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First polynomial completeness results

Theorem
Let F be a finite field, n ∈ N. Every mapping from Fn → F is a
polynomial function.

Theorem [A. Fröhlich, 1958]
Let G be a finite simple nonabelian group, let f : G→ G be
such that f (1G) = 1G.
Then there are n ∈ N and sequences (g1, . . . ,gn) from G and
(e1, . . . ,en) from Z such that for all x ∈ G:

f (x) = g1xe1g−1
1 g2xe2g−1

2 . . . gnxeng−1
n .



Anticipation of further completeness results

From Fröhlich’s paper (1958)
The problem of extending the results of this note appropriately
to wider classes of groups does not seem intractable [. . . ].
In the first place we have characterized R as the near-ring of all
mappings transforming normal subgroups of Ω into themselves
[. . . ].
In this case one will have to consider also induced mappings on
quotient groups ∆1 −∆2, where ∆1,∆2 are Ψ-invariant
subgroups of Ω and ∆1 ⊇ ∆2.



A generalization

Theorem [K. Kaarli 1978]
Let (G,+) be a group, Inn(G) ⊆ E ⊆ End(G), R the near-ring
generated by E . Let

R′ := {f : G→ G | f (0) = 0, ∀A ER G ∀g1,g2 ∈ G :

g1 − g2 ∈ A⇒ f (g1)− f (g2) ∈ A}.

If every submodule of RG coincides with its R-commutator
subgroup, then R is a dense subnear-ring of R′.

Corollary
Let G be a finite group. Suppose that every normal subgroup N
of is perfect, i.e., [N,N] = N. Then every unary congruence
preserving function of G is a polynomial function.



Classifying functions

Let A = (A, f1, f2, . . .) be an algebraic structure. A function
g : An → A is:

I a term function of A if it can be written in the form
g(x) = f1(x1, f2(f1(x3, x1))).

I a polynomial function of A if it can be written in the form
g(x) = f1(a2, f1(x1, f2(f1(x3,a1)))).

Let ρ be a binary relation on A. Then
I g preserves ρ if

(a1,b1) ∈ ρ, . . . , (an,bn) ∈ ρ⇒ (g(a1, . . . ,an),g(b1, . . . ,bn)) ∈ ρ.

I g is congruence preserving if it preserves all congruence
relations of A.



Connections

I Every polynomial function is congruence preserving.
I Every term function preserves all subalgebras of A× A.
I Every term function preserves all subalgebras of An.

Note: f preserves ρ ⊆ An ⇔ ρ is a subalgebra of (A, f )n.
I A finite, f : An → A, f preserves all subalgebras of A|A|n ⇒

f is a term function.



Completeness Properties

Definition
An algebra A is affine complete if every finitary congruence
preserving function is polynomial.
A is k -affine complete if every k -ary congruence preserving
function is polynomial.

Problem [G. Grätzer 1978]
Characterize affine complete algebras.



Universal Algebra Results

Theorem [Hagemann & Herrmann 1982]
Let A be a finite algebra in a congruence permutable variety.
Then the following are equivalent:

1. Every homomorphic image of A is affine complete.
2. For all α ∈ Con(A), we have [α, α] = α.



Proof of Hagemann’s and Herrmann’s Theorem:

We prove: If Con(A) |= [α, α] = α, then every congruence
preserving function is polynomial.

1. Let f : A→ A be congruence preserving.
2. We interpolate f by polynomials on finite subsets T .
3. Case T = {a,b}:

β := {(p(a),p(b)) | p ∈ Pol1(A)}

is a congruence relation containing (a,b).
4. Thus (f (a), f (b)) ∈ ΘA(a,b) ⊆ β.
5. Hence ∃p : (p(a),p(b)) = (f (a), f (b)).



Proof of Hagemann’s and Herrmann’s Theorem:

1. Case T = {a,b, c}.
2. Pol1(A) ≤ AA has distributive congruences.
3. Define congruences α, β, γ on Pol1(A) by

p α q :⇔ p(a) = q(a),
p β q :⇔ p(b) = q(b),
p γ q :⇔ p(c) = q(c).

4. Solve

p ≡ f (a) (modα), p ≡ f (b) (modβ), p ≡ f (c) (mod γ).

5. Use Chinese Remainder Theorem.



Affine complete groups

Theorem [Hagemann and Herrmann, 1982]
G finite group. Every homomorphic image of G is affine
complete⇔ ∀N E G : [N,N] = N.

