Polynomial completeness properties

Erhard Aichinger

Department of Algebra Johannes Kepler University Linz, Austria

June 2012, AAA84

Polynomials

Definition

 $\mathbf{A} = \langle \mathbf{A}, \mathbf{F} \rangle$ an algebra, $n \in \mathbb{N}$. Pol_k(\mathbf{A}) is the subalgebra of

$$\mathbf{A}^{\mathbf{A}^{k}} = \langle \{ f : \mathbf{A}^{k} \to \mathbf{A} \}, \mathbf{``F} \text{ pointwise''} \rangle$$

that is generated by

$$(x_1,\ldots,x_k)\mapsto x_i \ (i\in\{1,\ldots,k\})$$
$$(x_1,\ldots,x_k)\mapsto a \ (a\in A).$$

Proposition

A be an algebra, $k \in \mathbb{N}$. Then $\mathbf{p} \in \text{Pol}_k(\mathbf{A})$ iff there exists a term t in the language of \mathbf{A} , $\exists m \in \mathbb{N}$, $\exists a_1, a_2, \dots, a_m \in A$ such that

$$\mathbf{p}(x_1, x_2, \ldots, x_k) = \mathbf{t}^{\mathbf{A}}(a_1, a_2, \ldots, a_m, x_1, x_2, \ldots, x_k)$$

for all $x_1, x_2, \ldots, x_k \in A$.

$$\mathcal{O}(A) := \bigcup_{k \in \mathbb{N}} \{ f \mid f : A^k \to A \}.$$

Definition of Clone $C \subseteq O(A)$ is a clone on *A* iff

- 1. $\forall k, i \in \mathbb{N} \text{ with } i \leq k: ((x_1, \dots, x_k) \mapsto x_i) \in \mathcal{C},$
- **2**. $\forall n \in \mathbb{N}, m \in \mathbb{N}, f \in \mathcal{C}^{[n]}, g_1, \dots, g_n \in \mathcal{C}^{[m]}$:

$$f(g_1,\ldots,g_n)\in \mathcal{C}^{[m]}.$$

 $\mathcal{C}^{[n]}$... the *n*-ary functions in \mathcal{C} .

$$Pol(\mathbf{A}) := \bigcup_{k \in \mathbb{N}} Pol_k(\mathbf{A})$$
 is a clone on A .

A algebra.

 $Pol(A) \dots$ the smallest clone on *A* that contains all projections, all constant operations, all basic operations of **A**.

Definition

A clone is *constantive* or *a polynomial clone* if it contains all unary constant functions.

Proposition

Every constantive clone is the set of polynomial functions of some algebra.

Relational Description of Clones

Definition *I* a finite set, $\rho \subseteq A^{I}$, $f : A^{n} \to A$. *f* preserves ρ ($f \rhd \rho$) if $\forall v_{1}, \ldots, v_{n} \in \rho$:

$$\langle f(v_1(i),\ldots,v_n(i)) | i \in I \rangle \in \rho.$$

Remark

 $f \triangleright \rho \iff \rho$ is a subuniverse of $\langle A, f \rangle^{I}$.

Definition (Polymorphisms)

Let *R* be a set of finitary relations on *A*, $\rho \in R$.

$$\begin{array}{rcl} \mathsf{Polym}(\{\rho\}) & := & \{f \in \mathcal{O}(\mathcal{A}) \mid f \rhd \rho\}, \\ \mathsf{Polym}(\mathcal{R}) & := & \bigcap_{\rho \in \mathcal{R}} \mathsf{Polym}(\{\rho\}). \end{array}$$

Definition

A clone is finitely generated if it is generated by a finite set of finitary functions.

Definition

A clone C is finitely related if there is a finite set of finitary relations R with C = Polym(R).

Questions

Given: A finite algebra with Mal'cev term.

- 1. Asked: ρ such that $Pol(\mathbf{A}) = Polym(\{\rho\})$.
- Pol(A) = O(A)? Is A polynomially complete = functionally complete?
- 3. Pol(A) = Polym(Con(A))? Is A affine complete?
- 4. Other polynomial completeness properties: polynomially rich, weakly polynomially rich.

Theorem (cf.

[Hagemann and Herrmann, Coll.Math.Soc.J.Bolyai, 1982]), forerunner in [Istinger, Kaiser, Pixley, Coll.Math., 1979]

Let **A** be a finite algebra, $|A| \ge 2$. Then Pol(A) = O(A) if and only if $Pol_3(A)$ contains a Mal'cev operation, and **A** is simple and nonabelian.

