$

2. $\forall i \in \{1, \ldots, n\}, \forall g \in G, \forall r_{i+1}, \ldots, r_n \in G$:

$$(\underbrace{0,\ldots,0}_{i-1},g,r_{i+1},\ldots,r_n)\in B \quad \Rightarrow$$
$$\exists s_{i+1},\ldots,s_n\in G: \quad (0,\ldots,0,g,s_{i+1},\ldots,s_n)\in A.$$

Then A = B.

Mal'cev algebras I

A is a Mal'cev algebra $\Leftrightarrow \exists d \in \text{Clo}_3 A \ \forall a, b \in A$: d(a, a, b) = d(b, a, a) = b.

Definition of Forks

Let **A** be an algebra, let $m \in \mathbb{N}$, and let *F* be a subuniverse of **A**^{*m*}. For $i \in \{1, ..., m\}$, we define the relation $\varphi_i(F)$ on *A* by

$$arphi_i(F) := \{(a_i, b_i) \mid (a_1, \dots, a_m) \in F, (b_1, \dots, b_m) \in F, (a_1, \dots, a_{i-1}) = (b_1, \dots, b_{i-1})\}.$$

If $(c, d) \in \varphi_i(F)$, we call (c, d) a fork of F at i. If

then (\mathbf{u}, \mathbf{v}) is a witness of the fork (c, d) at *i*.

Forks have not been called forks, but are used, e.g., in: [BD06, p.21], [BIM⁺10], [Aic00, p.110]

The fork lemma

Lemma (cf. [BIM+10, Cor. 3.9], [Aic10, Lemma 3.1])

Let **A** be an algebra with Mal'cev term *d*, and let $m \in \mathbb{N}$. Let *F*, *G* be subuniverses of **A**^{*m*} with $F \subseteq G$. We assume $\forall i \in \{1, ..., m\}$: $\varphi_i(G) \subseteq \varphi_i(F)$. Then F = G. *Proof:*

For each
$$k \in \{1, \ldots, m\}$$
, let

$$\begin{array}{rcl} F_k & := & \{(f_1, \ldots, f_k) \, | \, (f_1, \ldots, f_m) \in F \} \\ G_k & := & \{(g_1, \ldots, g_k) \, | \, (g_1, \ldots, g_m) \in G \}. \end{array}$$

• We prove $\forall k \in \{1, \ldots, m\}$: $G_k \subseteq F_k$.

k = 1: √

The fork lemma

- $k \geq 2$: Let $(g_1, \ldots, g_k) \in G_k$.
- Then $(g_1, \ldots, g_{k-1}) \in G_{k-1}$.
- ▶ By the induction hypothesis, $(g_1, \ldots, g_{k-1}) \in F_{k-1}$.

• Hence
$$\exists f_k$$
:

$$(g_1,\ldots,g_{k-1},f_k)\in F_k.$$

- ▶ Since $(f_k, g_k) \in \varphi_k(G)$, we have $(f_k, g_k) \in \varphi_k(F)$.
- ▶ Thus $\exists: a_1, \ldots, a_{k-1} \in A$ such that

$$(a_1,\ldots,a_{k-1},f_k)\in F_k$$

 $(a_1,\ldots,a_{k-1},g_k)\in F_k.$

• By Mal'cev: $(g_1, \ldots, g_k) \in F_k$.

Fact Let **A** be an algebra, $\alpha \in Aut(\mathbf{A})$. Then

B = {
$$(a, a) | a \in A$$
}
C = { $(a, \alpha(a)) | a \in A$ }

have the same forks.

Fact [BD06, BIM⁺10]

(Forks + one witness per fork) represent subalgebras if we have a Mal'cev term. Can be modified to edge terms.

Representing Clones By Forks

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

Let $C := \text{Clo}((\mathbb{Z}_3, +))$; $A := \mathbb{Z}_3$. We represent the binary part $C^{[2]}$.

$$\mathcal{C}^{[2]} = \{(x,y) \mapsto ax + by \mid a, b \in \mathbb{Z}_3\}.$$

- ▶ Order *A*: 0 < 1 < 2.
- Order A² lexicographically: 00 < 01 < 02 < 10 < 11 < 12 < 20 < 21 < 22.

► For each $\mathbf{x} \in A^2$, compute $F(C, \mathbf{x}) := \{f(\mathbf{x}) \mid f \in C, \forall \mathbf{z} < \mathbf{x} : f(\mathbf{z}) = 0\}.$ $\mathbf{x} \mid F(C, \mathbf{x}) \mid \text{Reason}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► For each $\mathbf{x} \in A^2$, compute $F(C, \mathbf{x}) := \{f(\mathbf{x}) \mid f \in C, \forall \mathbf{z} < \mathbf{x} : f(\mathbf{z}) = 0\}.$ $\frac{\mathbf{x} \mid F(C, \mathbf{x}) \mid \text{Reason}}{00 \mid \{0\}}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

► For each $\mathbf{x} \in A^2$, compute $F(C, \mathbf{x}) := \{f(\mathbf{x}) \mid f \in C, \forall \mathbf{z} < \mathbf{x} : f(\mathbf{z}) = 0\}.$ $\frac{\mathbf{x} \mid F(C, \mathbf{x}) \mid \text{Reason}}{00 \mid \{0\}}$ $01 \mid A \mid f(x, y) := y \text{ witnesses } 1 \in F(C, 01)$

For each $\mathbf{x} \in A^2$, compute $F(C, \mathbf{x}) := \{f(\mathbf{x}) \mid f \in C, \forall \mathbf{z} < \mathbf{x} : f(\mathbf{z}) = 0\}.$ $\frac{\mathbf{x} \mid F(C, \mathbf{x}) \mid \text{Reason}}{\begin{array}{c|c} 00 \quad \{0\} \\ \hline 01 \quad A \quad f(x, y) := y \text{ witnesses } 1 \in F(C, 01) \\ \hline 02 \quad 0 \quad f(02) = f(01) + f(01) \end{array}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

