THE COMPLEXITY OF CHECKING QUASI-IDENTITIES OVER FINITE ALGEBRAS WITH A MAL'CEV TERM

<u>Simon Grünbacher</u> and Erhard Aichinger Institute for Algebra Austrian Science Fund FWF P33878

Der Wissenschaftsfonds.

THE PROBLEM

Consider the formula $(x = 1 + 1 \land x \cdot y = 0) \Rightarrow y = 0.$

Consider the formula $(x = 1 + 1 \land x \cdot y = 0) \Rightarrow y = 0.$

Consider the formula $(x = 1 + 1 \land x \cdot y = 0) \Rightarrow y = 0$. Is this valid?

■ Consider the formula (x = 1 + 1 ∧ x ⋅ y = 0) ⇒ y = 0. Is this valid?
■ In ℝ : yes

Consider the formula (x = 1 + 1 ∧ x ⋅ y = 0) ⇒ y = 0. Is this valid?
In ℝ : yes
In ℤ₃ : yes

- Consider the formula $(x = 1 + 1 \land x \cdot y = 0) \Rightarrow y = 0$. Is this valid?
- In \mathbb{R} : yes
- In \mathbb{Z}_3 : yes
- In \mathbb{Z}_2 : no (Counterexample x = 0, y = 1)

Consider the formula $(x = 1 + 1 \land x \cdot y = 0) \Rightarrow y = 0$. Is this valid?

In \mathbb{R} : yes

In \mathbb{Z}_3 : yes

In \mathbb{Z}_2 : no (Counterexample x = 0, y = 1)

In \mathbb{Z}_6 : no (Counterexample x = 2, y = 3)

Consider the formula $(x = 1 + 1 \land x \cdot y = 0) \Rightarrow y = 0$. Is this valid?

In \mathbb{R} : yes

In \mathbb{Z}_3 : yes

In \mathbb{Z}_2 : no (Counterexample x = 0, y = 1)

In \mathbb{Z}_6 : no (Counterexample x = 2, y = 3)

- Consider the formula $(x = 1 + 1 \land x \cdot y = 0) \Rightarrow y = 0$. Is this valid?
- In \mathbb{R} : yes
- In \mathbb{Z}_3 : yes
- In \mathbb{Z}_2 : no (Counterexample x = 0, y = 1)
- In \mathbb{Z}_6 : no (Counterexample x = 2, y = 3)

We decide the validity of these quasi-identities in finite algebras.

An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^n}$ is a set of functions over A.

- An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^n}$ is a set of functions over A.
- A term over A is a well-formed expression involving variables and operation symbols representing the functions from *F*.

- An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^n}$ is a set of functions over A.
- A term over A is a well-formed expression involving variables and operation symbols representing the functions from *F*.

- An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^n}$ is a set of functions over A.
- A term over A is a well-formed expression involving variables and operation symbols representing the functions from *F*.

Example

Algebra: $(\mathbb{N}, +, \cdot)$, term: $(x \cdot x) + (y \cdot z)$

- An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^n}$ is a set of functions over A.
- A term over A is a well-formed expression involving variables and operation symbols representing the functions from *F*.

- Algebra: $(\mathbb{N}, +, \cdot)$, term: $(x \cdot x) + (y \cdot z)$
- Algebra: $(\mathbb{B}, \lor, \land, \top)$, term: $x \land \top$

- An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^n}$ is a set of functions over A.
- A term over A is a well-formed expression involving variables and operation symbols representing the functions from *F*.

- Algebra: $(\mathbb{N}, +, \cdot)$, term: $(x \cdot x) + (y \cdot z)$
- **Algebra:** $(\mathbb{B}, \lor, \land, \top)$, term: $x \land \top$
- Algebra: $(\mathbb{Z}_3, +, \cdot)$, not a term: x + 1

- An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^n}$ is a set of functions over A.
- A term over A is a well-formed expression involving variables and operation symbols representing the functions from *F*.

