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Using equation solving for: Graph coloring

Task: Color the 10 vertices of the graph
with 3 colors.

No vertices connected by an edge may
have the same color.

Algebraic task: Find

¢, 81,...,86,d1,...,ds € R such that
¢ s1,...,dg € {1,2,3}, and
07581,...,(1275(13.
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Using equation solving for: Graph coloring

Fact
Let
p(x) = (z—1)(z—2)(z—3)=2%— 622+ 11z — 6,
q(z,y) = p(:v;:gya(y) =22 + 2y — 6z + ¢y — 6y + 11.
Then:

B ForallzeR:ze{1,23}iff p(z) =0.
B For (u,v) € {1,2,3} x {1,2,3}, we have u # v iff g(z,y) = 0.

1/37



Using equation solving for: Graph coloring

Algebraic task:
Solve

1/37



Using equation solving for: Graph coloring

Algebraic task:

Solve
p(c) =p(s1) =---=p(ds) =0,
q(c,s1) = q(c, s2) = -+ - q(da, d3) = 0.

Solution of the algebraic task: The
Grébner basis of the system is {1}.
(Mathematica, 40ms).

Conclusion: No coloring with 3 colors is
possible.
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Using equation solving for: Geometrical Theorem Proving
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Using equation solving for: Geometrical Theorem Proving

Theorem (Pappus of Alexandria, ~320)
Let A,B,C,D,E,F,H,I,J points in the

L plane such that each of the following
E triples is collinear:
D (A,B,C), (D,E,F), (A H,E),
J (D,H,B), (D,I,C), (A I,F), (E,J,C),
(B, J, F).
A B C

Then (H,1,J) are collinear.
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Using equation solving for: Geometrical Theorem Proving

Theorem (Pappus of Alexandria, ~320)
Let A,B,C,D,E,F,H,I,J points in the

L plane such that each of the following
E triples is collinear:
D (A,B,C), (D,E,F), (A, H,E),
N (D,H,B), (D,I,C), (A, 1,F), (E,J,C),
(B, J, F).
1 B o Assume that (A, B, D) and (A, B, E) are
not collinear.

Then (H,1,J) are collinear.
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Using equation solving for: Geometrical Theorem Proving

Theorem. Suppose that (A4, B,C), (D,E,F), (A,H,E), (D,H,B), (D,1,C),
(A LF), (E,J,C), (B, J,F) are collinear, and that (A, B, D) and (A, B, E) are not
collinear.
Then (H,1,J) is collinear.
Proof:
B We try to construct a counterexample.
B We coordinatize points with pairs of real numbers:
A= (a1,a2),...,J = (j1,72)-
up uz 1
B C(ur,ug,v1,v2, wy, wy) :=det(( v va %)) =
w1 w2
—U9¥1 + U1V + ugwi — vowy — uiwe + viws has the property:
C(u1, ug, v1,v2,wy,we) = 0iff ((w), (v3), (ws)) is collinear.
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Using equation solving for: Geometrical Theorem Proving

Theorem. Suppose that (A4, B,C), (D,E,F), (A,H,E), (D,H,B), (D,1,C),
(A IF), (E,J,C), (B, J,F) are collinear, and that (A, B, D) and (A, B, E) are not
collinear.

Then (H,1,J) is collinear.

Proof:

B A counterexample has to satisfy

C(a1,a2,b1,b2,c1,c2) = -+ = C(b1, ba, j1, J2, f1, f2) =0,
C(CLl,CLQ,bl,bQ,dl,dQ) # 0; C(CLl,CLQ,bl,bQ,@l,GQ) 7& 07
C(h1, ha, 1,12, j1,72) # 0.
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Using equation solving for: Geometrical Theorem Proving

Theorem. Suppose that (A4, B,C), (D,E,F), (A,H,E), (D,H,B), (D,1,C),
(A IF), (E,J,C), (B, J,F) are collinear, and that (A, B, D) and (A, B, E) are not
collinear.

Then (H,1,J) is collinear.