► For each $\mathbf{x} \in A^2$, compute $F(C, \mathbf{x}) := \{f(\mathbf{x}) \mid f \in C, \forall \mathbf{z} < \mathbf{x} : f(\mathbf{z}) = 0\}.$ $\mathbf{x} \quad F(C, \mathbf{x}) \mid \text{Reason}$ $00 \quad \{0\}$ $01 \quad A \quad f(x, y) := y \text{ witnesses } 1 \in F(C, 01)$ $02 \quad 0 \quad f(02) = f(01) + f(01)$ $10 \quad A \quad f(x, y) := x \text{ witnesses } 1 \in F(C, 10)$

For each $\mathbf{x} \in A^2$, compute $F(C, \mathbf{x}) := \{f(\mathbf{x}) \mid f \in C, \forall \mathbf{z} < \mathbf{x} : f(\mathbf{z}) = 0\}.$ $F(C, \mathbf{x})$ | Reason Х 00 {0} 01 f(x, y) := y witnesses $1 \in F(C, 01)$ Α 02 0 f(02) = f(01) + f(01)10 f(x, y) := x witnesses $1 \in F(C, 10)$ Α f(11) = f(01) + f(10)11 0

For each $\mathbf{x} \in A^2$, compute $F(C, \mathbf{x}) := \{f(\mathbf{x}) \mid f \in C, \forall \mathbf{z} < \mathbf{x} : f(\mathbf{z}) = 0\}.$ $F(C, \mathbf{x})$ Reason Х 00 {0} 01 f(x, y) := y witnesses $1 \in F(C, 01)$ Α f(02) = f(01) + f(01)02 0 10 f(x, y) := x witnesses $1 \in F(C, 10)$ Α f(11) = f(01) + f(10)11 0 12 0 20 0 21 0 22 0

For each $\mathbf{x} \in A^2$, compute $F(C, \mathbf{x}) := \{f(\mathbf{x}) \mid f \in C, \forall \mathbf{z} < \mathbf{x} : f(\mathbf{z}) = 0\}.$ $F(C, \mathbf{x})$ Reason Х 00 {0} 01 f(x, y) := y witnesses $1 \in F(C, 01)$ Α f(02) = f(01) + f(01)02 0 10 f(x, y) := x witnesses $1 \in F(C, 10)$ Α f(11) = f(01) + f(10)11 0 12 0 20 0 21 0 22 0

From groups to Mal'cev algebras

•
$$(A, +)$$
 group, *C* clone on *A*, $\mathbf{x} \in A^n$.

$$F(C, \mathbf{x}) := \{f(\mathbf{x}) \mid f \in C, \forall \mathbf{z} < \mathbf{x} : f(\mathbf{z}) = \mathbf{0}\}.$$

► A set with a Mal'cev operation, C clone on A, $\mathbf{x} \in A^n$.

 $\varphi(C,\mathbf{x}) := \{(f_1(\mathbf{x}), f_2(\mathbf{x})) \mid f_1, f_2 \in C, \forall \mathbf{z} < \mathbf{x} : f_1(\mathbf{z}) = f_2(\mathbf{z})\}.$

Call $\varphi(C, \mathbf{x})$ the forks of *C* at **x**.

Fork lemma for clones [Aic10]

Let *C*, *D* clones on *A* containing a Mal'cev operation. If $C \subseteq D$ and $\varphi(C, \mathbf{a}) = \varphi(D, \mathbf{a})$ for all $\mathbf{a} \in A^*$, then C = D.

Consequence

From a linearly ordered set of clones with the same Mal'cev term, the mapping

$$oldsymbol{\mathcal{C}}\mapsto \langle arphi(oldsymbol{\mathcal{C}}, \mathbf{a}) \, | \, \mathbf{a} \in oldsymbol{\mathcal{A}}^*
angle$$

is injective.

Connections between forks at different places

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

C ... constantive clone on \mathbb{Z}_2 . We observe 0110 ≤_{*e*} 0011101. Claim: *F*(*C*,0011101) ⊆ *F*(*C*,0110).

Proof

- Let *a* ∈ *F*(*C*,0011101).
- ► Let $f \in C^{[7]}$ such that f(0011101) = a, f(z) = 0 for all $z \in \{0, 1\}^7$ with $z <_{lex} 0011101$.
- Define $g(x_1, x_2, x_3, x_4) := f(0, x_1, x_2, 1, x_3, x_4, 1).$
- Then g(0110) = f(0011101) = a and g(z) = 0 for z ∈ {0,1}⁴ with z <_{lex} 0110.
- ► Thus a ∈ F(C, 0110).

Abstract from \mathbb{Z}_2 : Clones on $A = \{0, \dots, t-1\}$.

Word embedding

hen \leq_e achievement, austria \leq_e australia

Embedded Forks Lemma (with constants) [Aic10] Let *C* be a constantive clone on *A*. $\mathbf{a}, \mathbf{b} \in A^*$. Then

$$\mathbf{a} \leq_{\boldsymbol{e}} \mathbf{b} \Rightarrow \varphi(\boldsymbol{C}, \mathbf{b}) \subseteq \varphi(\boldsymbol{C}, \mathbf{a}).$$

Limitations of the Embedded Forks Lemma In the proof of the Theorem, we used constants:

$$g(x_1, x_2, x_3, x_4) := f(0, x_1, x_2, 1, x_3, x_4, 1).$$

Without constants:

$$g(x_1, x_2, x_3, x_4) := f(x_4, x_1, x_2, x_2, x_3, x_4, x_2).$$

Then g(0110) = f(0011101), but

 $0001 <_{lex} 0110$ and $1000010 \not<_{lex} 0011101$.

