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THE PROBLEM



Example

� Consider the formula (x = 1 + 1 ∧ x · y = 0)⇒ y = 0.

Is this valid?

� In R : yes

� In Z3 : yes

� In Z2 : no (Counterexample x = 0, y = 1)

� In Z6 : no (Counterexample x = 2, y = 3)

We decide the validity of these quasi-identities in finite algebras.
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Notation

� An algebra A is a pair (A,F ), where A is a set and F ⊆
⋃

n∈NA
An

is a set of
functions over A.

� A term over A is a well-formed expression involving variables and operation symbols
representing the functions from F .

Example

� Algebra: (N,+, ·), term: (x · x) + (y · z)
� Algebra: (B,∨,∧,>), term: x ∧ >
� Algebra: (Z3,+, ·), not a term: x+ 1

� Not an algebra: (R,+,−, ·, /) (because / is not total)
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Quasi-Identity Validity

Let A be a finite algebra with finitely many fundamental operations. We are interested in
the following decision problem:

QUASIIDVAL(A)

Given: Terms s1, . . . , sk, t1, . . . , tk, u, v over A
Asked: Does

∀x ∈ An : (

k∧
i=1

si(x ) = ti(x )) =⇒ (u(x ) = v(x ))

hold?

Problem is in coNP.
Question: For which A is QUASIIDVAL(A) in P or coNP-complete?
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RELATION TO STUDIED PROBLEMS



Relation to term equivalence

TERMEQV(A)

Given: Terms s, t

Asked: Does ∀x ∈ An : s(x ) = t(x ) hold?

The term equivalence
∀x ∈ An : s(x ) = t(x )

is valid iff the quasi-identity

∀x ∈ An : x1 = x1 ⇒ s(x ) = t(x )

is valid.
Hence TERMEQV(A) ≤P

m QUASIIDVAL(A).
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Relation to solving systems of polynomial equations

POLSYSSAT(A)

Given: a ∈ Ar, terms s1, . . . , sk, t1, . . . , tk

Asked: Does ∃x ∈ An : s1(a ,x ) = t1(a ,x ) ∧ · · · ∧ sk(a ,x ) = tk(a ,x ) hold?

The quasi-identity ( k∧
i=1

si(x ) = ti(x )
)
⇒ u(x ) = v(x )

is not valid iff there are a, b ∈ A with a 6= b such that

( k∧
i=1

si(x ) = ti(x )
)
∧ u(x ) = a ∧ v(x ) = b

has a solution.
Hence TERMEQV(A) ≤P

m QUASIIDVAL(A) ≤P
tt COPOLSYSSAT(A).
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Known Results

Let G be a finite group, let R be a finite ring.

� TERMEQV(R) ∈ coNPC if R is nonnilpotent (Burris, Lawrence 1993).

� TERMEQV(G) ∈ coNPC if G is nonsolvable (Goldmann, Russel 2002).

� POLSYSSAT(R) ∈ P if R is a zero ring (Goldmann, Russel 2002; Larose, Zádori
2006).

� POLSYSSAT(G) ∈ P if G is abelian (Goldmann, Russel 2002).

� =⇒ Open cases for QUASIIDVAL(R) : R is nilpotent and nonzero.

� =⇒ Open cases for QUASIIDVAL(G) : G is solvable and nonabelian.

Our contribution: coNP-complete in both open cases.
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COMPLEXITY FOR MAL’CEV
ALGEBRAS



Mal’cev algebras

Mal’cev algebras are a generalization of rings, groups and modules:

Definition
A term d is called a Mal’cev term if d(a, b, b) = a = d(b, b, a). We call A a Mal’cev algebra
if it has a Mal’cev term.

Example

� In a group, d(a, b, c) := ab−1c is a Mal’cev term

� In a ring, d(a, b, c) := a− b+ c is a Mal’cev term
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Main Result

Theorem [Aichinger, Grünbacher]
Let A be a finite Mal’cev algebra. Then QUASIIDVAL(A) is in P if A is abelian and coNP-
complete otherwise.

In particular:

Corollary
Let R = (R,+,−, ·) be a finite ring. Then QUASIIDVAL(R) is in P if a·b = 0 for all a, b ∈ R,
and coNP-complete otherwise.

Corollary
Let G = (G, ·) be a finite group. Then QUASIIDVAL(G) is in P if G is abelian, and coNP-
complete otherwise.
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Sample case: (Z6,+,−, ·, 0)

� Consider R := (Z6,+,−, ·, 0).