- Algebra: $(\mathbb{N}, +, \cdot)$, term: $(x \cdot x) + (y \cdot z)$
- **Algebra**: $(\mathbb{B}, \lor, \land, \top)$, term: $x \land \top$
- Algebra: $(\mathbb{Z}_3, +, \cdot)$, not a term: x + 1
- Not an algebra: $(\mathbb{R}, +, -, \cdot, /)$ (because / is not total)

Let A be a finite algebra with finitely many fundamental operations. We are interested in the following decision problem:

Let A be a finite algebra with finitely many fundamental operations. We are interested in the following decision problem:

 $\text{QuasiIdVal}(\mathbf{A})$

Given: Terms $s_1, \ldots, s_k, t_1, \ldots, t_k, u, v$ over \mathbf{A}

Let A be a finite algebra with finitely many fundamental operations. We are interested in the following decision problem:

$\mathsf{QuasiIdVal}(\mathbf{A})$

```
Given: Terms s_1, \ldots, s_k, t_1, \ldots, t_k, u, v over A
Asked: Does
\forall \boldsymbol{x} \in A^n : (\bigwedge_{i=1}^k s_i(\boldsymbol{x}) = t_i(\boldsymbol{x})) \Longrightarrow (u(\boldsymbol{x}) = v(\boldsymbol{x}))
```

hold?

Let A be a finite algebra with finitely many fundamental operations. We are interested in the following decision problem:

$\mathsf{QuasiIdVal}(\mathbf{A})$

Given: Terms $s_1, \ldots, s_k, t_1, \ldots, t_k, u, v$ over A Asked: Does $\forall \boldsymbol{x} \in A^n : (\bigwedge_{i=1}^k s_i(\boldsymbol{x}) = t_i(\boldsymbol{x})) \Longrightarrow (u(\boldsymbol{x}) = v(\boldsymbol{x}))$ hold?

Problem is in coNP.

Question: For which \mathbf{A} is QUASIIDVAL (\mathbf{A}) in P or coNP-complete?

RELATION TO STUDIED PROBLEMS

$\mathsf{TERMEQV}(\mathbf{A})$

Given: Terms s, t

$\mathsf{TermEqv}(\mathbf{A})$

Given: Terms s, tAsked: Does $\forall x \in A^n : s(x) = t(x)$ hold?

$\mathsf{TermEqv}(\mathbf{A})$

Given: Terms s, tAsked: Does $\forall x \in A^n : s(x) = t(x)$ hold?

The term equivalence

$$\forall \boldsymbol{x} \in A^n : s(\boldsymbol{x}) = t(\boldsymbol{x})$$

is valid iff the quasi-identity

$$\forall \boldsymbol{x} \in A^n : x_1 = x_1 \Rightarrow s(\boldsymbol{x}) = t(\boldsymbol{x})$$

is valid.

$\mathsf{TermEqv}(\mathbf{A})$

Given: Terms s, tAsked: Does $\forall x \in A^n : s(x) = t(x)$ hold?

The term equivalence

$$\forall \boldsymbol{x} \in A^n : s(\boldsymbol{x}) = t(\boldsymbol{x})$$

is valid iff the quasi-identity

$$\forall \boldsymbol{x} \in A^n : x_1 = x_1 \Rightarrow s(\boldsymbol{x}) = t(\boldsymbol{x})$$

is valid. Hence $\mathsf{TERMEQV}(\mathbf{A}) \leq_m^{\mathrm{P}} \mathsf{QUASIIdVAL}(\mathbf{A})$.

$\mathsf{PolSysSat}(\mathbf{A})$

Given: $a \in A^r$, terms $s_1, \ldots, s_k, t_1, \ldots, t_k$

$\mathsf{POLSYSSAT}(\mathbf{A})$

Given: $a \in A^r$, terms $s_1, \ldots, s_k, t_1, \ldots, t_k$ Asked: Does $\exists x \in A^n : s_1(a, x) = t_1(a, x) \land \cdots \land s_k(a, x) = t_k(a, x)$ hold?