Hence g(0001) = 0 not guaranteed.

Connections between forks

Connection between forks $C \dots$ clone on \mathbb{Z}_2 . We observe $0110 \leq_E 0011101$. Claim:

```
F(C, 0011101) \subseteq F(C, 0110).
```

Proof

Let $a \in F(C, 0011101)$, $f \in C^{[7]}$ such that f(0011101) = a, f(z) = 0 for all $z \in \{0, 1\}^7$ with $z <_{lex} 0011101$. Define

Then g(0110) = f(0011101) = a and g(z) = 0 for $z \in \{0, 1\}^4$ with $z <_{lex} 0110$. Thus $a \in F(C, 0110)$.
The new embedding ordering: from \leq_e to \leq_E

►
$$A^+ := \bigcup \{A^n \mid n \in \mathbb{N}\}.$$

For a = (a₁,..., a_n) ∈ A⁺ and b ∈ A, we define the *index of* the first occurrence of b in a, firstOcc (a, b), by firstOcc (a, b) := 0 if b ∉ {a₁,..., a_n}, and firstOcc (a, b) := min{i ∈ {1,...,n} | a_i = b} otherwise.

Definition

Let *A* be a finite set, and let $\mathbf{a} = (a_1, \dots, a_m)$ and $\mathbf{b} = (b_1, \dots, b_n)$ be elements of A^+ . We say $\mathbf{a} \leq_E \mathbf{b}$ (read: \mathbf{a} embeds into \mathbf{b}) if \exists injective and increasing function $h : \{1, \dots, m\} \rightarrow \{1, \dots, n\}$ such that 1. for all $i \in \{1, \dots, m\}$: $a_i = b_{h(i)}$, 2. $\{a_1, \dots, a_m\} = \{b_1, \dots, b_n\}$, 3. for all $c \in \{a_1, \dots, a_m\}$: $h(\text{firstOcc}(\mathbf{a}, c)) = \text{firstOcc}(\mathbf{b}, c)$. We will call such an h a function witnessing $\mathbf{a} \leq_E \mathbf{b}$.

Informal description

 $\mathbf{a} \leq_E \mathbf{b}$ iff \mathbf{b} can be obtained from \mathbf{a} by inserting additional letters anywhere after their first occurrence in \mathbf{a} .

Clones on $A = \{0, ..., t - 1\}.$

Theorem (Embedded Forks Lemma without constants) [AMM14]

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let *C* be a clone on *A*, and let $\mathbf{a}, \mathbf{b} \in A^*$ with $\mathbf{a} \leq_E \mathbf{b}$. Then $\varphi(C, \mathbf{b}) \subseteq \varphi(C, \mathbf{a})$.

Short representation of all forks

Let A be a finite set.

Let A be a finite set.

1. (A^*, \leq_e) has no infinite descending chains.

(A*, ≤_e) has no infinite descending chains.
 (A*, ≤_E) has no infinite descending chains.

(A*, ≤_e) has no infinite descending chains.
 (A*, ≤_E) has no infinite descending chains.
 (A*, ≤_e) has no infinite antichains [Hig52].

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

(A*, ≤_e) has no infinite descending chains.
 (A*, ≤_E) has no infinite descending chains.
 (A*, ≤_e) has no infinite antichains [Hig52].
 (A*, ≤_E) has no infinite antichains [AMM14].

(A*, ≤_e) has no infinite descending chains.
 (A*, ≤_E) has no infinite descending chains.
 (A*, ≤_e) has no infinite antichains [Hig52].
 (A*, ≤_E) has no infinite antichains [AMM14].

Definition

Let (X, \leq) be an ordered set, $Y \leq X$. Y is upward closed if $\forall y \in Y, x \in X : y \leq x \Rightarrow x \in Y$.

The set of upward closed subsets Let (X, \leq) be an ordered set. Let $U(X) := \{A | A \subseteq X, A \text{ upward closed}\}.$

Fact

 (X, \leq) has no infinite descending chain and no infinite anitchain (wpo) $\implies (U(X), \subseteq)$ has no infinite ascending chain.

Fact

 (X, \leq) has no infinite descending chains and no infinite anitchain (wpo) $\Rightarrow (U(X), \subseteq)$ has no infinite ascending chain. *Proof:*

1. Let $U_1 \subset U_2 \subset U_3 \subset$ be an ascending chain.

2.
$$U := \bigcup_{i \in \mathbb{N}} U_i$$
.

- 3. *U* has finitely many minimal elements (they form an antichain!).
- 4. There is *j* such that these minimal elements are in U_j .
- 5. Then $U \subseteq U_j$ because every element in U is \geq some minimal element in U.

A a finite set.

Theorem

The set of upward closed subsets of (A^*, \leq_e) has no infinite ascending chain with respect to \subseteq .

Theorem

The set of upward closed subsets of (A^*, \leq_E) has no infinite ascending chain with respect to \subseteq .

Question

Is there an infinite antichain of upward closed subsets of (A^*, \leq_e) ?

Forks of clones and upward closed sets

▶ Let $C_1 \supset C_2 \supset C_3 \supset \cdots$ be a chain of Mal'cev clones. Then we can determine *i* if we know

 $\varphi(C_i, \mathbf{a})$ for every $\mathbf{a} \in A^*$.

▶ Let $S \subset A \times A$. Since $\mathbf{a} \leq_E \mathbf{b} \Rightarrow \varphi(C_i, \mathbf{b}) \subseteq \varphi(C_i, \mathbf{a})$,

$$\Psi(\mathcal{C}_i, \mathcal{S}) := \{ \mathbf{a} \in \mathcal{A}^* \, | \, arphi(\mathcal{C}_i, \mathbf{a}) \subseteq \mathcal{S} \}$$

is an upward closed subset of (A^*, \leq_E) .

