Polynomials and Structure of Universal Algebras

Erhard Aichinger

Department of Algebra Johannes Kepler University Linz, Austria

January 2012

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Polynomials

Definition

 $\mathbf{A} = \langle \mathbf{A}, \mathbf{F} \rangle$ an algebra, $n \in \mathbb{N}$. Pol_k(\mathbf{A}) is the subalgebra of

$$\mathbf{A}^{\mathcal{A}^k} = \langle \{ f : \mathcal{A}^k \to \mathcal{A} \}, \mathbf{``F} \text{ pointwise''} \rangle$$

that is generated by

Proposition

A be an algebra, $k \in \mathbb{N}$. Then $\mathbf{p} \in \text{Pol}_k(\mathbf{A})$ iff there exists a term t in the language of \mathbf{A} , $\exists m \in \mathbb{N}$, $\exists a_1, a_2, \dots, a_m \in A$ such that

$$\mathbf{p}(\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k) = \mathbf{t}^{\mathbf{A}}(a_1, a_2, \dots, a_m, \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k)$$

for all $x_1, x_2, \ldots, x_k \in A$.

Function algebras – Clones

$$\mathcal{O}(\mathbf{A}) := \bigcup_{k \in \mathbb{N}} \{ f \mid f : \mathbf{A}^k \to \mathbf{A} \}.$$

Definition of Clone

 $\mathcal{C} \subseteq \mathcal{O}(A)$ is a clone on A iff

- 1. $\forall k, i \in \mathbb{N}$ with $i \leq k$: $((x_1, \ldots, x_k) \mapsto x_i) \in C$,
- **2**. $\forall n \in \mathbb{N}, m \in \mathbb{N}, f \in \mathcal{C}^{[n]}, g_1, \dots, g_n \in \mathcal{C}^{[m]}$:

$$f(g_1,\ldots,g_n)\in \mathcal{C}^{[m]}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

 $\mathcal{C}^{[n]}$... the *n*-ary functions in \mathcal{C} .

 $\operatorname{Pol}(\mathbf{A}) := \bigcup_{k \in \mathbb{N}} \operatorname{Pol}_k(\mathbf{A})$ is a clone on A.

A algebra.

 $Pol(A) \dots$ the smallest clone on A that contains all projections, all constant operations, all basic operations of A.

 $Clo(\mathbf{A}) \dots$ the smallest clone on *A* that contains all projections, and all basic operations of $\mathbf{A} = clone$ of term functions of \mathbf{A} .

Clones vs. term functions

Proposition

Every clone is the set of term functions of some algebra.

Proposition

Let C be a clone on A. Define $\mathbf{A} := \langle A, C \rangle$. Then $C = \operatorname{Clo}(\mathbf{A})$.

Definition

A clone is *constantive* or *a polynomial clone* if it contains all unary constant functions.

Proposition

Every constantive clone is the set of polynomial functions of some algebra.

Relational Description of Clones

Definition

I a finite set, $\rho \subseteq A^{I}$, $f : A^{n} \to A$. f preserves ρ ($f \rhd \rho$) if $\forall v_{1}, \ldots, v_{n} \in \rho$:

 $\langle f(v_1(i),\ldots,v_n(i)) | i \in I \rangle \in \rho.$

Remark

 $f \rhd \rho \iff \rho$ is a subuniverse of $\langle A, f \rangle^{I}$.

Definition (Polymorphisms)

Let *R* be a set of finitary relations on *A*, $\rho \in R$.

$$\begin{array}{rcl} \operatorname{Polym}(\{\rho\}) & := & \{f \in \mathcal{O}(\mathcal{A}) \mid f \rhd \rho\}, \\ \operatorname{Polym}(\mathcal{R}) & := & \bigcap_{\rho \in \mathcal{R}} \operatorname{Polym}(\{\rho\}). \end{array}$$

Relational Descriptions of Clones

Theorem

Let ρ be a finitary relation on A. Then $Polym(\{\rho\})$ is a clone.