$\mathsf{POLSYSSAT}(\mathbf{A})$

Given: $a \in A^r$, terms $s_1, \ldots, s_k, t_1, \ldots, t_k$ Asked: Does $\exists x \in A^n : s_1(a, x) = t_1(a, x) \land \cdots \land s_k(a, x) = t_k(a, x)$ hold?

The quasi-identity

$$\left(\bigwedge_{i=1}^{k} s_{i}(\boldsymbol{x}) = t_{i}(\boldsymbol{x})\right) \Rightarrow u(\boldsymbol{x}) = v(\boldsymbol{x})$$

is not valid iff there are $a, b \in A$ with $a \neq b$ such that

$$ig(\bigwedge_{i=1}^k s_i(\boldsymbol{x}) = t_i(\boldsymbol{x})ig) \wedge u(\boldsymbol{x}) = a \wedge v(\boldsymbol{x}) = b$$

has a solution.

$\mathsf{PolSysSat}(\mathbf{A})$

Given: $a \in A^r$, terms $s_1, \ldots, s_k, t_1, \ldots, t_k$ Asked: Does $\exists x \in A^n : s_1(a, x) = t_1(a, x) \land \cdots \land s_k(a, x) = t_k(a, x)$ hold?

The quasi-identity

$$\left(\bigwedge_{i=1}^{k} s_{i}(\boldsymbol{x}) = t_{i}(\boldsymbol{x})\right) \Rightarrow u(\boldsymbol{x}) = v(\boldsymbol{x})$$

is not valid iff there are $a, b \in A$ with $a \neq b$ such that

$$\big(\bigwedge_{i=1}^k s_i(\boldsymbol{x}) = t_i(\boldsymbol{x})\big) \wedge u(\boldsymbol{x}) = a \wedge v(\boldsymbol{x}) = b$$

has a solution.

 $\mathsf{Hence}\;\mathsf{TERMEQV}(\mathbf{A})\leq^{\mathrm{P}}_{m}\mathsf{QUASIIdVAL}(\mathbf{A})\leq^{\mathrm{P}}_{tt}\mathsf{COPOLSYSSAT}(\mathbf{A}).$

Let ${\bf G}$ be a finite group, let ${\bf R}$ be a finite ring.

TERMEQV(\mathbf{R}) \in coNPC if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).

- TERMEQV(\mathbf{R}) $\in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).
- **TERMEQV**(\mathbf{G}) $\in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).

- **TERMEQV**(\mathbf{R}) $\in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).
- **TERMEQV**(\mathbf{G}) $\in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).
- POLSYSSAT(\mathbf{R}) $\in P$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).

- TERMEQV(\mathbf{R}) $\in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).
- **TERMEQV**(\mathbf{G}) $\in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).
- POLSYSSAT(\mathbf{R}) $\in P$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).
- POLSYSSAT(\mathbf{G}) $\in \mathbf{P}$ if \mathbf{G} is abelian (Goldmann, Russel 2002).

- TERMEQV(\mathbf{R}) $\in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).
- **TERMEQV**(\mathbf{G}) $\in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).
- POLSYSSAT(\mathbf{R}) $\in P$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).
- POLSYSSAT(\mathbf{G}) $\in \mathbf{P}$ if \mathbf{G} is abelian (Goldmann, Russel 2002).
- $\blacksquare \Longrightarrow$ Open cases for QUASIIDVAL (\mathbf{R}) : \mathbf{R} is nilpotent and nonzero.

Known Results

Let ${\bf G}$ be a finite group, let ${\bf R}$ be a finite ring.