Theorem [Kaarli, 1983, Hagemann and Herrmann, 1982]
G finite group, Con(G) distributive. Then G is affine complete⇔
∀N E G : [N,N] = N.

Theorem [Nöbauer, 1976]
A finite abelian group. A is affine complete⇔
∃B,C : A ∼= B× C and exp(B) = exp(C).



Affine complete groups

Theorem [Kaarli 1982]
An abelian group A is affine complete⇔

1. Z× Z ↪→ A, or
2. Z ↪→ A and exp(T (A)) =∞, or
3. A ∼=

∏m
i=1 Zp

αi
i
× Zp

αi
i
× Bi with p1, . . . ,pm different primes,

exp(Bi) | pαi
i .

Theorem [M. Saks 1983]
A finite nonabelian Hamiltonian group is never affine complete.

Theorem [Ecker 2006]
Let A be a finite abelian group, A = PQ with P a 2-group and Q
of odd order. Then Dih(A) = A o Z2 is affine complete iff
exp(P) = 2 and Q is affine complete.



Affine complete groups

Given: a finite group G.
Asked: Is G affine complete?

Example
G := ((Z3 × Z3) o Z2)× Z4.



Ask a computer (SONATA)

gap> RequirePackage("sonata");
# SONATA by Aichinger, Binder, Ecker, Mayr, Noebauer
# loaded.
gap> C3 := Group ((1,2,3));
gap> C3xC3 := DirectProduct (C3, C3);
gap> a := GroupHomomorphismByImages (C3xC3, C3xC3,

[(1,2,3), (4,5,6)], [(1,3,2),(4,6,5)]);
gap> A := Group (a); IsGroupOfAutomorphisms (A);
gap> C3xC3_C2 := SemidirectProduct (A, C3xC3);
gap> G := DirectProduct (C3xC3_C2, CyclicGroup (4));
gap> IdGroup (G);
[ 72, 32 ]
gap> StructureDescription (G);
"C4 x ((C3 x C3) : C2)"
gap> p := Size (PolynomialNearRing (G));
23328
gap> c := Size (CompatibleFunctionNearRing (G));
23328



Affine complete groups

Hence G = ((Z3 × Z3) o Z2)× Z4 = G(72,32) is 1-affine
complete.
But is it 2-affine complete? Is it 3-affine complete? Is it 4-affine
complete? . . . Is it 70-affine complete?



Proving Affine Completeness

Theorem [EA, 2001]
(Z4 × Z2,+,2x1x2 . . . xk ) is k -affine complete and not
(k + 1)-affine complete.

Theorem [EA, Ecker, 2006]
G k -nilpotent and (k + 1)-affine complete⇒ G is affine
complete.

Theorem [EA, 2018]
Let A be a finite nilpotent algebra in cp variety with all
fundamental operations of arity ≤ m. We assume that A is a
product of prime power order algebras. Let

s := (m|A|)log2(|A|).

Then A s-affine complete⇒ A affine complete.



Disproving Affine Completeness

Theorem
Let A be a finite algebra with finitely many fundamental
operations. If the clone Comp(A) is not finitely generated, then
A is not affine complete.

Lemma
A finite algebra.

I A simple⇒ Comp(A) f.g.
I A has permuting congruences, Con(A) distributive⇒

Comp(A) f.g.



Finite generation of c.p. functions - Examples

Examples of abelian groups

1. Comp(Z2) is f.g.
2. Comp(Z4) is f.g.
3. Comp(Z2 × Z4) is not f.g.
4. Comp(Z4 × Z4) is f.g.
5. Comp((Z2 × Z4)2) is f.g.

Consequence
For finite abelian groups A,B, the triple

(Comp(A) is f.g., Comp(B) is f.g., Comp(A× B) is f.g.)

can take all 8 possible combinations of truth values.



Finite generation of c.p. functions

Lemma
Let A be a finite abelian group. Then Comp(A) is f.g. ⇐⇒
Comp(S) is f.g. for every Sylow subgroup S of A.

Theorem [EA, Lazić, Mudrinski (2016)]
Let p ∈ P, and let S be an abelian p-group. Then
Comp(S) is f.g. ⇐⇒ S is affine complete or cyclic.



Finite generation of c.p. functions

For an arbitrary group G, finite generation of Comp(G) can be
described considering the lattice Con(G).