• Recover the forks from $\Psi(C_i, S)$:

$$(c,d) \in arphi(C_i,\mathbf{a}) \iff arphi(C_i,\mathbf{a}) \nsubseteq (A imes A) \setminus \{(c,d)\} \ \Leftrightarrow \ \mathbf{a} \notin \Psi(C_i,(A imes A) \setminus \{(c,d)\}).$$

Hence: if we know $\Psi(C_i, S)$ for all $S \subseteq A \times A$, we can recover all forks.

- 1. Let C be a linearly order set of clones on A with the same Mal'cev operation.
- 2. We can "store" each $C \in C$ by

 $\langle \Psi(C,S) | S \subseteq A \times A \rangle.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- 3. Each $\Psi(C, S)$ is an upward closed set of (A^*, \leq_E) and has only *finitely many minimal elements*
- 4. Hence C is countable!

Chain conditions for sets of clones

DCC for Mal'cev clones

Lemma

Let \mathbbm{L} be a linearly order set of Mal'cev clones. Then the mapping

$$\begin{array}{rcl} r & : & \mathbb{L} & \longrightarrow & (\mathcal{U}(A^*, \leq_E))^{2^A} \\ & & C & \longmapsto & \Psi(C, S) = \langle \left\{ \mathbf{x} \in A^* \mid \varphi(C, \mathbf{x}) \subseteq S \right\} \mid S \subseteq A \rangle \end{array}$$

is injective and inverts the ordering.

Consequence

Let A be a finite set, d a Mal'cev operation. There is no infinite descending chain of clones on A that contain d.

Proof: Such a chain produces an infinite ascending chain in $(\mathcal{U}(A^*, \leq_E))^{2^A}$, and hence in $\mathcal{U}(A^*, \leq_E)$. Contradiction.

Theorem [AMM14]

Let A be a finite set, and let \mathcal{M} be the set of all Mal'cev clones on A. Then we have:

- 1. There is no infinite descending chain in (\mathcal{M}, \subseteq) .
- 2. For every Mal'cev clone *C*, there is a finitary relation ρ on *A* such that $C = Pol(\{\rho\})$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

3. The set $\ensuremath{\mathcal{M}}$ is finite or countably infinite.

Mal'cev algebras

- 1. Up to term equivalence and renaming of elements, there are only countably many finite Mal'cev algebras.
- 2. Every finite Mal'cev algebra can be represented by a single finitary relation.

Corollary – The clone lattice above a Mal'cev clone

Let *C* be a Mal'cev clone on a finite set *A*.

- 1. The interval $\mathbb{I}[C, O(A)]$ has finitely many atoms.
- 2. every clone *D* with $C \subset D$ contains one of these atoms,
- 3. If $\mathbb{I}[C, O(A)]$ is infinite, it contains a clone that is not finitely generated (cf. König's Lemma).

From Mal'cev terms to edge terms

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Edge operations

For $k \ge 3$, a (k + 1)-ary operation is a *k*-edge operation on *A* if for all $a, b \in A$:

$$t(a, a, b, b, b, \dots, b) = b$$

$$t(b, a, a, b, b, \dots, b) = b$$

$$t(b, b, b, a, b, \dots, b) = b$$

$$\vdots$$

$$t(b, b, b, b, b, \dots, a) = b$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

(still wrong!)

Edge operations

For $k \ge 3$, a (k + 1)-ary operation is a *k*-edge operation on *A* if for all $a, b \in A$:

$$t(a, a, b, b, b, \dots, b) = b$$

$$t(a, b, a, b, b, \dots, b) = b$$

$$t(b, b, b, a, b, \dots, b) = b$$

...

$$t(b, b, b, b, b, \dots, a) = b$$

Examples of edge operations

Edge operation

- *d* Mal'cev. Then t(x, y, z) := d(y, x, z) is 2-edge.
- *m* majority. Then $t(x_1, x_2, x_3, x_4) := m(x_2, x_3, x_4)$ is 3-edge.
- ► *f n*-ary near-unanimity. Then $t(x_0, ..., x_n) := f(x_1, ..., x_n)$ is *n*-edge.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem - Edge terms and few subpowers [BIM+10]

Let **A** be a finite algebra. TFAE:

- A has an edge term.
- ▶ \exists polynomial $p \in \mathbb{R}[t]$:

 $\forall n \in \mathbb{N} : |\operatorname{Sub}(\mathbf{A}^n)| \leq 2^{p(n)}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The fork lemmas

$$F \leq A^m, i \in \{1, \dots, m\}.$$

$$\varphi_i(F) := \{(a_i, b_i) \mid \begin{array}{ll} (a_1, \dots, a_{i-1}, a_i, a_{i+1}, \dots, a_m) & \in F \text{ and} \\ (a_1, \dots, a_{i-1}, b_i, b_{i+1}, \dots, b_m) & \in F \end{array} \}.$$

Fork Lemma - Mal'cev Let $k, m \in \mathbb{N}, k \ge 2$, and let **A** be an algebra with a Mal'cev term. Let F, G be subuniverses of **A**^m with $F \subseteq G$. Assume

•
$$\varphi_i(G) = \varphi_i(F)$$
 for all $i \in \{1, \ldots, m\}$.

Then F = G.

Fork Lemma - Edge [BIM⁺10, Cor. 3.9], [AM15, Lemma 4.2]

Let $k, m \in \mathbb{N}, k \ge 2$, and let **A** be an algebra with a *k*-edge term. Let *F*, *G* be subuniverses of **A**^{*m*} with $F \subseteq G$. Assume

•
$$\varphi_i(G) = \varphi_i(F)$$
 for all $i \in \{1, \ldots, m\}$ and

• $\pi_T(F) = \pi_T(G)$ for all $T \subseteq \{1, \ldots, m\}$ with $|T| \le k - 1$.