- TERMEQV(\mathbf{R}) \in coNPC if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).
- **TERMEQV**(\mathbf{G}) $\in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).
- POLSYSSAT(\mathbf{R}) $\in P$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).
- POLSYSSAT(\mathbf{G}) $\in \mathbf{P}$ if \mathbf{G} is abelian (Goldmann, Russel 2002).
- $\blacksquare \implies$ Open cases for QUASIIDVAL($\mathbf{R}): \mathbf{R}$ is nilpotent and nonzero.
- $\blacksquare \implies$ Open cases for $\mathsf{QUASIIdVAL}(\mathbf{G}):\mathbf{G}$ is solvable and nonabelian.

Known Results

Let ${\bf G}$ be a finite group, let ${\bf R}$ be a finite ring.

- TERMEQV(\mathbf{R}) \in coNPC if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).
- **TERMEQV**(\mathbf{G}) $\in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).
- POLSYSSAT(\mathbf{R}) $\in P$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).
- POLSYSSAT(\mathbf{G}) $\in \mathbf{P}$ if \mathbf{G} is abelian (Goldmann, Russel 2002).
- $\blacksquare \implies$ Open cases for QUASIIDVAL($\mathbf{R}): \mathbf{R}$ is nilpotent and nonzero.
- $\blacksquare \implies$ Open cases for $\mathsf{QUASIIdVAL}(\mathbf{G}):\mathbf{G}$ is solvable and nonabelian.

Known Results

Let ${\bf G}$ be a finite group, let ${\bf R}$ be a finite ring.

- TERMEQV(\mathbf{R}) \in coNPC if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).
- **TERMEQV**(\mathbf{G}) $\in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).
- POLSYSSAT(\mathbf{R}) $\in P$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).
- POLSYSSAT(\mathbf{G}) $\in \mathbf{P}$ if \mathbf{G} is abelian (Goldmann, Russel 2002).
- $\blacksquare \Longrightarrow$ Open cases for QUASIIDVAL (\mathbf{R}) : \mathbf{R} is nilpotent and nonzero.
- $\blacksquare \implies$ Open cases for $\mathsf{QUASIIdVAL}(\mathbf{G}):\mathbf{G}$ is solvable and nonabelian.

Our contribution: coNP -complete in both open cases.

COMPLEXITY FOR MAL'CEV ALGEBRAS

Mal'cev algebras are a generalization of rings, groups and modules:

Mal'cev algebras are a generalization of rings, groups and modules:

Definition

A term *d* is called a Mal'cev term if d(a, b, b) = a = d(b, b, a). We call A a Mal'cev algebra if it has a Mal'cev term.

Mal'cev algebras are a generalization of rings, groups and modules:

Definition

A term *d* is called a Mal'cev term if d(a, b, b) = a = d(b, b, a). We call A a Mal'cev algebra if it has a Mal'cev term.

Example

In a group, $d(a, b, c) := ab^{-1}c$ is a Mal'cev term

Mal'cev algebras are a generalization of rings, groups and modules:

Definition

A term *d* is called a Mal'cev term if d(a, b, b) = a = d(b, b, a). We call A a Mal'cev algebra if it has a Mal'cev term.

Example

- In a group, $d(a, b, c) := ab^{-1}c$ is a Mal'cev term
- In a ring, d(a, b, c) := a b + c is a Mal'cev term

Theorem [Aichinger, Grünbacher]

Let A be a finite Mal'cev algebra. Then $\mathsf{QUASIIDVAL}(\mathbf{A})$ is in P if A is abelian and coNP -complete otherwise.

Theorem [Aichinger, Grünbacher]

Let A be a finite Mal'cev algebra. Then QUASIIDVAL(A) is in P if A is abelian and coNP-complete otherwise.

In particular:

Theorem [Aichinger, Grünbacher]

Let A be a finite Mal'cev algebra. Then QUASIIDVAL(A) is in P if A is abelian and coNP-complete otherwise.

