THE DEGREE OF A FUNCTION BETWEEN TWO ABELIAN GROUPS

Erhard Aichinger and Jakob Moosbauer Institute for Algebra
Austrian Science Fund FWF P29931

Theorems involving the degree

Theorem (Chevalley 1935)

```
\(F\) a finite field, \(f_{1}, \ldots, f_{s} \in F\left[x_{1}, \ldots, x_{N}\right]\).
If \(\#\left\{\mathbf{a} \in F^{N} \mid f_{i}(\mathbf{a})=\cdots=f_{s}(\mathbf{a})=0\right\}=1\), then \(\sum_{i=1}^{s} \operatorname{deg}\left(f_{i}\right) \geq N\).
```


Theorem (Vaughan-Lee 1983, Freese McKenzie 1987, EA 2019)

A: nilpotent, in cm variety, prime power order q, all fundamental operations at most m-ary. $\quad h:=$ height of $\operatorname{Con}(\mathbf{A})$.
Then \mathbf{A} is supernilpotent of degree at most $(m(q-1))^{h-1}$.

The factor $m(q-1)$ is the maximal total degree of an m-ary reduced polynomial on \mathbb{F}_{q}. This factor therefore appears in the exponents of the polynomials bounding the complexity of $\operatorname{PolSat}(\mathbf{A}), \operatorname{PolEQV}(\mathbf{A})$ and k - $\operatorname{PolSysSat}(\mathbf{A})$ for supernilpotent A.

Definition of the degree for functions

Setup: We let A, B be abelian groups, $f: A \rightarrow B$. Goal:

- Define $\operatorname{FDEG}(f)$.
- Argue that the definition is useful.

Definition of the degree of a function

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.
Definition through difference operator:
\square For $a \in A, \Delta_{a}(f)(x):=f(x+a)-f(x)$.
$\square \operatorname{FDEG}(f):=$ the minimal $n \in \mathbb{N}_{0}$ with $\Delta_{a_{1}} \Delta_{a_{2}} \cdots \Delta_{a_{n+1}} f=0$ for all $a_{1}, \ldots, a_{n+1} \in A$.

■ Intuitive: $f: \mathbb{R} \rightarrow \mathbb{R}$ is a polynomial of degree $\leq 2 \Leftrightarrow f^{\prime \prime \prime}=0$.

- Problems:
$\square \Delta_{a}(f \circ g)=$? ("Chain rule")
$\square f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{3}, f(0)=1, f(1)=2$ satisfies $\Delta_{1} f=f$. Hence $\operatorname{FDEG}(f)=\infty$.

The definition of the degree

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.
Definition through an abstract version of the difference operator:
[Vaughan-Lee 1983]
■ Group ring $\mathbb{Z}[A]:=\left\{\sum_{a \in A} z_{a} \tau_{a} \mid\left(z_{a}\right)_{a \in A} \in \mathbb{Z}^{(A)}\right\}$.
■ $\mathbb{Z}[A]$ acts on B^{A} by

$$
\begin{aligned}
\left(\tau_{a} * f\right)(x) & =f(x+a) \\
\left(\left(\sum_{a \in A} z_{a} \tau_{a}\right) * f\right)(x) & =\sum_{a \in A} z_{a} f(x+a) \\
\left(\left(\tau_{a}-1\right) * f\right)(x) & =f(x+a)-f(x)
\end{aligned}
$$

■ In this way, B^{A} is a $\mathbb{Z}[A]$-module.

The definition of the degree

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.
Definition through an abstract version of the difference operator:
[Vaughan-Lee 1983]
■ $\left(\left(\tau_{a}-1\right) * f\right)(x):=f(x+a)-f(x)$.
■ $I:=$ augmentation ideal of $\mathbb{Z}[A]=$ ideal generated by $\left\{\tau_{a}-1 \mid a \in A\right\}=$ $\left\{\sum_{a \in A} z_{a} \tau_{a} \in \mathbb{Z}[A] \mid \sum_{a \in A} z_{a}=0\right\}$
■ $\operatorname{FDEG}(f):=\min \left(\left\{n \in \mathbb{N}_{0} \mid I^{n+1} * f=0\right\} \cup\{\infty\}\right)$.