Then F = G.

Fork lemma for clones

Fork lemma for clones with Mal'cev operation [AMM14] Let *C*, *D* clones on *A* containing a Mal'cev operation. Assume:

•
$$C \subseteq D$$
,

•
$$arphi({m C},{f a})=arphi({m D},{f a})$$
 for all ${f a}\in{m A}^*,$

Then C = D.

Fork lemma for clones with edge operation [AM14]

Let *C*, *D* clones on *A* containing a *k*-edge operation, t := |A|. Assume:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・
 </

•
$$C \subseteq D$$
,

▶
$$\varphi(C, \mathbf{a}) = \varphi(D, \mathbf{a})$$
 for all $\mathbf{a} \in A^*$,
▶ $C^{[t^{k-1}]} \subseteq D^{[t^{k-1}]}$.

Then C = D.

Consequence

A finite set, *e* edge operation. There is no $C_1 \supset C_2 \supset C_3 \supset \cdots$ of clones on *A* containing *e*.

Proof:

- There are only finitely many t^{k-1} -ary parts of clones on A.
- One of those appears infinitely often in $C_1 \supset C_2 \supset C_3 \supset \cdots$.
- ► Taking only those clones, we obtain a strictly ascending chain of upward closed subsets of (A*, ≤_E).

(日) (日) (日) (日) (日) (日) (日) (日)

Contradiction to order theory.

Theorem [AMM14]

Let *A* be a finite set, let $k \in \mathbb{N}$, k > 1, and let \mathcal{M}_k be the set of all clones on *A* that contain a *k*-edge operation. Then we have:

For every clone C in M_k, there is a finitary relation R on A such that C = Pol(A, {R}).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・
 </

- 2. There is no infinite descending chain in $(\mathcal{M}_k, \subseteq)$.
- 3. The set \mathcal{M}_k is finite if $|A| \leq 3$ and countably infinite otherwise.

Varieties

◆□ > ◆□ > ◆ □ > ◆ □ > ◆ □ > ● ● ●

Question

Are subvarieties of finitely generated varieties again finitely generated?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Answer

- Sometimes yes.
- Sometimes no.

We will study:

- classes of algebras of with the same operation symbols (of the same type) F.
- Example: $\mathcal{F} := \{\cdot, -1, 1\}, K := \text{class of all groups.}$
- *identities*: $s(x_1, \ldots, x_k) \approx t(x_1, \ldots, x_k)$.
- Example: $\Phi = \{ (x \cdot y) \cdot z \approx x \cdot (y \cdot z), \ 1 \cdot x \approx x, \ x^{-1} \cdot x \approx 1, \ x^6 \approx y^{15} \}.$

- ► Validity of identities in an algebra **A** of type *F*.
- Example: $\mathbf{A} \models \Phi \Leftrightarrow \mathbf{A}$ is a group of exponent 1 or 3.

Varieties

Theorem [Bir35, Theorem 10]

Let *K* be a nonempty class of algebras of the same type \mathcal{F} . TFAE:

- 1. \exists set of identities Φ : $K = \{ \mathbf{A} \mid \mathbf{A} \text{ is of type } \mathcal{F} \text{ and } \mathbf{A} \models \Phi \}$. (*Meaning: K* can defined using identities.)
- 2. K is closed under taking
 - ▶ III homomorphic images
 - S subalgebras
 - P cartesian products.

A class K of algebras that can be defined by a set of identities is called a *variety*.

Definition

A algebra. $\mathbb{V}(A) :=$ the smallest variety that contains A.

Theorem $\mathbb{V}(\mathbf{A}) = \mathbb{HSP}(\mathbf{A}).$

Theorem

 $\mathbf{B} \in \mathbb{V}(\mathbf{A})$ if and only if $\forall s, t : \mathbf{A} \models s \approx t \Rightarrow \mathbf{B} \models s \approx t$.

Definition

A variety *V* is *finitely generated* : \Leftrightarrow there is a finite algebra **A** with $V = \mathbb{V}(\mathbf{A})$.

Theorem [Jón67]

Let ${\bf L}$ be a finite lattice. Then every subvariety of $\mathbb{V}({\bf L})$ is finitely generated.

Proof: $\mathbb{V}(L)$ contains, up to isomorphism, only finitely many subdirectly irreducible lattices (Jónsson's Lemma).

Theorem [OP64]

Let ${\bf G}$ be a finite group. Then every subvariety of $\mathbb{V}({\bf G})$ is finitely generated.

Proof: $\mathbb{V}(G)$ contains, up to isomorphism, only finitely many groups H with $H \notin \mathbb{V}(\{A \mid A \in \mathbb{V}(H), |A| < |H|\})$. (Long proof using "critical groups".)

Note that both $\mathbb{V}(\mathbf{G})$ and $\mathbb{V}(\mathbf{L})$ contain only *finitely many* subvarieties.

Theorem [Bry82]

There is an expansion of a finite group with one constant operation such that the variety generated by this algebra has infinitely many subvarieties.

They might all be finitely generated, though.

Theorem [OMVL78]

There is a three-element algebra $\mathbf{M} = (M, *, c)$ such that $\mathbb{V}(\mathbf{M})$ has subvarieties that are not finitely generated

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Recognizing finitely generated subvarieties

Lemma [OMVL78]

V finitely generated variety. TFAE:

- 1. The subvarieties of V, ordered by \subseteq , satisfy (ACC).
- 2. Every subvariety of V is finitely generated.

