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Polynomials

Definition

A = 〈A,F 〉 an algebra, n ∈ N. Polk (A) is the subalgebra of

AAk
= 〈{f : Ak → A}, “F pointwise”〉

that is generated by

(x1, . . . , xk )→ xi (i ∈ {1, . . . , k})

(x1, . . . , xk )→ a (a ∈ A).

Proposition

A be an algebra, k ∈ N. Then p ∈ Polk (A) iff there exists a term t
in the language of A, ∃m ∈ N, ∃a1,a2, . . . ,am ∈ A such that

p(x1, x2, . . . , xk ) = tA(a1,a2, . . . ,am, x1, x2, . . . , xk )

for all x1, x2, . . . , xk ∈ A.
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Function algebras – Clones

O(A) :=
⋃

k∈N{f ||| f : Ak → A}.

Definition of Clone

C ⊆ O(A) is a clone on A iff

1 ∀k , i ∈ N with i ≤ k :
(
(x1, . . . , xk ) 7→ xi

)
∈ C,

2 ∀n ∈ N,m ∈ N, f ∈ C[n],g1, . . . ,gn ∈ C[m]:

f (g1, . . . ,gn) ∈ C[m].

C[n] . . . the n-ary functions in C.

Pol(A) :=
⋃

k∈N Polk (A) is a clone on A.
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Functional Description of Clones

A algebra.

Pol(A) . . . the smallest clone on A that contains all projections, all
constant operations, all basic operations of A.

Clo(A) . . . the smallest clone on A that contains all projections,
and all basic operations of A = clone of term functions of A.
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Clones vs. term functions

Proposition

Every clone is the set of term functions of some algebra.

Proposition

Let C be a clone on A. Define A := 〈A, C〉. Then C = Clo(A).

Definition

A clone is constantive or a polynomial clone if it contains all unary
constant functions.

Proposition

Every constantive clone is the set of polynomial functions of some
algebra.
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Relational Description of Clones

Definition

I a finite set, ρ ⊆ AI , f : An → A. f preserves ρ (f B ρ) if
∀v1, . . . , vn ∈ ρ:

〈f (v1(i), . . . , vn(i)) ||| i ∈ I〉 ∈ ρ.

Remark

f B ρ⇐⇒ ρ is a subuniverse of 〈A, f 〉I .

Definition (Polymorphisms)

Let R be a set of finitary relations on A, ρ ∈ R.

Pöl({ρ}) := {f ∈ O(A) ||| f B ρ},
Pöl(R) :=

⋂
ρ∈R Pöl({ρ}).
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Relational Descriptions of Clones

Theorem

Let ρ be a finitary relation on A. Then Pöl({ρ}) is a clone.

Theorem (testing clone membership),
[Pöschel and Kalužnin, 1979, Folgerung 1.1.18]

Let C be a clone on A, n ∈ N, f : An → A. The set ρ := C[n] is a
subset of AAn

, hence a relation on A with index set I := An. Then

f ∈ C ⇐⇒ f B ρ.

Theorem (testing whether a relation is preserved)
[Pöschel and Kalužnin, 1979, Satz 1.1.19]

Let C be a clone on A, ρ a finitary relation on A with m elements.
Then

(∀c ∈ C : c B ρ)⇐⇒ (∀c ∈ C[m] : c B ρ).
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Finite Description of Clones

Definition

A clone is finitely generated if it is generated by a finite set of
finitary functions.

Definition

A clone C is finitely related if there is a finite set of finitary
relations R with C = Pöl(R).

Open and probably very hard

Given a finite F ⊆ O(A) and a finitary relation ρ on A. Decide
whether F generates Pöl({ρ}).
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Mal’cev operations

A a set. A function d : A3 → A is a Mal’cev operation if

d(a,a,b) = d(b,a,a) = b for all a,b ∈ A.

Typical example: d(x , y , z) := x − y + z.

An algebra is a Mal’cev algebra if it has a Mal’cev operation in its
ternary term functions. (Algebra with a Mal’cev term should be
used if the notion Mal’cev algebra causes confusion.)

A clone is a Mal’cev clone if it has a Mal’cev operation in its
ternary functions.
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Theorem [Mal’cev, 1954]
An algebra A is a Mal’cev algebra if for all B ∈ HSP A:
∀α, β ∈ Con B : α ◦ β = β ◦ α.
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A characterization of Mal’cev clones

Theorem ([Berman et al., 2010])
Let A be a finite set, C a clone on A. For n ∈ N, let

i(n) := max{|X | |||X is an independent subset of 〈A, C〉n}.

