TESTING SPARSE POLYNOMIAL IDENTITIES OVER SMALL FIELDS

<u>Simon Grünbacher</u>, Erhard Aichinger and Paul Hametner Institute for Algebra Austrian Science Fund FWF P33878

Der Wissenschaftsfonds.

THE QUESTION

The Question

Let \mathbb{K} be a field and let $S \subseteq \mathbb{K}$ be a finite set.

We are interested in the following question:

Given: Black-box access to a sparse polynomial $p \in \mathbb{K}[X_1, \dots, X_n]$.

Asked: Does p(x) = 0 hold for all $x \in S^n$?

Example: Does $p = 1 + X^2 + 2XY + XYZ$ vanish on $\{-1, 1\}^3$?

Goal: Decide by testing only some points $x \in S^n$.

Why sparsity might help

Example

- Let $S = \{-1, 1\}$.
- Let $a \in S^n$ and let $p := \prod_{i=1}^n (X_i a_i)$.
- We have $\{x \in S^n \mid p(x) \neq 0\} = \{(-a_1, \dots, -a_n)\}.$

Given only black-box access, we would have to test all 2^n points to decide $\forall x \in S^n : p(x) = 0.$

However, p has $M(p) = 2^n$ monomials and is therefore not sparse.

Perhaps testing sparse identities is easier.

What happened before

Theorem [Clausen, Dress, Grabmeier, Karpinski '91]

Let $n \in \mathbb{N}, \mathbb{K} = S = GF(q)$ and let $m \ge 2$. There exists a testing set $T \subseteq S^n$ with $|T| \le (n(q-1))^{\log_2(m)}$ with the following property:

For all $p \in \mathbb{K}[X_1, \dots, X_n]$ with $M(p) \leq m$ monomials and $\deg_{X_i} p < q$ we have

$$(\forall x \in S^n : p(x) = 0) \iff (\forall x \in T : p(x) = 0).$$

 \implies Test at most $(n(q-1))^{\log_2(M(p))}$ points.

What happened before

Theorem [Kiltz, Winterhof '04]

Let $n \in \mathbb{N}$, let $\mathbb{K} = GF(q)$, let $\gamma \in \mathbb{K}$ be an element of order d and let $S = \{\gamma^i \mid 1 \leq i \leq d\}$. Let $p \in \mathbb{K}[X_1, \ldots, X_n]$ with $p \neq 0$ and $\deg_{X_i} p < d$ and let $W := \{x \in S^n \mid p(x) \neq 0\}$. Then $|W| \geq \frac{d^n}{M(p)}$.

 \implies Test $10 \cdot M(p)$ random points and find a non-zero with high probability.

What we did

Theorem [EA, SG, PH]

Let $\mathbb{K} := GF(q)$ be the field with q > 2 elements, let $t := \frac{q-1}{q-2}$, let $m \in \mathbb{N}$ and let $S \subseteq \mathbb{K} \setminus \{0\}$. There is a testing set $T \subseteq S^n$ of size at most $(n \cdot |S|)^{\log_t(m)}$ with the following property:

For all $p \in \mathbb{K}[X_1, \ldots, X_n]$ with $M(p) \leq m$, we have

$$(\forall x \in S^n : p(x) = 0) \iff (\forall x \in T : p(x) = 0).$$

 \implies Similar bounds for more general *S*.

THE PROOF

Definition

Let *K* be an integral domain, let $S \subseteq K$ be a set, let $n \in \mathbb{N}$ and let $s \in S^n$. A polynomial $p \in K[X_1, \ldots, X_n]$ is called absorbing at *s* for S^n if for all $x \in S^n$ with $\exists i \in \underline{n} : x_i = s_i$, we have p(x) = 0.

Definition

Let *K* be an integral domain, let $S \subseteq K$ be a set, let $n \in \mathbb{N}$ and let $s \in S^n$. A polynomial $p \in K[X_1, \ldots, X_n]$ is called absorbing at *s* for S^n if for all $x \in S^n$ with $\exists i \in \underline{n} : x_i = s_i$, we have p(x) = 0.

Example

Let $S = \{-1, 0, 1\} \subseteq \mathbb{R}$ and $p := (X_1 - 1)(X_2 + 1)$. Then p is absorbing at (1, -1).

Goal: Find lower bound on the number of monomials of absorbing polynomials.

Question: Does every absorbing polynomial p that is nonzero on S^n satisfy $M(p) \ge 2^n$?

Question: Does every absorbing polynomial p that is nonzero on S^n satisfy $M(p) \ge 2^n$?