Proof of (1) \Rightarrow (2):

- 1. Let *W* be not finitely generated. Pick a finite $A_1 \in W$.
- 2. Since $V(\mathbf{A}_1)$ is f.g., $V(\mathbf{A}_1) \subset W$.
- 3. Since *W* is generated by its finite members, there is a finite $A_2 \in W$, $A_2 \notin V(A_1)$.
- 4. $V(\mathbf{A}_1) \subset V(\mathbf{A}_1 \times \mathbf{A}_2) \subset V(\mathbf{A}_1 \times \mathbf{A}_2 \times \mathbf{A}_3) \subset \cdots$ is a failure of (ACC).
The equational theory of subvarieties

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition [AM14]

A algebra, W subvariety of $\mathbb{V}(\mathbf{A})$.

$$\mathsf{Th}_{\mathbf{A}}(W) := \{(a_1, \ldots, a_k) \mapsto \left(egin{array}{c} s^{\mathbf{A}}(\mathbf{a}) \ t^{\mathbf{A}}(\mathbf{a}) \end{array}\right) \mid k \in \mathbb{N},$$

s, *t* are *k*-variable terms in the language of **A** with $W \models s \approx t$ }.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Examples

Definition [AM14]

A algebra, W subvariety of $\mathbb{V}(\mathbf{A})$.

$$\mathsf{Th}_{\mathsf{A}}(W) := \{(a_1, \ldots, a_k) \mapsto \left(\begin{array}{c} s^{\mathsf{A}}(\mathsf{a}) \\ t^{\mathsf{A}}(\mathsf{a}) \end{array}\right) \mid k \in \mathbb{N},$$

s, t are k-variable terms in the language of **A** with $W \models s \approx t$ }.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Examples

1. $\operatorname{Th}_{\mathbf{A}}(\mathbb{V}(\mathbf{A})) = \{(t,t) \mid t \in \operatorname{Clo}(\mathbf{A})\}.$

Definition [AM14]

A algebra, W subvariety of $\mathbb{V}(\mathbf{A})$.

$$\mathsf{Th}_{\mathsf{A}}(W) := \{(a_1, \ldots, a_k) \mapsto \left(egin{array}{c} s^{\mathsf{A}}(\mathsf{a}) \ t^{\mathsf{A}}(\mathsf{a}) \end{array}
ight) \mid k \in \mathbb{N},$$

s, t are k-variable terms in the language of **A** with $W \models s \approx t$ }.

Examples

1.
$$\operatorname{Th}_{\mathbf{A}}(\mathbb{V}(\mathbf{A})) = \{(t,t) \mid t \in \operatorname{Clo}(\mathbf{A})\}.$$

2. $\mathbf{A} := \mathbf{S}_3, W := \{\mathbf{G} \in \mathbb{V}(\mathbf{S}_3) \mid \mathbf{G} \text{ is abelian}\}.$ Then $(\begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix}) \mapsto \begin{pmatrix} \pi_1^{-1} \circ \pi_2 \circ \pi_1 \\ \pi_2 \end{pmatrix}) \in \operatorname{Th}_{\mathbf{S}_3}(W).$

Definition [AM14]

A algebra, W subvariety of $\mathbb{V}(\mathbf{A})$.

$$\mathsf{Th}_{\mathsf{A}}(W) := \{(a_1, \ldots, a_k) \mapsto \left(egin{array}{c} s^{\mathsf{A}}(\mathsf{a}) \ t^{\mathsf{A}}(\mathsf{a}) \end{array}
ight) \mid k \in \mathbb{N},$$

s, t are k-variable terms in the language of **A** with $W \models s \approx t$ }.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Examples

- 1. $\operatorname{Th}_{\mathbf{A}}(\mathbb{V}(\mathbf{A})) = \{(t,t) \mid t \in \operatorname{Clo}(\mathbf{A})\}.$
- 2. $\mathbf{A} := \mathbf{S}_3, \ W := \{\mathbf{G} \in \mathbb{V}(\mathbf{S}_3) \mid \mathbf{G} \text{ is abelian}\}.$ Then $\left(\begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix} \mapsto \begin{pmatrix} \pi_1^{-1} \circ \pi_2 \circ \pi_1 \\ \pi_2 \end{pmatrix}\right) \in \mathsf{Th}_{\mathbf{S}_3}(W).$

3. $W := \text{class of one element algebras of type } \mathcal{F}$. Then $\text{Th}_{\mathbf{A}}(W) = \{(s, t) \mid k \in \mathbb{N}, s, t \in \text{Clo}_{k}(\mathbf{A})\}.$

Kernels

Definition [AM14]

A algebra, W subvariety of $\mathbb{V}(\mathbf{A})$.

$$\mathsf{Th}_{\mathbf{A}}(W) := \{ (a_1, \dots, a_k) \mapsto \begin{pmatrix} s^{\mathbf{A}}(\mathbf{a}) \\ t^{\mathbf{A}}(\mathbf{a}) \end{pmatrix} \mid k \in \mathbb{N},$$

s, t are k-variable terms in the language of **A**

with $W \models s \approx t$ }.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Remark:

Let $\mathbf{F} := \mathbf{Free}_{W}(\aleph_0)$. Th_A(*W*) is something like the "kernel" of the "homomorphism"

$$\begin{array}{rcl} \omega & : & \mathsf{Clo}(\mathbf{A}) & \longrightarrow & \mathbf{F} \\ & & s^{\mathbf{A}} & \longmapsto & [s]. \end{array}$$

Distinguishing subvarieties of $\mathbb{V}(\mathbf{A})$ inside A

Lemma

A be algebra, W_1 and W_2 subvarieties of $\mathbb{V}(\mathbf{A})$. Then we have:

 $W_1 \subseteq W_2$ if and only if $\operatorname{Th}_{\mathbf{A}}(W_2) \subseteq \operatorname{Th}_{\mathbf{A}}(W_1)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

What is

$$\begin{aligned} \mathsf{Th}_{\mathbf{A}}(W) &= \{ (a_1, \dots, a_k) \mapsto \left(\begin{array}{c} s^{\mathbf{A}}(\mathbf{a}) \\ t^{\mathbf{A}}(\mathbf{a}) \end{array} \right) \mid k \in \mathbb{N}, \\ s, t \text{ are } k \text{-variable terms in the language of } \mathbf{A} \\ & \text{ with } W \models s \approx t \} \, ? \end{aligned}$$

 $\operatorname{Th}_{\mathbf{A}}(W)$ is a clonoid with source set A and target algebra $\mathbf{A} \times \mathbf{A}$.