Theorem (testing clone membership), [Pöschel and Kalužnin, 1979, Folgerung 1.1.18]

Let C be a clone on A, $n \in \mathbb{N}$, $f : A^n \to A$. The set $\rho := C^{[n]}$ is a subset of A^{A^n} , hence a relation on A with index set $I := A^n$. Then $f \in C \iff f \rhd \rho$.

Theorem (testing whether a relation is preserved) [Pöschel and Kalužnin, 1979, Satz 1.1.19]

Let \mathcal{C} be a clone on A, ρ a finitary relation on A with m elements. Then

$$(\forall \boldsymbol{c} \in \mathcal{C} : \boldsymbol{c} \triangleright \rho) \iff (\forall \boldsymbol{c} \in \mathcal{C}^{[m]} : \boldsymbol{c} \triangleright \rho).$$

Definition

A clone is finitely generated if it is generated by a finite set of finitary functions.

Definition

A clone C is finitely related if there is a finite set of finitary relations R with C = Polym(R).

Open and probably very hard

Given a finite $F \subseteq \mathcal{O}(A)$ and a finitary relation ρ on A. Decide whether F generates $Polym(\{\rho\})$.

Mal'cev operations

A a set. A function $d : A^3 \rightarrow A$ is a Mal'cev operation if

d(a, a, b) = d(b, a, a) = b for all $a, b \in A$.

Typical example: d(x, y, z) := x - y + z.

An algebra is a *Mal'cev algebra* if it has a Mal'cev operation in its ternary term functions. (Algebra with a Mal'cev term should be used if the notion *Mal'cev algebra* causes confusion.)

A clone is a *Mal'cev clone* if it has a Mal'cev operation in its ternary functions.

Theorem [Mal'cev, 1954]

An algebra **A** is a Mal'cev algebra if for all $\mathbf{B} \in \mathbb{HSP}$ **A**: $\forall \alpha, \beta \in \mathbf{Con B} : \alpha \circ \beta = \beta \circ \alpha.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Theorem ([Berman et al., 2010])

Let *A* be a finite set, C a clone on *A*. For $n \in \mathbb{N}$, let

 $i(n) := \max\{|X| \mid X \text{ is an independent subset } of \langle A, C \rangle^n\}.$

Then \mathcal{C} is a Mal'cev clone if and only if $\exists \alpha \in \mathbb{N}$ such that

$$\forall n \in \mathbb{N} : i(n) \leq 2^{\alpha n}.$$

Theorem (cf. [Hagemann and Herrmann, 1982]), forerunner in [Istinger et al., 1979] Let **A** be a finite algebra, $|A| \ge 2$. Then $Pol(\mathbf{A}) = \mathcal{O}(\mathbf{A})$ if and only if $Pol_3(\mathbf{A})$ contains a Mal'cev operation, and **A** is simple and nonabelian.

A is nonabelian iff $[1_A, 1_A] \neq 0_A$. Here, [., .] is the *term condition commutator*. This describes finite algebras with

 $Pol(\mathbf{A}) = Polym(\emptyset).$

Affine complete algebras

Definition of affine completeness

An algebra \mathbf{A} is affine complete if $Pol(\mathbf{A}) = Polym(Con(\mathbf{A}))$.

Theorem [Hagemann and Herrmann, 1982, Idziak and Słomczyńska, 2001, Aichinger, 2000]

Let **A** be a finite Mal'cev algebra. Then the following are equivalent:

- 1. Every $\mathbf{B} \in \mathbb{H}(\mathbf{A})$ is affine complete.
- 2. For all $\alpha \in \text{Con}(\mathbf{A})$, we have $[\alpha, \alpha] = \alpha$.

Open and probably still very hard

Is affine completeness a decidable property of $\textbf{A}=\langle \textbf{A}, \textbf{F}\rangle$ (of finite type)?

