THE COMPLEXITY OF CHECKING QUASI-IDENTITIES OVER FINITE ALGEBRAS WITH A MAL'CEV TERM

Simon Grünbacher and Erhard Aichinger Institute for Algebra Austrian Science Fund FWF P33878

THE PROBLEM

Example

■ Consider the formula $(x=1+1 \wedge x \cdot y=0) \Rightarrow y=0$.

Example

■ Consider the formula $(x=1+1 \wedge x \cdot y=0) \Rightarrow y=0$.

Example

■ Consider the formula $(x=1+1 \wedge x \cdot y=0) \Rightarrow y=0$. Is this valid?

Example

■ Consider the formula $(x=1+1 \wedge x \cdot y=0) \Rightarrow y=0$. Is this valid?
■ In \mathbb{R} : yes

Example

■ Consider the formula $(x=1+1 \wedge x \cdot y=0) \Rightarrow y=0$. Is this valid?
■ In \mathbb{R} : yes
■ $\ln \mathbb{Z}_{3}$: yes

Example

- Consider the formula $(x=1+1 \wedge x \cdot y=0) \Rightarrow y=0$. Is this valid?

■ In \mathbb{R} : yes
$\square \ln \mathbb{Z}_{3}$: yes
■ In $\mathbb{Z}_{2}:$ no (Counterexample $x=0, y=1$)

Example

- Consider the formula $(x=1+1 \wedge x \cdot y=0) \Rightarrow y=0$. Is this valid?

■ In \mathbb{R} : yes
$\square \ln \mathbb{Z}_{3}$: yes
■ In \mathbb{Z}_{2} : no (Counterexample $x=0, y=1$)
■ In \mathbb{Z}_{6} : no (Counterexample $x=2, y=3$)

Example

- Consider the formula $(x=1+1 \wedge x \cdot y=0) \Rightarrow y=0$. Is this valid?

■ In \mathbb{R} : yes
$\square \ln \mathbb{Z}_{3}$: yes
■ In \mathbb{Z}_{2} : no (Counterexample $x=0, y=1$)
■ In \mathbb{Z}_{6} : no (Counterexample $x=2, y=3$)

Example

- Consider the formula $(x=1+1 \wedge x \cdot y=0) \Rightarrow y=0$. Is this valid?

■ In \mathbb{R} : yes
$\square \ln \mathbb{Z}_{3}$: yes
■ In \mathbb{Z}_{2} : no (Counterexample $x=0, y=1$)
■ In \mathbb{Z}_{6} : no (Counterexample $x=2, y=3$)
We decide the validity of these quasi-identities in finite algebras.

Notation

\square An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^{n}}$ is a set of functions over A.

Notation

- An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^{n}}$ is a set of functions over A.
- A term over \mathbf{A} is a well-formed expression involving variables and operation symbols representing the functions from F.

Notation

- An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^{n}}$ is a set of functions over A.
- A term over \mathbf{A} is a well-formed expression involving variables and operation symbols representing the functions from F.

Notation

- An algebra \mathbf{A} is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^{n}}$ is a set of functions over A.

■ A term over \mathbf{A} is a well-formed expression involving variables and operation symbols representing the functions from F.

Example

Algebra: $(\mathbb{N},+, \cdot)$, term: $(x \cdot x)+(y \cdot z)$

Notation

- An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^{n}}$ is a set of functions over A.

■ A term over \mathbf{A} is a well-formed expression involving variables and operation symbols representing the functions from F.

Example

■ Algebra: $(\mathbb{N},+, \cdot)$, term: $(x \cdot x)+(y \cdot z)$

- Algebra: $(\mathbb{B}, \vee, \wedge, \top)$, term: $x \wedge \top$

Notation

- An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^{n}}$ is a set of functions over A.
- A term over \mathbf{A} is a well-formed expression involving variables and operation symbols representing the functions from F.