A is nonabelian iff $[1_A, 1_A] \neq 0_A$. Here, [., .] is the term condition commutator.

This describes finite algebras with

 $\mathsf{Pol}(\mathbf{A}) = \mathsf{Polym}(\emptyset).$

Descriptions of affine completeness

Proposition

 $\mathbf{A} = \langle \mathbf{A}, \mathbf{F} \rangle$ algebra with Mal'cev term. TFAE

- A is affine complete, i.e., Pol(A) = Comp(A). (Comp(A) := Polym(Con(A))).
- 2. $\forall k \in \mathbb{N}, \forall f : A^k \rightarrow A$ with

$$orall (oldsymbol{a}_1, \dots, oldsymbol{a}_k), (oldsymbol{b}_1, \dots, oldsymbol{b}_k) \in oldsymbol{A}^k, orall lpha \in \operatorname{Con}(oldsymbol{A}) :$$

 $((oldsymbol{a}_1, oldsymbol{b}_1) \in lpha, \dots, (oldsymbol{a}_k, oldsymbol{b}_k) \in lpha) \Rightarrow$
 $(f(oldsymbol{a}_1, \dots, oldsymbol{a}_k), f(oldsymbol{b}_1, \dots, oldsymbol{b}_k)) \in lpha.$

we have $f \in Pol_k(\mathbf{A})$.

- 3. $\forall f : (\operatorname{Con}(\langle A, F \cup \{f\} \rangle) = \operatorname{Con}(\langle A, F \rangle)) \Longrightarrow f \in \operatorname{Pol}(\mathbf{A}).$
- 4. Every finitary operation on *A* that can be interpolated at each 2-element subset of its domain by a polynomial function is a polynomial function.

Computing polynomial functions of groups

```
elgar{erhard}: gap
```

```
gap> RequirePackage("sonata");
# SONATA by Aichinger, Binder, Ecker, Mayr, Noebauer
# loaded.
```

```
gap> G := SymmetricGroup (3);
Sym( [ 1 .. 3 ] )
```

```
gap> P := PolynomialNearRing (G);
PolynomialNearRing( Sym( [ 1 .. 3 ] ) )
gap> Size (P);
224
```

```
324
```

```
gap> G1 := GroupReduct (P);;
```

gap> Size (PolynomialNearRing (G1)); time; 4251528 176

Computing polynomial functions on groups

```
gap> G := AlternatingGroup (5);
Alt( [ 1 .. 5 ] )
```

```
gap> G := SymmetricGroup (3);;
gap> P := PolynomialNearRing (SymmetricGroup (3));;
gap> Size (P);
324
gap> C := LocalInterpolationNearRing (P, 2);
LocalInterpolationNearRing( PolynomialNearRing(
    Sym( [ 1 .. 3 ] ) ), 2 )
```

```
gap> Size (C);
2916
```

Conclusion

There is a unary congruence preserving function on S_3 that is not a polynomial function. Hence S_3 is not affine complete.

Searching affine complete groups

```
We try D_4 \times C_2 \cong \text{Dih}(C_4 \times C_2).
gap> P := PolynomialNearRing (
              Group ((1,2,3,4), (1,2)(3,4), (5,6)));
PolynomialNearRing(
   Group([(1,2,3,4), (1,2)(3,4), (5,6)]))
qap> Size (P);
256
qap> C := CompatibleFunctionNearRing(
              Group ((1,2,3,4), (1,2)(3,4), (5,6)));
< transformation nearring with 7 generators >
qap> Size (C);
256
```

```
gap> C1 := LocalInterpolationNearRing (P, 2);
LocalInterpolationNearRing(
PolynomialNearRing( Group(
[ (1,2,3,4), (1,2)(3,4), (5,6) ]) ), 2 )
gap> time;
45363
gap> Size (C1);
256
```

Searching affine complete groups

Conclusion

Every unary congruence preserving function of $D_4 \times C_2$ is polynomial.

Questions

- 1. Binary congruence preserving functions = binary polynomial functions?
- 2. 3-ary?
- 3. 4-ary?
- 4. Is affine completeness an algorithmically decidable property of a finite group?

