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Using equation solving for: Graph coloring
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Task: Color the 10 vertices of the graph
with 3 colors.
No vertices connected by an edge may
have the same color.

Algebraic task: Find
c, s1, . . . , s6, d1, . . . , d3 ∈ R such that
c, s1, . . . , d3 ∈ {1, 2, 3}, and
c 6= s1, . . . , d2 6= d3.

Algebraic task:
Solve
p(c) = p(s1) = · · · = p(d3) = 0,

q(c, s1) = q(c, s2) = · · · q(d2, d3) = 0.

Solution of the algebraic task: The
Gröbner basis of the system is {1}.
(Mathematica, 40ms).

Conclusion: No coloring with 3 colors is
possible.
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Using equation solving for: Graph coloring

Fact

Let
p(x) := (x− 1)(x− 2)(x− 3) = x3 − 6x2 + 11x− 6,

q(x, y) := p(x)−p(y)
x−y = x2 + xy − 6x+ y2 − 6y + 11.

Then:

� For all z ∈ R : z ∈ {1, 2, 3} iff p(z) = 0.

� For (u, v) ∈ {1, 2, 3} × {1, 2, 3}, we have u 6= v iff q(x, y) = 0.
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Using equation solving for: Geometrical Theorem Proving
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Using equation solving for: Geometrical Theorem Proving
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Theorem (Pappus of Alexandria, ∼320)
Let A,B,C,D,E, F,H, I, J points in the
plane such that each of the following
triples is collinear:
(A,B,C), (D,E, F ), (A,H,E),
(D,H,B), (D, I, C), (A, I, F ), (E, J,C),
(B, J, F ).

Assume that (A,B,D) and (A,B,E) are
not collinear.

Then (H, I, J) are collinear.
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Using equation solving for: Geometrical Theorem Proving

Theorem. Suppose that (A,B,C), (D,E, F ), (A,H,E), (D,H,B), (D, I, C),
(A, I, F ), (E, J,C), (B, J, F ) are collinear, and that (A,B,D) and (A,B,E) are not
collinear.
Then (H, I, J) is collinear.

Proof:

� We try to construct a counterexample.
� We coordinatize points with pairs of real numbers:
A = (a1, a2), . . . , J = (j1, j2).

� C(u1, u2, v1, v2, w1, w2) := det(

(
u1 u2 1
v1 v2 1
w1 w2 1

)
) =

−u2v1 + u1v2 + u2w1 − v2w1 − u1w2 + v1w2 has the property:
C(u1, u2, v1, v2, w1, w2) = 0 iff (( u1u2 ) , (

v1
v2 ) , (

w1
w2 )) is collinear.
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Using equation solving for: Geometrical Theorem Proving

Theorem. Suppose that (A,B,C), (D,E, F ), (A,H,E), (D,H,B), (D, I, C),
(A, I, F ), (E, J,C), (B, J, F ) are collinear, and that (A,B,D) and (A,B,E) are not
collinear.
Then (H, I, J) is collinear.

Proof:

� A counterexample has to satisfy

C(a1, a2, b1, b2, c1, c2) = · · · = C(b1, b2, j1, j2, f1, f2) = 0,

C(a1, a2, b1, b2, d1, d2) 6= 0, C(a1, a2, b1, b2, e1, e2) 6= 0,

C(h1, h2, i1, i2, j1, j2) 6= 0.
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Using equation solving for: Geometrical Theorem Proving
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(A, I, F ), (E, J,C), (B, J, F ) are collinear, and that (A,B,D) and (A,B,E) are not
collinear.
Then (H, I, J) is collinear.

Proof:
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C(a1, a2, b1, b2, c1, c2) = · · · = C(b1, b2, j1, j2, f1, f2) = 0,

C(a1, a2, b1, b2, d1, d2) · z1 = 1, C(a1, a2, b1, b2, e1, e2) · z2 = 1,
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� The theorem holds if and only if this system of equations has no solution in
the real numbers. 3/37



Using equation solving for: Geometrical Theorem Proving
We use the computer algebra system “Mathematica”.
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Using equation solving for: Geometrical Theorem Proving

Conclusions

� There is no counterexample to Pappus’s Theorem, not even in the complex
plane C2.