Then C is a Mal’cev clone if and only if ∃α ∈ N such that

∀n ∈ N : i(n) ≤ 2α n.

Note added: I have stated this Theorem incorrectly in my
presentation at Olomouc.
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Functionally complete algebras

Theorem (cf. [Hagemann and Herrmann, 1982]), forerunner in
[Istinger et al., 1979]
Let A be a finite algebra, |A| ≥ 2. Then Pol(A) = O(A) if and only
if Pol3(A) contains a Mal’cev operation, and A is simple and
nonabelian.

A is nonabelian iff [1A,1A] 6= 0A. Here, [., .] is the term condition
commutator.
This describes finite algebras with

Pol(A) = Pöl(∅).
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Affine complete algebras

Definition of affine completeness

An algebra A is affine complete if Pol(A) = Pöl(Con (A)).

Theorem [Hagemann and Herrmann, 1982,
Idziak and Słomczyńska, 2001, Aichinger, 2000]
Let A be a finite Mal’cev algebra. Then the following are
equivalent:

1 Every B ∈ H(A) is affine complete.

2 For all α ∈ Con (A), we have [α, α] = α.

Open and probably still very hard

Is affine completeness a decidable property of A = 〈A,F 〉 (of
finite type)?
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Other concepts of polynomial completeness

Concepts of Polynomial completeness

1 weak polynomial richness: [Idziak and Słomczyńska, 2001],
[Aichinger and Mudrinski, 2009b] (expanded groups)

2 polynomial richness: [Idziak and Słomczyńska, 2001],
[Aichinger and Mudrinski, 2009b] (expanded groups)

3 “commutator-completeness”: every commutator-preserving
function is a polynomial function: [Your results, AAA80]
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Conclusion about completeness properties

Completeness provides relations

Completeness results often provide a finite set R of relations on A
such that

Pol(A) = Pöl(R).

E.g., for every affine complete algebra, we have

Pol(A) = Pöl(Con (A)).
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Polynomially equivalent algebras

Definition

The algebras A and B are polynomially equivalent if A = B and
Pol (A) = Pol (B).

Task

Classify finite algebras modulo polynomial equivalence.

Task

A = 〈A,F 〉 algebra.

Classify all expansions 〈A,F ∪G〉 of A modulo polynomial
equivalence.

Determine all clones C with Pol(A) ⊆ C ⊆ O(A).
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Polynomially inequivalent expansions

Examples

〈Zp,+〉, p prime, has exactly 2 polynomially inequivalent
expansions.

[Aichinger and Mayr, 2007] 〈Zpq ,+〉, p,q primes, p 6= q, has
exactly 17 polynomially inequivalent expansions.

[Mayr, 2008] 〈Zn,+〉, n squarefree, has finitely many
polynomially inequivalent expansions.

[Kaarli and Pixley, 2001] Every finite Mal’cev algebra A with
typ(A) = {3} has finitely many polynomially inequivalent
expansions. (Semisimple rings with 1, groups without
abelian principal factors)
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Finitely many expansions =⇒ finitely related

Proposition, cf. [Pöschel and Kalužnin, 1979,
Charakterisierungssatz 4.1.3]

If A has only finitely many polynomially inequivalent expansions,
Pol(A) is finitely related.
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Examples where Pol(A) is finitely related

Theorem

Pol(A) is finitely related for the following algebras:

expansions of groups of order p2 (p a prime) [Bulatov, 2002],

Mal’cev algebras with congruence lattice of height at most 2
[Aichinger and Mudrinski, 2009a],

supernilpotent Mal’cev algebras
[Aichinger and Mudrinski, 2009a],

finite groups all of whose Sylow subgroups are abelian
[Mayr, 2009],

finite commutative rings with 1 [Mayr, 2009].

Often, we obtain concrete bounds for the arity of the relations.
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Algebras with many expansions

Examples

[Bulatov, 2002] 〈Zp × Zp,+〉, p prime, has countably many
polynomially inequivalent expansions.

[Ágoston et al., 1986] 〈{1,2,3}, ∅〉 has 2ℵ0 many
polynomially inequivalent expansions.
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Main Questions on Polynomial Equivalence

Question [Bulatov and Idziak, 2003, Problem 8]

A a finite set. How many polynomially inequivalent Mal’cev
algebras are there on A?