Concepts of Polynomial completeness

- weak polynomial richness: [Idziak and Słomczyńska, 2001], [Aichinger and Mudrinski, 2009] (expanded groups)
- 2. polynomial richness: [Idziak and Słomczyńska, 2001], [Aichinger and Mudrinski, 2009] (expanded groups)

Completeness provides relations

Completeness results often provide a finite set R of relations on A such that

 $Pol(\mathbf{A}) = Polym(\mathbf{R}).$

E.g., for every affine complete algebra, we have

 $Pol(\mathbf{A}) = Polym(Con(\mathbf{A})).$

Polynomially equivalent algebras

Definition

The algebras **A** and **B** are polynomially equivalent if A = B and Pol (**A**) = Pol (**B**).

Task

Classify finite algebras modulo polynomial equivalence.

Task

 $\mathbf{A} = \langle \mathbf{A}, \mathbf{F} \rangle$ algebra.

- ► Classify all expansions (A, F ∪ G) of A modulo polynomial equivalence.
- Determine all clones C with $Pol(\mathbf{A}) \subseteq C \subseteq O(A)$.

Polynomially inequivalent expansions

Examples

- ► (Z_p,+), p prime, has exactly 2 polynomially inequivalent expansions.
- ► [Aichinger and Mayr, 2007] (Z_{pq}, +), p, q primes, p ≠ q, has exactly 17 polynomially inequivalent expansions.
- ► [Mayr, 2008] (Z_n, +), n squarefree, has finitely many polynomially inequivalent expansions.
- [Kaarli and Pixley, 2001] Every finite Mal'cev algebra A with typ(A) = {3} has finitely many polynomially inequivalent expansions. (Semisimple rings with 1, groups without abelian principal factors)

Finitely many expansions \implies finitely related

Proposition, cf. [Pöschel and Kalužnin, 1979, Charakterisierungssatz 4.1.3]

If **A** has only finitely many polynomially inequivalent expansions, $Pol(\mathbf{A})$ is finitely related.

Examples where $Pol(\mathbf{A})$ is finitely related

Theorem

 $\operatorname{Pol}(A)$ is finitely related for the following algebras:

- expansions of groups of order p² (p a prime) [Bulatov, 2002],
- Mal'cev algebras with congruence lattice of height at most 2 [Aichinger and Mudrinski, 2010],
- supernilpotent Mal'cev algebras [Aichinger and Mudrinski, 2010],
- finite groups all of whose Sylow subgroups are abelian [Mayr, 2011],
- finite commutative rings with 1 [Mayr, 2011].

Often, we obtain concrete bounds for the arity of the relations.

Examples

► [Bulatov, 2002] (Z_p × Z_p, +), p prime, has countably many polynomially inequivalent expansions.

・ロト・日本・日本・日本・日本

► [Ágoston et al., 1986] ({1,2,3}, Ø) has 2^{ℵ₀} many polynomially inequivalent expansions.

Main Questions on Polynomial Equivalence

Question [Bulatov and Idziak, 2003, Problem 8]

- ► A a finite set. How many polynomially inequivalent Mal'cev algebras are there on A?
- Equivalent question: A finite set. How many clones on A contain all constant operations and a Mal'cev operation?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Does there exist a finite set with uncountably many polynomial Mal'cev clones?

Known before 2009 [Idziak, 1999] $|A| \le 3$: finite, $|A| \ge 4$: $\aleph_0 \le x \le 2^{\aleph_0}$.

Conjectures on the number of constantive Mal'cev clones

Wild conjecture

On a finite set A , there are at most \aleph_0 constantive Mal'cev clones.

Wilder conjecture 1 [Idziak, oral communication, 2006]

For every constantive Mal'cev clone C on a finite set, there is a finite set of relations R such that C = Polym(R).

Wilder conjecture 2

Every Mal'cev clone on a finite set is generated by finitely many functions.

Situation of these conjectures

Known before August 2009:

- WC 1 ⇒ WC, since the number of finite subsets of A* is countable.
- WC 2 ⇒ WC, since the number of finite subsets of O(A) is countable.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

WC 2 is wrong [Idziak, 1999] On Z₂ × Z₄, Polym(Con (⟨Z₂ × Z₄, +⟩)) is not f.g.

