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THE QUESTION
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The Question

Let K be a field and let S C K be a finite set.
We are interested in the following question:

Given: Black-box access to a sparse polynomial p € K[ X1, ..., X,].

Asked: Does p(xz) = 0 hold for all z € S™?
Example: Does p = 1 + X2 +2XY + XY Z vanish on {—1,1}3?
Goal: Decide by testing only some points x € S™.
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Why sparsity might help

W LetS={-1,1}.
W Letae S"andletp:=[]_,(X; — a).

B We have {z € S" | p(z) # 0} = {(—a1,...,—an)}.

B Given only black-box access, we would have to test all 2™ points to decide
Vz e S : p(x) = 0.

B However, p has M (p) = 2™ monomials and is therefore not sparse.
B Perhaps testing sparse identities is easier.
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What happened before

Theorem [Clausen, Dress, Grabmeier, Karpinski '91]

Let n € NNK = S = GF(q) and let m > 2. There exists a testing set T C S™ with
IT| < (n(q — 1))'82(m) with the following property:

For all p € K[X1, ..., X,] with M (p) < m monomials and degy, p < g we have

(Vx e 8" :p(x) =0) < (Vxz €T :p(x)=0).

— Test at most (n(q — 1))"°82(M®) points.
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What happened before

Theorem [Kiltz, Winterhof "04]

Letn € N, let K = GF(q), let v € K be an element of order dand let S = {~* | 1 <i < d}.

Let p € K[X1,...,X,] withp # 0 and degy,p < d and let W := {z € S™ | p(z) # 0}.

Then [W| > 3.

= Test 10 - M (p) random points and find a non-zero with high probability.
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What we did

Theorem [EA, SG, PH]

Let K := GF(q) be the field with ¢ > 2 elements, let ¢ := Z:; let m € N and let

S C K\ {0}. There is a testing set T C S™ of size at most (n-|S|)'°#: (™) with the following
property:
For all p € K[ Xy, ..., X,] with M (p) < m, we have

(Ve e S" :p(z) =0) < (Vz €T :p(x)=0).

— Similar bounds for more general S.
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THE PROOF
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Absorbing Polynomials

Definition

Let K be an integral domain, let S C K be a set, let n € N and let s € S™. A polynomial
p € K[X4,...,X,] is called absorbing at s for S™ if for all z € S™ with 3i € n: z; = s;, we
have p(z) = 0.
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Absorbing Polynomials

Definition
Let K be an integral domain, let S C K be a set, let n € N and let s € S™. A polynomial
p € K[X4,...,X,] is called absorbing at s for S™ if for all z € S™ with 3i € n: z; = s;, we

have p(z) = 0.

Let S ={-1,0,1} CRandp:= (X; — 1)(X2 + 1). Then p is absorbing at (1, —1).

X2
11-4|-2
0(-2]-1

-110|0

0

= |lOo|O|O

X1

Goal: Find lower bound on the number of monomials of absorbing polynomials.
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Absorbing Polynomials

Question: Does every absorbing polynomial p that is nonzero on S™ satisfy M (p) > 2"?
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Absorbing Polynomials

Question: Does every absorbing polynomial p that is nonzero on S™ satisfy M (p) > 2"?

The polynomial p; := X; ... X, is absorbing at s = (0,...,0) and M (p;) = 1.
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Absorbing Polynomials

Question: Does every absorbing polynomial p that is nonzero on S™ satisfy M (p) > 2"?

1

The polynomial p; := X ... X, is absorbing at s = (0,...,0) and M (p;) =

Example

B Letr >2andlet S = {1,a} C C with a = exp(2Z).

W Letpy =Y, o(IT/=) X;)* € C[Xy, ..., X, 1]

B The polynom|al p2 is nonzero at (1,...,1) and absorbing at s = (a, ..., a).
B Note that M (ps) =r.

M Multiplying such polynomials yields nonzero absorbing polynomials ¢,, on S™("=1) of
size M(q,) = r™ = 2'°82("n,
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Absorbing Polynomials

Lemma

Assume the following:

B K integral domain, S C K \ {0}

Bp=> pcle)X® e K[Xy,...,X,]withc(e) #ZOforalle e E

B p absorbing at s € S™ and there exists a ¢ € S™ such that p(¢) # 0
B r € Nsuch that X" is constant on S

Then for all d € {0, ..., — 1}" there exists an e € E such that for all 1 < i < n, we have
di §éT €;.
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Absorbing Polynomials

B Seeking a contradiction, let d € {0, ..., — 1}™ be a counterexample.
B Letg:= X/~% . X7dnp The polynomial g is also absorbing at s and g(t) # 0.
B On S™, every monomial of g is constant in at least one argument by our choice of d.

