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THE QUESTION



The Question

Let K be a field and let S ⊆ K be a finite set.
We are interested in the following question:
Given: Black-box access to a sparse polynomial p ∈ K[X1, . . . , Xn].

Asked: Does p(x) = 0 hold for all x ∈ Sn?

Example: Does p = 1 +X2 + 2XY +XY Z vanish on {−1, 1}3?
Goal: Decide by testing only some points x ∈ Sn.
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Why sparsity might help

Example
■ Let S = {−1, 1}.
■ Let a ∈ Sn and let p :=

∏n
i=1(Xi − ai).

■ We have {x ∈ Sn | p(x) ̸= 0} = {(−a1, . . . ,−an)}.
■ Given only black-box access, we would have to test all 2n points to decide

∀x ∈ Sn : p(x) = 0.

■ However, p has M(p) = 2n monomials and is therefore not sparse.

■ Perhaps testing sparse identities is easier.
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What happened before

Theorem [Clausen, Dress, Grabmeier, Karpinski ’91]
Let n ∈ N,K = S = GF (q) and let m ≥ 2. There exists a testing set T ⊆ Sn with
|T | ≤ (n(q − 1))log2(m) with the following property:
For all p ∈ K[X1, . . . , Xn] with M(p) ≤ m monomials and degXi

p < q we have

(∀x ∈ Sn : p(x) = 0) ⇐⇒ (∀x ∈ T : p(x) = 0).

=⇒ Test at most (n(q − 1))log2(M(p)) points.
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What happened before

Theorem [Kiltz, Winterhof ’04]
Let n ∈ N, let K = GF (q), let γ ∈ K be an element of order d and let S = {γi | 1 ≤ i ≤ d}.
Let p ∈ K[X1, . . . , Xn] with p ̸= 0 and degXi

p < d and let W := {x ∈ Sn | p(x) ̸= 0}.
Then |W | ≥ dn

M(p) .

=⇒ Test 10 ·M(p) random points and find a non-zero with high probability.
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What we did

Theorem [EA, SG, PH]
Let K := GF (q) be the field with q > 2 elements, let t := q−1

q−2 , let m ∈ N and let
S ⊆ K\{0}. There is a testing set T ⊆ Sn of size at most (n · |S|)logt(m) with the following
property:
For all p ∈ K[X1, . . . , Xn] with M(p) ≤ m, we have

(∀x ∈ Sn : p(x) = 0) ⇐⇒ (∀x ∈ T : p(x) = 0).

=⇒ Similar bounds for more general S.
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THE PROOF



Absorbing Polynomials

Definition
Let K be an integral domain, let S ⊆ K be a set, let n ∈ N and let s ∈ Sn. A polynomial
p ∈ K[X1, . . . , Xn] is called absorbing at s for Sn if for all x ∈ Sn with ∃i ∈ n : xi = si, we
have p(x) = 0.

Example
Let S = {−1, 0, 1} ⊆ R and p := (X1 − 1)(X2 + 1). Then p is absorbing at (1,−1).

-1
0
1
X2

-1 0 1 X1

0
-2
-4

0
-1
-2

0
0
0

Goal: Find lower bound on the number of monomials of absorbing polynomials.
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Absorbing Polynomials

Question: Does every absorbing polynomial p that is nonzero on Sn satisfy M(p) ≥ 2n?

Example
The polynomial p1 := X1 . . . Xn is absorbing at s = (0, . . . , 0) and M(p1) = 1.

Example

■ Let r ≥ 2 and let S = {1, α} ⊆ C with α = exp( 2iπr ).

■ Let p2 :=
∑r−1

k=0(
∏r−1

j=1 Xj)
k ∈ C[X1, . . . , Xr−1].

■ The polynomial p2 is nonzero at (1, . . . , 1) and absorbing at s = (α, . . . , α).

■ Note that M(p2) = r.

■ Multiplying such polynomials yields nonzero absorbing polynomials qn on Sn(r−1) of
size M(qn) = rn = 2log2(r)n.
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Absorbing Polynomials

Lemma
Assume the following:

■ K integral domain, S ⊆ K \ {0}
■ p =

∑
e∈E c(e)Xe ∈ K[X1, . . . , Xn] with c(e) ̸= 0 for all e ∈ E

■ p absorbing at s ∈ Sn and there exists a t ∈ Sn such that p(t) ̸= 0

■ r ∈ N such that Xr is constant on S

Then for all d ∈ {0, . . . , r − 1}n there exists an e ∈ E such that for all 1 ≤ i ≤ n, we have
di ̸≡r ei.
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Absorbing Polynomials

Proof.
■ Seeking a contradiction, let d ∈ {0, . . . , r − 1}n be a counterexample.

