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Polynomials

Definition
A = 〈A,F 〉 an algebra, n ∈ N. Polk (A) is the subalgebra of

AAk
= 〈{f : Ak → A}, “F pointwise”〉

that is generated by
◮ (x1, . . . , xk ) 7→ xi (i ∈ {1, . . . , k})
◮ (x1, . . . , xk ) 7→ a (a ∈ A).

Proposition
A be an algebra, k ∈ N. Then p ∈ Polk (A) iff there exists a term
t in the language of A, ∃m ∈ N, ∃a1,a2, . . . ,am ∈ A such that

p(x1, x2, . . . , xk ) = tA(a1,a2, . . . ,am, x1, x2, . . . , xk )

for all x1, x2, . . . , xk ∈ A.



Function algebras – Clones

O(A) :=
⋃

k∈N{f ||| f : Ak → A}.

Definition of Clone
C ⊆ O(A) is a clone on A iff

1. ∀k , i ∈ N with i ≤ k :
(
(x1, . . . , xk ) 7→ xi

)
∈ C,

2. ∀n ∈ N,m ∈ N, f ∈ C[n],g1, . . . ,gn ∈ C[m]:

f (g1, . . . ,gn) ∈ C[m].

C[n] . . . the n-ary functions in C.

Pol(A) :=
⋃

k∈N Polk (A) is a clone on A.



Functional Description of Clones

A algebra.

Pol(A) . . . the smallest clone on A that contains all projections,
all constant operations, all basic operations of A.



Clones of polynomial functions

Definition
A clone is constantive or a polynomial clone if it contains all
unary constant functions.

Proposition
Every constantive clone is the set of polynomial functions of
some algebra.



Relational Description of Clones

Definition
I a finite set, ρ ⊆ AI, f : An → A. f preserves ρ (f ⊲ ρ) if
∀v1, . . . , vn ∈ ρ:

〈f (v1(i), . . . , vn(i)) ||| i ∈ I〉 ∈ ρ.

Remark
f ⊲ ρ ⇐⇒ ρ is a subuniverse of 〈A, f 〉I .

Definition (Polymorphisms)
Let R be a set of finitary relations on A, ρ ∈ R.

Polym({ρ}) := {f ∈ O(A) ||| f ⊲ ρ},
Polym(R) :=

⋂

ρ∈R Polym({ρ}).



Finite Description of Clones

Definition
A clone is finitely generated if it is generated by a finite set of
finitary functions.

Definition
A clone C is finitely related if there is a finite set of finitary
relations R with C = Polym(R).



Polynomial completeness properties

Questions
Given: A finite algebra with Mal’cev term.

1. Asked: ρ such that Pol(A) = Polym({ρ}).

2. Pol(A) = O(A)? Is A polynomially complete = functionally
complete?

3. Pol(A) = Polym(Con(A))? Is A affine complete?

4. Other polynomial completeness properties: polynomially
rich, weakly polynomially rich.



Functionally complete algebras

Theorem (cf.
[Hagemann and Herrmann, Coll.Math.Soc.J.Bolyai, 1982]),
forerunner in [Istinger, Kaiser, Pixley, Coll.Math., 1979]
Let A be a finite algebra, |A| ≥ 2. Then Pol(A) = O(A) if and
only if Pol3(A) contains a Mal’cev operation, and A is simple
and nonabelian.

A is nonabelian iff [1A,1A] 6= 0A. Here, [., .] is the term condition
commutator.
This describes finite algebras with

Pol(A) = Polym(∅).



Descriptions of affine completeness

Proposition
A = 〈A,F 〉 algebra with Mal’cev term. TFAE

1. A is affine complete, i.e., Pol(A) = Comp(A).
(Comp(A) := Polym(Con(A))).

2. ∀k ∈ N, ∀f : Ak → A with

∀(a1, . . . ,ak ), (b1, . . . ,bk ) ∈ Ak ,∀α ∈ Con(A) :
(
(a1,b1) ∈ α, . . . , (ak ,bk ) ∈ α

)
⇒

(f (a1, . . . ,ak ), f (b1, . . . ,bk )) ∈ α.

we have f ∈ Polk (A).

3. ∀f :
(
Con(〈A,F ∪ {f}〉) = Con(〈A,F 〉)

)
=⇒ f ∈ Pol(A).

4. Every finitary operation on A that can be interpolated at
each 2-element subset of its domain by a polynomial
function is a polynomial function.