Definition
A bounded lattice L splits if there are δ < 1 and ε > 0 such that
L = I[0, δ] ∪ I[ε,1].cs sc
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Finite generation of c.p. functions - the use of splitting

Theorem [EA, Mudrinski 2013]
A finite Mal’cev algebra s.t. Con(A) does not split. Then
Comp(A) is f.g.



Finite generation of c.p. functions - the use of splitting

Lemma
Let A be an algebra such that Con(A) splits with splitting pair
(δ, ε). Then every f : An → A with

1. ∀a,b : (f (a), f (b)) ∈ ε,
2. ∀a,b : a ≡δ b⇒ f (a) = f (b)

is congruence preserving. There are at least 22n
such functions.

Theorem
A finite algebra with a Mal’cev term, L := Con(A). If

1. L is simple, and |L| ≥ 3, and
2. L splits,

then Comp(A) is not f.g.



Finite generation of c.p. functions - the use of splitting

Proof:
Assume

1. L is simple, and |L| ≥ 3,
2. L splits.
3. Comp(A) is f.g. by F .

Then
I (A,F ) is nilpotent, prime power order, of finite type.
I Hence (A,F ) is supernilpotent.
I Hence (A,Pol(F )) = (A,Comp(A)) is supernilpotent.
I Hence “absorbing” c.p. functions have bounded essential

arity.
I From splitting, construct c.p. functions of arbitrary finite

ess. arity.



Finite generation of c.p. functions

Lemma
The clone of congruence preserving functions of a finite
nilpotent group is finitely generated if and only if the clone of
congruence preserving functions of every Sylow subgroup is
finitely generated.

Theorem (EA, Lazić, Mudrinski 2016)
Let G be a finite p-group, let L be the lattice of normal
subgroups of G, and let {e} = N0 < · · · < Nn = G be the set of
those normal subgroups that cut the lattice L. Then the
following are equivalent:

1. The clone of congruence preserving functions of G is
finitely generated.

2. For each i ∈ {0, . . . ,n − 1}, the interval I[Ni ,Ni+1] of the
lattice of normal subgroups of G either contains exactly 2
elements, or I[Ni ,Ni+1] does not split.



Affine complete groups

Small p-groups:

I G non abelian p-group, |G| ≤ 32: the normal subgroup
lattice splits, hence G is not affine complete.

I G(16,11) = Z2 × D8, G(16,12) = Z2 ×Q8, G(32,27),
G(32,34) = Dih(Z4 × Z4), G(32,46) = Z2 × Z2 × D8,
G(32,47) = Z2 × Z2 ×Q8 are 1-affine complete.

Theorem [Saxinger, 2015]
The groups G(64,73) and G(64,76) are affine complete.
All other groups of order 64 are abelian or have splitting
congruence lattice.



Small affine complete groups

Theorem
The six non-abelian affine complete groups of order ≤ 100 are:

I G(36,13) = Dih(Z2 × Z3
2)

I A5

I G(64,73)

I G(64,76)

I G(72,49) = Dih(Z2
2 × Z3

2)

I G(100,15) = Dih(Z2 × Z5
2).



Open problems on affine complete groups

Open problems

1. Is the direct product of finite affine complete groups affine
complete?

2. Is there an algorithm to decide whether a given finite group
is affine complete?



Affine completeness of direct products

Theorem (Kaarli & Mayr 2010)
Let A,B be affine complete finite algebras in the variety V . If V
has a majority term, or V has a Mal’cev term and every
congruence of A× B is a product congruence, then A× B is
affine complete.



Decidability of affine completeness

Lemma
Let A be an algebra.

1. If Comp(A) is generated by its k -ary members, and A is
k -affine complete, then A is affine complete.

2. If Pol(A) is determined by a set R of relations such that
∀R ∈ R : |R| ≤ r , and A is (r + 1)-affine complete, then A
is affine complete.

Theorem (EA 2010)
Let A a finite algebra with Mal’cev term. Then there is n ∈ N
and ρ ⊆ An such that Pol(A) consists of exactly those functions
preserving ρ.

Consequence
If n can be found algorithmically, affine completeness in cp
varieties is decidable.



Other concepts of completeness

General method
I Polynomial functions on a Mal’cev algebra A preserve

certain relations:
I congruence relations = subalgebras of A× A containing ∆,
I congruence relations and abelian/nonabelian type of prime

sections in the congruence lattice,
I congruences and commutators, encoded by certain

subalgebras of A4.
I For a subset R of these relations, call the algebra
R-complete if every R-preserving function is a polynomial.