Example

The polynomial $p_1 := X_1 \dots X_n$ is absorbing at $s = (0, \dots, 0)$ and $M(p_1) = 1$.

Question: Does every absorbing polynomial p that is nonzero on S^n satisfy $M(p) \ge 2^n$?

Example

The polynomial $p_1 := X_1 \dots X_n$ is absorbing at $s = (0, \dots, 0)$ and $M(p_1) = 1$.

Example

- Let $r \ge 2$ and let $S = \{1, \alpha\} \subseteq \mathbb{C}$ with $\alpha = \exp(\frac{2i\pi}{r})$.
- Let $p_2 := \sum_{k=0}^{r-1} (\prod_{j=1}^{r-1} X_j)^k \in \mathbb{C}[X_1, \dots, X_{r-1}].$
- The polynomial p_2 is nonzero at $(1, \ldots, 1)$ and absorbing at $s = (\alpha, \ldots, \alpha)$.
- Note that $M(p_2) = r$.
- Multiplying such polynomials yields nonzero absorbing polynomials q_n on $S^{n(r-1)}$ of size $M(q_n) = r^n = 2^{\log_2(r)n}$.

Lemma

Assume the following:

• *K* integral domain, $S \subseteq K \setminus \{0\}$

•
$$p = \sum_{e \in E} c(e) X^e \in K[X_1, \dots, X_n]$$
 with $c(e) \neq 0$ for all $e \in E$

 \blacksquare *p* absorbing at $s \in S^n$ and there exists a $t \in S^n$ such that $p(t) \neq 0$

 $\blacksquare \ r \in \mathbb{N} \text{ such that } X^r \text{ is constant on } S$

Then for all $d \in \{0, ..., r-1\}^n$ there exists an $e \in E$ such that for all $1 \le i \le n$, we have $d_i \not\equiv_r e_i$.

Proof.

- Seeking a contradiction, let $d \in \{0, \ldots, r-1\}^n$ be a counterexample.
- Let $g := X_1^{r-d_1} \dots X_n^{r-d_n} p$. The polynomial g is also absorbing at s and $g(t) \neq 0$.
- **I** On S^n , every monomial of g is constant in at least one argument by our choice of d.
- Therefore $0 \neq g(t) = \sum_{u \in \{0,1\}^n} (-1)^{u_1 + \dots + u_n} g(s_1^{u_1} t_1^{1-u_1}, \dots, s_n^{u_n} t_n^{1-u_n}) = 0$, a contradiction.

Remote points

Definition

Let $n, r \in \mathbb{N}$. We say that $E \subseteq \underline{r}^n$ has remote points if for all $d \in \underline{r}^n$, we have $e \in E$ such that $e_i \neq d_i$ for all $i \in \underline{n}$.

Lemma

Let $n \in \mathbb{N}, r \ge 2$. Then every $E \subseteq \underline{r}^n$ that has remote points satisfies $|E| \ge (\frac{r}{r-1})^n$.

Proof.

For
$$e \in E$$
 let $D(e) := \{ d \in \underline{r}^n \mid \forall i \in \underline{n} : d_i \neq e_i \}.$

• We have
$$|D(e)| = (r-1)^n$$
 for all $e \in E$.

• We have
$$\underline{r}^n = \bigcup_{e \in E} D(e)$$
.

Therefore $r^n = |\bigcup_{e \in E} D(e)| \le \sum_{e \in E} |D(e)| = |E| \cdot (r-1)^n$.

Monomials of absorbing polynomials

Lemma

Let *K* be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that X^r is constant on *S*. Let $p \in K[X_1, \ldots, X_n]$ be absorbing at $s \in S^n$ and let $t \in S^n$ with $p(t) \neq 0$. Then $M(p) \ge (\frac{r}{r-1})^n$.

Monomials of absorbing polynomials

Lemma

Let *K* be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that X^r is constant on *S*. Let $p \in K[X_1, \ldots, X_n]$ be absorbing at $s \in S^n$ and let $t \in S^n$ with $p(t) \neq 0$. Then $M(p) \ge (\frac{r}{r-1})^n$.

Proof.

If $p = \sum_{e \in E} c(e) X^e$, where $E \subseteq \mathbb{N}^n$ is the set of exponents, then

$$E' := \{ (e_1 \mod r, \dots, e_n \mod r) \mid e \in E \} \subseteq \{0, \dots, r-1\}^n$$

must have remote points.

• Therefore $|E| \ge |E'| \ge (\frac{r}{r-1})^n$.