In particular:

Corollary

Let $\mathbf{R} = (R, +, -, \cdot)$ be a finite ring. Then $\mathsf{QUASIIDVal}(\mathbf{R})$ is in P if $a \cdot b = 0$ for all $a, b \in R$, and $\operatorname{coNP-complete}$ otherwise.

Theorem [Aichinger, Grünbacher]

Let ${\bf A}$ be a finite Mal'cev algebra. Then ${\sf QUASIIDVAL}({\bf A})$ is in ${\rm P}$ if ${\bf A}$ is abelian and ${\rm coNP}$ -complete otherwise.

In particular:

Corollary

Let $\mathbf{R} = (R, +, -, \cdot)$ be a finite ring. Then $\mathsf{QUASIIDVal}(\mathbf{R})$ is in P if $a \cdot b = 0$ for all $a, b \in R$, and $\operatorname{coNP-complete}$ otherwise.

Corollary

Let $G = (G, \cdot)$ be a finite group. Then QUASIIDVAL(G) is in P if G is abelian, and coNP-complete otherwise.

Sample case:
$$(\mathbb{Z}_6, +, -, \cdot, 0)$$

Consider
$$\mathbf{R} := (\mathbb{Z}_6, +, -, \cdot, 0).$$

Sample case:
$$(\mathbb{Z}_6, +, -, \cdot, 0)$$

Consider
$$\mathbf{R} := (\mathbb{Z}_6, +, -, \cdot, 0).$$

For $z \in \mathbb{Z}_6$, let $\rho_z := \{(a, b) \in R^2 \mid \exists y \in R : y \cdot (a - b) = z\}.$

Sample case:
$$(\mathbb{Z}_6, +, -, \cdot, 0)$$

Consider R := (Z₆, +, -, ·, 0).
For z ∈ Z₆, let
$$\rho_z$$
 := {(a, b) ∈ R² | $\exists y \in R : y \cdot (a - b) = z$ }.
Let H_z := (Z₆, ρ_z).

Sample case:
$$(\mathbb{Z}_6, +, -, \cdot, 0)$$

Sample case:
$$(\mathbb{Z}_6, +, -, \cdot, 0)$$

Let $\Phi(E, z)$ denote the formula $\bigwedge_{(u,v)\in E} y_{(u,v)} \cdot (x_u - x_v) = z$.

Sample case: $(\mathbb{Z}_6, +, -, \cdot, 0)$

- Consider R := (Z₆, +, -, ·, 0).
 For z ∈ Z₆, let ρ_z := {(a, b) ∈ R² | ∃y ∈ R : y · (a − b) = z}.
 Let H_z := (Z₆, ρ_z).
 Let G = (V, E) be any graph.
 Let Φ(E, z) denote the formula Λ_{(u,v)∈E} y_(u,v) · (x_u − x_v) = z.
- Then $c(v) := x_v$ is a homomorphism $G \to H_z$ iff $\Phi(E, z)$ is satisfiable.

Homomorphism problems

For graphs G, H, we write $G \preceq H$ if there is a homomorphism $G \rightarrow H$.

Homomorphism problems

For graphs G, H, we write $G \preceq H$ if there is a homomorphism $G \rightarrow H$. The computational problem of H-COLORING asks whether $G \preceq H$ for a given input G.

Homomorphism problems

For graphs G, H, we write $G \preceq H$ if there is a homomorphism $G \rightarrow H$. The computational problem of H-COLORING asks whether $G \preceq H$ for a given input G.

Theorem [Hell, Nešetřil 1990]

Let H be an undirected, loopless non-bipartite graph. Then $H\mbox{-}{\rm COLORING}$ is ${\rm NP}\mbox{-}{\rm complete}.$

We use this to prove coNP -completeness for QUASIIDVAL.

5

0

2

 H_0

 H_1

 H_3

 H_4

H₅ 11/14

 \blacksquare H_2 -COLORING is NP-complete.

 \blacksquare H_2 -COLORING is NP-complete.