� For z ∈ Z6, let ρz := {(a, b) ∈ R2 | ∃y ∈ R : y · (a− b) = z}.
� Let Hz := (Z6, ρz).

� Let G = (V,E) be any graph.

� Let Φ(E, z) denote the formula
∧

(u,v)∈E y(u,v) · (xu − xv) = z.

� Then c(v) := xv is a homomorphism G→ Hz iff Φ(E, z) is satisfiable.
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Homomorphism problems

For graphs G, H, we write G � H if there is a homomorphism G→ H.

The computational problem of H -COLORING asks whether G � H for a given input G.

Theorem [Hell, Nešetřil 1990]
Let H be an undirected, loopless non-bipartite graph. Then H -COLORING is NP-
complete.

We use this to prove coNP-completeness for QUASIIDVAL.
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Restricting z

� H2-COLORING is NP-complete.

� For all z 6= 0, H2 � Hz implies Hz � H2.

� For G = (V,E) we therefore have G � H2

iff ∃z 6= 0 : G � Hz ∧H2 � Hz

iff Φ(E, z) ∧ Φ(ρ2, z) ∧ z 6= 0 is satisfiable, where Φ(E, z) is
∧

(u,v)∈E y(u,v)(xu − xv)

iff (Φ(E, z) ∧ Φ(ρ2, z))⇒ z = 0 is not valid.

This reduces H2-COLORING to COQUASIIDVAL(Z6,+,−, ·, 0).

Therefore QUASIIDVAL(Z6,+,−, ·, 0) ∈ coNPC.

12/14



Restricting z

� H2-COLORING is NP-complete.

� For all z 6= 0, H2 � Hz implies Hz � H2.

� For G = (V,E) we therefore have G � H2

iff ∃z 6= 0 : G � Hz ∧H2 � Hz

iff Φ(E, z) ∧ Φ(ρ2, z) ∧ z 6= 0 is satisfiable, where Φ(E, z) is
∧

(u,v)∈E y(u,v)(xu − xv)

iff (Φ(E, z) ∧ Φ(ρ2, z))⇒ z = 0 is not valid.

This reduces H2-COLORING to COQUASIIDVAL(Z6,+,−, ·, 0).

Therefore QUASIIDVAL(Z6,+,−, ·, 0) ∈ coNPC.

12/14



Restricting z

� H2-COLORING is NP-complete.

� For all z 6= 0, H2 � Hz implies Hz � H2.

� For G = (V,E) we therefore have G � H2

iff ∃z 6= 0 : G � Hz ∧H2 � Hz

iff Φ(E, z) ∧ Φ(ρ2, z) ∧ z 6= 0 is satisfiable, where Φ(E, z) is
∧

(u,v)∈E y(u,v)(xu − xv)

iff (Φ(E, z) ∧ Φ(ρ2, z))⇒ z = 0 is not valid.

This reduces H2-COLORING to COQUASIIDVAL(Z6,+,−, ·, 0).

Therefore QUASIIDVAL(Z6,+,−, ·, 0) ∈ coNPC.

12/14



Restricting z

� H2-COLORING is NP-complete.

� For all z 6= 0, H2 � Hz implies Hz � H2.

� For G = (V,E) we therefore have G � H2

iff ∃z 6= 0 : G � Hz ∧H2 � Hz

iff Φ(E, z) ∧ Φ(ρ2, z) ∧ z 6= 0 is satisfiable, where Φ(E, z) is
∧

(u,v)∈E y(u,v)(xu − xv)

iff (Φ(E, z) ∧ Φ(ρ2, z))⇒ z = 0 is not valid.

This reduces H2-COLORING to COQUASIIDVAL(Z6,+,−, ·, 0).

Therefore QUASIIDVAL(Z6,+,−, ·, 0) ∈ coNPC.

12/14



Restricting z

� H2-COLORING is NP-complete.

� For all z 6= 0, H2 � Hz implies Hz � H2.

� For G = (V,E) we therefore have G � H2

iff ∃z 6= 0 : G � Hz ∧H2 � Hz

iff Φ(E, z) ∧ Φ(ρ2, z) ∧ z 6= 0 is satisfiable, where Φ(E, z) is
∧

(u,v)∈E y(u,v)(xu − xv)

iff (Φ(E, z) ∧ Φ(ρ2, z))⇒ z = 0 is not valid.

