
Forks, Clones, Varieties

Exercises1

(1) Let A := Z3, let C1 := Clo((Z3,+)), and let n ∈ N. We order 0 < 1 < 2,

and we order the elements of An lexicographically. For x ∈ An, we define

F (C1,x) := {f(x) ||| f ∈ C1, f(z) = 0 for all z ∈ An with z <lex x}.

Complete the following tables for unary, binary, and 3-ary functions in

C1.

x F (C1,x) Reason

0

1

2

x F (C1,x) Reason

00

01

02

10

11

12

20

21

22

x F (C1,x) Reason

000

001

002

010

011

012

020

021

022

100

101

102

110
...

(2) Let A := Z3, let C2 := Pol((Z3,+)) = Clo((Z3,+, 1)), and let n ∈ N. We

order 0 < 1 < 2, and we order the elements of An lexicographically. For

x ∈ An, we define

F (C2,x) := {f(x) ||| f ∈ C2, f(z) = 0 for all z ∈ An with z <lex x}.

1Exercises for the course at SSAOS 2015 in Srńı. The solutions to all of this exercises are

known, many are standard problems in universal algebra. The aim is to provide some material

for those participants who prefer to discover by their own.
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Complete the following tables for unary, binary, and 3-ary functions in

C2.

x F (C2,x) Reason

0

1

2

x F (C2,x) Reason

00

01

02

10

11

12

20

21

22

x F (C2,x) Reason

000

001

002

010

011

012

020

021

022

100

101

102

110
...

(3) Let A := Z3, let C3 := Pol((Z3,+, ·)), and let n ∈ N. We order 0 < 1 < 2,

and we order the elements of An lexicographically. For x ∈ An, we define

F (C3,x) := {f(x) ||| f ∈ C3, f(z) = 0 for all z ∈ An with z <lex x}.

Complete the following tables for unary, binary, and 3-ary functions in

C3.

x F (C3,x) Reason

0

1

2

x F (C3,x) Reason

00

01

02

10

11

12

20

21

22

x F (C3,x) Reason

000

001

002

010

011

012

020

021

022

100

101

102

110
...
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(4) (Connections between forks of different arities) Let C be a clone on Z3

that contains all unary constant functions. Prove:

(a) F (C, 12) ⊆ F (C, 2).

(b) F (C, 2102) = F (C, 212).

(5) (Connections between forks of different arities) Let C be a clone on Z3.

Prove:

(a) F (C, 121) ⊆ F (C, 12).

(b) F (C, 1112020) ⊆ F (C, 1120).

(6) (Representation of subpowers) Let G be a group, n ∈ N, A ≤ B ≤ Gn

subgroups. Assume:

(a) A ⊆ B

(b) ∀i ∈ {1, . . . , n}, ∀g ∈ G, ∀ri+1, . . . , rn ∈ G:

(0, . . . , 0︸ ︷︷ ︸
i−1

, g, ri+1, . . . , rn) ∈ B ⇒

∃si+1, . . . , sn ∈ G : (0, . . . , 0, g, si+1, . . . , sn) ∈ A,

Show that then A = B.

(7) (Generation of subpowers and the fork lemma) Let A be a finite algebra

with a Mal’cev term, and let n ∈ N. Prove that every subalgebra of An

can be generated by at most n · |A|2 elements. From this, derive that there

is a real number c such that for all n ∈ N, An has at most 2cn2
subalgebras.

(8) (Varieties) Let F be a type of algebras, let V be a variety of algebras of

type F , let k ∈ N, and let ϕ := (s ≈ t) be an equation over F that uses

at most k variables. Prove:

V |= ϕ if and only if every k-generated algebra in V satisfies ϕ.

(9) (Varieties) Let F be a type of algebras, let V be a variety of algebras of

type F , let k ∈ N, and let A be a k-generated algebra of type F . Prove:

A ∈ V if and only if A satisfies every identity of V with at most

k variables.

(10) (Chain conditions) Let V be a locally finite variety of arbitrary type F ,

and let W be a subvariety of V . Prove that the following are equivalent:

(a) There exists no infinite strictly ascending chain of varieties V1 ⊂ V2 ⊂
V3 ⊂ · · · with W := V(

⋃
i∈N Vi).

(b) W is finitely generated.

Remark: This exercise will be frustrating if you are not familiar with

the following notions: equational theory of a variety, free algebras, Galois

connection between varieties and equational theories, locally finite varie-

ties. In the lecture, we will need only the implication (10a)⇒(10b).

(11) Let V be a finitely generated variety. Prove that the following are equi-

valent:

(a) The subvarieties of V , ordered by ⊆, satisfy (ACC).
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(b) Every subvariety of V is finitely generated

(12) Let V1 ⊃ V2 ⊃ V3 ⊃ · · · be an infinite strictly descending chain of varieties,

and assume that V1 is locally finite. Prove that there is no k ∈ N such

that W :=
⋂

i∈N Vi is the model of a set of equations such that each of

these has at most k variables; in particular W is not finitely based.

(13) Let V be a finitely generated variety. Prove that the following are equi-

valent.

(a) The subvarieties of V , ordered by ⊆, satisfy (DCC).

(b) For every subvariety W of V there is a finite set of identities Φ with

W = {A ∈ V |||A |= Φ}. (W is finitely based relative to V .)

(14) (Ideals and expanded groups) Let V be an expanded group. Prove that I

is the 0-class of a congruence of V if and only if I is a normal subgroup

of (V,+,−, 0) and for all n, for all n-ary fundamental operations f , and

for all vectors a ∈ V n and i ∈ In, we have f(a + i)− f(a) ∈ I.

(15) (Ideals and expanded groups) Let V be an expanded group, and let B ⊆
V . Show that the ideal generated by B is given by

I = {
n∑

i=1

pi(bi) |||n ∈ N0, pi ∈ Pol1(V), pi(0) = 0, bi ∈ B for all i ∈ {1, . . . , n}}.

(16) (Properties of commutators for expanded groups) Let V be an expanded

group, and let I, A,B be ideals of V such that I ≤ A, B ≤ I. Prove that

in V/I, we have [A/I,B/I] = ([A,B] + I)/I.

(17) (Properties of higher commutators for expanded groups) Let A1, . . . , An

be ideals of the expanded group V. Show

[A1 + B1, A2, . . . , An] = [A1, A2, . . . , An] + [B1, A2, . . . , An].