Searching affine complete groups

Answers

- 1. [Ecker, CMB, 2006]: there are binary congruence preserving functions on $D_4 \times C_2$ that are not polynomials.
- 2. Hence: no.
- 3. Hence: no.
- Open. No example of a finite group G known with Comp₂(G) = Pol₂(G) and G not affine complete. Decidable for nilpotent groups [EA and Ecker, IJAC, 2006]; also decidable if Con(G) is distributive.

Theorem [Hagemann and Herrmann, Coll.Math.Soc.J.Bolyai, 1982] **G** finite group. Every homomorphic image of **G** is affine complete $\Leftrightarrow \forall N \leq \mathbf{G} : [N, N] = N$.

Theorem [Kaarli, AU17, 1983, Hagemann and Herrmann, Coll.Math.Soc.J.Bolyai, 1982] **G** finite group, Con(**G**) distributive. Then **G** is affine complete $\Leftrightarrow \forall N \leq \mathbf{G} : [N, N] = N.$

Remark: Both results hold if **G** is a finite algebra with Mal'cev term.

Theorem [Nöbauer, Monatsh. Math., 1976]

A finite abelian group. A is affine complete \Leftrightarrow

 \exists groups $\mathbf{B}, \mathbf{C} : \mathbf{A} \cong \mathbf{B} \times \mathbf{C}$ and $\exp(\mathbf{B}) = \exp(\mathbf{C})$.

Theorem [Ecker, CMB, 2006]

A finite abelian group. $Dih(A) = A \rtimes C_2$ is affine complete $\Leftrightarrow \exists$ groups $B, C : A \cong B \times C$, exp(B) = 2, |C| odd, C is affine complete.

Theorem [EA, Acta Szeged, 2002, Ecker, CMB, 2006]

A, **B** nilpotent affine complete groups, $\mathbf{G} = \mathbf{A} \rtimes \mathbf{B}$, $\{x \mapsto b^{-1} \cdot x \cdot b \mid b \in B\}$ is a non-trivial fixed-point-free subgroup of $\langle \operatorname{Aut}(\mathbf{A}) \cap \operatorname{Pol}(\mathbf{A}), \circ \rangle$. Then **G** is affine complete.

Example

 $A := C_3 \times C_3$, $B := C_2 \times C_2$, $G = C_2 \times \text{Dih}(C_3 \times C_3)$. Then G is affine complete.

Results on affine completeness by investigating the clone of polynomial functions

Theorem [Scott, Monatsh. Math., 1969]

Let **A**, **B** be finite groups such that $\mathbf{A} \times \mathbf{B}$ has no skew-congruences. Then "Pol($\mathbf{A} \times \mathbf{B}$) = Pol(\mathbf{A}) × Pol(\mathbf{B})".

Remark: Holds also for **A**, **B** finite expanded groups [EA, Proc. Edinburgh MS, 2001], and finite algebras with Mal'cev term [Kaarli and Mayr, Monatsh.Math., 2010].

Corollary

A, **B** finite algebras in a cp variety, **A**, **B** affine complete, $\mathbf{A} \times \mathbf{B}$ has no skew congruences. Then $\mathbf{A} \times \mathbf{B}$ is affine complete.

Theorem [Higman, Proc.Int.Conf.Th.Groups, 1967]

G finite nilpotent group of class *k*. Then $\exists p \in \mathbb{R}[t] : \deg(p) = k$ and $\operatorname{Pol}_n(\mathbf{G}) = 2^{p(n)}$.

Theorem [Berman and Blok, AU24, 1987]

A finite nilpotent algebra of finite type and prime power order in cm variety. Then $\exists p : Pol_n(\mathbf{A}) = 2^{p(n)}$.

Definition – Congruence preserving functions **A** algebra. $Comp(\mathbf{A}) := Polym_A(Con(\mathbf{A})).$

Theorem (cf. [EA, AU44, 2000])

A finite algebra, cd and cp (as a single algebra). Then Comp(**A**) is generated by its 3-ary members.

Corollary

A finite algebra, cd and cp, $\text{Comp}_3(A) = \text{Pol}_3(A)$. Then A is affine complete.

Definition \mathbb{L} lattice. \mathbb{L} *splits* : $\Leftrightarrow \exists \varepsilon, \delta \in \mathbb{L}$: $0 < \varepsilon$ and $\delta < 1$ and

 $\forall \alpha \in \mathbb{L} : \alpha \geq \varepsilon \text{ or } \alpha \leq \delta.$

Theorem

A finite algebra, $Con(\mathbf{A})$ splits. Then $|Comp_n(\mathbf{A})| \ge 2^{2^n}$.