Proof:

B A counterexample has to satisfy

C(a1,a2,b1,b2,c1,¢2) = --- = C(b1, b2, j1, jo2, f1, f2) = 0,
C(a1,a2,b1,b2,d1,d2) - 21 =1, C(ay,az,b1,b2,€1,e2) # 0,
C(hlah27i17i2)jlaj2) ?é 0.

3/37



Using equation solving for: Geometrical Theorem Proving
Theorem. Suppose that (A4, B,C), (D,E,F), (A,H,E), (D,H,B), (D,1,C),
(A LF), (E,J,C), (B, J,F) are collinear, and that (A, B, D) and (A, B, E) are not

collinear.
Then (H,1,J) is collinear.

Proof:
B A counterexample has to satisfy
C(a1,ag,b1,b2,c1,¢2) = -+ = C(by, b2, j1, j2, f1, f2) = 0,

C(a1,a2,b1,b2,d1,d2) - 21 =1, C(ay,a2,b1,b2,e1,€2) - 20 =1,
C(hl,hg,il,ig,jl,jg) -z3 = 1.

B The theorem holds if and only if this system of equations has no solution in
the real numbers. 3/37



Using equation solving for: Geometrical Theorem Proving

We use the computer algebra system “Mathematica”.

pappus.nb * - Wolfram Mathematica 12.0 x
Flo EGU Insert Fomat Col Graphics Evaluation Palites Window Help

in40y- Collinear[P1_, P2 , P3 ] :=Det[{P1, P2, P3}];

AA = {al, a2, 1}; BB = {bl, b2, 1}; CC = {cl, c2, 1};

DD = {d1, d2, 1}; EE = {el, e2, 1}; FF = {f1, f2, 1};

HH = {h1, h2, 1}; IT = {i1, 2, 1}; 33 = {j1, j2, 1};

TheSystem = {Collinear[AA, BB, CC], Collinear[DD, EE, FF], Collinear[AA, HH, EE], Collinear[DD, HH, BB],
Collinear[DD, II, CC], Collinear[AA, II, FF], Collinear[EE, JJ, CC], Collinear[BB, JJ, FF],
(*Non degeneratex)
Collinear[AA, BB, DD] #z1 -1, Collinear[AA, BB, EE] xz2-1,
(*Conclusions)

Collinear [HH, II, 33] +23 -1}

Outjad]=
{-a2bl+alb2+a2cl-b2cl-alc2+blc2,
~d2el+dle2+d2fl-e2fl-dlf2+elf2, a2el-ale2-a2hl+e2hl+alh2-elh2,
~b2dl+bld2+b2hl-d2hl-blh2+dlh2, ~c2dl+cld2+c291-d291-cli2+dli2,
a2fl-alf2-a2il+f2il+ali2-fli2, -c2el+cle2+c2jl-e2jl-clj2+elj2,
b2 f1-bl f2-b23jl+f2j1+blj2-Ff132, -1+ (-a2bl+alb2+a2dl-b2dl-ald2+bld2) zl,
-1+ (-a2bl+alb2+a2el-b2el-ale2+ble2)z2, -1+ (-h2il+hli2+h2j1-423j1-h132+1i152) 23}

In4s}- GroebnerBasis [TheSystem] // Timing
Out{45]=
{2.02533, {1})
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Using equation solving for: Geometrical Theorem Proving
Conclusions

B There is no counterexample to Pappus’s Theorem, not even in the complex
plane C2.

B Hence (this version) of Pappus’s Theorem holds.
B Similar proofs for: Desargues, Ceva, Menelaus, .. ..

B Algebraic way to decide which first order formulae hold in the relational
structure

L = (C?, IsCollinearTriple(z, y, 2))

by solving systems of polynomial equations.
What about other axiomatizations or calculi for this structure L?
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Using equation solving for

Given: Equations over the algebraic
structure (B = {0,1};A,Vv,—,0,1), e. g.

r1VaxaVary =
xo V X3 =
1 V-ozxy = 1.

Asked: Does this system have a
solution?