Example

■ Algebra: $(\mathbb{N},+, \cdot)$, term: $(x \cdot x)+(y \cdot z)$

- Algebra: $(\mathbb{B}, \vee, \wedge, \top)$, term: $x \wedge \top$

■ Algebra: $\left(\mathbb{Z}_{3},+, \cdot\right)$, not a term: $x+1$

Notation

- An algebra A is a pair (A, F), where A is a set and $F \subseteq \bigcup_{n \in \mathbb{N}} A^{A^{n}}$ is a set of functions over A.
- A term over \mathbf{A} is a well-formed expression involving variables and operation symbols representing the functions from F.

Example

■ Algebra: $(\mathbb{N},+, \cdot)$, term: $(x \cdot x)+(y \cdot z)$

- Algebra: $(\mathbb{B}, \vee, \wedge, \top)$, term: $x \wedge \top$
- Algebra: $\left(\mathbb{Z}_{3},+, \cdot\right)$, not a term: $x+1$
- Not an algebra: ($\mathbb{R},+,-, \cdot, /)$ (because / is not total)

Quasi-Identity Validity

Let A be a finite algebra with finitely many fundamental operations. We are interested in the following decision problem:

Quasi-Identity Validity

Let A be a finite algebra with finitely many fundamental operations. We are interested in the following decision problem:

QUASIIDVAL(A)
Given: Terms $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}, u, v$ over \mathbf{A}

Quasi-Identity Validity

Let A be a finite algebra with finitely many fundamental operations. We are interested in the following decision problem:

QUASIIDVAL(A)
Given: Terms $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}, u, v$ over \mathbf{A}
Asked: Does

$$
\forall \boldsymbol{x} \in A^{n}:\left(\bigwedge_{i=1}^{k} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \Longrightarrow(u(\boldsymbol{x})=v(\boldsymbol{x}))
$$

hold?

Quasi-Identity Validity

Let A be a finite algebra with finitely many fundamental operations. We are interested in the following decision problem:

QUASIIDVAL(A)

Given: Terms $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}, u, v$ over \mathbf{A}
Asked: Does

$$
\forall \boldsymbol{x} \in A^{n}:\left(\bigwedge_{i=1}^{k} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \Longrightarrow(u(\boldsymbol{x})=v(\boldsymbol{x}))
$$

hold?
Problem is in coNP.
Question: For which \mathbf{A} is $\operatorname{QuAsIIDVAL}(\mathbf{A})$ in P or coNP-complete?

RELATION TO STUDIED PROBLEMS

Relation to term equivalence

TERMEQV(A)
Given: Terms s, t

Relation to term equivalence

```
TERMEQv(A)
Given: Terms s,t
Asked: Does }\forall\boldsymbol{x}\in\mp@subsup{A}{}{n}:s(\boldsymbol{x})=t(\boldsymbol{x})\mathrm{ hold?
```


Relation to term equivalence

TERMEQV(A)

Given: Terms s, t

Asked: Does $\forall \boldsymbol{x} \in A^{n}: s(\boldsymbol{x})=t(\boldsymbol{x})$ hold?

The term equivalence

$$
\forall \boldsymbol{x} \in A^{n}: s(\boldsymbol{x})=t(\boldsymbol{x})
$$

is valid iff the quasi-identity

$$
\forall \boldsymbol{x} \in A^{n}: x_{1}=x_{1} \Rightarrow s(\boldsymbol{x})=t(\boldsymbol{x})
$$

is valid.

Relation to term equivalence

TERMEQV(A)

Given: Terms s, t

Asked: Does $\forall \boldsymbol{x} \in A^{n}: s(\boldsymbol{x})=t(\boldsymbol{x})$ hold?

The term equivalence

$$
\forall \boldsymbol{x} \in A^{n}: s(\boldsymbol{x})=t(\boldsymbol{x})
$$

is valid iff the quasi-identity

$$
\forall \boldsymbol{x} \in A^{n}: x_{1}=x_{1} \Rightarrow s(\boldsymbol{x})=t(\boldsymbol{x})
$$

is valid.
Hence $\operatorname{TermEQv}(\mathbf{A}) \leq{ }_{m}^{\mathrm{P}} \operatorname{QuAsildVaL}(\mathbf{A})$.

