

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraic approach

A multivariate generalization

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Universität Linz and Universität Bonn

AAA81 Salzburg, February 2011

Compositions that are polynomial functions

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraic approach

A multivariate generalization

Question

Let \mathbb{K} be a field, and let $f, g : \mathbb{K} \to \mathbb{K}$. We assume

- f \circ g is polynomial,
- *g* is polynomial.

Can we conclude that

f is a polynomial on the range of g?

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Some observations

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraid approach

A multivariate generalization

Obvious fact

Let \mathbb{K} be a finite field, and let $f, g : \mathbb{K} \to \mathbb{K}$. If

 $f \circ g$ and g are polynomial,

then

f is polynomial.

The real case

On the reals, let $f(x) := \sqrt[3]{x}$, $g(x) := x^3$. Then

 $f \circ g(x) = x$ for all $x \in \mathbb{R}$,

but f is not polynomial.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

The complex numbers

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraic approach

A multivariate generalization

Theorem

Let $f, g : \mathbb{C} \to \mathbb{C}$, g nonconstant polynomial, $f \circ g$ polynomial. Then f is polynomial.

Sketch of the proof:

- By complex analysis arguments, f is holomorphic [Rudin, 1966, Chapter 10, p.221, Exercise 20].
- If, for large |x|, |g| ∼ |x^m|, |f ∘ g| ∼ |xⁿ|, then |f| ∼ |x^{n/m}|, and hence (Liouville) *f* is polynomial.

Some prerequisites

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraic approach

A multivariate generalization

Observation

Let \mathbb{K} be a field, $f, g, h : \mathbb{K} \to \mathbb{K}$ such that

 $h=f\circ g.$

Then for all $a, b \in \mathbb{K}$, we have

$$g(a) = g(b) \Longrightarrow h(a) = h(b).$$

Hilbert's Nullstellensatz

Let \mathbb{A} be an algebraically closed field, and let $f_1, \ldots, f_m, g \in \mathbb{A}[x_1, \ldots, x_n]$. TFAE: For all $\mathbf{a} \in \mathbb{A}^n$: $f_1^{\mathbb{A}}(\mathbf{a}) = \cdots = f_m^{\mathbb{A}}(\mathbf{a}) = 0 \Longrightarrow g^{\mathbb{A}}(\mathbf{a}) = 0$. $\exists r \in \mathbb{N}_0 \exists b_1, \ldots, b_m \in \mathbb{A}[x_1, \ldots, x_n]$: $\mathbf{a}^r = b_1 \cdot f_1 + \cdots + b_m \cdot f_m$.

Fried and MacRae's Theorem

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraic approach

A multivariate generalization

Theorem [Fried and MacRae, 1969]

Let \mathbb{K} be a field, $p, q, f, g \in \mathbb{K}[t]$, deg(p) > 0, deg(q) > 0. TFAE:

$$p(x) - q(y) \mid f(x) - g(y) \text{ in } \mathbb{K}[x, y].$$

$$\exists h \in \mathbb{K}[t] : f = h(p(t)) \text{ and } g = h(q(t)).$$

Proofs:

- Original proof: field of algebraic functions over some curve.
- Elementary algebraic proofs by E.A. and F. Binder [Binder, 1996].
- [Schicho, 1995]: J. Schicho provides a proof from category theory that suggests many generalizations.

From $\ensuremath{\mathbb{C}}$ to algebraically closed fields

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraic approach

A multivariate generalization

Theorem

then

Let \mathbb{A} be an algebraically closed field, let $f, g : \mathbb{A} \to \mathbb{A}$. If

g is polynomial, $f \circ g$ is polynomial, $g' \neq 0$,

f is polynomial.