: Boolean Satisfiability

6/37



Using equation solving for: Boolean Satisfiability

Given: Equations over the algebraic Given: Equations over the algebraic
structure (B = {0,1};A,Vv,—,0,1), e. g. structure (Fy = {0,1};+,-,0,1),
r1VaxaVey = T1+ 22+ 23+ 2122 + T123
roV-ozy = 1 +xox3 + 12023 +1 = 0
1 V-ozxy = 1. T3+ x93 = 0

3+ x123 = 0.
Asked: Does this system have a

solution? Asked: Does this system have a

solution?
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Using equation solving for: Boolean Satisfiability

Given: Equations over the algebraic Given: Equations over the algebraic
structure (B = {0,1};A,Vv,—,0,1), e. g. structure (Fy = {0,1};+,-,0,1),
r1VeeVey = 1 x1+x2 + 23+ 2122 + 2173
ToV-oxg = 1 +xox3 + 12023 +1 = 0
1 V-ozxy = 1. T3+ x93 = 0
3+ x123 = 0.
Asked: Does this system have a
solution? Asked: Does this system have a
solution?

3SAT is known to be computationally
hard (NP-complete).
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Using equation solving for: Boolean Satisfiability

Given: Equations over the algebraic Given: Equations over the algebraic
structure (B = {0,1};A,Vv,—,0,1), e. g. structure (Fy = {0,1};+,-,0,1),
r1VeeVey = 1 x1+x2 + 23+ 2122 + 2173
ToV-oxg = 1 +xox3 + 12023 +1 = 0
1 V-ozxy = 1. T3+ x93 = 0
3+ x123 = 0.
Asked: Does this system have a
solution? Asked: Does this system have a
solution?

3SAT is known to be computationally

Hence solving polynomial systems over
hard (NP-complete). g poly y

F4 is also hard (NP-complete).
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Solving equations over finite fields

Given: fl,. . .,fs S ]Fg[xl,. .. ,[EN].
Asked: Ja c FY : fi(a) =--- = fs(a) = 0.

Computational Complexity:

Restrictions | lean. | seqns. none

none
f1,--., fs iIn expanded form
deg(fi) <D
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Solving equations over finite fields

Given: fl,. . .,fs S Fg[xl,. . .,[EN].
Asked: 3a c FY : fi(a) =--- = fi(a) = 0.

Computational Complexity:

Restrictions | lean. | seqns. none
none NP-comp. | NP-comp. NP-comp.
fi,---, fs in expanded form P P NP-comp.
deg(f;) < D P P NP-comp if D > 2.

Reason: If there is a solution, then there is one with many zeroes.
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Solving equations over finite fields

We use Alon’s Combinatorial Nullstellensatz with restricted variables.
Theorem [Brink, 2011]

Let f1,..., fs € Fylx1,...,xn], forall i : deg(f;) < D,

a = (a1,...,ay) € FY. Suppose N > (¢ — 1)sD.

If fi(a) = --- = fs(a) = 0, then the system has at least one more solution in
{O,al} X {0,0,2} X - X {O,CLN}.
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Solving equations over finite fields

. a; if iel,
Let a = (a1,...,an) EF(]]V, UC{1,...,N}. Then aV) (i) : { o it idU.
Hence (a1, az, as, as) {131 = (a1, 0, as, 0).

Corollary [Karolyi and Szabd, 2015]

Let fi,...,fs € Fyla1,...,zy], foralli : deg(f;) < D, let a = (ai,...,an) € FY.

If fi(a)="---= fs(a) =0, then

U C{1,....,N}:|U| < (¢g—1)sD and fi(aV) = - = f(a!¥) =0.
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Solving equations over finite fields

Problem: POLSYSSAT(IFy) with bounded degree D and fixed number s of
equations.

Given: fi,..., fs € Falzy,...,xzn] of degree < D.

Asked: Ja € FY : fi(a) =--- = fs(a) = 0.

Let wit(a) be the number of indices with nonzero entries in a.