This reduces H2-COLORING to COQUASIIDVAL(Z6,+,−, ·, 0).

Therefore QUASIIDVAL(Z6,+,−, ·, 0) ∈ coNPC.

12/14



Restricting z

� H2-COLORING is NP-complete.

� For all z 6= 0, H2 � Hz implies Hz � H2.

� For G = (V,E) we therefore have G � H2

iff ∃z 6= 0 : G � Hz ∧H2 � Hz

iff Φ(E, z) ∧ Φ(ρ2, z) ∧ z 6= 0 is satisfiable, where Φ(E, z) is
∧

(u,v)∈E y(u,v)(xu − xv)

iff (Φ(E, z) ∧ Φ(ρ2, z))⇒ z = 0 is not valid.

This reduces H2-COLORING to COQUASIIDVAL(Z6,+,−, ·, 0).

Therefore QUASIIDVAL(Z6,+,−, ·, 0) ∈ coNPC.

12/14



Restricting z

� H2-COLORING is NP-complete.

� For all z 6= 0, H2 � Hz implies Hz � H2.

� For G = (V,E) we therefore have G � H2

iff ∃z 6= 0 : G � Hz ∧H2 � Hz

iff Φ(E, z) ∧ Φ(ρ2, z) ∧ z 6= 0 is satisfiable, where Φ(E, z) is
∧

(u,v)∈E y(u,v)(xu − xv)

iff (Φ(E, z) ∧ Φ(ρ2, z))⇒ z = 0 is not valid.

This reduces H2-COLORING to COQUASIIDVAL(Z6,+,−, ·, 0).

Therefore QUASIIDVAL(Z6,+,−, ·, 0) ∈ coNPC.

12/14



Restricting z

� H2-COLORING is NP-complete.

� For all z 6= 0, H2 � Hz implies Hz � H2.

� For G = (V,E) we therefore have G � H2

iff ∃z 6= 0 : G � Hz ∧H2 � Hz

iff Φ(E, z) ∧ Φ(ρ2, z) ∧ z 6= 0 is satisfiable, where Φ(E, z) is
∧

(u,v)∈E y(u,v)(xu − xv)

iff (Φ(E, z) ∧ Φ(ρ2, z))⇒ z = 0 is not valid.

This reduces H2-COLORING to COQUASIIDVAL(Z6,+,−, ·, 0).

Therefore QUASIIDVAL(Z6,+,−, ·, 0) ∈ coNPC.

12/14



Restricting z

� H2-COLORING is NP-complete.

� For all z 6= 0, H2 � Hz implies Hz � H2.

� For G = (V,E) we therefore have G � H2

iff ∃z 6= 0 : G � Hz ∧H2 � Hz

iff Φ(E, z) ∧ Φ(ρ2, z) ∧ z 6= 0 is satisfiable, where Φ(E, z) is
∧

(u,v)∈E y(u,v)(xu − xv)

iff (Φ(E, z) ∧ Φ(ρ2, z))⇒ z = 0 is not valid.

This reduces H2-COLORING to COQUASIIDVAL(Z6,+,−, ·, 0).

Therefore QUASIIDVAL(Z6,+,−, ·, 0) ∈ coNPC.

12/14



Generalization to Mal’cev Algebras

How to make it work in a finite nonabelian Mal’cev algebra A:

� To ensure that we have z ∈ A with Hz -COLORING ∈ NPC :

=⇒ Define ρz over A2 instead (22 ≥ 3 cosets modulo center).

� To ensure that we have a ∈ A s.t. ∀z 6= 0 : Hz � Ha ⇒ Ha � Hz :

=⇒ Choose Ha to be �-maximal among the possible choices.

� To define analogue of y(a− b) = z for Mal’cev algebras:
=⇒ Use commutator theory over Mal’cev algebras. Commutator theory explains what
abelian, nilpotent, solvable mean for Mal’cev algebras.
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Generalization to Mal’cev Algebras

In particular, for groups and rings we obtain:

Theorem
Let R = (R,+,−, ·) be a finite ring. Then QUASIIDVAL(R) is in P if a·b = 0 for all a, b ∈ R,
and coNP-complete otherwise.

Theorem
Let G = (G, ·) be a finite group. Then QUASIIDVAL(G) is in P if G is abelian, and coNP-
complete otherwise.
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