A multivariate generalization

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraic approach

A multivariate generalization

Theorem

Let \mathbb{A} be an algebraically closed field, $n \in \mathbb{N}$, $p_1, \ldots, p_n \in \mathbb{A}[t]$, and let *f* be a function from \mathbb{A}^n to \mathbb{A} . We assume that

$$g: \mathbb{A}^n \to \mathbb{A}, (a_1, \ldots, a_n) \mapsto f(p_1^{\mathbb{A}}(a_1), \ldots, p_n^{\mathbb{A}}(a_n))$$

is a polynomial function, and that for each $i \in \{1, ..., n\}$, the derivative $p'_i \neq 0$. Then

f is a polynomial function.

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A proof by reduction to the unary case

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraic approach

A multivariate generalization

Theorem [Prager and Schwaiger, 2009]

Let \mathbb{K} be a field with $|\mathbb{K}| > \aleph_0$, and let $f : \mathbb{K}^n \to \mathbb{K}$. If for all $i \in \{1, ..., n\}$ and all $b_1, ..., b_n \in \mathbb{K}$,

$$\mathbf{x} \mapsto f(\mathbf{b}_1,\ldots,\mathbf{b}_{i-1},\mathbf{x},\mathbf{b}_{i+1},\ldots,\mathbf{b}_n)$$

is a polynomial function, then

f is a polynomial function.

A generalization of Fried and MacRae's Theorem

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraic approach

A multivariate generalization

Theorem (cf. [Schicho, 1995])

Let \mathbb{K} be a field, $n \in \mathbb{N}$, let $p_1, \ldots, p_n, q_1, \ldots, q_n$ be nonconstant polynomials in $\mathbb{K}[t]$, and let $f, g \in \mathbb{K}[t_1, \ldots, t_n]$. Then the following are equivalent:

$$f(\boldsymbol{x}_1,\ldots,\boldsymbol{x}_n) - g(\boldsymbol{y}_1,\ldots,\boldsymbol{y}_n) \in \langle \boldsymbol{p}_i(\boldsymbol{x}_i) - \boldsymbol{q}_i(\boldsymbol{y}_i) \mid i \in \{1,\ldots,n\} \rangle_{\mathbb{K}[\boldsymbol{x},\boldsymbol{y}]}$$

There is $h \in \mathbb{K}[t_1, \ldots, t_n]$ such that

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A generalization of "p(x) - p(y) is squarefree".

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraic approach

A multivariate generalization

Lemma

Let \mathbb{A} be an algebraically closed field, and let $p_1, \ldots, p_n, q_1, \ldots, q_n \in \mathbb{A}[t]$ with $p'_i \neq 0$ and $q'_i \neq 0$ for all *i*. Then

$$\langle oldsymbol{
ho}_i(oldsymbol{x}_i) - oldsymbol{q}_i(oldsymbol{y}_i) \, | \, i \in \{1,\ldots,n\}
angle_{\mathbb{A}[oldsymbol{x},oldsymbol{y}]}$$

is a radical ideal.

Remark: "Algebraically closed" can be dropped.

A remark on the composition of polynomial functions over algebraically closed fields

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraic approach

A multivariate generalization

Binder, F. (1996).

Fast computations in the lattice of polynomial rational function fields.

In Lakshman, Y. N., editor, *Proceedings of the 1996 international symposium on symbolic and algebraic computation, ISSAC '96, Zuerich, Switzerland, July* 24–26, 1996. New York, NY: ACM Press. 43-48. [ISBN 0-89791-796-0/pbk].

Fried, M. D. and MacRae, R. E. (1969). On curves with separated variables. *Math. Ann.*, 180:220–226.

Prager, W. and Schwaiger, J. (2009). Generalized polynomials in one and in several variables.

Math. Pannon., 20(2):189–208.

A remark on the composition of polynomial functions over algebraically closed fields Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraid approach

A multivariate generalization

Rudin, W. (1966).

Real and complex analysis. McGraw-Hill Book Co., New York.

Schicho, J. (1995).

A note on a theorem of Fried and MacRae. Arch. Math. (Basel), 65(3):239–243.

Erhard Aichinger and Stefan Steinerberger

Compositions

An algebraid approach

A multivariate generalization