Polynomially rich algebras

Definition
Let V be an expanded group, and let k ∈ N. Then V is
polynomially rich if every function on V that preserves
congruences and the types of prime sections in the congruence
lattice is a polynomial function.

Theorem
A finite abelian p-group is polynomially rich if and only if it is
affine complete or simple.



Polynomially rich algebras

Theorem (EA, Mudrinski 2009)
A finite dimensional vector-space V over a finite field is
polynomially rich if and only if dim(V ) 6= 1 or |V | is prime.

More on polynomial richness
For finite expanded groups with distributive congruence lattice
(or with congruence lattice satisfying (APMI)), there is a
characterization of polynomial richness (EA, Mudrinski, 2009).



Lattices with (APMI)

Definition
L lattice. L has adjacent projective meet irreducibles : ⇔
∀ meet irreducible α, β ∈ L:

I[α, α+] ! I[β, β+]⇒ α+ = β+.

Index 1
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Algebras with (APMI) congruence lattices

Algebras that have (APMI) congruence lattices

I All Ai similar finite simple algebras with Mal’cev term. Then
Con(A1 × · · · × An) has (APMI).

I Every finite distributive lattice has (APMI).
I G finite group, G ∈ V(S3) Then Con(G) has (APMI).
I A satisfies (SC1)⇒ Con(A) satisfies (APMI)

[Idziak and Słomczyńska, 2001].

Definition [Idziak and Słomczyńska, 2001]
A with Mal’cev term. A has (SC1) :⇔ ∀B ∈ HSI(A):

∀α ∈ Con(B) : [α, µB] = 0⇒ α ≤ µB.



Structure of (APMI)-lattices

Theorem [Aichinger and Mudrinski, 2009]
L finite modular lattice with (APMI), |L| > 1. Then ∃m ∈ N,
∃β0, . . . , βm ∈ D(L) such that

1. 0 = β0 < β1 < · · · < βm = 1,
2. each I[βi , βi+1] is a simple complemented modular lattice.



Pictures of (APMI)-lattices
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Affine completeness of congruence-(APMI)-algebras

Theorem [Aichinger and Mudrinski, 2009]
V finite expanded group, congruence-(APMI).
U0 < U1 < . . . < Un maximal chain in D(Id (V)). Then V is
affine complete⇔

1. V has (SC1),
2. ∀i ∈ {0, . . . ,n − 1}: [Ui+1,Ui+1]V ≤ Ui ⇒ I[Ui ,Ui+1] is not

a 2-element chain.



Examples of congruence-(APMI)-groups
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complete (cf. [Ecker, 2006])



The clone of congruence preserving functions of
(APMI)-algebras

Theorem [Aichinger and Mudrinski, 2009]
V finite expanded group, congruence-(APMI). Then the clone
Comp(V) is generated by Comp2(V).

Corollary
V finite expanded group, congruence-(APMI). V is affine
complete if and only if Comp2(V) = Pol2(V).



Polynomial richness of congruence-(APMI) algebras

Definition - polynomial richness
[Idziak and Słomczyńska, 2001]
A = (A,F ) is polynomially rich if every finitary f that preserves:

1. all congruences
2. all TCT-types of prime quotients in Con(A)

is a polynomial.

Theorem [Aichinger and Mudrinski, 2009]
V finite expanded group, congruence-(APMI).
U0 < U1 < . . . < Un maximal chain in D(Id (V)). Then V is
polynomially rich⇔

1. V has (SC1),
2. ∀i ∈ {0, . . . ,n − 1}: [Ui+1,Ui+1]V ≤ Ui ⇒ I[Ui ,Ui+1] is not

a 2-element chain or the module P0(V)(Ui+1/Ui) is
pol.equiv. to a simple module over the full matrix ring over
a field of prime order.



A natural occurrence of the condition (APMI)

Theorem (Kaarli 1983)
A a finite algebra. TFAE:

1. Every partial finitary congruence preserving function is the
restriction of a total congruence preserving function.

2. Con(A) is arithmetical.

Theorem (EA Mudrinski 2009)
V finite expanded group. TFAE:

1. Every unary partial congruence preserving function is the
restriction of a total congruence preserving function.

2. V is congruence-(APMI), and
∀α, β ∈ D(Con(V)), γ ∈ Con(V) :
α ≺D(Con(V)) β, α ≺Con(V) γ < β ⇒ |0/γ| = 2 ∗ |0/α|.



Unary compatible function extension property
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congruence-(APMI), hence (CFEP)
fails.
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