Theorem

 ${\bf G}$ finite nilpotent group, ${\rm Con}({\bf G})$ splits. Then ${\bf G}$ is not affine complete.

Corollary

All affine complete 2-groups of order \leq 32 are abelian.

$$|\mathbf{G}|=32,\,\mathbf{G}
ot\cong C_4 imes C_4 imes C_2,\,\mathbf{G}
ot\cong (C_2)^5 \Longrightarrow \mathsf{Con}(\mathbf{G}) ext{ splits}.$$

Theorem - a consequence of [Nöbauer, Monatsh. Math., 1976] A finite abelian group is affine complete if and only if its congruence lattice does not split.

Theorem

A finite algebra with Mal'cev term, Con(A) a simple lattice, |Con(A)| > 2. TFAE:

- 1. Comp(A) is finitely generated.
- 2. Con(A) does not split.

Theorem [EA, AU47, 2002] $\mathbf{G} := \langle C_{p^2} \times C_p, + \rangle, p \text{ prime, } k \in \mathbb{N}. \text{ Then } \overline{\mathbf{G}} := \langle G, \operatorname{Comp}_k(\mathbf{G}) \rangle$ satisfies $\operatorname{Pol}_k(\overline{\mathbf{G}}) = \operatorname{Comp}_k(\overline{\mathbf{G}}), \text{ but } \overline{\mathbf{G}} \text{ is not affine complete.}$

Theorem

A finite, cd and cp. Then A is affine complete iff $Pol_3(A) = Comp_3A$.

Theorem [EA and Ecker, IJAC, 2006]

G finite group, nilpotent of class *k*. Then **G** is affine complete iff $Pol_{k+1}(\mathbf{G}) = Comp_{k+1}(\mathbf{G})$.

Remark: holds if **G** is a *k*-supernilpotent algebra with a Mal'cev term.

What does supernilpotent mean?

Binary commutators

Description of binary commutators [EA and Mudrinski, AU63, 2010]

A algebra with Mal'cev term, $\alpha, \beta \in Con(A)$. Then $[\alpha, \beta]$ is the congruence generated by

$$\begin{aligned} \left\{ \left(p(a,c), p(b,d) \right) | \, (a,b) \in \alpha, (c,d) \in \beta, p \in \mathsf{Pol}_2(\mathbf{A}), \\ p(a,c) = p(a,d) = p(b,c) \right\}. \end{aligned}$$

Description of binary commutators [Scott, Proc.Near-ring conference, 1997] V expanded group, *A*, *B* ideals of V. Then [*A*, *B*] is the ideal generated by

$$\{p(a,b) \mid a \in A, b \in B, p \in \mathsf{Pol}_2(\mathbf{V}), \ p(0,0) = p(a,0) = p(0,b) = 0\}.$$

[A, B] is also the ideal generated by

 $\{p(a,b) \, | \, a \in A, b \in B, q \in \mathsf{Pol}_2(\mathbf{V}), \ q(x,0) = q(0,x) ext{ for all } x \in V \}.$

Remark: q(x, y) := p(x, y) - p(x, 0) + p(0, 0) - p(0, y).

Definition of higher commutators [Bulatov, CTGA13, 2001]

- For n ∈ N, n-ary commutators were defined in [Bulatov, CTGA13, 2001] by using a term condition similar to the definition of binary commutators.
- In [Mudrinski, Diss, 2009, EA and Mudrinski, AU63, 2010], properties of these higher commutators in cp varieties were investigated.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Higher commutators for Mal'cev algebras

Description of higher commutators [Mudrinski, Diss, 2009], [EA and Mudrinski, AU63, 2010, Corollary 6.10]

A algebra with Mal'cev term, $\alpha_1, \ldots, \alpha_n \in \text{Con}(A)$. Then $[\alpha_1, \ldots, \alpha_n]$ is the congruence generated by

$$\{ (f(a_1, \dots, a_n), f(b_1, \dots, b_n)) \mid (a_1, b_1) \in \alpha_1, \dots, (a_n, b_n) \in \alpha_n,$$

$$f \in \mathsf{Pol}_n(\mathbf{A}), f(\mathbf{x}) = f(a_1, \dots, a_n) \text{ for all}$$

$$\mathbf{x} \in (\{a_1, b_1\} \times \dots \times \{a_n, b_n\}) \setminus \{(b_1, \dots, b_n)\}. \}$$