Computing polynomial functions of groups

elgar{erhard}: gap

gap> RequirePackage("sonata");
# SONATA by Aichinger, Binder, Ecker, Mayr, Noebauer
# loaded.

gap> G := SymmetricGroup (3);
Sym( [ 1 .. 3 ] )

gap> P := PolynomialNearRing (G);
PolynomialNearRing( Sym( [ 1 .. 3 ] ) )
gap> Size (P);
324

gap> G1 := GroupReduct (P);;

gap> Size (PolynomialNearRing (G1)); time;
4251528
176



Computing polynomial functions on groups

gap> G := AlternatingGroup (5);
Alt( [ 1 .. 5 ] )

gap> Size (PolynomialNearRing (G));
4887367798068925748932275227377460386566
0850176000000000000000000000000000000000
000000000000000000000000000
gap> time;
3708

gap> 60^60;
4887367798068925748932275227377460386566
0850176000000000000000000000000000000000
000000000000000000000000000



Searching affine complete groups

gap> G := SymmetricGroup (3);;

gap> P := PolynomialNearRing (SymmetricGroup (3));;
gap> Size (P);
324

gap> C := LocalInterpolationNearRing (P, 2);
LocalInterpolationNearRing( PolynomialNearRing(

Sym( [ 1 .. 3 ] ) ), 2 )

gap> Size (C);
2916



Searching affine complete groups

Conclusion
There is a unary congruence preserving function on S3 that is
not a polynomial function. Hence S3 is not affine complete.



Searching affine complete groups

We try D4 × C2
∼= Dih(C4 × C2).

gap> P := PolynomialNearRing (
Group ((1,2,3,4), (1,2)(3,4), (5,6)));

PolynomialNearRing(
Group([ (1,2,3,4), (1,2)(3,4), (5,6) ]) )

gap> Size (P);
256

gap> C := CompatibleFunctionNearRing(
Group ((1,2,3,4), (1,2)(3,4), (5,6)));

< transformation nearring with 7 generators >

gap> Size (C);
256



Searching affine complete groups

gap> C1 := LocalInterpolationNearRing (P, 2);
LocalInterpolationNearRing(
PolynomialNearRing( Group(
[ (1,2,3,4), (1,2)(3,4), (5,6) ]) ), 2 )

gap> time;
45363

gap> Size (C1);
256



Searching affine complete groups

Conclusion
Every unary congruence preserving function of D4 × C2 is
polynomial.

Questions

1. Binary congruence preserving functions = binary
polynomial functions?

2. 3-ary?

3. 4-ary?

4. Is affine completeness an algorithmically decidable
property of a finite group?



Searching affine complete groups

Answers

1. [Ecker, CMB, 2006]: there are binary congruence
preserving functions on D4 × C2 that are not polynomials.

2. Hence: no.

3. Hence: no.

4. Open. No example of a finite group G known with
Comp2(G) = Pol2(G) and G not affine complete.
Decidable for nilpotent groups [EA and Ecker, IJAC, 2006];
also decidable if Con(G) is distributive.



Results on affine complete groups

Theorem
[Hagemann and Herrmann, Coll.Math.Soc.J.Bolyai, 1982]
G finite group. Every homomorphic image of G is affine
complete ⇔ ∀N E G : [N,N] = N.

Theorem [Kaarli, AU17, 1983,
Hagemann and Herrmann, Coll.Math.Soc.J.Bolyai, 1982]
G finite group, Con(G) distributive. Then G is affine complete
⇔ ∀N E G : [N,N] = N.

Remark: Both results hold if G is a finite algebra with Mal’cev
term.

Theorem [Nöbauer, Monatsh. Math., 1976]
A finite abelian group. A is affine complete ⇔
∃ groups B,C : A ∼= B × C and exp(B) = exp(C).



Results on affine complete groups

Theorem [Ecker, CMB, 2006]
A finite abelian group. Dih(A) = A ⋊ C2 is affine complete ⇔
∃ groups B,C : A ∼= B × C, exp(B) = 2, |C| odd, C is affine
complete.

Theorem [EA, Acta Szeged, 2002, Ecker, CMB, 2006]
A,B nilpotent affine complete groups, G = A ⋊ B,
{x 7→ b−1 · x · b |||b ∈ B} is a non-trivial fixed-point-free
subgroup of 〈Aut(A) ∩ Pol(A), ◦〉. Then G is affine complete.