For all $z \neq 0$, $H_2 \preceq H_z$ implies $H_z \preceq H_2$.

- H_2 -COLORING is NP-complete.
- For all $z \neq 0$, $H_2 \preceq H_z$ implies $H_z \preceq H_2$.
- For G = (V, E) we therefore have $G \preceq H_2$

- H_2 -COLORING is NP-complete.
- For all $z \neq 0$, $H_2 \preceq H_z$ implies $H_z \preceq H_2$.
- For G = (V, E) we therefore have $G \preceq H_2$

• H_2 -COLORING is NP-complete.

For all
$$z \neq 0$$
, $H_2 \preceq H_z$ implies $H_z \preceq H_2$.

For G = (V, E) we therefore have $G \preceq H_2$ iff $\exists z \neq 0 : G \preceq H_z \land H_2 \preceq H_z$

• H_2 -COLORING is NP-complete.

For all $z \neq 0$, $H_2 \preceq H_z$ implies $H_z \preceq H_2$.

For G = (V, E) we therefore have $G \leq H_2$ iff $\exists z \neq 0 : G \leq H_z \land H_2 \leq H_z$ iff $\Phi(E, z) \land \Phi(\rho_2, z) \land z \neq 0$ is satisfiable, where $\Phi(E, z)$ is $\bigwedge_{(u,v) \in E} y_{(u,v)}(x_u - x_v)$

• H_2 -COLORING is NP-complete.

For all
$$z \neq 0$$
, $H_2 \preceq H_z$ implies $H_z \preceq H_2$.

For G = (V, E) we therefore have $G \leq H_2$ iff $\exists z \neq 0 : G \leq H_z \land H_2 \leq H_z$ iff $\Phi(E, z) \land \Phi(\rho_2, z) \land z \neq 0$ is satisfiable, where $\Phi(E, z)$ is $\bigwedge_{(u,v)\in E} y_{(u,v)}(x_u - x_v)$ iff $(\Phi(E, z) \land \Phi(\rho_2, z)) \Rightarrow z = 0$ is not valid.

• H_2 -COLORING is NP-complete.

For all
$$z \neq 0$$
, $H_2 \preceq H_z$ implies $H_z \preceq H_2$.

For G = (V, E) we therefore have $G \leq H_2$ iff $\exists z \neq 0 : G \leq H_z \land H_2 \leq H_z$ iff $\Phi(E, z) \land \Phi(\rho_2, z) \land z \neq 0$ is satisfiable, where $\Phi(E, z)$ is $\bigwedge_{(u,v)\in E} y_{(u,v)}(x_u - x_v)$ iff $(\Phi(E, z) \land \Phi(\rho_2, z)) \Rightarrow z = 0$ is not valid.

This reduces H_2 -COLORING to COQUASIIDVAL $(\mathbb{Z}_6, +, -, \cdot, 0)$.

• H_2 -COLORING is NP-complete.

For all
$$z \neq 0$$
, $H_2 \preceq H_z$ implies $H_z \preceq H_2$.

For G = (V, E) we therefore have $G \leq H_2$ iff $\exists z \neq 0 : G \leq H_z \land H_2 \leq H_z$ iff $\Phi(E, z) \land \Phi(\rho_2, z) \land z \neq 0$ is satisfiable, where $\Phi(E, z)$ is $\bigwedge_{(u,v)\in E} y_{(u,v)}(x_u - x_v)$ iff $(\Phi(E, z) \land \Phi(\rho_2, z)) \Rightarrow z = 0$ is not valid.

This reduces H_2 -COLORING to COQUASIDVAL $(\mathbb{Z}_6, +, -, \cdot, 0)$. Therefore QUASIDVAL $(\mathbb{Z}_6, +, -, \cdot, 0) \in \text{coNPC}$.