It is sufficient to seach inside R = {a € F}’ : wt(a) < sD}. Since
IR| < (X)) 2P € O(N*P) (when s, D are fixed),

this gives a polynomial time algorithm.
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Equations over groups and algebras: problem statement
A system of polynomial equations over the dihedral group

Dy := {a,b|a*=0b>=1ba = a’b)

D4 = (D4, *)
Then

T1*T1*xb*xx9*xx9 N T1*a

T1*T1*b*xx9g*xxT9 =X b* 9

is a system of 2 polynomial equations over Dy.

Question

Does the system have a solution inside D,?
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Equations over groups and algebras: problem statement

The general problem

Lets € N, and let A = (4; fi1,..., f») be afinite algebra. The decision problem
s-POLSYSSAT(A) is:

Given: 2s polynomial terms fi1,91,..., fs, gs Over A.

Asked: Does the system f; ~ g1, ..., fs = gs have a solution in A?

Complexity of s-POLSYSSAT(A)

Let s € N. Then s-POLSYSSAT(A) € NP.
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Equations over groups and algebras: comparison

B POLSAT(A) = 1-POLSYSSAT(A).
B POLSYSSAT(A) (no restriction on the number of equations).

POLSAT(A) = 1-POLSYSSAT(A) < 2-POLSYSSAT(A) < POLSYSSAT(A)
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Equations over groups and algebras: complexity

One equation — two equations — arbitrary many equations

POLSAT(A) = 1-POLSYSSAT(A) < 2-POLSYSSAT(A) < POLSYSSAT(A)

One is easier than two is easier than arbitrary many equations

B L= ({0,1},Vv,A): POLSAT(L) € P and 2-PoLSYSSAT(L) is NP-complete
[Gorazd, Krzaczkowsi 2011].

B POLSYSSAT(D,) is NP-complete [Larose and Z&dori 2006].
B We will prove that for every s € N:

s-POLSYSSAT(Dy) € P.
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Equation over finite p-groups

Goal: solve systems of equations over groups of prime power order.

Let G be a finite group with |G| = p", p € P, n > 2. Then

1. G is nilpotent of class < n — 1.

2. Equivalently, the lower central series Gy := G, G; := [G,G;_1] fori € N
satisfies G,,—1 = {1¢}.
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Equations over finite p-groups

B For every algebraic structure A = (A4; f1, f2,...), one can define its
polynomial functions.

B They are those functions that can be represented by terms, using possibly
constants from A.

B On agroup (G, *) with a,b € G, the function f : G3 — G defined by

flzyy,2z) :=axxxzxbxyxbsysxzxx*x2xz%a

for z,y, z € G is a polynomial function of (G, %)
B We will try to find a field F so that we can represent f by p € F[z1,...,x,].

f(l"y,z)=a1$3y2+a2x224+....
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Equations over finite p-groups

We will now explain the method for solving systems from

B EA. Solving systems of equations in supernilpotent algebras. ArXiv e-prints
(2019).

This method is based on

B G. Karolyi and C. Szabd, Evaluation of Polynomials over Finite Rings via
Additive Combinatorics, ArXiv e-prints (2018).

The generalization from rings to other structures, such as groups, uses the
coordinatization method for nilpotent algebras, which is Theorem 4.2 of

B EA, Bounding the free spectrum of nilpotent algebras of prime power order,
Israel Journal of Mathematics (2019).
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Equations over finite p-groups: Coordinatization

Theorem [EA, 2019]

Let (G, ) be a group with |G| = p®. Let K := (2(p® — 1))*~L. Then there are
binary operations +, - on G such that

B F:= (G, +,)isafield,
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Equations over finite p-groups: Coordinatization
Theorem [EA, 2019]

Let (G, ) be a group with |G| = p®. Let K := (2(p® — 1))*~L. Then there are
binary operations +, - on G such that
B F:= (G +,)isafield,

B For every n € N and every polynomial function f : G™ — G, there is
p € Flz1,...,z,] such that

1. fis the function induced by p,
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Equations over finite p-groups: Coordinatization

Theorem [EA, 2019]

Let (G, ) be a group with |G| = p®. Let K := (2(p® — 1))*~L. Then there are
binary operations +, - on G such that

B F = (G, +,)is afield,
B For every n € N and every polynomial function f : G™ — G, there is
p € Flz1,...,z,] such that
1. fis the function induced by p,