Example
A := C3 × C3, B := C2 × C2, G = C2 × Dih(C3 × C3). Then G is
affine complete.



Results on affine completeness by investigating the
clone of polynomial functions

Theorem [Scott, Monatsh. Math., 1969]
Let A, B be finite groups such that A × B has no
skew-congruences. Then “Pol(A × B) = Pol(A)× Pol(B)”.

Remark: Holds also for A,B finite expanded groups
[EA, Proc. Edinburgh MS, 2001], and finite algebras with
Mal’cev term [Kaarli and Mayr, Monatsh.Math., 2010].

Corollary
A, B finite algebras in a cp variety, A,B affine complete, A × B
has no skew congruences. Then A × B is affine complete.



The clone of polynomial functions

Theorem [Higman, Proc.Int.Conf.Th.Groups, 1967]
G finite nilpotent group of class k . Then ∃p ∈ R[t] : deg(p) = k
and Poln(G) = 2p(n).

Theorem [Berman and Blok, AU24, 1987]
A finite nilpotent algebra of finite type and prime power order in
cm variety. Then ∃p : Poln(A) = 2p(n).



The clone of congruence preserving functions

Definition – Congruence preserving functions
A algebra. Comp(A) := PolymA(Con(A)).

Theorem (cf. [EA, AU44, 2000])
A finite algebra, cd and cp (as a single algebra). Then
Comp(A) is generated by its 3-ary members.

Corollary
A finite algebra, cd and cp, Comp3(A) = Pol3(A). Then A is
affine complete.



Splitting lattices

Definition
L lattice. L splits :⇔ ∃ε, δ ∈ L: 0 < ε and δ < 1 and

∀α ∈ L : α ≥ ε or α ≤ δ.



Clones with splitting congruence lattices

Theorem
A finite algebra, Con(A) splits. Then |Compn(A)| ≥ 22n

.

Theorem
G finite nilpotent group, Con(G) splits. Then G is not affine
complete.

Corollary
All affine complete 2-groups of order ≤ 32 are abelian.

|G| = 32, G 6∼= C4 × C4 × C2, G 6∼= (C2)
5 =⇒ Con(G) splits.



Clones with splitting congruence lattices

Theorem - a consequence of
[Nöbauer, Monatsh. Math., 1976]
A finite abelian group is affine complete if and only if its
congruence lattice does not split.



Comp(A) not finitely generated

Theorem
A finite algebra with Mal’cev term, Con(A) a simple lattice,
|Con(A)| > 2. TFAE:

1. Comp(A) is finitely generated.

2. Con(A) does not split.

Theorem [EA, AU47, 2002]
G := 〈Cp2 × Cp,+〉, p prime, k ∈ N. Then G := 〈G,Compk (G)〉

satisfies Polk (G) = Compk (G), but G is not affine complete.



Decidability of affine completeness for groups

Theorem
A finite, cd and cp. Then A is affine complete iff
Pol3(A) = Comp3A.

Theorem [EA and Ecker, IJAC, 2006]
G finite group, nilpotent of class k . Then G is affine complete iff
Polk+1(G) = Compk+1(G).

Remark: holds if G is a k-supernilpotent algebra with a Mal’cev
term.
What does supernilpotent mean?



Binary commutators

Description of binary commutators
[EA and Mudrinski, AU63, 2010]
A algebra with Mal’cev term, α, β ∈ Con(A). Then [α, β] is the
congruence generated by

{(p(a, c),p(b,d)) ||| (a,b) ∈ α, (c,d) ∈ β,p ∈ Pol2(A),

p(a, c) = p(a,d) = p(b, c)}.



Binary commutators for expanded groups

Description of binary commutators
[Scott, Proc.Near-ring conference, 1997]
V expanded group, A,B ideals of V. Then [A,B] is the ideal
generated by

{p(a,b) |||a ∈ A,b ∈ B,p ∈ Pol2(V),

p(0,0) = p(a,0) = p(0,b) = 0}.

[A,B] is also the ideal generated by

{p(a,b) |||a ∈ A,b ∈ B,q ∈ Pol2(V),

q(x ,0) = q(0, x) for all x ∈ V}.

Remark: q(x , y) := p(x , y) − p(x ,0) + p(0,0)− p(0, y).



Higher commutators

Definition of higher commutators [Bulatov, CTGA13, 2001]

◮ For n ∈ N, n-ary commutators were defined in
[Bulatov, CTGA13, 2001] by using a term condition similar
to the definition of binary commutators.