Finitely related Mal'cev clones

Wilder conjecture 1

For every constantive Mal'cev clone C on a finite set, there is a finite set of relations R such that C = Polym(R).

Finite relatedness vs. DCC

Suppose $\ensuremath{\mathcal{C}}$ is not finitely related. Then there is a sequence of clones

$$\mathcal{C}_1 \supset \mathcal{C}_2 \supset \mathcal{C}_3 \supset \cdots$$

such that $\bigcap_{i \in \mathbb{N}} C_i = C$. Hence, it is sufficient for WC 1 to prove:

Claim

The set of Mal'cev clones on a finite set has no infinite descending chains.

How to represent a Mal'cev clone

Example:
$$C = Pol(\langle \mathbb{Z}_2, + \rangle)$$
.
 $c(\mathbf{0}) = 0 \Rightarrow c(\mathbf{x} + \mathbf{y}) = c(\mathbf{x}) + c(\mathbf{y})$.

The ternary functions of this clone

000	$\{m{c}(000) m{c}\in\mathcal{C}\}$	=	$\{0, 1\}$
001	$\{m{c}(001) m{c} \in \mathcal{C}, m{c}(000) = 0\}$	=	{0, 1}
010	$\{c(010) c \in \mathcal{C}, c(000) = c(001) = 0\}$	=	{0, 1}
011	$\{c(011) \mid c \in C, c(000) = c(001) = c(010) = 0\}$	=	{0}
100	$\{c(100) \mid c \in C, c(000) = \cdots = c(011) = 0\}$	=	{0, 1}
101	$\{c(101) \mid c \in C, c(000) = \cdots = c(100) = 0\}$	=	{0}
110	$\{c(110) \mid c \in C, c(000) = \cdots = c(101) = 0\}$	=	{0}
111	$\{c(111) \mid c \in C, c(000) = \cdots = c(110) = 0\}$	=	{0}

Abstract from \mathbb{Z}_2 : Clones on $A = \{0, ..., t - 1\}$ with group operation + and neutral element 0:

Splittings at a

For $\mathbf{a} \in A^n$, let

$$\varphi(\mathcal{C},\mathbf{a}) := \{f(\mathbf{a}) \mid f(\mathbf{z}) = 0 \text{ for all } \mathbf{z} \in A^n \text{ with } \mathbf{z} <_{\text{lex}} \mathbf{a} \}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Theorem

Let \mathcal{C}, \mathcal{D} clones on A with + and 0. If $\mathcal{C} \subseteq \mathcal{D}$ and $\varphi(\mathcal{C}, \mathbf{a}) = \varphi(\mathcal{D}, \mathbf{a})$ for all $\mathbf{a} \in A^*$, then $\mathcal{C} = \mathcal{D}$.

Consequence

From a linearly ordered set of clones with the same binary group operation +, the mapping

$$\mathcal{C}\mapsto \langle oldsymbol{arphi}(\mathcal{C}, \mathbf{a}) \, | \, \mathbf{a} \in \mathcal{A}^*
angle$$

is injective.

Word embedding

hen \leq_e achievement, austria \leq_e australia

Higman's Theorem [Higman, 1952] Let *A* be a finite set. Then $\langle A^*, \leq_e \rangle$ has no infinite antichain.

Corollary

The set of upward closed subsets of A^* has no infinite ascending chain with respect to \subseteq .

