THE COMPLEXITY OF CHECKING
QUASI-IDENTITIES OVER FINITE
ALGEBRAS WITH A MALCEV TERM

4

Simon Grinbacher and Erhard Aichinger
Institute for Algebra
Austrian Science Fund FWF P33878

JXU FLIF

O .
URIVERSITY LiNZ Der Wissenschaftsfonds.




THE PROBLEM

4



Example

B Consider the formula (z =14+1Az-y=0)=y=0.

1/14



Example

B Consider the formula (z =14+1Az-y=0)=y=0.

1/14



Example

M Considerthe formula (z =1+1 A z-y = 0) = y = 0. Is this valid?

1/14



Example

M Considerthe formula (z =1+1 A z-y = 0) = y = 0. Is this valid?
B InR:yes

1/14



Example

M Considerthe formula (z =1+1 A z-y = 0) = y = 0. Is this valid?
B InR:yes
B InZs:yes

1/14



Example

B Considerthe formula (x =1+1 A z-y = 0) = y = 0. Is this valid?
B InR:yes

B InZs:yes

B In Z, : no (Counterexample z = 0,y = 1)

1/14



Example

B Considerthe formula (x =1+1 A z-y = 0) = y = 0. Is this valid?
B InR:yes

B InZs:yes

B In Z, : no (Counterexample z = 0,y = 1)

B In Zg : no (Counterexample = = 2,y = 3)

1/14



Example

B Considerthe formula (x =1+1 A z-y = 0) = y = 0. Is this valid?
B InR:yes

B InZs:yes

B In Z, : no (Counterexample z = 0,y = 1)

B In Zg : no (Counterexample = = 2,y = 3)

1/14



Example

B Considerthe formula (x =1+1 A z-y = 0) = y = 0. Is this valid?
B InR:yes

B InZs:yes

B In Z, : no (Counterexample z = 0,y = 1)

B In Zg : no (Counterexample = = 2,y = 3)

We decide the validity of these quasi-identities in finite algebras.
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Notation

B An algebra A is a pair (A, F), where Ais asetand F C J,, .y A4 is a set of
functions over A.

B Aterm over A is a well-formed expression involving variables and operation symbols
representing the functions from F'.

B Algebra: (N, +,), term: (z - z) + (y - 2)

W Algebra: (B,V, A, T), term: z A T

B Algebra: (Z3,+,-), notaterm: z + 1

B Not an algebra: (R, +, —, -, /) (because / is not total)
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Quasi-ldentity Validity

Let A be a finite algebra with finitely many fundamental operations. We are interested in
the following decision problem:

QUASIIDVAL(A)
Given: Terms s1,..., 8k, t1,...,tk, u, v OVEr A
Asked: Does

Vo e A" (N si(x) = ti(z)) = (u(z) = v(z))

=1
hold?
Problem is in coNP.

Question: For which A is QUASIIDVAL(A) in P or coNP-complete?
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Relation to solving systems of polynomial equations

POLSYSSAT(A)
Given: a € A", terms sy, ..., Sk, t1,...,tx
Asked: Does 3z € A" : s1(a,xz) =t1(a,z) A--- A sg(a,z) =ti(a,z) hold?

The quasi-identity
k

( /\ si(z) = ti(z)) = u(z) = v(z)

=1
is not valid iff there are a,b € A with a # b such that

>;¢

si(x )) Au(z) =aAv(z)=b

has a solution.
Hence TERMEQV(A) <P QUASIIDVAL(A) <, COPOLSYSSAT(A).
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Known Results

Let G be a finite group, let R be a finite ring.

B TERMEQV(R) € coNPC if R is nonnilpotent (Burris, Lawrence 1993).
B TERMEQV(G) € coNPC if G is nonsolvable (Goldmann, Russel 2002).

B POLSYSSAT(R) € P if R is a zero ring (Goldmann, Russel 2002; Larose, Zadori
2006).

B POLSYSSAT(G) € P if G is abelian (Goldmann, Russel 2002).
B — Open cases for QUASIIDVAL(R) : R is nilpotent and nonzero.
B — Open cases for QUASIIDVAL(G) : G is solvable and nonabelian.

Our contribution: coNP-complete in both open cases.
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Mal’cev algebras

Mal’cev algebras are a generalization of rings, groups and modules:
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Mal’cev algebras

Mal’cev algebras are a generalization of rings, groups and modules:

Aterm d is called a Mal'cev term if d(a, b,b) = a = d(b, b, a). We call A a Mal'cev algebra
if it has a Mal’cev term.

Example

B In a group, d(a,b,c) := ab~1cis a Mal'cev term
B Inaring, d(a,b,c) :==a— b+ cis a Mal'cev term
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Main Result

Theorem [Aichinger, Griinbacher]
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Main Result

Theorem [Aichinger, Griinbacher]

Let A be a finite Mal'cev algebra. Then QUASIIDVAL(A) is in P if A is abelian and coNP-
complete otherwise.

In particular:

Corollary
LetR = (R, +, —, ) be a finite ring. Then QUASIIDVAL(R)isinPifa-b=0foralla,b € R,
and coNP-complete otherwise.

Corollary
Let G = (G, -) be a finite group. Then QUASIIDVAL(G) is in P if G is abelian, and coNP-
complete otherwise.
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B Consider R := (Zg, +, —, -, 0).

W Forz € Zg, letp, :={(a,b) e R* |y R:y (a—b) = z}.

B Let H, := (Zs, p2).

B Let G = (V, E) be any graph.

W Let ®(E, z) denote the formula A, , e Y(u,v) - (Tu — T0) = 2.

B Then ¢(v) := z, is a homomorphism G — H,, iff ®(F, z) is satisfiable.
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Homomorphism problems

For graphs G, H, we write G < H if there is a homomorphism G — H.
The computational problem of H-COLORING asks whether G < H for a given input G.

Theorem [Hell, NeSetril 1990]

Let H be an undirected, loopless non-bipartite graph. Then H-COLORING is NP-
complete.

We use this to prove coNP-completeness for QUASIIDVAL.
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iff (£, 2) A ©(p2, 2) A z # 0 is satisfiable, where ®(E, z) is A\, ,)ep Y(uv) (Tu — Tv)
iff (2(E, z) A ®(p2,2)) = z = 0is not valid.

This reduces H>-COLORING to COQUASIIDVAL(Zg, +, —, -, 0).
Therefore QUASIIDVAL(Zg, +, —, -,0) € coNPC.
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How to make it work in a finite nonabelian Mal’cev algebra A:

B To ensure that we have z € A with H,-COLORING € NPC :
— Define p, over A? instead (22 > 3 cosets modulo center).

B To ensurethatwe havea € Ast. Vz#0: H, <H,= H, < H,:
= Choose H, to be <-maximal among the possible choices.

B To define analogue of y(a — b) = = for Mal’cev algebras:
= Use commutator theory over Mal’cev algebras. Commutator theory explains what
abelian, nilpotent, solvable mean for Mal’cev algebras.
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In particular, for groups and rings we obtain:

LetR = (R, +, —, ) be a finite ring. Then QUASIIDVAL(R)isinPifa-b=0foralla,b € R,
and coNP-complete otherwise.

Theorem
Let G = (G, ) be a finite group. Then QUASIIDVAL(G) is in P if G is abelian, and coNP-

complete otherwise.
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