■ Let g := Xr−d1
1 . . . Xr−dn

n p. The polynomial g is also absorbing at s and g(t) ̸= 0.

■ On Sn, every monomial of g is constant in at least one argument by our choice of d.

■ Therefore 0 ̸= g(t) =
∑

u∈{0,1}n(−1)u1+···+ung(su1
1 t1−u1

1 , . . . , sun
n t1−un

n ) = 0, a
contradiction.
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Remote points

Definition
Let n, r ∈ N. We say that E ⊆ rn has remote points if for all d ∈ rn, we have e ∈ E such
that ei ̸= di for all i ∈ n.

Lemma
Let n ∈ N, r ≥ 2. Then every E ⊆ rn that has remote points satisfies |E| ≥ ( r

r−1 )
n.

Proof.
■ For e ∈ E let D(e) := {d ∈ rn | ∀i ∈ n : di ̸= ei}.
■ We have |D(e)| = (r − 1)n for all e ∈ E.

■ We have rn =
⋃

e∈E D(e).

■ Therefore rn = |
⋃

e∈E D(e)| ≤
∑

e∈E |D(e)| = |E| · (r − 1)n.
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Monomials of absorbing polynomials

Lemma
Let K be an integral domain, let S ⊆ K \ {0} and let r ∈ N such that Xr is constant
on S. Let p ∈ K[X1, . . . , Xn] be absorbing at s ∈ Sn and let t ∈ Sn with p(t) ̸= 0. Then
M(p) ≥ ( r

r−1 )
n.

Proof.
■ If p =

∑
e∈E c(e)Xe, where E ⊆ Nn is the set of exponents, then

E′ := {(e1 mod r, . . . , en mod r) | e ∈ E} ⊆ {0, . . . r − 1}n

must have remote points.

■ Therefore |E| ≥ |E′| ≥ ( r
r−1 )

n.
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Barrington’s trick

Lemma
Let K be an integral domain, let S ⊆ K \ {0} and let r ∈ N such that ∀x ∈ S : xr = 1. Let
t = r

r−1 . Let p ∈ K[X1, . . . , Xn] be a polynomial that does not vanish on Sn. Then for all
a ∈ Sn there exists a b ∈ Sn with p(b) ̸= 0 and d(a, b) := |{i | ai ̸= bi}| ≤ logt(M(p)).

Proof.
■ Choose b ∈ Sn with p(b) ̸= 0 such that {i | ai ̸= bi} = {i1, . . . , ik} has minimal size.

■ Let h be the polynomial obtained from setting xi = bi for all i ∈ n with ai = bi.

■ Now h depends on the k remaining variables and is absorbing on
{ai1 , bi1} × · · · × {aik , bik} by minimality.

■ Hence M(p) ≥ M(h) ≥ tk and therefore logt(M(p)) ≥ k.
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Barrington’s trick

Theorem
Let K = GF (q) be a finite field, let S ⊆ K \ {0} and let t = q−1

q−2 . Let a ∈ Sn. For m ≥ 2

let Tm := {x ∈ Sn | logt(m) ≥ d(a, x)}. Let p ∈ K[X1, . . . , Xn] with M(p) ≤ m. Then
|Tm| ≤ (n|S|)logt(m) and

∀x ∈ Sn : p(x) = 0 ⇐⇒ ∀x ∈ Tm : p(x) = 0.

Proof.
■ The property ∀x ∈ Sn : p(x) = 0 ⇐⇒ ∀x ∈ Tm : p(x) = 0 follows from the last lemma

because xq−1 = 1 on S.

■ Size bound: We make logt(m) choices for i ∈ n and xi ∈ S.
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How did we get here?

Our results about absorbing polynomials can be used to prove the following:

Lemma
Let t be a term in n variables over the alternating group (A4, ·, (·)−1). Assume that the
term function tA4 satisfies 1 ∈ {x1, . . . , xn} ⇒ tA4(x1, . . . , xn) = 1 and that tA4 is not
always 1. Then t has length at least 2n−2.

Example
The term t(x1, x2) = [x1, x2] = x−1

1 x−1
2 x1x2 satisfies these properties.

Note: It is known that identity testing over (A4, ·, (·)−1) (but not over (A4, ·, (·)−1, [·, ·])) can
be done in polynomial time. This does not yield a better algorithm, but it might guide the
way towards identity testing over (S4, ·, (·)−1).
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