Definition of Clonoids

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

B algebra, A nonempty set, $C \subseteq \bigcup_{n \in \mathbb{N}} B^{A^n}$. C is a clonoid with source set A and target algebra **B** if

- 1. for all $k \in \mathbb{N}$: $C^{[k]}$ is a subuniverse of $\mathbf{B}^{\mathcal{A}^k}$, and
- 2. for all $k, n \in \mathbb{N}$, for all $(i_1, \ldots, i_k) \in \{1, \ldots, n\}^k$, and for all $c \in C^{[k]}$, the function $c' : A^n \to B$ defined by

$$c'(a_1,\ldots,a_n):=c(a_{i_1},\ldots,a_{i_k})$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

satisfies $c' \in C^{[n]}$.

We represent a clonoid *C* with source set $A = \{a_1, ..., a_t\}$ and target algebra **B** using forks.

Definition (forks of \mathbf{B}^{A^n} at **a**) For $\mathbf{a} \in A^n$, let

$$\begin{split} \varphi(\mathcal{C},\mathbf{a}) &:= \{ \left(f_1(\mathbf{a}), f_2(\mathbf{a}) \right) \in B \times B | \\ f_1(\mathbf{z}) &= f_2(\mathbf{z}) \text{ for all } \mathbf{z} \in \mathcal{A}^n \text{ with } \mathbf{z} <_{\text{lex}} \mathbf{a} \}. \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Fork Lemma for Clonoids - Mal'cev term

A finite set, **B** finite algebra with Mal'cev term, C, D clonoids with source set A and target algebra **B**. Assume

1.
$$C \subseteq D$$
,

2.
$$arphi({\mathcal C},{\mathbf a})=arphi({\mathcal D},{\mathbf a})$$
 for all ${\mathbf a}\in{\mathcal A}^*.$

Then C = D.

Fork Lemma for Clonoids - Edge term

A finite set, **B** finite algebra with k-edge term, C, D clonoids with source set A and target algebra **B**. Assume

2.
$$arphi(\mathcal{C},\mathbf{a})=arphi(\mathcal{D},\mathbf{a})$$
 for all $\mathbf{a}\in\mathcal{A}^{*},$

3.
$$C^{[|A|^{k-1}]} = D^{[|A|^{k-1}]}$$
.

Then C = D.

Theorem [AM14]

A finite set, **B** finite algebra with edge term. $C := \{C \mid C \text{ is clonoid with source } A \text{ and target } B\}.$ Then (C, \subseteq) satisfies the (DCC).

Theorem [AM14]

A finite algebra with edge term, $\mathcal{W}:=$ subvarieties of $\mathbb{V}(\textbf{A}).$ Then:

- (W, \subseteq) satisfies the (ACC).
- Every subvariety of $\mathbb{V}(\mathbf{A})$ is finitely generated.

Proof: From $W_1 \subset W_2 \subset \cdots$, we obtain $\text{Th}_{\mathbf{A}}(W_1) \supset \text{Th}_{\mathbf{A}}(W_2) \supset \cdots$, which is an infinite descending chains of clonoids with source *A* and target $\mathbf{B} := \mathbf{A} \times \mathbf{A}$. Contradiction.

(DCC) for subvarieties

Theorem [AM14]

A finite algebra with edge term. Then every subvariety of $\mathbb{V}(\textbf{A})$ is finitely generated.

Corollary [AM14]

A finite algebra with an edge term. Then the following are equivalent:

- 1. There is no infinite descending chain of subvarieties of $\mathbb{V}(\mathbf{A})$.
- 2. Each $\mathbf{B} \in \mathbb{V}(\mathbf{A})$ is finitely based relative to $\mathbb{V}(\mathbf{A})$.
- 3. $\mathbb{V}(\mathbf{A})$ has only finitely many subvarieties.
- 4. 𝔍(**A**) contains, up to isomorphism, only finitely many cardinality critical members.

B is cardinality critical : \Leftrightarrow **B** \notin $\mathbb{V}(\{C \mid C \in \mathbb{V}(B), |C| < |B|\})$.

Higher Commutators

Lemma

Let $\mathbf{V} = (V, +, -, 0, F)$ be an expanded group. Then

- Every congruence α is determined by $0/\alpha$.
- 0-classes of congruences are called *ideals*.

Definition

Pol(V) is the clone generated by the (unary) constants and the fundamental operations of V.