Description of higher commutators for expanded groups **V** expanded group, $A_1, \ldots, A_n \leq \mathbf{V}$. Then $[A_1, \ldots, A_n]$ is the ideal generated by

$$\{f(a_1, ..., a_n) | \forall i : a_i \in A_i, f \in \mathsf{Pol}_n(\mathbf{V}), \\ \forall x_1, ..., x_n : f(0, x_2, x_3, ..., x_{n-1}, x_n) = \cdots \\ = \cdots = f(x_1, x_2, x_3, ..., x_{n-1}, 0) = 0\}$$

Example (G, *) group, $A, B, C \trianglelefteq G$. Then [A, B, C] = [[A, B], C] * [[A, C], B] * [[B, C], A].

Example

R commutative ring with unit, $A, B, C \leq \mathbf{R}$. Then $[A, B, C] = \{\sum_{i=1}^{n} a_i b_i c_i \mid n \in \mathbb{N}_0, \forall i : a_i \in A, b_i \in B, c_i \in C\}.$

Example

$$\textbf{V}:=\langle \mathbb{Z}_4,+,2\textit{xyz}\rangle. \text{ Then } [[\textit{V},\textit{V}],\textit{V}]=0 \text{ and } [\textit{V},\textit{V},\textit{V}]=\{0,2\}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Definition of the lower central series $\gamma_1(\mathbf{A}) := \mathbf{1}_A, \gamma_n(\mathbf{A}) := [\mathbf{1}_A, \gamma_{n-1}(\mathbf{A})]$ for $n \ge 2$.

Nilpotency

A algebra with Mal'cev term. A is *nilpotent of class* $k : \Leftrightarrow \gamma_k(\mathbf{A}) \neq \mathbf{0}_A, \gamma_{k+1}(\mathbf{A}) = \mathbf{0}_A.$

The "lower superseries"

$$\sigma_n(\mathbf{A}) := [\underbrace{\mathbf{1}_A, \ldots, \mathbf{1}_A}_n].$$

Supernilpotency

A algebra with Mal'cev term. A is supernilpotent of class $k :\Leftrightarrow \sigma_k(\mathbf{A}) \neq 0_A$, $\sigma_{k+1}(\mathbf{A}) = 0_A$.

Varieties \mathcal{V} cp variety, $n \in \mathbb{N}$.

 $S_n(\mathcal{V}) := \{ \mathbf{A} \in \mathcal{V} \mid \mathbf{A} \text{ supernilpotent of class } \leq n \}.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Then $S_n(\mathcal{V})$ is a subvariety of \mathcal{V} .

A non-property of supernilpotency

Example [EA and Mudrinski, manuscr., 2012] $\mathbf{V} := \langle (\mathbb{Z}_7)^3, +, f : \begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}, g_1, g_2 \rangle$ with g_1, g_2 bilinear such that

$$\begin{split} g_1(e_i,e_j,e_k) &:= \left\{ \begin{array}{ll} e_1 \text{ if } i,j,k \geq 2, \\ 0 \text{ else.} \end{array} \right. g_2(e_i,e_j,e_k) := \left\{ \begin{array}{ll} e_2 \text{ if } i,j,k = 3, \\ 0 \text{ else.} \end{array} \right. \\ \mathbf{V}_1 &:= \langle V,+,f,g_1 \rangle, \quad \mathbf{V}_2 := \langle V,+,f,g_2 \rangle. \end{split} \\ \end{split}$$
Then $[1,1,1]_{\mathbf{V}_1} = [1,1,1]_{\mathbf{V}_2} = [1,[1,1]_{\mathbf{V}_1}]_{\mathbf{V}_1} = [1,[1,1]_{\mathbf{V}_2}]_{\mathbf{V}_2} = 0$
and
 $[1,1,1]_{\mathbf{V}} > 0, \ [1,[1,1]_{\mathbf{V}}]_{\mathbf{V}} > 0. \end{split}$

Conclusion

Functions that preserve the nilpotency class or the supernilpotency class need not form a clone.

Supernilpotency and the free spectrum

Supernilpotency via absorbing polynomials

V expanded group. Then **V** is supernilpotent of class $\leq k : \Leftrightarrow$ The 0-map is the only $f \in Pol_{k+1}(V)$ with

$$\forall x_1,\ldots,x_{k+1}: 0 \in \{x_1,\ldots,x_{k+1}\} \Rightarrow f(x_1,\ldots,x_{k+1}) = 0.$$

Theorem (cf. [Berman and Blok, AU24, 1987])

A finite algebra in cp and congruence uniform variety, $k \in \mathbb{N}$. TFAE:

- 1. $\exists p \in \mathbb{R}[t]$: deg(p) = k and $|\mathbf{F}_{\mathcal{V}(\mathbf{A})}(n)| \leq 2^{p(n)}$ for all $n \in \mathbb{N}$.
- 2. A is supernilpotent of class $\leq k$.