Relation to solving systems of polynomial equations

```
POLSYSSAT(A)
Given: a }\in\mp@subsup{A}{}{r}\mathrm{ , terms }\mp@subsup{s}{1}{},\ldots,\mp@subsup{s}{k}{},\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{k}{
```


Relation to solving systems of polynomial equations

```
POLSYSSAT(A)
Given: a }\in\mp@subsup{A}{}{r}\mathrm{ , terms }\mp@subsup{s}{1}{},\ldots,\mp@subsup{s}{k}{},\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{k}{
Asked: Does }\exists\boldsymbol{x}\in\mp@subsup{A}{}{n}:\mp@subsup{s}{1}{}(\boldsymbol{a},\boldsymbol{x})=\mp@subsup{t}{1}{}(\boldsymbol{a},\boldsymbol{x})\wedge\cdots\wedge\mp@subsup{s}{k}{}(\boldsymbol{a},\boldsymbol{x})=\mp@subsup{t}{k}{}(\boldsymbol{a},\boldsymbol{x})\mathrm{ hold?
```


Relation to solving systems of polynomial equations

PolSYsSat(A)

```
Given: a}\in\mp@subsup{A}{}{r}\mathrm{ , terms }\mp@subsup{s}{1}{},\ldots,\mp@subsup{s}{k}{},\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{k}{
Asked: Does }\exists\boldsymbol{x}\in\mp@subsup{A}{}{n}:\mp@subsup{s}{1}{}(\boldsymbol{a},\boldsymbol{x})=\mp@subsup{t}{1}{}(\boldsymbol{a},\boldsymbol{x})\wedge\cdots\wedge\mp@subsup{s}{k}{}(\boldsymbol{a},\boldsymbol{x})=\mp@subsup{t}{k}{}(\boldsymbol{a},\boldsymbol{x})\mathrm{ hold?
```

The quasi-identity

$$
\left(\bigwedge_{i=1}^{k} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \Rightarrow u(\boldsymbol{x})=v(\boldsymbol{x})
$$

is not valid iff there are $a, b \in A$ with $a \neq b$ such that

$$
\left(\bigwedge_{i=1}^{k} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \wedge u(\boldsymbol{x})=a \wedge v(\boldsymbol{x})=b
$$

has a solution.

Relation to solving systems of polynomial equations

PolSYsSat(A)

Given: $\boldsymbol{a} \in A^{r}$, terms $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}$
Asked: Does $\exists \boldsymbol{x} \in A^{n}: s_{1}(\boldsymbol{a}, \boldsymbol{x})=t_{1}(\boldsymbol{a}, \boldsymbol{x}) \wedge \cdots \wedge s_{k}(\boldsymbol{a}, \boldsymbol{x})=t_{k}(\boldsymbol{a}, \boldsymbol{x})$ hold?
The quasi-identity

$$
\left(\bigwedge_{i=1}^{k} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \Rightarrow u(\boldsymbol{x})=v(\boldsymbol{x})
$$

is not valid iff there are $a, b \in A$ with $a \neq b$ such that

$$
\left(\bigwedge_{i=1}^{k} s_{i}(\boldsymbol{x})=t_{i}(\boldsymbol{x})\right) \wedge u(\boldsymbol{x})=a \wedge v(\boldsymbol{x})=b
$$

has a solution.
Hence $\operatorname{TermEqV}(\mathbf{A}) \leq_{m}^{\mathrm{P}} \operatorname{QuAsildVaL}(\mathbf{A}) \leq_{t t}^{\mathrm{P}} \operatorname{coPolSysSat}(\mathbf{A})$.

Known Results

Let \mathbf{G} be a finite group, let \mathbf{R} be a finite ring.
■ TermEqv $(\mathbf{R}) \in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).

Known Results

Let \mathbf{G} be a finite group, let \mathbf{R} be a finite ring.
■ TermEqv $(\mathbf{R}) \in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).

- TermEqv $(\mathbf{G}) \in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).