� Hence (this version) of Pappus’s Theorem holds.

� Similar proofs for: Desargues, Ceva, Menelaus, . . . .

� Algebraic way to decide which first order formulae hold in the relational
structure

L = (C2, IsCollinearTriple(x, y, z))

by solving systems of polynomial equations.
What about other axiomatizations or calculi for this structure L?
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Using equation solving for: Boolean Satisfiability

Given: Equations over the algebraic
structure (B = {0, 1};∧,∨,¬, 0, 1), e. g.

x1 ∨ x2 ∨ x3 = 1

x2 ∨ ¬x3 = 1

x1 ∨ ¬x3 = 1.

Asked: Does this system have a
solution?

3SAT is known to be computationally
hard (NP-complete).

Given: Equations over the algebraic
structure (F2 = {0, 1}; +, ·, 0, 1),

x1 + x2 + x3 + x1x2 + x1x3

+x2x3 + x1x2x3 + 1 = 0

x3 + x2x3 = 0

x3 + x1x3 = 0.

Asked: Does this system have a
solution?

Hence solving polynomial systems over
F2 is also hard (NP-complete).
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Solving equations over finite fields

Given: f1, . . . , fs ∈ F2[x1, . . . , xN ].
Asked: ∃a ∈ FN2 : f1(a) = · · · = fs(a) = 0.

Computational Complexity:

Restrictions 1 eqn. s eqns. none
none

NP-comp. NP-comp. NP-comp.

f1, . . . , fs in expanded form

P P NP-comp.

deg(fi) ≤ D

P P NP-comp if D ≥ 2.

Reason: If there is a solution, then there is one with many zeroes.
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Solving equations over finite fields

We use Alon’s Combinatorial Nullstellensatz with restricted variables.

Theorem [Brink, 2011]

Let f1, . . . , fs ∈ Fq[x1, . . . , xN ], for all i : deg(fi) ≤ D,
a = (a1, . . . , aN ) ∈ FNq . Suppose N > (q − 1)sD.
If f1(a) = · · · = fs(a) = 0, then the system has at least one more solution in
{0, a1} × {0, a2} × · · · × {0, aN}.
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Solving equations over finite fields

Let a = (a1, . . . , aN ) ∈ FNq , U ⊆ {1, . . . , N}. Then a (U)(i) :=

{
ai if i ∈ U,
o if i 6∈ U.

Hence (a1, a2, a3, a4)
({1,3}) = (a1, o, a3, o).

Corollary [Károlyi and Szabó, 2015]

Let f1, . . . , fs ∈ Fq[x1, . . . , xN ], for all i : deg(fi) ≤ D, let a = (a1, . . . , aN ) ∈ FNq .

If f1(a) = · · · = fs(a) = 0, then

∃U ⊆ {1, . . . , N} : |U | ≤ (q − 1)sD and f1(a (U)) = · · · = fs(a
(U)) = 0.
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Solving equations over finite fields

Problem: POLSYSSAT(F2) with bounded degree D and fixed number s of
equations.
Given: f1, . . . , fs ∈ F2[x1, . . . , xN ] of degree ≤ D.
Asked: ∃a ∈ FN2 : f1(a) = · · · = fs(a) = 0.

Let wt(a) be the number of indices with nonzero entries in a .

It is sufficient to seach inside R = {a ∈ FN2 : wt(a) ≤ sD}. Since

|R| ≤
(
N
sD

)
2sD ∈ O(N sD) (when s,D are fixed),

this gives a polynomial time algorithm.
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Equations over groups and algebras: problem statement

A system of polynomial equations over the dihedral group

D4 := 〈a, b | a4 = b2 = 1, ba = a3b〉
D4 := (D4, ∗).

Then
x1 ∗ x1 ∗ b ∗ x2 ∗ x2 ≈ x1 ∗ a
x1 ∗ x1 ∗ b ∗ x2 ∗ x2 ≈ b ∗ x2

is a system of 2 polynomial equations over D4.