Assumption "congruence uniform" can be dropped by [Hobby and McKenzie, Cont.Math.76, 1988, Lemma 12.4]. For expanded groups, one can generalise Higman's proof [Higman, Proc.Int.Conf.Th.Groups, 1967] for groups.

Supernilpotency implies Nilpotency

A algebra with a Mal'cev term. Then A supernilpotent of class $k \Rightarrow A$ nilpotent of class $\leq k$.

Follows easily from [Mudrinski, Diss, 2009].

Examples

- FZ₆ := ⟨ℤ₆, +, f⟩ with f(0) = f(3) = 3,
 f(1) = f(2) = f(4) = f(5) = 0 is nilpotent of class 2 and not supernilpotent.
- ► $\langle \mathbb{Z}_4, +, 2x_1x_2, 2x_1x_2x_3, 2x_1x_2x_3x_4, \ldots \rangle$ is nilpotent of class 2 and not supernilpotent.

Deeper connections between nilpotency and supernilpotency

Theorem [Berman and Blok, AU24, 1987], [Kearnes, AU42, 1999]

A finite, finite type, with Mal'cev term. TFAE

- 1. A is nilpotent and isomorphic to a direct product of algebras of prime power order.
- 2. A is supernilpotent.

Theorem

G group, $k \in \mathbb{N}$. **G** is nilpotent of class $k \Leftrightarrow$ **G** is supernilpotent of class k.

Proof: Commutator calculus from group theory.

Theorem [EA and Mudrinski, manuscr., 2012]

 $\mathbf{V}=\langle V,+,-,\mathbf{0},g_1,g_2,\ldots
angle$ expanded group, $m\geq$ 2 such that

- 1. all g_i have arity $\leq m$,
- 2. all mappings $x \mapsto g_i(v_1, \ldots, v_{i-1}, x, v_{i+1}, \ldots, v_{m_i})$ are endomorphisms of $\langle V, + \rangle$ (multilinearity),
- 3. **V** is nilpotent of class k.

Then **V** is supernilpotent of class $\leq m^{k-1}$.

Idea of the proof: expand using multilinearity and then use commutator calculus.

(日) (日) (日) (日) (日) (日) (日) (日)

Theorem [EA and Mudrinski, arXiv, 2012]

A finite algebra with Mal'cev term. If Con(A) does not split, then A is supernilpotent of class k with $k \le (number \text{ of atoms of } Con(A)) - 1.$

Corollary

The congruence lattice of a finite non-nilpotent algebra with Mal'cev term splits.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Lattices that do not split strongly

 $\begin{array}{l} \text{Definition} \\ \mathbb{L} \text{ lattice. } \mathbb{L} \text{ splits strongly} :\Leftrightarrow \exists \varepsilon, \delta \in \mathbb{L} \text{: } \mathbf{0} < \varepsilon \leq \delta < \mathbf{1} \text{ and} \end{array}$

 $\forall \alpha \in \mathbb{L} : \alpha \geq \varepsilon \text{ or } \alpha \leq \delta.$

Theorem [EA and Mudrinski, arXiv, 2012]

A finite algebra with Mal'cev term. Con(A) does not split strongly. Then $\exists n \in \mathbb{N}_0$, B, C₁,..., C_n such that $A \cong B \times C_1 \times \cdots \times C_n$, B is supernilpotent, each C_i is simple, and the direct product is skew-free.

Theorem [EA and Mudrinski, AU63, 2010, Proposition 6.18]

A has Mal'cev term, **A** supernilpotent of class k. Then Pol(**A**) is generated by Pol_{*m*}(**A**) for m := max(3, k).

Corollary

A algebra with Mal'cev term. If Con(A) does not split strongly, then Comp(A) is generated by $Comp_k(A)$ with k := max(3, (number of atoms of <math>Con(A)) - 1).

Corollary²

For **A** algebra with Mal'cev term s.t. Con(**A**) does not split strongly, affine completeness is an algorithmically decidable property.