Known Results

Let \mathbf{G} be a finite group, let \mathbf{R} be a finite ring.
■ TermEqv $(\mathbf{R}) \in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).

- TermEqv $(\mathbf{G}) \in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).

■ PolSysSat (R) $\in \mathrm{P}$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).

Known Results

Let \mathbf{G} be a finite group, let \mathbf{R} be a finite ring.
■ TermEqv $(\mathbf{R}) \in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).

- TermEqv $(\mathbf{G}) \in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).

■ PolSysSat (R) $\in \mathrm{P}$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).

■ PolSysSat $(\mathbf{G}) \in \mathrm{P}$ if \mathbf{G} is abelian (Goldmann, Russel 2002).

Known Results

Let \mathbf{G} be a finite group, let \mathbf{R} be a finite ring.
■ TermEqv $(\mathbf{R}) \in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).

- TermEqv $(\mathbf{G}) \in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).

■ PolSysSat (R) $\in \mathrm{P}$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).

■ PolSysSat $(\mathbf{G}) \in \mathrm{P}$ if \mathbf{G} is abelian (Goldmann, Russel 2002).
$\square \Longrightarrow$ Open cases for $\operatorname{QuAsIldVAL}(\mathbf{R}): \mathbf{R}$ is nilpotent and nonzero.

Known Results

Let \mathbf{G} be a finite group, let \mathbf{R} be a finite ring.
■ TermEqv $(\mathbf{R}) \in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).
■ $\operatorname{TermEqv}(\mathbf{G}) \in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).
■ PolSysSat $(\mathbf{R}) \in \mathrm{P}$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).

■ PolSysSat(G) $\in \mathrm{P}$ if \mathbf{G} is abelian (Goldmann, Russel 2002).
$\square \Longrightarrow$ Open cases for $\operatorname{QuAsIIDVAL}(\mathbf{R}): \mathbf{R}$ is nilpotent and nonzero.
$\square \Longrightarrow$ Open cases for $\operatorname{QuASIIDVAL(G):~} \mathbf{G}$ is solvable and nonabelian.

Known Results

Let \mathbf{G} be a finite group, let \mathbf{R} be a finite ring.
■ TermEqv $(\mathbf{R}) \in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).
■ $\operatorname{TermEqv}(\mathbf{G}) \in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).
■ PolSysSat $(\mathbf{R}) \in \mathrm{P}$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).

■ PolSysSat(G) $\in \mathrm{P}$ if \mathbf{G} is abelian (Goldmann, Russel 2002).
$\square \Longrightarrow$ Open cases for $\operatorname{QuAsIIDVAL}(\mathbf{R}): \mathbf{R}$ is nilpotent and nonzero.
$\square \Longrightarrow$ Open cases for $\operatorname{QuASIIDVAL(G):~} \mathbf{G}$ is solvable and nonabelian.

Known Results

Let \mathbf{G} be a finite group, let \mathbf{R} be a finite ring.
■ TermEqv $(\mathbf{R}) \in \operatorname{coNPC}$ if \mathbf{R} is nonnilpotent (Burris, Lawrence 1993).

- TermEqv $(\mathbf{G}) \in \operatorname{coNPC}$ if \mathbf{G} is nonsolvable (Goldmann, Russel 2002).

■ PolSysSat (\mathbf{R}) $\in \mathrm{P}$ if \mathbf{R} is a zero ring (Goldmann, Russel 2002; Larose, Zádori 2006).

■ PolSysSat(G) $\in \mathrm{P}$ if \mathbf{G} is abelian (Goldmann, Russel 2002).
$\square \Longrightarrow$ Open cases for $\operatorname{QuAsIIDVAL(R):~} \mathbf{R}$ is nilpotent and nonzero.
$\square \Longrightarrow$ Open cases for $\operatorname{QuAsIIDVAL}(\mathbf{G}): \mathbf{G}$ is solvable and nonabelian.
Our contribution: coNP-complete in both open cases.