The key observation

 $\mathsf{a} \leq_{\mathsf{e}} \mathsf{b} \Rightarrow \varphi(\mathcal{C}, \mathsf{b}) \subseteq \varphi(\mathcal{C}, \mathsf{a})$

 \mathcal{C} . . . clone on \mathbb{Z}_2 containing +. We observe 0110 \leq_e 0011101. Claim:

 $\varphi(\mathcal{C},0011101) \subseteq \varphi(\mathcal{C},0110).$

Proof

Let $a \in \varphi(C, 0011101)$, $f \in C^{[7]}$ such that f(0011101) = a, $f(\mathbf{z}) = 0$ for all $\mathbf{z} \in \{0, 1\}^7$ with $\mathbf{z} <_{\text{lex}} 0011101$. Define

$$g(x_1, x_2, x_3, x_4) := f(0, x_1, x_2, 1, x_3, x_4, 1).$$

Then g(0110) = f(0011101) = a and g(z) = 0 for $z \in \{0, 1\}^4$ with $z <_{\text{lex}} 0110$. Thus $a \in \varphi(\mathcal{C}, 0110)$.

Abstract from \mathbb{Z}_2 : Clones on $A = \{0, ..., t - 1\}$ with group operation + and neutral element 0:

Theorem

Let C be a constantive clone on A with +. **a**, **b** $\in A^*$ with **a** \leq_e **b**. Then $\varphi(C, \mathbf{b}) \subseteq \varphi(C, \mathbf{a})$.

Consequence

For every subset *S* of *A*, the set $\{\mathbf{x} \in A^* \mid \varphi(\mathcal{C}, \mathbf{x}) \subseteq S\}$ is an upward closed subset of $\langle A^*, \leq_e \rangle$.

Let \mathbbm{L} be an infinite descending chain of Mal'cev clones. Then the mapping

$$\begin{array}{rcl} r & : & \mathbb{L} & \longrightarrow & (\mathcal{U}(A^*, \leq_e))^{2^A} \\ & \mathcal{C} & \longmapsto & \langle \left\{ \mathbf{x} \in A^* \mid \varphi(\mathcal{C}, \mathbf{x}) \subseteq \mathbf{S} \right\} \mid \ \mathbf{S} \subseteq \mathbf{A} \rangle \end{array}$$

is injective and inverts the ordering.

Hence it produces an infinite ascending chain in $(\mathcal{U}(A^*, \leq_e))^{2^A}$, and hence in $\mathcal{U}(A^*, \leq_e)$. Contradiction.

・ロト・日本・日本・日本・日本

Splitting pairs ("indices and witnesses" in [Bulatov and Dalmau, 2006], [Aichinger, 2000]) Let $\mathbf{a} \in A^n$. In a Mal'cev clone C, the role of

$$arphi(\mathcal{C},\mathbf{a}) = \{ c(\mathbf{a}) \mid c \in \mathcal{C}^{[n]}, c(\mathbf{z}) = 0 \text{ for all } \mathbf{z} \in A^n \text{ with } \mathbf{z} <_{\mathrm{lex}} \mathbf{a} \}$$

is taken by the relation

$$\{(f(\mathbf{a}), g(\mathbf{a})) \,|\, f, g \in \mathcal{C}^{[n]}, orall \mathbf{z} \in \mathcal{A}^n : \mathbf{z} <_{\mathrm{lex}} \mathbf{a} \Rightarrow f(\mathbf{z}) = g(\mathbf{z})\}.$$

Constantive Mal'cev clones on finite sets are finitely related

Theorem [Aichinger, 2010]

Let A be a finite set, and let \mathcal{M} be the set of all constantive Mal'cev clones on A. Then we have:

- 1. There is no infinite descending chain in (\mathcal{M}, \subseteq) .
- 2. For every constantive Mal'cev clone C, there is a finitary relation ρ on A such that $C = \text{Polym}(\{\rho\})$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

3. The set \mathcal{M} is finite or countably infinite.

Is the assumption "constantive" needed?

The constantive place in the proof

Let $a \in \varphi(C, 0011101)$, $f \in C^{[7]}$ such that f(0011101) = a, f(z) = 0 for all $z \in \{0, 1\}^7$ with $z <_{lex} 0011101$. Define

$$g(x_1, x_2, x_3, x_4) := f(0, x_1, x_2, 1, x_3, x_4, 1).$$

Then g(0110) = f(0011101) = a and g(z) = 0 for $z \in \{0, 1\}^4$ with $z <_{lex} 0110$. Thus $a \in \varphi(\mathcal{C}, 0110)$.