Barrington's trick

Lemma

Let *K* be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that $\forall x \in S : x^r = 1$. Let $t = \frac{r}{r-1}$. Let $p \in K[X_1, \ldots, X_n]$ be a polynomial that does not vanish on S^n . Then for all $a \in S^n$ there exists a $b \in S^n$ with $p(b) \neq 0$ and $d(a, b) := |\{i \mid a_i \neq b_i\}| \leq \log_t(M(p))$.

Barrington's trick

Lemma

Let *K* be an integral domain, let $S \subseteq K \setminus \{0\}$ and let $r \in \mathbb{N}$ such that $\forall x \in S : x^r = 1$. Let $t = \frac{r}{r-1}$. Let $p \in K[X_1, \ldots, X_n]$ be a polynomial that does not vanish on S^n . Then for all $a \in S^n$ there exists a $b \in S^n$ with $p(b) \neq 0$ and $d(a, b) := |\{i \mid a_i \neq b_i\}| \leq \log_t(M(p))$.

Proof.

- Choose $b \in S^n$ with $p(b) \neq 0$ such that $\{i \mid a_i \neq b_i\} = \{i_1, \dots, i_k\}$ has minimal size.
- Let h be the polynomial obtained from setting $x_i = b_i$ for all $i \in \underline{n}$ with $a_i = b_i$.
- Now *h* depends on the *k* remaining variables and is absorbing on $\{a_{i_1}, b_{i_1}\} \times \cdots \times \{a_{i_k}, b_{i_k}\}$ by minimality.
- $\blacksquare \text{ Hence } M(p) \geq M(h) \geq t^k \text{ and therefore } \log_t(M(p)) \geq k.$

Barrington's trick

Theorem

Let $\mathbb{K} = GF(q)$ be a finite field, let $S \subseteq K \setminus \{0\}$ and let $t = \frac{q-1}{q-2}$. Let $a \in S^n$. For $m \ge 2$ let $T_m := \{x \in S^n \mid \log_t(m) \ge d(a, x)\}$. Let $p \in K[X_1, \ldots, X_n]$ with $M(p) \le m$. Then $|T_m| \le (n|S|)^{\log_t(m)}$ and

$$\forall x \in S^n : p(x) = 0 \iff \forall x \in T_m : p(x) = 0.$$

Proof.

- The property $\forall x \in S^n : p(x) = 0 \iff \forall x \in T_m : p(x) = 0$ follows from the last lemma because $x^{q-1} = 1$ on S.
- Size bound: We make $\log_t(m)$ choices for $i \in \underline{n}$ and $x_i \in S$.

How did we get here?

Our results about absorbing polynomials can be used to prove the following:

Lemma

Let t be a term in n variables over the alternating group $(A_4, \cdot, (\cdot)^{-1})$. Assume that the term function t^{A_4} satisfies $1 \in \{x_1, \ldots, x_n\} \Rightarrow t^{A_4}(x_1, \ldots, x_n) = 1$ and that t^{A_4} is not always 1. Then t has length at least 2^{n-2} .

How did we get here?

Our results about absorbing polynomials can be used to prove the following:

Lemma

Let t be a term in n variables over the alternating group $(A_4, \cdot, (\cdot)^{-1})$. Assume that the term function t^{A_4} satisfies $1 \in \{x_1, \ldots, x_n\} \Rightarrow t^{A_4}(x_1, \ldots, x_n) = 1$ and that t^{A_4} is not always 1. Then t has length at least 2^{n-2} .

Example

The term $t(x_1, x_2) = [x_1, x_2] = x_1^{-1} x_2^{-1} x_1 x_2$ satisfies these properties.

How did we get here?

Our results about absorbing polynomials can be used to prove the following:

Lemma

Let t be a term in n variables over the alternating group $(A_4, \cdot, (\cdot)^{-1})$. Assume that the term function t^{A_4} satisfies $1 \in \{x_1, \ldots, x_n\} \Rightarrow t^{A_4}(x_1, \ldots, x_n) = 1$ and that t^{A_4} is not always 1. Then t has length at least 2^{n-2} .

Example

The term $t(x_1, x_2) = [x_1, x_2] = x_1^{-1} x_2^{-1} x_1 x_2$ satisfies these properties.

Note: It is known that identity testing over $(A_4, \cdot, (\cdot)^{-1})$ (but not over $(A_4, \cdot, (\cdot)^{-1}, [\cdot, \cdot])$) can be done in polynomial time. This does not yield a better algorithm, but it might guide the way towards identity testing over $(S_4, \cdot, (\cdot)^{-1})$.