The definition of the degree

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.
Definition through a functional equation: For functions on \mathbb{R}, we have:

Theorem (Fréchet 1909)

A polynomial of degree n in x is a continuous function verifying the identity

$$
\begin{aligned}
f\left(x_{1}+x_{2}+\ldots+x_{n+1}\right) & -\sum_{n} f\left(x_{i_{1}}+\ldots+x_{i_{n}}\right) \\
& +\sum_{n-1} f\left(x_{i_{1}}+\ldots+x_{i_{n-1}}\right)-\ldots \\
& +(-1)^{n} \sum_{n} f\left(x_{i_{1}}\right)+(-1)^{n+1} f(0) \equiv 0
\end{aligned}
$$

whatever the constants x_{1}, \ldots, x_{n+1} are without satisfying the analogous identities obtained by replacing the integer n with a smaller integer.

The definition of the degree

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.
Definition through a functional equation:
We define $\operatorname{FDEG}(f)$ to be the smallest $m \in \mathbb{N}_{0}$ such that

$$
f\left(\sum_{i=1}^{m+1} x_{i}\right)=\sum_{S \subset \underline{m+1}}(-1)^{m-|S|} f\left(\sum_{j \in S} x_{j}\right)
$$

for all $x_{1}, \ldots, x_{m+1} \in A$.
$m=0: f\left(x_{1}\right)=f(0)$.
$m=1: f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)-f(0)$.
$m=2$:
$f\left(x_{1}+x_{2}+x_{3}\right)=f\left(x_{1}+x_{2}\right)+f\left(x_{1}+x_{3}\right)+f\left(x_{2}+x_{3}\right)-f\left(x_{1}\right)-f\left(x_{2}\right)-f\left(x_{3}\right)+f(0)$.

The functional degree

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.

Lemma

All three definitions yield the same degree.

Definition of the functional degree

$\operatorname{FDEG}(f):=\min \left(\left\{n \in \mathbb{N}_{0} \mid(\operatorname{Aug}(\mathbb{Z}[A]))^{n+1} * f=0\right\} \cup\{\infty\}\right)$.

- $\operatorname{FDEG}(f)=0 \Leftrightarrow f$ is constant.

■ FDEG $(f)=1 \Leftrightarrow f=c+h$ with c constant, h group homomorphism.

- Let $p \in \mathbb{P}$ and assume that A, B are finite abelian p-groups. Then $\operatorname{FDEG}(f)<\infty$. Reason: Nilpotency of $\operatorname{Aug}\left(\mathbb{Z}_{p^{\beta}}[A]\right)$.

The degree of concrete functions

- Polynomials over prime fields:
$A=\mathbb{F}_{p}^{N}, B=\mathbb{F}_{p}, f \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{N}\right]$ with all exponents $\leq p-1$.
Then $\operatorname{FDEG}(\bar{f})$ is the total degree of f.
- Polynomials over finite fields:

On \mathbb{F}_{25}, x^{5} induces a homomorphism (\Rightarrow degree 1).
$\square \mathbb{F}_{q} \ldots$ field with q elements of characteristic p.
\square For $n \in \mathbb{N}, s_{p}(n)$ is the digit sum in base p.

$$
s_{5}(25)=1, s_{5}(10)=2, s_{5}(24)=8 .
$$

\square [Moreno Moreno 1995] The p-weight degree of $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is defined by

$$
\operatorname{deg}_{p}\left(x_{1}^{\alpha_{1}} \cdots x_{N}^{\alpha_{N}}\right):=\sum_{n=1}^{N} s_{p}\left(\alpha_{n}\right)
$$

The functional degree of polynomial functions

Theorem

\mathbb{F}_{q} a finite field of characteristic $p, f \in F\left[x_{1}, \ldots, x_{n}\right]$ with all exponents at most $q-1$. Then $\operatorname{FDEG}(\bar{f})=\operatorname{deg}_{p}(f)$.

Properties of the functional degree

For a function $f:(A,+) \longrightarrow(B,+)$, the functional degree does not use any syntactic representation of f.

Lemma

■ $\operatorname{FdEG}(f+g) \leq \max (\operatorname{FDEG}(f), \operatorname{FDEG}(g))$.
■ If $(B,+, \cdot)$ is a ring, then $\operatorname{FDEG}(f \cdot g) \leq \operatorname{FDEG}(f)+\operatorname{FDEG}(g)$.