Repair

$$g(x_1, x_2, x_3, x_4) := f(x_1, x_1, x_2, x_2, x_3, x_4, x_2).$$

Limitations

- ▶ 010 ≤_e 0210,
- ▶ 012 \leq_e 2012, $g(x_1, x_2, x_3) := f(x_3, x_1, x_2, x_3)$, 003 $<_{\text{lex}}$ 012, not 3003 $<_{\text{lex}}$ 2012.

How to get rid of "constantive"

We need:

- a new ordering \leq_E that replaces \leq_e ,
- a proof that $\langle A^*, \leq_E \rangle$ has DCC and no infinite antichains,

▶ a proof of $\mathbf{a} \leq_E \mathbf{b} \Rightarrow \varphi(\mathcal{C}, \mathbf{b}) \subseteq \varphi(\mathcal{C}, \mathbf{a}).$

Theorem [Aichinger, Mayr, McKenzie, 2009]

Let A be a finite set, and let \mathcal{M} be the set of all Mal'cev clones on A. Then we have:

- 1. There is no infinite descending chain in (\mathcal{M}, \subseteq) .
- For every Mal'cev clone C, there is a finitary relation ρ on A such that C = Polym({ρ}).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

3. The set ${\mathcal M}$ is finite or countably infinite.

The theorem in full generality

Definition

Let $k \ge 2$. Then $t : A^{k+1} \to A$ is a *k*-edge operation if for all $x, y \in A$ we have

$$t(y, y, x, \ldots, x) = t(y, x, y, x, \ldots, x) = x$$

and for all $i \in \{4, \dots, k+1\}$ and for all $x, y \in A$, we have

$$t(x, \ldots, x, y, x, \ldots, x) = x$$
, with y in position *i*.

Examples of edge operations

- 1. *d* Mal'cev \Rightarrow *t*(*x*, *y*, *z*) := *d*(*y*, *x*, *z*) is 2-edge.
- 2. *m* majority $\Rightarrow t(x_1, x_2, x_3, x_4) := m(x_2, x_3, x_4)$ is 3-edge.

Theorem ([Berman et al., 2010])

Let A be a finite algebra. The following are equivalent:

1. A has few subpowers, i.e., $\exists p \forall n | Sub(\mathbf{A}^n) | \leq 2^{p(n)}$;

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

2. There is $k \in \mathbb{N}$ such that **A** has a *k*-edge term.

"Constantive" has been dropped. Do we need "Mal'cev"?

Theorem (Aichinger, Mayr, McKenzie)

Let *A* be a finite set, let $k \in \mathbb{N}$, k > 1, and let \mathcal{M}_k be the set of all clones on *A* that contain a *k*-edge operation. Then we have:

For every clone C in M_k, there is a finitary relation R on A such that C = Pol(A, {R}).

(日) (日) (日) (日) (日) (日) (日) (日)

- 2. There is no infinite descending chain in $(\mathcal{M}_k, \subseteq)$.
- 3. The set M_k is finite or countably infinite.

Mal'cev algebras

- 1. Up to term equivalence and renaming of elements, there are only countably many finite Mal'cev algebras.
- 2. Every finite Mal'cev algebra can be represented by a single finitary relation.

Corollary – The clone lattice above a Mal'cev clone

Let C be a Mal'cev clone on a finite set A.

- The interval I[C, O(A)] has finitely many atoms [Pöschel and Kalužnin, 1979],
- 2. every clone $\mathcal D$ with $\mathcal C\subset \mathcal D$ contains one of these atoms,
- If I[C, O(A)] is infinite, it contains a clone that is not f.g. (cf. König's Lemma).