◮ In [Mudrinski, Diss, 2009, EA and Mudrinski, AU63, 2010],
properties of these higher commutators in cp varieties
were investigated.



Higher commutators for Mal’cev algebras

Description of higher commutators
[Mudrinski, Diss, 2009], [EA and Mudrinski, AU63, 2010,
Corollary 6.10]
A algebra with Mal’cev term, α1, . . . , αn ∈ Con(A). Then
[α1, . . . , αn] is the congruence generated by

{
(
f (a1, . . . ,an), f (b1, . . . ,bn)

)
||| (a1,b1) ∈ α1, . . . , (an,bn) ∈ αn,

f ∈ Poln(A), f (x) = f (a1, . . . ,an) for all

x ∈ ({a1,b1} × · · · × {an,bn}) \ {(b1, . . . ,bn)}.}



Higher commutators for expanded groups

Description of higher commutators for expanded groups
V expanded group, A1, . . . ,An E V. Then [A1, . . . ,An] is the
ideal generated by

{f (a1, . . . ,an) ||| ∀i : ai ∈ Ai , f ∈ Poln(V),

∀x1, . . . , xn : f (0, x2, x3, . . . , xn−1, xn) = · · ·

= · · · = f (x1, x2, x3, . . . , xn−1,0) = 0}



Higher commutators for expanded groups

Example
〈G, ∗〉 group, A,B,C E G. Then
[A,B,C] = [[A,B],C] ∗ [[A,C],B] ∗ [[B,C],A].

Example
R commutative ring with unit, A,B,C E R. Then
[A,B,C] = {

∑n
i=1 aibici |||n ∈ N0,∀i : ai ∈ A,bi ∈ B, ci ∈ C}.

Example
V := 〈Z4,+,2xyz〉. Then [[V ,V ],V ] = 0 and [V ,V ,V ] = {0,2}.



Nilpotency

Definition of the lower central series
γ1(A) := 1A, γn(A) := [1A, γn−1(A)] for n ≥ 2.

Nilpotency
A algebra with Mal’cev term. A is nilpotent of class k :⇔
γk (A) 6= 0A, γk+1(A) = 0A.

The “lower superseries”
σn(A) := [1A, . . . ,1A

︸ ︷︷ ︸

n

].

Supernilpotency
A algebra with Mal’cev term. A is supernilpotent of class k :⇔
σk (A) 6= 0A, σk+1(A) = 0A.



Properties of supernilpotency

Varieties
V cp variety, n ∈ N.

Sn(V) := {A ∈ V |||A supernilpotent of class ≤ n}.

Then Sn(V) is a subvariety of V.



A non-property of supernilpotency

Example [EA and Mudrinski, manuscr., 2012]
V := 〈(Z7)

3,+, f :
(

x
y
z

)

7→
(

0 1 0
0 0 1
0 0 0

)

·
(

x
y
z

)

, g1,g2〉 with g1,g2

bilinear such that

g1(ei ,ej ,ek ) :=

{
e1 if i , j , k ≥ 2,
0 else.

g2(ei ,ej ,ek ) :=

{
e2 if i , j , k = 3,
0 else.

V1 := 〈V ,+, f ,g1〉, V2 := 〈V ,+, f ,g2〉.

Then [1,1,1]V1
= [1,1,1]V2

= [1, [1,1]V1
]V1

= [1, [1,1]V2
]V2

= 0
and

[1,1,1]V > 0, [1, [1,1]V]V > 0.

Conclusion
Functions that preserve the nilpotency class or the
supernilpotency class need not form a clone.



Supernilpotency and the free spectrum

Supernilpotency via absorbing polynomials
V expanded group. Then V is supernilpotent of class ≤ k : ⇔
The 0-map is the only f ∈ Polk+1(V) with

∀x1, . . . , xk+1 : 0 ∈ {x1, . . . , xk+1} ⇒ f (x1, . . . , xk+1) = 0.

Theorem (cf. [Berman and Blok, AU24, 1987])
A finite algebra in cp and congruence uniform variety, k ∈ N.
TFAE:

1. ∃p ∈ R[t] : deg(p) = k and |FV(A)(n)| ≤ 2p(n) for all n ∈ N.