Equivalent question: A finite set. How many clones on A
contain all constant operations and a Mal’cev operation?

Does there exist a finite set with uncountably many
polynomial Mal’cev clones?

Known before 2009 [Idziak, 1999]
|A| ≤ 3: finite, |A| ≥ 4: ℵ0 ≤ x ≤ 2ℵ0 .
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Conjectures on the number of constantive
Mal’cev clones

Wild conjecture

On a finite set A , there are at most ℵ0 constantive Mal’cev clones.

Wilder conjecture 1 [Idziak, oral communication, 2006]

For every constantive Mal’cev clone C on a finite set, there is a
finite set of relations R such that C = Pöl(R).

Wilder conjecture 2

Every Mal’cev clone on a finite set is generated by finitely many
functions.
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Situation of these conjectures

Situation of these conjectures

Known before August 2009:

WC 1⇒WC, since the number of finite subsets of A∗ is
countable.

WC 2⇒WC, since the number of finite subsets of O(A) is
countable.

WC 2 is wrong [Idziak, 1999]
On Z2 × Z4, Pöl(Con (〈Z2 × Z4,+〉)) is not f.g.
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Finitely related Mal’cev clones

Wilder conjecture 1

For every constantive Mal’cev clone C on a finite set, there is a
finite set of relations R such that C = Pöl(R).

Finite relatedness vs. DCC

Suppose C is not finitely related. Then there is a sequence of
clones

C1 ⊃ C2 ⊃ C3 ⊃ · · ·

such that
⋂

i∈N Ci = C. Hence, it is sufficient for WC 1 to prove:

Claim

The set of Mal’cev clones on a finite set has no infinite
descending chains.
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How to represent a Mal’cev clone

Example: C = Pol(〈Z2,+〉).
c(0) = 0⇒ c(x + y) = c(x) + c(y).

The ternary functions of this clone

000 {c(000) ||| c ∈ C} = {0,1}
001 {c(001) ||| c ∈ C, c(000) = 0} = {0,1}
010 {c(010) ||| c ∈ C, c(000) = c(001) = 0} = {0,1}
011 {c(011) ||| c ∈ C, c(000) = c(001) = c(010) = 0} = {0}
100 {c(100) ||| c ∈ C, c(000) = · · · = c(011) = 0} = {0,1}
101 {c(101) ||| c ∈ C, c(000) = · · · = c(100) = 0} = {0}
110 {c(110) ||| c ∈ C, c(000) = · · · = c(101) = 0} = {0}
111 {c(111) ||| c ∈ C, c(000) = · · · = c(110) = 0} = {0}
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Abstract from Z2:
Clones on A = {0, . . . , t − 1} with group operation + and neutral
element 0:

Splittings at a

For a ∈ An, let

ϕ(C,a) := {f (a) ||| f (z) = 0 for all z ∈ An with z <lex a}.

Theorem

Let C,D clones on A with + and 0. If C ⊆ D and ϕ(C,a) = ϕ(D,a)
for all a ∈ A∗, then C = D.
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Consequence

From a linearly ordered set of clones with the same binary group
operation +, the mapping

C 7→ 〈ϕ(C,a) |||a ∈ A∗〉

is injective.



Polynomial
Completeness

of Mal’cev
algebras

Erhard
Aichinger

Polynomials

Clones
Description of Clones

Mal’cev

Completeness

Polynomial
equivalence
DCC

Theorems

Higman’s Theorem

Word embedding

hen ≤e achievement, austria ≤e australia

Higman’s Theorem [Higman, 1952]
Let A be a finite set. Then 〈A∗,≤e〉 has no infinite antichain.

Corollary

The set of upward closed subsets of A∗ has no infinite ascending
chain with respect to ⊆.
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The key observation

a ≤e b⇒ ϕ(C,b) ⊆ ϕ(C,a)

C . . . clone on Z2 containing +. We observe 0110 ≤e 0011101.
Claim:

ϕ(C,0011101) ⊆ ϕ(C,0110).

Proof

Let a ∈ ϕ(C,0011101),
f ∈ C[7] such that f (0011101) = a, f (z) = 0 for all z ∈ {0,1}7 with
z <lex 0011101.
Define

g(x1, x2, x3, x4) := f (0, x1, x2,1, x3, x4,1).