2. In its expanded form, every monomial of p contains at most K variables. Hence
width(p) < K.

The width of a polynomial p € F[xy, ..., z,] is the maximal number of variables in

one monomial. (The word “width” was suggested by C. Raab.)
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Equations over finite p-groups

Theorem [EA 2018], [Karolyi Szabé 2015]

Let G be a group with |G| = p® = ¢, and let K := (2(p® — 1))*~ L. Let

(@1, @) A V(@ T0)

us(z1, ..., xn) =~ vs(T1,...,%n)

be a polynomial system over G.
Let a € G" be a solution of this system. Then thereis U C {1,...,n} with

U] < Ksa(p—1)

such that a(Y) is a solution.

19/37



Equations over finite p-groups
Proof:

B Using the coordinatization, our systemis fi(z) ~ --- = fs(x) ~ 0 with
fi € Flxy, ... xy)].
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Equations over finite p-groups

Proof:

B Using the coordinatization, our systemis fi(z) ~ --- = fs(x) ~ 0 with
fi € Flxy, ... xy)].
B All f;’s have width < K.
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Equations over finite p-groups

Proof:
B Using the coordinatization, our systemis fi(z) ~ --- = fs(x) ~ 0 with
fi € Flxy, ... xy)].
B All f;’s have width < K.
W[, (1 fila)h) #0.
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Equations over finite p-groups

Proof:
B Using the coordinatization, our systemis fi(z) ~ --- = fs(x) ~ 0 with
fi € Flxy, ... xy)].
B All f;’s have width < K.
B[, (1 fi(a)rh) #0.
B Q(z)=[[_,(1— fi(x)? 1) has width < Ks(¢g — 1) and Q(a) # 0.
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Equations over finite p-groups

Proof:

B Using the coordinatization, our systemis fi(z) ~ --- = fs(x) ~ 0 with
fi € Flxy, ... xy)].

B All f;’s have width < K.

B[], (1 fia)®) £0.

B Q(z)=[[_,(1— fi(x)? 1) has width < Ks(¢g — 1) and Q(a) # 0.

B rem(Q(z), (zf — 21,..., 2% — z,)) has width < Ks(q — 1).
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Equations over finite p-groups

Proof:
B Using the coordinatization, our systemis fi(z) ~ --- = fs(x) ~ 0 with
fi € Flxy, ... xy)].
B All f;’s have width < K.
B[], (1 fia)®) £0.
B Q(z)=[[_,(1— fi(x)? 1) has width < Ks(¢g — 1) and Q(a) # 0.
B rem(Q(z), (zf — 21,..., 2% — z,)) has width < Ks(q — 1).
B “Hence’ there is U with |U| < Ks(q — 1) and Q(aV)) # 0.
B Then o) is a solution.

Remark: This proves |U| < Ks(q — 1) = Ks(p® — 1). For the stronger
|U| < Ksa(p — 1), we would need more concepts.
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Equations over finite p-groups: complexity

Theorem [EA 2019]

Let G be a finite nilpotent group, modular variety, and let s € N. Let

e 1= s|G|losIGD+2,

Then there exist cg € N and an algorithm that decides s-POLSYSSAT(G) using
at most cg - n¢ evaluations of the system, where n is the number of variables.

For s = 1, a polynomial time method with a better (smaller) exponent was given by
[Foldvari, 2017] using the structure theory of p-groups.
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Equations over arbitrary algebras

Observation:

B We have solved systems over finite nilpotent groups.
B [Kérolyi and Szabd, 2015] use similar methods for finite nilpotent rings.

B [Kompatscher, 2018] solves 1 equation over finite supernilpotent algebras in
congruence modular varieties.

B We will therefore look at the problem from universal algebra.
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Equations over arbitrary algebras

B An algebraic structure or (universal) algebra is a first order structure
A = (A; f1, fa...) with only function symbols.
B Theorems for all algebraic structures:
O Homomorphism theorems A /ker(h) = Im(h).
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Equations over arbitrary algebras

B An algebraic structure or (universal) algebra is a first order structure
A = (4; f1, f2 . ..) with only function symbols.
B Theorems for all algebraic structures:

O Homomorphism theorems A /ker(h) = Im(h).