B Therefore 0 # g(t) = ZUE{O,:{}"(_1)U1+.”+ung(s¥lt}_u17 s Sﬁ”t}f“") =0,a
contradiction.
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Remote points

Let n,r € N. We say that £ C r™ has remote points if for all d € r™, we have ¢ € E such
that e; # d; for all i € n.

Lemma

Letn € N,r > 2. Then every E C r™ that has remote points satisfies |E| > (-2 ).

=1

Proof.

B ForecEletD(e):={decr™|Vien:d; #e;}.

B We have |D(e)| = (r—1)" foralle € E.

B We have 1" = (J .z D(e).

B Therefore 7" = [, cp D(e)| < > o |D(e)| = |E|- (r — 1)™.
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Monomials of absorbing polynomials

Lemma

Let K be an integral domain, let S C K \ {0} and let » € N such that X" is constant
on S. Letp € K[X3,...,X,] be absorbing at s € S™ and let ¢t € S™ with p(¢) # 0. Then

M(p) > (7:1)"-
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Monomials of absorbing polynomials

Lemma

Let K be an integral domain, let S C K \ {0} and let » € N such that X" is constant
on S. Letp € K[X3,...,X,] be absorbing at s € S™ and let ¢t € S™ with p(¢) # 0. Then
M(p) = (75)™

W Ifp=> cpcle)Xe where E C N" is the set of exponents, then

E' :={(e; modr,...,e, modr)|ee€ E}C{0,...r—1}"

must have remote points.

B Therefore |[E| > |E'| > (ZZ5)™.
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Barrington’s trick

Lemma

Let K be an integral domain, let S C K \ {0} and let »r € Nsuch thatVz € S : 2" = 1. Let
t=-"-. Letp € K[Xy,...,X,] be a polynomial that does not vanish on S™. Then for all

il

a € S™ there exists a b € S™ with p(b) # 0 and d(a,b) := |{i | a; # b;}| < log,(M(p)).
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Barrington’s trick

Lemma

Let K be an integral domain, let S C K \ {0} and let »r € Nsuch thatVz € S : 2" = 1. Let
t =-5. Letp € K[X1,...,X,] be a polynomial that does not vanish on S™. Then for all
a € S™ there exists a b € S™ with p(b) # 0 and d(a,b) := |{i | a; # b;}| < log,(M(p)).

B Choose b € S™ with p(b) # 0 such that {i | a; # b;} = {i1,...,ir} has minimal size.
B Let h be the polynomial obtained from setting z; = b; for all i € n with a; = b;.

B Now h depends on the k remaining variables and is absorbing on
{ai;,bi, } ¥ -+ x {a;,,b;,, } by minimality.
B Hence M(p) > M(h) > t* and therefore log,(M (p)) > k.
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Barrington’s trick

Let K = GF(q) be a finite field, let S C K \ {0} and let t = 4=;. Leta € 5™. Form > 2

let T,, := {& € S™ | log,(m) > d(a,z)}. Letp € K[X;,..., ] with M(p) < m. Then
|Trn| < (n]S])'8:(™) and

l\?|

Ve e S" :p(z) =0 < Vz €T, :p(z) =0.

B The property Vo € S™ : p(z) =0 < Vz € T, : p(xz) = 0 follows from the last lemma
because z9~! = 1o0n S.

B Size bound: We make log,(m) choices for i € n and z; € S.
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How did we get here?

Our results about absorbing polynomials can be used to prove the following:

Let ¢t be a term in n variables over the alternating group (Ay, -, (-)~'). Assume that the
term function ¢t4+ satisfies 1 € {x1,...,z,} = t*(z1,...,2,) = 1 and that ¢4+ is not
always 1. Then t has length at least 272.
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How did we get here?

Our results about absorbing polynomials can be used to prove the following:

Lemma
Let ¢t be a term in n variables over the alternating group (Ay, -, (-)~'). Assume that the
term function ¢t4+ satisfies 1 € {x1,...,z,} = t*(z1,...,2,) = 1 and that ¢4+ is not

always 1. Then t has length at least 272.

Example
The term t(z1, z2) = [x1,z2] = x] "5 z122 satisfies these properties.

—
Juy
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How did we get here?

Our results about absorbing polynomials can be used to prove the following:

Let ¢t be a term in n variables over the alternating group (Ay, -, (-)~'). Assume that the
term function ¢t4+ satisfies 1 € {x1,...,z,} = t*(z1,...,2,) = 1 and that ¢4+ is not
always 1. Then t has length at least 272.

The term t(x1, x2) = [21, 2] = 27 ‘a5 'z, 2, satisfies these properties.

Note: It is known that identity testing over (Ay, -, (-)~1) (but not over (A4, -, (-)~1,[-,-])) can
be done in polynomial time. This does not yield a better algorithm, but it might guide the
way towards identity testing over (Sy, -, (-)71).
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