Lattices with (APMI)

Definition

 \mathbb{L} lattice. \mathbb{L} has *adjacent projective meet irreducibles* : \Leftrightarrow \forall meet irreducible $\alpha, \beta \in \mathbb{L}$:

$$\mathbb{I}[\alpha, \alpha^+] \longleftrightarrow \mathbb{I}[\beta, \beta^+] \Rightarrow \alpha^+ = \beta^+.$$

Algebras with (APMI) congruence lattices

Algebras that have (APMI) congruence lattices

- ► All A_i similar finite simple algebras with Mal'cev term. Then Con(A₁ × · · · × A_n) has (APMI).
- Every finite distributive lattice has (APMI).
- ▶ **G** finite group, $\mathbf{G} \in \mathcal{V}(S_3)$ Then Con(**G**) has (APMI).
- ► A satisfies (SC1) ⇒ Con(A) satisfies (APMI) [Idziak and Słomczyńska, JPAA, 2001].

Definition [Idziak and Słomczyńska, JPAA, 2001] A with Mal'cev term. A has (SC1) : $\Leftrightarrow \forall B \in \mathbb{H}_{SI}(A)$:

$$\forall \alpha \in \mathsf{Con}(\mathsf{B}) : [\alpha, \mu_{\mathsf{B}}] = \mathsf{0} \Rightarrow \alpha \leq \mu_{\mathsf{B}}.$$

Theorem [EA and Mudrinski, AU60, 2009]

L finite modular lattice with (APMI), |L| > 1. Then $\exists m \in \mathbb{N}$, $\exists \beta_0, \ldots, \beta_m \in D(L)$ such that

1.
$$0 = \beta_0 < \beta_1 < \cdots < \beta_m = 1$$
,

2. each $\mathbb{I}[\beta_i, \beta_{i+1}]$ is a simple complemented modular lattice.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Pictures of (APMI)-lattices

 $Con(S_3 \times C_2 \times C_2)$

 $Con(A_5 \times C_2 \times C_2)$

Affine completeness of of congruence-(APMI)-algebras

Theorem [EA and Mudrinski, AU60, 2009]

V finite expanded group, congruence-(APMI). $U_0 < U_1 < \ldots < U_n$ maximal chain in D(Id(V)). Then **V** is affine complete \Leftrightarrow

- 1. V has (SC1),
- 2. $\forall i \in \{0, \dots, n-1\}$: $[U_{i+1}, U_{i+1}]_{\mathbf{V}} \leq U_i \Rightarrow \mathbb{I}[U_i, U_{i+1}]$ is not a 2-element chain.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Examples of congruence-(APMI)-groups

 $S_3 \times C_2 \times C_2$ is not affine complete

 $Dih(C_2 \times C_3 \times C_3)$ is affine complete (cf. [Ecker, CMB, 2006])

The clone of congruence preserving functions of (APMI)-algebras

Theorem [EA and Mudrinski, AU60, 2009]

V finite expanded group, congruence-(APMI). Then the clone Comp(V) is generated by $Comp_2(V)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のので

Corollary

V finite expanded group, congruence-(APMI). V is affine complete if and only if $Comp_2(V) = Pol_2(V)$.

Theorem [EA and Mudrinski, AU60, 2009] (Unary compatible function extension property)

- V finite expanded group. TFAE:
 - 1. Every unary partial congruence preserving function on **V** can be extended to a total function.

(日) (日) (日) (日) (日) (日) (日) (日)

- 2. All unary total congruence perserving functions on quotients of V can be lifted to V.
- 3. V is congruence-(APMI), and $\forall \alpha, \beta \in D(Con(V))$, $\gamma \in Con(V) : \alpha \prec_{D(Con(V))} \beta, \alpha \prec_{Con(V)} \gamma < \beta \Rightarrow$ $|0/\gamma| = 2 * |0/\alpha|.$

Unary compatible function extension property

The group $S_3 \times C_2 \times C_2$ has the unary CFEP.

The group SL(2,5) is not congruence-(APMI), hence (CFEP) fails.

Other concepts of polynomial completeness

Definition - polynomial richness [Idziak and Słomczyńska, JPAA, 2001]

 $\mathbf{A} = \langle \mathbf{A}, \mathbf{F} \rangle$ is *polynomially rich* if every finitary *f* that preserves:

1. all congruences

2. all TCT-types of prime quotients in Con(A)

is a polynomial.