Question

Does the system have a solution inside D4?
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Equations over groups and algebras: problem statement

The general problem

Let s ∈ N, and let A = (A; f1, . . . , fn) be a finite algebra. The decision problem
s-POLSYSSAT(A) is:
Given: 2s polynomial terms f1, g1, . . . , fs, gs over A.
Asked: Does the system f1 ≈ g1, . . . , fs ≈ gs have a solution in A?

Complexity of s-POLSYSSAT(A)

Let s ∈ N. Then s-POLSYSSAT(A) ∈ NP.
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Equations over groups and algebras: comparison

Similar problems

� POLSAT(A) = 1-POLSYSSAT(A).

� POLSYSSAT(A) (no restriction on the number of equations).

Difficulties of these problems

POLSAT(A) = 1-POLSYSSAT(A) ≤ 2-POLSYSSAT(A) ≤ POLSYSSAT(A)
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Equations over groups and algebras: complexity

One equation – two equations – arbitrary many equations

POLSAT(A) = 1-POLSYSSAT(A) ≤ 2-POLSYSSAT(A) ≤ POLSYSSAT(A)

One is easier than two is easier than arbitrary many equations

� L = ({0, 1},∨,∧): POLSAT(L) ∈ P and 2-POLSYSSAT(L) is NP-complete
[Gorazd, Krzaczkowsi 2011].

� POLSYSSAT(D4) is NP-complete [Larose and Zádori 2006].

� We will prove that for every s ∈ N:

s-POLSYSSAT(D4) ∈ P.
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Equation over finite p-groups

Goal: solve systems of equations over groups of prime power order.

Let G be a finite group with |G| = pn, p ∈ P, n ≥ 2. Then

1. G is nilpotent of class ≤ n− 1.

2. Equivalently, the lower central series G0 := G, Gi := [G,Gi−1] for i ∈ N
satisfies Gn−1 = {1G}.
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Equations over finite p-groups

� For every algebraic structure A = (A; f1, f2, . . .), one can define its
polynomial functions.

� They are those functions that can be represented by terms, using possibly
constants from A.

� On a group (G, ∗) with a, b ∈ G, the function f : G3 → G defined by

f(x, y, z) := a ∗ x ∗ z ∗ b ∗ y ∗ b ∗ y ∗ z ∗ x ∗ z ∗ z ∗ a

for x, y, z ∈ G is a polynomial function of (G, ∗)
� We will try to find a field F so that we can represent f by p ∈ F[x1, . . . , xn].

f(x, y, z) = a1 x
3y2 + a2 x

2z4 + . . . .
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Equations over finite p-groups

We will now explain the method for solving systems from

� EA. Solving systems of equations in supernilpotent algebras. ArXiv e-prints
(2019).

This method is based on

� G. Károlyi and C. Szabó, Evaluation of Polynomials over Finite Rings via
Additive Combinatorics, ArXiv e-prints (2018).

The generalization from rings to other structures, such as groups, uses the
coordinatization method for nilpotent algebras, which is Theorem 4.2 of

� EA, Bounding the free spectrum of nilpotent algebras of prime power order,
Israel Journal of Mathematics (2019).
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Equations over finite p-groups: Coordinatization

Theorem [EA, 2019]

Let (G, ∗) be a group with |G| = pα. Let K := (2(pα − 1))α−1. Then there are
binary operations +, · on G such that

� F := (G,+, ·) is a field,

� For every n ∈ N and every polynomial function f : Gn → G, there is
p ∈ F[x1, . . . , xn] such that

1. f is the function induced by p,
2. In its expanded form, every monomial of p contains at most K variables. Hence

width(p) ≤ K.

The width of a polynomial p ∈ F[x1, . . . , xn] is the maximal number of variables in
one monomial. (The word “width” was suggested by C. Raab.)
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Equations over finite p-groups

Theorem [EA 2018], [Károlyi Szabó 2015]

Let G be a group with |G| = pα = q, and let K := (2(pα − 1))α−1. Let

u1(x1, . . . , xn) ≈ v1(x1, . . . , xn)
...

us(x1, . . . , xn) ≈ vs(x1, . . . , xn)

be a polynomial system over G.
Let a ∈ Gn be a solution of this system. Then there is U ⊆ {1, . . . , n} with

|U | ≤ Ksα(p− 1)

such that a (U) is a solution.
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Equations over finite p-groups

Proof:

� Using the coordinatization, our system is f1(x ) ≈ · · · ≈ fs(x ) ≈ 0 with
fi ∈ F[x1, . . . , xn].