Properties of the functional degree

Theorem (EA+JM 2019)

Let $(A,+),(B,+),(C,+)$ be abelian groups, let $f: A \rightarrow B$ and $g: B \rightarrow C$ with $\operatorname{FDEG}(f)<\infty$ and $\operatorname{FDEG}(g)<\infty$. Then $\operatorname{FDEG}(g \circ f) \leq \operatorname{FDEG}(g) \cdot \operatorname{FDEG}(f)$.

The proof needs the following claim (stated here for $m=2$): If there are $g_{1}, g_{2}, g_{3}: A^{2} \rightarrow B$ such that for all $x_{1}, x_{2}, x_{3} \in A^{3}$,

$$
h\left(x_{1}+x_{2}+x_{3}\right)=g_{1}\left(x_{2}, x_{3}\right)+g_{2}\left(x_{1}, x_{3}\right)+g_{3}\left(x_{1}, x_{2}\right)
$$

then $\operatorname{FDEG}(h) \leq 2$.

Functions of finite degree

Proposition

A, B finite abelian groups of coprime order, $C:=A \times B, f: C^{N} \rightarrow C$ of finite degree. Then there are $g: A^{N} \rightarrow A, h: B^{N} \rightarrow B$ such that $f(\boldsymbol{a}, \boldsymbol{b})=(g(\boldsymbol{a}), h(\boldsymbol{b}))$ for all $\boldsymbol{a} \in A^{N}, \boldsymbol{b} \in B^{N}$.

Proposition

An expansion of an abelian group is k-supernilpotent iff every function in its clone has functional degree at most k.

Hence finite supernilpotent expanded groups decompose into a product of prime power order expanded groups [Kearnes 1999].

Functions of maximal degree

Proposition

Let A, B be finite abelian groups. Then $\delta(A, B):=\max \{\operatorname{FDEG}(f) \mid f: A \rightarrow B\}=$ $\nu-1$, where ν is the nilpotency degree of the augmentation ideal of $\mathbb{Z}_{e}[A]$ and $e:=\exp (B)$.

Corollary

Let $p \in \mathbb{P}, A:=\prod_{i=1}^{k} \mathbb{Z}_{p^{\alpha_{i}}}, B$ abelian group of exponent p^{β}. Then
■ $\delta(A, B) \leq\left(1+\sum_{i=1}^{k}\left(p^{\alpha_{i}}-1\right)\right) \beta-1$. [Karpilovsky 1987]

- $\delta(A, B) \leq \beta \sum_{i=1}^{k}\left(p^{\alpha_{i}}-1\right)$.

■ $\delta\left(A, \mathbb{Z}_{p}\right)=\sum_{i=1}^{k}\left(p^{\alpha_{i}}-1\right)$. (Bound is sharp for $\beta=1$)

Functions of maximal degree

Problem

For a finite abelian p-group $A=\prod_{i=1}^{k} \mathbb{Z}_{p^{\alpha_{i}}}$ and $\beta \in \mathbb{N}$, find the nilpotency degree ν of the augmentation ideal of $\mathbb{Z}_{p^{\beta}}[A]$.

Known: $1+\sum_{i=1}^{k}\left(p^{\alpha_{i}}-1\right) \leq \nu \leq 1+\beta \sum_{i=1}^{k}\left(p^{\alpha_{i}}-1\right)$.
Speculation from very few computations: For cylic $A=\mathbb{Z}_{p^{\alpha}}$, we have $\nu=\beta p^{\alpha}-(\beta-1) p^{\alpha-1}$.

Applications

- Generalizations of the Chevalley Warning Theorems on the zeroes of polynomials (\sim Jakob Moosbauer's talk).
- Improvements of the bounds in the
nilpotent, finite type, prime power order \Rightarrow supernilpotent
Theorems, and hence in the exponents for $\operatorname{PolSat}(\mathbf{A}), \operatorname{PolEqv}(\mathbf{A})$ and k-PoLSysSat(A) for supernilpotent \mathbf{A}.

Theorem (Vaughan-Lee 1983, Freese McKenzie 1987, EA+JM 2019)

A: nilpotent, in cm variety, prime power order $q=p^{\alpha}$, all fundamental operations at most m-ary. $\quad h:=$ height of $\operatorname{Con}(\mathbf{A})$.
Then \mathbf{A} is supernilpotent of degree at most $(m \alpha(p-1))^{h-1}$.
The old bound was $\left(m\left(p^{\alpha}-1\right)\right)^{h-1}$.
More information on the functional degree:
Erhard Aichinger, Jakob Moosbauer: Chevalley Warning type results on abelian groups. arXiv 2019.