COMPLEXITY FOR MAL'CEV ALGEBRAS

Mal'cev algebras

Mal'cev algebras are a generalization of rings, groups and modules:

Mal'cev algebras

Mal'cev algebras are a generalization of rings, groups and modules:

Definition

A term d is called a Mal'cev term if $d(a, b, b)=a=d(b, b, a)$. We call A a Mal'cev algebra if it has a Mal'cev term.

Mal'cev algebras

Mal'cev algebras are a generalization of rings, groups and modules:

Definition

A term d is called a Mal'cev term if $d(a, b, b)=a=d(b, b, a)$. We call A a Mal'cev algebra if it has a Mal'cev term.

Example

- In a group, $d(a, b, c):=a b^{-1} c$ is a Mal'cev term

Mal'cev algebras

Mal'cev algebras are a generalization of rings, groups and modules:

Definition

A term d is called a Mal'cev term if $d(a, b, b)=a=d(b, b, a)$. We call A a Mal'cev algebra if it has a Mal'cev term.

Example

- In a group, $d(a, b, c):=a b^{-1} c$ is a Mal'cev term
- In a ring, $d(a, b, c):=a-b+c$ is a Mal'cev term

Main Result

Theorem [Aichinger, Grünbacher]

Let \mathbf{A} be a finite Mal'cev algebra. Then $\operatorname{QuASIIDVAL(A)}$ is in P if \mathbf{A} is abelian and coNPcomplete otherwise.

Main Result

Theorem [Aichinger, Grünbacher]

Let \mathbf{A} be a finite Mal'cev algebra. Then $\operatorname{QuASIIDVAL(A)}$ is in P if \mathbf{A} is abelian and coNPcomplete otherwise.

In particular:

Main Result

Theorem [Aichinger, Grünbacher]

Let \mathbf{A} be a finite Mal'cev algebra. Then $\operatorname{QuAsIIDVAL(A)}$ is in P if \mathbf{A} is abelian and coNPcomplete otherwise.

In particular:

Corollary

Let $\mathbf{R}=(R,+,-, \cdot)$ be a finite ring. Then $\operatorname{QUASIIDVAL(R)}$ is in P if $a \cdot b=0$ for all $a, b \in R$, and coNP-complete otherwise.

Main Result

Theorem [Aichinger, Grünbacher]

Let \mathbf{A} be a finite Mal'cev algebra. Then $\operatorname{QuAsIldVAL(A)}$ is in P if \mathbf{A} is abelian and coNPcomplete otherwise.

In particular:

Corollary

Let $\mathbf{R}=(R,+,-, \cdot)$ be a finite ring. Then $\operatorname{QUASIIDVAL(R)}$ is in P if $a \cdot b=0$ for all $a, b \in R$, and coNP-complete otherwise.

Corollary

Let $\mathbf{G}=(G, \cdot)$ be a finite group. Then $\operatorname{QuAsIIDVAL}(\mathbf{G})$ is in P if \mathbf{G} is abelian, and coNPcomplete otherwise.

Sample case: $\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$

■ Consider $\mathbf{R}:=\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$.

Sample case: $\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$

■ Consider $\mathbf{R}:=\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$.
\square For $z \in \mathbb{Z}_{6}$, let $\rho_{z}:=\left\{(a, b) \in R^{2} \mid \exists y \in R: y \cdot(a-b)=z\right\}$.

Sample case: $\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$

■ Consider $\mathbf{R}:=\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$.
\square For $z \in \mathbb{Z}_{6}$, let $\rho_{z}:=\left\{(a, b) \in R^{2} \mid \exists y \in R: y \cdot(a-b)=z\right\}$.
■ Let $H_{z}:=\left(\mathbb{Z}_{6}, \rho_{z}\right)$.

Sample case: $\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$

■ Consider $\mathbf{R}:=\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$.
\square For $z \in \mathbb{Z}_{6}$, let $\rho_{z}:=\left\{(a, b) \in R^{2} \mid \exists y \in R: y \cdot(a-b)=z\right\}$.
■ Let $H_{z}:=\left(\mathbb{Z}_{6}, \rho_{z}\right)$.