2. A is supernilpotent of class ≤ k .

Assumption ”congruence uniform” can be dropped by
[Hobby and McKenzie, Cont.Math.76, 1988, Lemma 12.4].
For expanded groups, one can generalise Higman’s proof
[Higman, Proc.Int.Conf.Th.Groups, 1967] for groups.



Connections between nilpotency and supernilpotency

Supernilpotency implies Nilpotency
A algebra with a Mal’cev term. Then A supernilpotent of
class k ⇒ A nilpotent of class ≤ k .

Follows easily from [Mudrinski, Diss, 2009].

Examples

◮ FZ6 := 〈Z6,+, f 〉 with f (0) = f (3) = 3,
f (1) = f (2) = f (4) = f (5) = 0 is nilpotent of class 2 and not
supernilpotent.

◮ 〈Z4,+,2x1x2,2x1x2x3,2x1x2x3x4, . . .〉 is nilpotent of class 2
and not supernilpotent.



Deeper connections between nilpotency and
supernilpotency

Theorem [Berman and Blok, AU24, 1987],
[Kearnes, AU42, 1999]
A finite, finite type, with Mal’cev term. TFAE

1. A is nilpotent and isomorphic to a direct product of
algebras of prime power order.

2. A is supernilpotent.

Theorem
G group, k ∈ N. G is nilpotent of class k ⇔ G is supernilpotent
of class k .

Proof: Commutator calculus from group theory.



Connections between Nilpotency and Supernilpotency

Theorem [EA and Mudrinski, manuscr., 2012]
V = 〈V ,+,−,0,g1,g2, . . .〉 expanded group, m ≥ 2 such that

1. all gi have arity ≤ m,

2. all mappings x 7→ gi(v1, . . . , vi−1, x , vi+1, . . . , vmi ) are
endomorphisms of 〈V ,+〉 (multilinearity),

3. V is nilpotent of class k .

Then V is supernilpotent of class ≤ mk−1.

Idea of the proof: expand using multilinearity and then use
commutator calculus.



Lattices forcing supernilpotency

Theorem [EA and Mudrinski, arXiv, 2012]
A finite algebra with Mal’cev term. If Con(A) does not split, then
A is supernilpotent of class k with
k ≤ (number of atoms of Con(A))− 1.

Corollary
The congruence lattice of a finite non-nilpotent algebra with
Mal’cev term splits.



Lattices that do not split strongly

Definition
L lattice. L splits strongly :⇔ ∃ε, δ ∈ L: 0 < ε ≤ δ < 1 and

∀α ∈ L : α ≥ ε or α ≤ δ.



Lattices that do not split strongly

Theorem [EA and Mudrinski, arXiv, 2012]
A finite algebra with Mal’cev term. Con(A) does not split
strongly. Then ∃n ∈ N0, B,C1, . . . ,Cn such that
A ∼= B × C1 × · · · × Cn, B is supernilpotent, each Ci is simple,
and the direct product is skew-free.



Finite generation from supernilpotence

Theorem [EA and Mudrinski, AU63, 2010,
Proposition 6.18]
A has Mal’cev term, A supernilpotent of class k . Then Pol(A) is
generated by Polm(A) for m := max(3, k).

Corollary
A algebra with Mal’cev term. If Con(A) does not split strongly,
then Comp(A) is generated by Compk (A) with
k := max(3, (number of atoms of Con(A))− 1).

Corollary2

For A algebra with Mal’cev term s.t. Con(A) does not split
strongly, affine completeness is an algorithmically decidable
property.



Lattices with (APMI)

Definition
L lattice. L has adjacent projective meet irreducibles : ⇔
∀ meet irreducible α, β ∈ L:

I[α,α+] ! I[β, β+] ⇒ α+ = β+.

Index 1

Index 2

Index 4

Index 8

G

1

2
3

4

56 7

Con(C2 × C4)
does not have
(APMI).

Index 1

Index 2

Index 3

Index 4

Index 6

Index 8

Index 12

Index 24

G

1

2 3 4

5

6

78 910 1112

1314 1516

17

1819 20

Con(S3 × C2 × C2) has
(APMI).

G

1

2

34

56

7

8

9

Con(C11 × C2 ×
C2) has (APMI).



Algebras with (APMI) congruence lattices

Algebras that have (APMI) congruence lattices

◮ All Ai similar finite simple algebras with Mal’cev term. Then
Con(A1 × · · · × An) has (APMI).