O HSP-Theorem of Equational logic:
Mod({p = (Vo : s(z) = t(z)) | A = ¢}) = class of all homomorphic images of
subalgebras of direct powers of A = HSP(A). [Birkhoff 1935]
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Equations over arbitrary algebras: Structure Theory

Structure Theorems for classes of algebras:

B Algebras in congruence modular varieties: Each algebra in HSP(A) has a
lattice of congruence relations that satisfies the modular law

r<z—=(xVy Az=zV(yAz).

B The following varieties are congruence modular:
O R-modules,

24/37



Equations over arbitrary algebras: Structure Theory
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B Algebras in congruence modular varieties: Each algebra in HSP(A) has a
lattice of congruence relations that satisfies the modular law
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Equations over arbitrary algebras: Structure Theory

Structure Theorems for classes of algebras:
B Algebras in congruence modular varieties: Each algebra in HSP(A) has a
lattice of congruence relations that satisfies the modular law

r<z—=(xVy Az=zV(yAz).

B The following varieties are congruence modular:
OO0 R-modules, rings, nearrings, groups, loops, quasigroups, (but not: semigroups),
lattices.
O All finite algebras with few subpowers [Berman, Idziak, Markovi¢, McKenzie,
Valeriote, Willard, TAMS, 2010]:

Jp € R[z] ¥n € N : number of subalgebras of A™ < 2P("),
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Equations over arbitrary algebras: Structure Theory

For algebras in congruence modular varieties, we have the following notions:

B commutators, generalizing the commutator subgroup
[A,B] = {a~'b~tab | a € A,b € B}) of A, B < G. (Commutator Theory,
[Smith 1976], [Freese McKenzie 1987])

B abelian algebras: can be coordinatized by a ring module. [Gumm 1983]
B nilpotent and solvable algebras.

25/37



Equations over arbitrary algebras: Structure Theory

Nilpotency for groups and rings

B Agroup Gisnilpotentif 3k e N: [G, [G,...,[G,G]...]] = {1¢}.

k+1
B Aring Ris nilpotentif 3k e N: R = z1x9 -+ 11 =~ 0.

Nilpotency for universal algebras

Nilpotency has been generalized in two ways to arbitrary algebras: there are
W nilpotent, and

B supernilpotent

algebras.
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Equations over supernilpotent algebras

B How difficult is solving polynomial systems over supernilpotent
algebras?
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Equations over supernilpotent algebras

History
B G is a finite nilpotent group = POLSAT(G) € P [Horvath, 2011]
B R is a finite nilpotent ring = POLSAT(R) € P [Horvath, 2011]

B A is afinite supernilpotent algebra in a congruence modular variety =
POLSAT(A) e P [Kompatscher, 2018]
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Equations over supernilpotent algebras

Algorithms for one equation are based on:
Theorem [Horvath 2011, Kompatscher 2018]

Let A be a finite supernilpotent algebra in a cm variety, let o € A. Then
ddp € N VneN Va € A" Vf € Pol,(A) Jye A" :

f(y) = f(a), and y has at most da entries different from o.

Hence: if f(x) ~ b has a solution and n > da, there is one in a set C with

n
o] < (dA> A,
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Equations over supernilpotent algebras

The exponent da

B d, is the degree of the polynomial that bounds the “running time” of this
algorithm.

B Horvath and Kompatscher obtain dao by Ramsey’s Theorem.

B For nilpotent rings A, a non-Ramsey da was found in [Karolyi and Szabd,
2015].

B Faster solutions of POLSAT(A) for nilpotent groups and rings using structure
theory: [Féldvari, 2017 and 2018].
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Equations over supernilpotent algebras

Technique:

B Coordinatization of a finite nilpotent algebra of prime power order using
a finite field.
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Equations over nilpotent algebras

Theorem. (Coordinatization of nilpotent algebras, [EA 2019]).
Let A = (A, (fi):er) be in a congruence modular variety, |A| = p®, with all
fundamental operations of arity at most . Let K := (u(p® — 1))~ 1. TFAE:

B A is nilpotent.