Corollary

Let *G* be a finite group, |G| > 1. Then there exists $k \in \mathbb{N}$ and $H \leq G^k$ such that for every $n \in \mathbb{N}$, $S \leq G^n$, there are $I, m \in \mathbb{N}$, $\sigma : \underline{m} \times \underline{k} \to \underline{l}, \tau : \underline{n} \to \underline{l}$ such that

Theorem

Let *G* be a finite group. Then there is $k \in \mathbb{N}$, $H \leq G^k$ such that $S := \bigcup_{n \in \mathbb{N}} \operatorname{Sub}(G^n)$ is the smallest set such that

- $H \in S$;
- ► $\forall m, n \in \mathbb{N}, A \in \mathcal{S}^{[m]}, \sigma : \underline{n} \to \underline{m}$ we have $\{(h_{\sigma(1)}, \dots, h_{\sigma(n)}) | (h_1, \dots, h_m) \in A\} \in \mathcal{S}^{[n]};$
- ▶ $\forall m, n \in \mathbb{N}, A \in \mathcal{S}^{[n]}, \sigma : \underline{n} \to \underline{m}$ we have $\{(h_1, \dots, h_m) | (h_{\sigma(1)}, \dots, h_{\sigma(n)}) \in A\} \in \mathcal{S}^{[n]};$
- $\flat \ \forall n \in \mathbb{N}, A, B \in \mathcal{S}^{[n]} : A \cap B \in \mathcal{S}^{[n]}.$

Absorbing polynomials and Supernilpotence

Definition

 $\mathbf{V} = \langle V, +, -, 0, f_1, f_2, \ldots \rangle$ expanded group, $p \in \operatorname{Pol}_n \mathbf{V}$. p is absorbing : $\Leftrightarrow \forall \mathbf{x} : 0 \in \{x_1, \ldots, x_n\} \Rightarrow p(x_1, \ldots, x_n) = 0$.

Definition

V expanded group. **V** is *k*-supernilpotent : \Leftrightarrow the zero-function is the only (k + 1)-ary absorbing polynomials.

Lemma

A group **G** is *k*-supernilpotent if and only if it is nilpotent of class $\leq k$.

Supernilpotent expanded groups

Proposition

FZ₆ := $\langle \mathbb{Z}_6, +, f \rangle$ with f(0) = f(3) = 3, f(1) = f(2) = f(4) = f(5) = 0 is 2-step nilpotent and not supernilpotent.

Theorem [Berman and Blok, 1987, Theorem 2], [Freese and McKenzie, 1987, Chapter VII]

Let **V** be a nilpotent expanded group of finite type with |V| a prime power. Then **V** is supernilpotent.

Theorem (Aichinger, Mudrinski)

Let $k, m \in \mathbb{N}, m \ge 2$, and let **V** be a multilinear expanded group with degree *m* of nilpotence class *k*. Then **V** is m^{k-1} -supernilpotent.

Theorem [Kearnes, 1999]

Let V be a finite supernilpotent expanded group. Then V is isomorphic to a direct product of expanded groups of prime power order.

Theorem [Aichinger]

Let **V** be a supernilpotent expanded group whose ideal lattice is of finite height. Then **V** is isomorphic to a direct product of finitely many π -monochromatic expanded groups.

Lemma

Let **R** be a ring with unit, and let **M** be an **R**-module such that **M** has exactly three submodules; let *Q* be the submodule different from 0 and *M*. Then the exponents of the groups $\langle M/Q, + \rangle$ and $\langle Q, + \rangle$ are equal.

Lemma

Let **V** be a finite expanded group whose ideal lattice is a three element chain $\{0\} < Q < V$. We assume that the exponents of the groups $\langle Q, + \rangle$ and $\langle V/Q, + \rangle$ are different, and that [V, V] = Q, [V, Q] = 0. Then **V** is not supernilpotent.

Ágoston, I., Demetrovics, J., and Hannák, L. (1986). On the number of clones containing all constants (a problem of R. McKenzie).