- Let $G=(V, E)$ be any graph.

Sample case: $\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$

■ Consider $\mathbf{R}:=\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$.
\square For $z \in \mathbb{Z}_{6}$, let $\rho_{z}:=\left\{(a, b) \in R^{2} \mid \exists y \in R: y \cdot(a-b)=z\right\}$.
■ Let $H_{z}:=\left(\mathbb{Z}_{6}, \rho_{z}\right)$.

- Let $G=(V, E)$ be any graph.
\square Let $\Phi(E, z)$ denote the formula $\bigwedge_{(u, v) \in E} y_{(u, v)} \cdot\left(x_{u}-x_{v}\right)=z$.

Sample case: $\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$

■ Consider $\mathbf{R}:=\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$.
\square For $z \in \mathbb{Z}_{6}$, let $\rho_{z}:=\left\{(a, b) \in R^{2} \mid \exists y \in R: y \cdot(a-b)=z\right\}$.
■ Let $H_{z}:=\left(\mathbb{Z}_{6}, \rho_{z}\right)$.

- Let $G=(V, E)$ be any graph.
\square Let $\Phi(E, z)$ denote the formula $\bigwedge_{(u, v) \in E} y_{(u, v)} \cdot\left(x_{u}-x_{v}\right)=z$.
■ Then $c(v):=x_{v}$ is a homomorphism $G \rightarrow H_{z}$ iff $\Phi(E, z)$ is satisfiable.

Homomorphism problems

For graphs G, H, we write $G \preceq H$ if there is a homomorphism $G \rightarrow H$.

Homomorphism problems

For graphs G, H, we write $G \preceq H$ if there is a homomorphism $G \rightarrow H$. The computational problem of H-COLORING asks whether $G \preceq H$ for a given input G.

Homomorphism problems

For graphs G, H, we write $G \preceq H$ if there is a homomorphism $G \rightarrow H$.
The computational problem of H-COLORING asks whether $G \preceq H$ for a given input G.

Theorem [Hell, Nešetřil 1990]

Let H be an undirected, loopless non-bipartite graph. Then H-coloring is NPcomplete.

We use this to prove coNP-completeness for QuAsIIDVAL.

Restricting z

- H_{2}-COLORING is NP-complete.

Restricting z

■ H_{2}-COLORING is NP-complete.
■ For all $z \neq 0, H_{2} \preceq H_{z}$ implies $H_{z} \preceq H_{2}$.

Restricting z

- H_{2}-COLORING is NP-complete.
- For all $z \neq 0, H_{2} \preceq H_{z}$ implies $H_{z} \preceq H_{2}$.
\square For $G=(V, E)$ we therefore have $G \preceq H_{2}$

Restricting z

- H_{2}-COLORING is NP-complete.
- For all $z \neq 0, H_{2} \preceq H_{z}$ implies $H_{z} \preceq H_{2}$.
\square For $G=(V, E)$ we therefore have $G \preceq H_{2}$

Restricting z

- H_{2}-COLORING is NP-complete.
- For all $z \neq 0, H_{2} \preceq H_{z}$ implies $H_{z} \preceq H_{2}$.
\square For $G=(V, E)$ we therefore have $G \preceq H_{2}$ iff $\exists z \neq 0: G \preceq H_{z} \wedge H_{2} \preceq H_{z}$

Restricting z

- H_{2}-COLORING is NP-complete.
- For all $z \neq 0, H_{2} \preceq H_{z}$ implies $H_{z} \preceq H_{2}$.
\square For $G=(V, E)$ we therefore have $G \preceq H_{2}$ iff $\exists z \neq 0: G \preceq H_{z} \wedge H_{2} \preceq H_{z}$ iff $\Phi(E, z) \wedge \Phi\left(\rho_{2}, z\right) \wedge z \neq 0$ is satisfiable, where $\Phi(E, z)$ is $\bigwedge_{(u, v) \in E} y_{(u, v)}\left(x_{u}-x_{v}\right)$