Then g(0110) = f (0011101) = a and g(z) = 0 for z ∈ {0,1}4 with
z <lex 0110. Thus a ∈ ϕ(C,0110).
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Abstract from Z2:
Clones on A = {0, . . . , t − 1} with group operation + and neutral
element 0:

Theorem

Let C be a constantive clone on A with +. a,b ∈ A∗ with a ≤e b.
Then ϕ(C,b) ⊆ ϕ(C,a).

Consequence

For every subset S of A, the set {x ∈ A∗ |||ϕ(C,x) ⊆ S} is an
upward closed subset of 〈A∗,≤e〉.
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Applying Higman’s Theorem

Let L be an infinite descending chain of Mal’cev clones. Then the
mapping

r : L −→ (U(A∗,≤e))
2A

C 7−→ 〈 {x ∈ A∗ ||| ϕ(C,x) ⊆ S} ||| S ⊆ A 〉

is injective and inverts the ordering.

Hence it produces an infinite ascending chain in (U(A∗,≤e))
2A

,
and hence in U(A∗,≤e). Contradiction.
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From + to Mal’cev

Splitting pairs (“indices and witnesses” in
[Bulatov and Dalmau, 2006], [Aichinger, 2000])
Let a ∈ An. In a Mal’cev clone C, the role of

ϕ(C,a) = {c(a) ||| c ∈ C[n], c(z) = 0 for all z ∈ An with z <lex a}

is taken by the relation

{(f (a),g(a)) ||| f ,g ∈ C[n],∀z ∈ An : z <lex a ⇒ f (z) = g(z)}.
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Constantive Mal’cev clones on finite sets are
finitely related

Theorem [Aichinger, 2009]
Let A be a finite set, and letM be the set of all constantive
Mal’cev clones on A. Then we have:

1 There is no infinite descending chain in (M,⊆).

2 For every constantive Mal’cev clone C, there is a finitary
relation ρ on A such that C = Pöl({ρ}).

3 The setM is finite or countably infinite.
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Is the assumption “constantive” needed?

The constantive place in the proof

Let a ∈ ϕ(C,0011101), f ∈ C[7] such that f (0011101) = a,
f (z) = 0 for all z ∈ {0,1}7 with z <lex 0011101. Define

g(x1, x2, x3, x4) := f (0, x1, x2,1, x3, x4,1).

Then g(0110) = f (0011101) = a and g(z) = 0 for z ∈ {0,1}4 with
z <lex 0110. Thus a ∈ ϕ(C,0110).

Repair

g(x1, x2, x3, x4) := f (x1, x1, x2, x2, x3, x4, x2).

Limitations

010 ≤e 0210,

012 ≤e 2012, g(x1, x2, x3) := f (x3, x1, x2, x3), 003 <lex 012,
not 3003 <lex 2012.
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Generalization 1

How to get rid of “constantive”

We need:

a new ordering ≤E that replaces ≤e,

a proof that 〈A∗,≤E〉 has DCC and no infinite antichains,

a proof of a ≤E b⇒ ϕ(C,b) ⊆ ϕ(C,a).



Polynomial
Completeness

of Mal’cev
algebras

Erhard
Aichinger

Polynomials

Clones
Description of Clones

Mal’cev

Completeness

Polynomial
equivalence
DCC

Theorems

Mal’cev clones on finite sets are finitely related

Theorem [Aichinger, Mayr, McKenzie, 2009]

Let A be a finite set, and letM be the set of all Mal’cev clones on
A. Then we have:

1 There is no infinite descending chain in (M,⊆).

2 For every Mal’cev clone C, there is a finitary relation ρ on A
such that C = Pöl({ρ}).

3 The setM is finite or countably infinite.

“Constantive” has been dropped. Do we need “Mal’cev”?
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Consequences

Mal’cev algebras

1 Up to term equivalence and renaming of elements, there are
only countably many finite Mal’cev algebras.

2 Every finite Mal’cev algebra can be represented by a single
finitary relation.

Corollary – The clone lattice above a Mal’cev clone

Let C be a Mal’cev clone on a finite set A.

1 The interval I[C,O(A)] has finitely many atoms
[Pöschel and Kalužnin, 1979],

2 every clone D with C ⊂ D contains one of these atoms,

3 If I[C,O(A)] is infinite, it contains a clone that is not f.g. (cf.
König’s Lemma).
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