� All fi’s have width ≤ K.
�
∏s
i=1(1− fi(a)q−1) 6= 0.

� Q(x ) =
∏s
i=1(1− fi(x )q−1) has width ≤ Ks(q − 1) and Q(a) 6= 0.

� rem(Q(x ), 〈xq1 − x1, . . . , x
q
n − xn〉) has width ≤ Ks(q − 1).

� “Hence” there is U with |U | ≤ Ks(q − 1) and Q(a (U)) 6= 0.
� Then a (U) is a solution.

Remark: This proves |U | ≤ Ks(q − 1) = Ks(pα − 1). For the stronger
|U | ≤ Ksα(p− 1), we would need more concepts.
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Equations over finite p-groups: complexity

Theorem [EA 2019]

Let G be a finite nilpotent group, modular variety, and let s ∈ N. Let

e := s|G|log2(|G|)+2.

Then there exist cG ∈ N and an algorithm that decides s-POLSYSSAT(G) using
at most cG · ne evaluations of the system, where n is the number of variables.

For s = 1, a polynomial time method with a better (smaller) exponent was given by
[Földvári, 2017] using the structure theory of p-groups.
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Equations over arbitrary algebras

Observation:

� We have solved systems over finite nilpotent groups.

� [Károlyi and Szabó, 2015] use similar methods for finite nilpotent rings.

� [Kompatscher, 2018] solves 1 equation over finite supernilpotent algebras in
congruence modular varieties.

� We will therefore look at the problem from universal algebra.
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Equations over arbitrary algebras

� An algebraic structure or (universal) algebra is a first order structure
A = (A; f1, f2 . . .) with only function symbols.

� Theorems for all algebraic structures:
� Homomorphism theorems A/ker(h) ∼= Im(h).

� HSP-Theorem of Equational logic:
Mod({ϕ = (∀x : s(x ) ≈ t(x )) | A |= ϕ}) = class of all homomorphic images of
subalgebras of direct powers of A = HSP(A). [Birkhoff 1935]
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Equations over arbitrary algebras: Structure Theory

Structure Theorems for classes of algebras:

� Algebras in congruence modular varieties: Each algebra in HSP(A) has a
lattice of congruence relations that satisfies the modular law

x ≤ z → (x ∨ y) ∧ z = x ∨ (y ∧ z).

� The following varieties are congruence modular:
� R-modules,

rings, nearrings, groups, loops, quasigroups, (but not: semigroups),
lattices.

� All finite algebras with few subpowers [Berman, Idziak, Marković, McKenzie,
Valeriote, Willard, TAMS, 2010]:

∃p ∈ R[x] ∀n ∈ N : number of subalgebras of An ≤ 2p(n).
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Equations over arbitrary algebras: Structure Theory

For algebras in congruence modular varieties, we have the following notions:

� commutators, generalizing the commutator subgroup
[A,B] = 〈{a−1b−1ab | a ∈ A, b ∈ B}〉 of A,B �G. (Commutator Theory,
[Smith 1976], [Freese McKenzie 1987])

� abelian algebras: can be coordinatized by a ring module. [Gumm 1983]

� nilpotent and solvable algebras.
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Equations over arbitrary algebras: Structure Theory

Nilpotency for groups and rings

� A group G is nilpotent if ∃k ∈ N : [G, [G, . . . , [G,G] . . .]]︸ ︷︷ ︸
k+1

= {1G}.

� A ring R is nilpotent if ∃k ∈ N : R |= x1x2 · · ·xk+1 ≈ 0.