Restricting z

- H_{2}-COLORING is NP-complete.
- For all $z \neq 0, H_{2} \preceq H_{z}$ implies $H_{z} \preceq H_{2}$.
\square For $G=(V, E)$ we therefore have $G \preceq H_{2}$ iff $\exists z \neq 0: G \preceq H_{z} \wedge H_{2} \preceq H_{z}$ iff $\Phi(E, z) \wedge \Phi\left(\rho_{2}, z\right) \wedge z \neq 0$ is satisfiable, where $\Phi(E, z)$ is $\bigwedge_{(u, v) \in E} y_{(u, v)}\left(x_{u}-x_{v}\right)$ iff $\left(\Phi(E, z) \wedge \Phi\left(\rho_{2}, z\right)\right) \Rightarrow z=0$ is not valid.

Restricting z

- H_{2}-COLORING is NP-complete.

■ For all $z \neq 0, H_{2} \preceq H_{z}$ implies $H_{z} \preceq H_{2}$.
\square For $G=(V, E)$ we therefore have $G \preceq H_{2}$ iff $\exists z \neq 0: G \preceq H_{z} \wedge H_{2} \preceq H_{z}$ iff $\Phi(E, z) \wedge \Phi\left(\rho_{2}, z\right) \wedge z \neq 0$ is satisfiable, where $\Phi(E, z)$ is $\bigwedge_{(u, v) \in E} y_{(u, v)}\left(x_{u}-x_{v}\right)$ iff $\left(\Phi(E, z) \wedge \Phi\left(\rho_{2}, z\right)\right) \Rightarrow z=0$ is not valid.

This reduces H_{2}-COLORING to COQUASIIDVAL $\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$.

Restricting z

- H_{2}-COLORING is NP-complete.
- For all $z \neq 0, H_{2} \preceq H_{z}$ implies $H_{z} \preceq H_{2}$.
\square For $G=(V, E)$ we therefore have $G \preceq H_{2}$ iff $\exists z \neq 0: G \preceq H_{z} \wedge H_{2} \preceq H_{z}$ iff $\Phi(E, z) \wedge \Phi\left(\rho_{2}, z\right) \wedge z \neq 0$ is satisfiable, where $\Phi(E, z)$ is $\bigwedge_{(u, v) \in E} y_{(u, v)}\left(x_{u}-x_{v}\right)$ iff $\left(\Phi(E, z) \wedge \Phi\left(\rho_{2}, z\right)\right) \Rightarrow z=0$ is not valid.

This reduces H_{2}-COLORING to COQUASIIDVAL $\left(\mathbb{Z}_{6},+,-, \cdot, 0\right)$.
Therefore QuAsıldVAL $\left(\mathbb{Z}_{6},+,-, \cdot, 0\right) \in \operatorname{coNPC}$.

Generalization to Mal'cev Algebras

How to make it work in a finite nonabelian Mal'cev algebra A:
■ To ensure that we have $z \in A$ with H_{z}-COLORING \in NPC :

Generalization to Mal'cev Algebras

How to make it work in a finite nonabelian Mal'cev algebra A:
■ To ensure that we have $z \in A$ with H_{z}-COLORING \in NPC :

Generalization to Mal'cev Algebras

How to make it work in a finite nonabelian Mal'cev algebra A:
■ To ensure that we have $z \in A$ with H_{z}-COLORING \in NPC :
\Longrightarrow Define ρ_{z} over A^{2} instead ($2^{2} \geq 3$ cosets modulo center).