How to make it work in a finite nonabelian Mal'cev algebra A:

To ensure that we have $z \in A$ with H_z -COLORING \in NPC :

How to make it work in a finite nonabelian Mal'cev algebra A:

To ensure that we have $z \in A$ with H_z -COLORING \in NPC :

How to make it work in a finite nonabelian Mal'cev algebra A:

To ensure that we have $z \in A$ with H_z -COLORING \in NPC : \implies Define ρ_z over A^2 instead ($2^2 \ge 3$ cosets modulo center).

How to make it work in a finite nonabelian Mal'cev algebra A:

To ensure that we have $z \in A$ with H_z -COLORING \in NPC : \implies Define ρ_z over A^2 instead ($2^2 \ge 3$ cosets modulo center).

To ensure that we have $a \in A$ s.t. $\forall z \neq 0 : H_z \preceq H_a \Rightarrow H_a \preceq H_z :$

How to make it work in a finite nonabelian Mal'cev algebra A:

To ensure that we have $z \in A$ with H_z -COLORING \in NPC : \implies Define ρ_z over A^2 instead ($2^2 \ge 3$ cosets modulo center).

To ensure that we have $a \in A$ s.t. $\forall z \neq 0 : H_z \preceq H_a \Rightarrow H_a \preceq H_z :$

- To ensure that we have $z \in A$ with H_z -COLORING \in NPC : \implies Define ρ_z over A^2 instead ($2^2 \ge 3$ cosets modulo center).
- To ensure that we have $a \in A$ s.t. $\forall z \neq 0 : H_z \preceq H_a \Rightarrow H_a \preceq H_z :$ \implies Choose H_a to be \preceq -maximal among the possible choices.

- To ensure that we have $z \in A$ with H_z -COLORING \in NPC : \implies Define ρ_z over A^2 instead ($2^2 \ge 3$ cosets modulo center).
- To ensure that we have $a \in A$ s.t. $\forall z \neq 0 : H_z \preceq H_a \Rightarrow H_a \preceq H_z :$ ⇒ Choose H_a to be \preceq -maximal among the possible choices.
- **To define analogue of** y(a b) = z for Mal'cev algebras:

- To ensure that we have $z \in A$ with H_z -COLORING \in NPC : \implies Define ρ_z over A^2 instead ($2^2 \ge 3$ cosets modulo center).
- To ensure that we have $a \in A$ s.t. $\forall z \neq 0 : H_z \preceq H_a \Rightarrow H_a \preceq H_z :$ ⇒ Choose H_a to be \preceq -maximal among the possible choices.
- **To define analogue of** y(a b) = z for Mal'cev algebras:

- To ensure that we have $z \in A$ with H_z -COLORING \in NPC : \implies Define ρ_z over A^2 instead ($2^2 \ge 3$ cosets modulo center).
- To ensure that we have $a \in A$ s.t. $\forall z \neq 0 : H_z \preceq H_a \Rightarrow H_a \preceq H_z :$ \Rightarrow Choose H_a to be \preceq -maximal among the possible choices.
- To define analogue of y(a b) = z for Mal'cev algebras:
 Use commutator theory over Mal'cev algebras. Commutator theory explains what abelian, nilpotent, solvable mean for Mal'cev algebras.

In particular, for groups and rings we obtain:

Theorem

Let $\mathbf{R} = (R, +, -, \cdot)$ be a finite ring. Then $\mathsf{QUASIIDVal}(\mathbf{R})$ is in P if $a \cdot b = 0$ for all $a, b \in R$, and coNP-complete otherwise.

In particular, for groups and rings we obtain:

Theorem Let $\mathbf{R} = (R, +, -, \cdot)$ be a finite ring. Then $\mathsf{QUASIIDVAL}(\mathbf{R})$ is in P if $a \cdot b = 0$ for all $a, b \in R$, and coNP-complete otherwise.

Theorem

Let $G = (G, \cdot)$ be a finite group. Then QUASIIDVAL(G) is in P if G is abelian, and coNP-complete otherwise.