Higher commutators

Definition Let $p \in Pol_n \mathbf{V}$. p is absorbing : \Leftrightarrow for all $x_1, \ldots, x_n \in \mathbf{V}$:

$$0 \in \{x_1,\ldots,x_n\} \Rightarrow f(x_1,\ldots,x_n) = 0.$$

Theorem [Hig67, BB87], cf. [Aic14] Let **V** be a finite expanded group.

$$\begin{array}{lll} a_n(\mathbf{V}) & := & \log_2(|\{p \in \operatorname{Clo}_n(\mathbf{V}) \mid p \text{ is absorbing}\}|) \\ t_n(\mathbf{V}) & := & \log_2(|\operatorname{Clo}_n(\mathbf{V})|). \end{array}$$

Then for each $n \in \mathbb{N}_0$, we have

$$t_n(\mathbf{V}) = \sum_{i=0}^n a_i(\mathbf{V}) \binom{n}{i}.$$

Definition [Bul01, Mud09, AM10] Let A_1, \ldots, A_n be ideals of **V**. Then $[A_1, \ldots, A_n]$ is the ideal generated by

 $\{p(a_1,\ldots,a_n) \mid p \text{ absorbing polynomial}, a_1 \in A_1,\ldots,a_n \in A_n\}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

generators = { $p(a_1, ..., a_n) | p$ absorbing, $\forall i : a_i \in A_i$ } Higher Commutator Laws [Mud09, AM10]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Higher Commutators and Forks: a connection to be explored

Lemma

Let C = Clo(V), V expanded group. Let $\mathbf{b} \in V^*$, and let $\mathbf{a} \in V^*$ be the word obtained from **b** by eliminating all 0 entries. Sort V such that 0 is smallest. Then

- $\blacktriangleright F(C,\mathbf{a})=F(C,\mathbf{b}),$
- For every witness f of x ∈ F(C, a), there is a function g in the clone generated by {f, 0} that witnesses x ∈ F(C, b).

Observation

If $\mathbf{a} \in (V \setminus \{0\})^*$ and $\mathbf{a} = (a_1, \dots, a_n)$, then $F(C, \mathbf{a}) \in [V, \dots, V]$ (*n* times).

Corollary

If $[V, \ldots, V] = 0$ (*n* times), then Clo(V) is finitely generated.

Other connections

► $F(C, a_1a_2a_3a_4a_5) \ge [F(C, a_1a_2a_4), F(C, a_2a_3a_5)].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

▶

Where to continue

What could be added:

Connections between witnesses of forks.

Open problems

- existence of infinite antichains of Mal'cev clones on a finite set,
- existence of a finite set with infinitely many not finitely generated Mal'cev clones (open as far as I know),
- bound of the size of the relation determining a Mal'cev clone.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Děkuji za pozvání a pozornost!

[Aic00]	E. Aichinger. On Hagemann's and Herrmann's characterization of strictly affine complete algebras. <i>Algebra Universalis</i> , 44:105–121, 2000.
[Aic10]	E. Aichinger. Constantive Mal'cev clones on finite sets are finitely related. <i>Proc. Amer. Math. Soc.</i> , 138(10):3501–3507, 2010.
[Aic14]	E. Aichinger. On the Direct Decomposition of Nilpotent Expanded Groups. <i>Comm. Algebra</i> , 42(6):2651–2662, 2014.
[AM10]	E. Aichinger and N. Mudrinski. Some applications of higher commutators in Mal'cev algebras. <i>Algebra Universalis</i> , 63(4):367–403, 2010.
[AM14]	E. Aichinger and P. Mayr. Finitely generated equational classes. manuscript, available on arXiv:1403.7938v1 [math.RA], 2014.
[AM15]	E. Aichinger and P. Mayr. Independence of algebras with edge term. manuscript, available on arXiv:1504.02663v1[math.RA], 2015.
[AMM14]	E. Aichinger, P. Mayr, and R. McKenzie. On the number of finite algebraic structures. <i>J. Eur. Math. Soc. (JEMS)</i> , 16(8):1673–1686, 2014.
[BB87]	J. Berman and W. J. Blok. Free spectra of nilpotent varieties. <i>Algebra Universalis</i> , 24(3):279–282, 1987.
[BD06]	A. Bulatov and V. Dalmau. A simple algorithm for Mal'tsev constraints. <i>SIAM J. Comput.</i> , 36(1):16–27 (electronic), 2006.
[BIM ⁺ 10]	J. Berman, P. Idziak, P. Marković, R. McKenzie, M. Valeriote, and R. Willard. Varieties with few subalgebras of powers. <i>Transactions of the American Mathematical Society</i> , 362(3):1445–1473, 2010.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

[Bir35]	G. Birkhoff. On the structure of abstract algebras. <i>Proc. Cambridge Phil. Soc.</i> , 31:433–454, 1935.
[Bry82]	R. M. Bryant. The laws of finite pointed groups. <i>Bull. London Math. Soc.</i> , 14(2):119–123, 1982.
[Bul01]	A. Bulatov. On the number of finite Mal'tsev algebras. In <i>Contributions to general algebra, 13 (Velké Karlovice, 1999/Dresden, 2000)</i> , pages 41–54. Heyn, Klagenfurt, 2001.
[Hig52]	G. Higman. Ordering by divisibility in abstract algebras. <i>Proc. London Math. Soc. (3)</i> , 2:326–336, 1952.
[Hig67]	G. Higman. The orders of relatively free groups. In <i>Proc. Internat. Conf. Theory of Groups (Canberra, 1965)</i> , pages 153–165. Gordon and Breach, New York, 1967.
[Jón67]	B. Jónsson. Algebras whose congruence lattices are distributive. <i>Math. Scand.</i> , 21:110–121 (1968), 1967.
[Mud09]	N. Mudrinski. <i>On Polynomials in Mal'cev Algebras.</i> PhD thesis, University of Novi Sad, 2009. http://people.dmi.uns.ac.rs/~nmudrinski/DissertationMudrinski.pdf.
[OMVL78]	S. Oates MacDonald and M. R. Vaughan-Lee. Varieties that make one Cross. <i>J. Austral. Math. Soc. Ser. A</i> , 26(3):368–382, 1978.
[OP64]	S. Oates and M. B. Powell. Identical relations in finite groups. <i>J. Algebra</i> , 1:11–39, 1964.

[PK79] R. Pöschel and L. A. Kalužnin.

Funktionen- und Relationenalgebren, volume 15 of Mathematische Monographien. VEB Deutscher Verlag der Wissenschaften, Berlin, 1979.

▲日▼▲国▼★国▼★国▼ ▲日▼