Generalization to Mal'cev Algebras

How to make it work in a finite nonabelian Mal'cev algebra A:
■ To ensure that we have $z \in A$ with H_{z}-COLORING \in NPC :
\Longrightarrow Define ρ_{z} over A^{2} instead ($2^{2} \geq 3$ cosets modulo center).
■ To ensure that we have $a \in A$ s.t. $\forall z \neq 0: H_{z} \preceq H_{a} \Rightarrow H_{a} \preceq H_{z}$:

Generalization to Mal'cev Algebras

How to make it work in a finite nonabelian Mal'cev algebra A:
■ To ensure that we have $z \in A$ with H_{z}-COLORING \in NPC :
\Longrightarrow Define ρ_{z} over A^{2} instead ($2^{2} \geq 3$ cosets modulo center).
■ To ensure that we have $a \in A$ s.t. $\forall z \neq 0: H_{z} \preceq H_{a} \Rightarrow H_{a} \preceq H_{z}$:

Generalization to Mal'cev Algebras

How to make it work in a finite nonabelian Mal'cev algebra A:
■ To ensure that we have $z \in A$ with H_{z}-COLORING \in NPC :
\Longrightarrow Define ρ_{z} over A^{2} instead ($2^{2} \geq 3$ cosets modulo center).
■ To ensure that we have $a \in A$ s.t. $\forall z \neq 0: H_{z} \preceq H_{a} \Rightarrow H_{a} \preceq H_{z}$:
\Longrightarrow Choose H_{a} to be \preceq-maximal among the possible choices.

Generalization to Mal'cev Algebras

How to make it work in a finite nonabelian Mal'cev algebra A:
■ To ensure that we have $z \in A$ with H_{z}-COLORING \in NPC :
\Longrightarrow Define ρ_{z} over A^{2} instead ($2^{2} \geq 3$ cosets modulo center).
■ To ensure that we have $a \in A$ s.t. $\forall z \neq 0: H_{z} \preceq H_{a} \Rightarrow H_{a} \preceq H_{z}$:
\Longrightarrow Choose H_{a} to be \preceq-maximal among the possible choices.
■ To define analogue of $y(a-b)=z$ for Mal'cev algebras:

Generalization to Mal'cev Algebras

How to make it work in a finite nonabelian Mal'cev algebra A:
■ To ensure that we have $z \in A$ with H_{z}-COLORING \in NPC :
\Longrightarrow Define ρ_{z} over A^{2} instead ($2^{2} \geq 3$ cosets modulo center).
■ To ensure that we have $a \in A$ s.t. $\forall z \neq 0: H_{z} \preceq H_{a} \Rightarrow H_{a} \preceq H_{z}$:
\Longrightarrow Choose H_{a} to be \preceq-maximal among the possible choices.
■ To define analogue of $y(a-b)=z$ for Mal'cev algebras:

Generalization to Mal'cev Algebras

How to make it work in a finite nonabelian Mal'cev algebra A:
■ To ensure that we have $z \in A$ with H_{z}-COLORING \in NPC :
\Longrightarrow Define ρ_{z} over A^{2} instead ($2^{2} \geq 3$ cosets modulo center).
■ To ensure that we have $a \in A$ s.t. $\forall z \neq 0: H_{z} \preceq H_{a} \Rightarrow H_{a} \preceq H_{z}$:
\Longrightarrow Choose H_{a} to be \preceq-maximal among the possible choices.
\square To define analogue of $y(a-b)=z$ for Mal'cev algebras:
\Longrightarrow Use commutator theory over Mal'cev algebras. Commutator theory explains what abelian, nilpotent, solvable mean for Mal'cev algebras.

Generalization to Mal'cev Algebras

In particular, for groups and rings we obtain:

Theorem

Let $\mathbf{R}=(R,+,-, \cdot)$ be a finite ring. Then $\operatorname{QuAsIIDVAL(R)}$ is in P if $a \cdot b=0$ for all $a, b \in R$, and coNP-complete otherwise.

Generalization to Mal'cev Algebras

In particular, for groups and rings we obtain:

Theorem

Let $\mathbf{R}=(R,+,-, \cdot)$ be a finite ring. Then $\operatorname{QuASIIDVAL}(\mathbf{R})$ is in P if $a \cdot b=0$ for all $a, b \in R$, and coNP-complete otherwise.

Theorem

Let $\mathbf{G}=(G, \cdot)$ be a finite group. Then $\operatorname{QuAsIIDVAL}(\mathbf{G})$ is in P if \mathbf{G} is abelian, and coNPcomplete otherwise.