◮ Every finite distributive lattice has (APMI).
◮ G finite group, G ∈ V(S3) Then Con(G) has (APMI).
◮ A satisfies (SC1) ⇒ Con(A) satisfies (APMI)

[Idziak and Słomczyńska, JPAA, 2001].

Definition [Idziak and Słomczyńska, JPAA, 2001]
A with Mal’cev term. A has (SC1) :⇔ ∀B ∈ HSI(A):

∀α ∈ Con(B) : [α, µB] = 0 ⇒ α ≤ µB.



Structure of (APMI)-lattices

Theorem [EA and Mudrinski, AU60, 2009]
L finite modular lattice with (APMI), |L| > 1. Then ∃m ∈ N,
∃β0, . . . , βm ∈ D(L) such that

1. 0 = β0 < β1 < · · · < βm = 1,

2. each I[βi , βi+1] is a simple complemented modular lattice.



Pictures of (APMI)-lattices

Index 1

Index 2

Index 3

Index 4

Index 6

Index 8

Index 12

Index 24

G

1

2 3 4

5

6

78 910 11
12

1314 1516

17

1819 20

Con(S3 × C2 × C2)

Index 1

Index 2

Index 4

Index 11

Index 22

Index 44

G

1

2

34

56

7

8

9

Con(A5 × C2 × C2)



Affine completeness of of
congruence-(APMI)-algebras

Theorem [EA and Mudrinski, AU60, 2009]
V finite expanded group, congruence-(APMI).
U0 < U1 < . . . < Un maximal chain in D(Id (V)). Then V is
affine complete ⇔

1. V has (SC1),

2. ∀i ∈ {0, . . . ,n − 1}: [Ui+1,Ui+1]V ≤ Ui ⇒ I[Ui ,Ui+1] is not
a 2-element chain.



Examples of congruence-(APMI)-groups

Index 1

Index 2

Index 3

Index 4

Index 6

Index 8

Index 12

Index 24

G

1

2 3 4

5

6

78 910 11
12

1314 1516

17

1819 20

S3 × C2 × C2 is not affine complete

Index 1

Index 2

Index 3

Index 4

Index 6

Index 9

Index 12

Index 18

Index 36

G

1

2

3

4

5

67 8

9

10

11

12
13

14

Dih(C2 × C3 × C3) is affine
complete (cf. [Ecker, CMB, 2006])



The clone of congruence preserving functions of
(APMI)-algebras

Theorem [EA and Mudrinski, AU60, 2009]
V finite expanded group, congruence-(APMI). Then the clone
Comp(V) is generated by Comp2(V).

Corollary
V finite expanded group, congruence-(APMI). V is affine
complete if and only if Comp2(V) = Pol2(V).



A natural occurrence of the condition (APMI)

Theorem [EA and Mudrinski, AU60, 2009] (Unary
compatible function extension property)
V finite expanded group. TFAE:

1. Every unary partial congruence preserving function on V
can be extended to a total function.

2. All unary total congruence perserving functions on
quotients of V can be lifted to V.

3. V is congruence-(APMI), and ∀ α, β ∈ D(Con(V)),
γ ∈ Con(V) : α ≺D(Con(V)) β, α ≺Con(V) γ < β ⇒
|0/γ| = 2 ∗ |0/α|.



Unary compatible function extension property

Index 1

Index 2

Index 3

Index 4

Index 6

Index 8

Index 12

Index 24

G

1

2 3 4

5

6

78 910 11
12

1314 1516

17

1819 20

The group S3 × C2 × C2 has the
unary CFEP.

G

1

23 4

5

6

The group SL(2,5) is not
congruence-(APMI), hence (CFEP)
fails.



Other concepts of polynomial completeness

Definition - polynomial richness
[Idziak and Słomczyńska, JPAA, 2001]
A = 〈A,F 〉 is polynomially rich if every finitary f that preserves:

1. all congruences

2. all TCT-types of prime quotients in Con(A)

is a polynomial.

Theorem [EA and Mudrinski, AU60, 2009]
V finite expanded group, congruence-(APMI).
U0 < U1 < . . . < Un maximal chain in D(Id (V)). Then V is
polynomially rich ⇔

1. V has (SC1),

2. ∀i ∈ {0, . . . ,n − 1}: [Ui+1,Ui+1]V ≤ Ui ⇒ I[Ui ,Ui+1] is not
a 2-element chain or the module P0(V)(Ui+1/Ui) is
pol.equiv. to a simple module over the full matrix ring over
a field of prime order.
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