32/37



Equations over nilpotent algebras

Theorem. (Coordinatization of nilpotent algebras, [EA 2019]).
Let A = (A, (fi):er) be in a congruence modular variety, |A| = p®, with all

fundamental operations of arity at most . Let K := (u(p® — 1))~ 1. TFAE:

B A is nilpotent.
B There is a binary + on A such that

Al = (Av +, (fz)ze])

is nilpotent and (A, +) = (Zy, X Zyp X -+ X Zp,+).

32/37



Equations over nilpotent algebras

Theorem. (Coordinatization of nilpotent algebras, [EA 2019]).
Let A = (A, (fi):er) be in a congruence modular variety, |A| = p®, with all

fundamental operations of arity at most . Let K := (u(p® — 1))~ 1. TFAE:

B A is nilpotent.
B There is a binary + on A such that

Al = (Av +, (fz)ze])

is nilpotent and (A, +) = (Zy, X Zyp X -+ X Zp,+).
B Thereis afield F := (A, +,-) such that
Pol(A) C {p¥ | n € N,p € Fx1,...,2,], width(p) < K}.

32/37



Equations over nilpotent algebras

Theorem. (Coordinatization of nilpotent algebras, [EA 2019]).
Let A = (A, (fi):er) be in a congruence modular variety, |A| = p®, with all

fundamental operations of arity at most . Let K := (u(p® — 1))~ 1. TFAE:

B A is nilpotent.
B There is a binary + on A such that

Al = (Av +, (fz)ze])

is nilpotent and (A, +) = (Zy, X Zyp X -+ X Zp,+).
B Thereis afield F := (A, +,-) such that
Pol(A) C {p¥ | n € N,p € Fx1,...,2,], width(p) < K}.

width(p) . .. maximal number of variables in one monomial.
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Equations over supernilpotent algebras

Theorem [EA 2019]

Let A be a finite supernilpotent algebra in a congruence modular variety, and let
s € N. Then s-POLSYSSAT(A) is in P.

For
e = S|A|10g2(ﬂ)+10g2(|A‘)+1,

we use cp - n¢ evaluations of the system, where n is the number of variables.
Improvement with respect to previous results:

B systems of s > 1 equations.
B For s = 1: Ramsey d replaced with s|A|'°g2()+log2(IAD+1 for arbitrary

supernilpotent algebras in cm varieties.
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Next Goal

B Relate to “circuit satisfiability”.
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Circuit satisfiability

Definition [ldziak Krzaczkowski 2018]

Problem SCSAT(A).

Given: An even number of “circuits” f1,g1,..., fm,9n Whose gates are taken
from the basic operations on A with n input variables.

Asked: Ja € A" : fi(a) = g1(a),..., fm(a) = gn(a).

A restriction to the input

s-SCSAT(A) : 2s circuits.
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Circuit satisfiability

Theorem (Complexity of circuit satisfaction)

Let A be a finite algebra of finite type in a cm variety.

B SCSAT(A) € P if A is abelian [Larose Zadori 2006].
B SCsAT(A) is NP-complete if A is not abelian [Larose Z&dori 2006].

B A is supernilpotent = 1-SCSAT(A) € P [Goldmann Russell Horvath
Kompatscher 2018].

B A has no homomorphic image A’ for which 1-SCSAT(A’) is NP-complete =
A = N x D with N nilpotent and D is a subdirect product of 2-element
algebras that are polynomially equivalent to the two-element lattice. [Idziak
Krzaczkowski 2017].
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Complexity of s-SCSAT(A)

Theorem [EA 2019]

Let A be a finite algebra in a cm variety, s € N.

B A supernilpotent = s-SCSAT(A) € P.

B A has no homomorphic image A’ for which 2-SCSAT(A’) is NP-complete =
A is nilpotent.
(Corollary of [Gorazd Krzaczkowski 2011] and [ldziak Krzaczkowski 2017].)
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