Nilpotency for universal algebras

Nilpotency has been generalized in two ways to arbitrary algebras: there are

� nilpotent, and

� supernilpotent

algebras.
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Equations over supernilpotent algebras

� How difficult is solving polynomial systems over supernilpotent
algebras?
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Equations over supernilpotent algebras

History

� G is a finite nilpotent group⇒ POLSAT(G) ∈ P [Horváth, 2011]

� R is a finite nilpotent ring⇒ POLSAT(R) ∈ P [Horváth, 2011]

� A is a finite supernilpotent algebra in a congruence modular variety⇒
POLSAT(A) ∈ P [Kompatscher, 2018]
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Equations over supernilpotent algebras

Algorithms for one equation are based on:

Theorem [Horváth 2011, Kompatscher 2018]

Let A be a finite supernilpotent algebra in a cm variety, let o ∈ A. Then
∃dA ∈ N ∀n ∈ N ∀a ∈ An ∀f ∈ Poln(A) ∃y ∈ An :

f(y) = f(a), and y has at most dA entries different from o.

Hence: if f(x ) ≈ b has a solution and n ≥ dA, there is one in a set C with

|C| ≤
(
n

dA

)
|A|dA .
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Equations over supernilpotent algebras

The exponent dA

� dA is the degree of the polynomial that bounds the “running time” of this
algorithm.

� Horváth and Kompatscher obtain dA by Ramsey’s Theorem.

� For nilpotent rings A, a non-Ramsey dA was found in [Károlyi and Szabó,
2015].

� Faster solutions of POLSAT(A) for nilpotent groups and rings using structure
theory: [Földvári, 2017 and 2018].
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Equations over supernilpotent algebras

Technique:

� Coordinatization of a finite nilpotent algebra of prime power order using
a finite field.
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Equations over nilpotent algebras

Theorem. (Coordinatization of nilpotent algebras, [EA 2019]).
Let A = (A, (fi)i∈I) be in a congruence modular variety, |A| = pα, with all
fundamental operations of arity at most µ. Let K := (µ(pα − 1))α−1. TFAE:

� A is nilpotent.

� There is a binary + on A such that

A′ = (A,+, (fi)i∈I)

is nilpotent and (A,+) ∼= (Zp × Zp × · · · × Zp,+).
� There is a field F := (A,+, ·) such that

Pol(A) ⊆ {pF | n ∈ N, p ∈ F[x1, . . . , xn], width(p) ≤ K}.

width(p) . . . maximal number of variables in one monomial.
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Equations over supernilpotent algebras

Theorem [EA 2019]

Let A be a finite supernilpotent algebra in a congruence modular variety, and let
s ∈ N. Then s-POLSYSSAT(A) is in P.

For
e := s|A|log2(µ)+log2(|A|)+1,

we use cA · ne evaluations of the system, where n is the number of variables.

Improvement with respect to previous results:

� systems of s > 1 equations.
� For s = 1: Ramsey dA replaced with s|A|log2(µ)+log2(|A|)+1 for arbitrary

supernilpotent algebras in cm varieties.
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Next Goal

� Relate to “circuit satisfiability”.
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Circuit satisfiability

Definition [Idziak Krzaczkowski 2018]

Problem SCSAT(A).
Given: An even number of “circuits” f1, g1, . . . , fm, gm whose gates are taken
from the basic operations on A with n input variables.
Asked: ∃a ∈ An : f1(a) = g1(a), . . . , fm(a) = gm(a).

A restriction to the input

s-SCSAT(A) : 2s circuits.
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Circuit satisfiability

Theorem (Complexity of circuit satisfaction)

Let A be a finite algebra of finite type in a cm variety.

� SCSAT(A) ∈ P if A is abelian [Larose Zádori 2006].

� SCSAT(A) is NP-complete if A is not abelian [Larose Zádori 2006].

� A is supernilpotent⇒ 1-SCSAT(A) ∈ P [Goldmann Russell Horváth
Kompatscher 2018].

� A has no homomorphic image A′ for which 1-SCSAT(A′) is NP-complete⇒
A ∼= N×D with N nilpotent and D is a subdirect product of 2-element
algebras that are polynomially equivalent to the two-element lattice. [Idziak
Krzaczkowski 2017].
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Complexity of s-SCSAT(A)

Theorem [EA 2019]

Let A be a finite algebra in a cm variety, s ∈ N.

� A supernilpotent⇒ s-SCSAT(A) ∈ P.

� A has no homomorphic image A′ for which 2-SCSAT(A′) is NP-complete⇒
A is nilpotent.
(Corollary of [Gorazd Krzaczkowski 2011] and [Idziak Krzaczkowski 2017].)
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