Theorem [EA and Mudrinski, AU60, 2009]

V finite expanded group, congruence-(APMI). $U_0 < U_1 < \ldots < U_n$ maximal chain in D(Id(V)). Then **V** is polynomially rich \Leftrightarrow

- 1. V has (SC1),
- 2. $\forall i \in \{0, \dots, n-1\}$: $[U_{i+1}, U_{i+1}]_{\mathbf{V}} \leq U_i \Rightarrow \mathbb{I}[U_i, U_{i+1}]$ is not a 2-element chain or the module $P_0(\mathbf{V})(U_{i+1}/U_i)$ is pol.equiv. to a simple module over the full matrix ring over a field of prime order.

Aichinger, E. (2000).

On Hagemann's and Herrmann's characterization of strictly affine complete algebras. *Algebra Universalis*, 44:105–121.

Aichinger, E. (2001).

On near-ring idempotents and polynomials on direct products of Ω -groups. *Proc. Edinburgh Math. Soc. (2)*, 44:379–388.

Aichinger, E. (2002a).

2-affine complete algebras need not be affine complete. *Algebra Universalis*, 47(4):425–434.

Aichinger, E. (2002b).

The polynomial functions on certain semidirect products of groups. *Acta Sci. Math.* (*Szeged*), 68(1-2):63–81.

Aichinger, E. and Ecker, J. (2006).

Every (k + 1)-affine complete nilpotent group of class k is affine complete. Internat. J. Algebra Comput., 16(2):259–274.

Aichinger, E. and Mudrinski, N. (2009).

Types of polynomial completeness of expanded groups. *Algebra Universalis*, 60(3):309–343.

Aichinger, E. and Mudrinski, N. (2010).

Some applications of higher commutators in Mal'cev algebras. *Algebra Universalis*, 63(4):367–403.

Aichinger, E. and Mudrinski, N. (2012a).

On various concepts of nilpotence for expansions of groups. Manuscript.

Aichinger, E. and Mudrinski, N. (2012b).

Sequences of commutator operations. submitted: available on arXiv:1205.3297v3 [math.RA] 24 May 2012.

Berman, J. and Blok, W. J. (1987).

Free spectra of nilpotent varieties. Algebra Universalis, 24(3):279–282.

Bulatov, A. (2001).

On the number of finite Mal'tsev algebras.

In Contributions to general algebra, 13 (Velké Karlovice, 1999/Dresden, 2000), pages 41–54. Heyn, Klagenfurt.

Ecker, J. (2006).

Affine completeness of generalised dihedral groups. *Canad. Math. Bull.*, 49(3):347–357.

Arithmetical locally equational classes and representation of partial functions. In Universal Algebra, Esztergom (Hungary), volume 29, pages 345–360. Colloq. Math. Soc. János Bolyai.

Higman, G. (1967).

The orders of relatively free groups.

In Proc. Internat. Conf. Theory of Groups (Canberra, 1965), pages 153-165. Gordon and Breach, New York.

Hobby, D. and McKenzie, R. (1988).

The structure of finite algebras, volume 76 of Contemporary mathematics. American Mathematical Society.

Idziak, P. M. and Słomczyńska, K. (2001).

Polynomially rich algebras.

J. Pure Appl. Algebra, 156(1):33-68.

Istinger, M., Kaiser, H. K., and Pixley, A. F. (1979).

Interpolation in congruence permutable algebras. *Collog. Math.*, 42:229–239.

Kaarli, K. (1983).

Compatible function extension property. *Algebra Universalis*, 17:200–207.

Kaarli, K. and Mayr, P. (2010).

Polynomial functions on subdirect products. *Monatsh. Math.*, 159(4):341–359.

Kearnes, K. A. (1999).

Congruence modular varieties with small free spectra. *Algebra Universalis*, 42(3):165–181.

Mudrinski, N. (2009).

On Polynomials in Mal'cev Algebras. PhD thesis, University of Novi Sad.

Nöbauer, W. (1976).

Über die affin vollständigen, endlich erzeugbaren Moduln. Monatshefte für Mathematik, 82:187–198.

Scott, S. D. (1969).

The arithmetic of polynomial maps over a group and the structure of certain permutational polynomial groups. I. *Monatsh. Math.*, 73:250–267.

Scott, S. D. (1997).

The structure of Ω -groups.

In Nearrings, nearfields and K-loops (Hamburg, 1995), pages 47–137. Kluwer Acad. Publ., Dordrecht.

▲日▼▲国▼★国▼★国▼ ▲日▼