In *Lectures in universal algebra (Szeged, 1983)*, volume 43 of *Colloq. Math. Soc. János Bolyai*, pages 21–25. North-Holland, Amsterdam.

Aichinger, E. (2000).

On Hagemann's and Herrmann's characterization of strictly affine complete algebras.

Algebra Universalis, 44:105–121.

Aichinger, E. (2010).

Constantive Mal'cev clones on finite sets are finitely related.

Proc. Amer. Math. Soc., 138(10):3501–3507.

Aichinger, E. and Mayr, P. (2007). Polynomial clones on groups of order pq. Acta Math. Hungar., 114(3):267–285. Aichinger, E. and Mudrinski, N. (2009).
 Types of polynomial completeness of expanded groups.
 Algebra Universalis, 60(3):309–343.

- Aichinger, E. and Mudrinski, N. (2010). Polynomial clones of Mal'cev algebras with small congruence lattices. *Acta Math. Hungar.*, 126(4):315–333.
- Berman, J. and Blok, W. J. (1987). Free spectra of nilpotent varieties. Algebra Universalis, 24(3):279–282.

 Berman, J., Idziak, P., Marković, P., McKenzie, R., Valeriote, M., and Willard, R. (2010).
 Varieties with few subalgebras of powers. *Transactions of the American Mathematical Society*, 362(3):1445–1473.

Bulatov, A. and Dalmau, V. (2006). A simple algorithm for Mal'tsev constraints. *SIAM J. Comput.*, 36(1):16–27 (electronic).

Bulatov, A. A. (2002).

Polynomial clones containing the Mal'tsev operation of the groups \mathbb{Z}_{p^2} and $\mathbb{Z}_p \times \mathbb{Z}_p$. Mult.-Valued Log., 8(2):193–221.

- Bulatov, A. A. and Idziak, P. M. (2003). Counting Mal'tsev clones on small sets. *Discrete Math.*, 268(1-3):59–80.
- Freese, R. and McKenzie, R. N. (1987). Commutator Theory for Congruence Modular varieties, volume 125 of London Math. Soc. Lecture Note Ser. Cambridge University Press.
- Hagemann, J. and Herrmann, C. (1982). Arithmetical locally equational classes and representation of partial functions.

In *Universal Algebra, Esztergom (Hungary)*, volume 29, pages 345–360. Colloq. Math. Soc. János Bolyai.

Higman, G. (1952). Ordering by divisibility in abstract algebras. *Proc. London Math. Soc. (3)*, 2:326–336.

Idziak, P. M. (1999). Clones containing Mal'tsev operations.

Internat. J. Algebra Comput., 9(2):213–226.

- Idziak, P. M. and Słomczyńska, K. (2001).
 Polynomially rich algebras.
 J. Pure Appl. Algebra, 156(1):33–68.
- Istinger, M., Kaiser, H. K., and Pixley, A. F. (1979). Interpolation in congruence permutable algebras. *Colloq. Math.*, 42:229–239.
- Kaarli, K. and Pixley, A. F. (2001). Polynomial completeness in algebraic systems. Chapman & Hall / CRC, Boca Raton, Florida.
- Kearnes, K. A. (1999).

Congruence modular varieties with small free spectra.

Algebra Universalis, 42(3):165–181.

Mal'cev, A. I. (1954).

On the general theory of algebraic systems. *Mat. Sb. N.S.*, 35(77):3–20.

Mayr, P. (2008).
 Polynomial clones on squarefree groups.
 Internat. J. Algebra Comput., 18(4):759–777.

Mayr, P. (2011).
 Mal'cev algebras with supernilpotent centralizers.
 Algebra Universalis, 65:193–211.

Pöschel, R. and Kalužnin, L. A. (1979). Funktionen- und Relationenalgebren, volume 15 of Mathematische Monographien [Mathematical Monographs].

VEB Deutscher Verlag der Wissenschaften, Berlin. Ein Kapitel der diskreten Mathematik. [A chapter in discrete mathematics].

- (ロ)(聞)(言)(言)(同)(の))