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Problem

for (Z3; +, ·)

Given:

x1

¬ x2

∨

y1

x1 x2

∧

y2

Asked:

∃x1, x2 ∈ {0, 1} : y1(x1, x2) = y2(x1, x2), or, equivalently,
∃x1, x2 ∈ {0, 1} : (¬x1) ∨ x2 = x1 ∧ x2.

This is (equivalent to) CIRCUIT SAT =: CSAT(B), where B = ({0, 1};∨,∧,¬).
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Problem for (Z3; +, ·)

Given:

x1

− x2

+

y1

x1 x2

·

y2

Asked:

∃x1, x2 ∈ Z3 : y1(x1, x2) = y2(x1, x2), or, equivalently,
∃x1, x2 ∈ Z3 : (−x1)+x2 = x1·x2.

This is CSAT(Z3), where Z3 = ({[0]3, [1]3, [2]3}; +, ·,−).
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Problems associated with an algebraic structure A

With every finite algebraic structure of finite type A = (A; f1, f2, . . . , fm), we
associate the decision problem

CSAT(A)

� Given: two circuits F,G with gates from
� {f1, . . . , fm} (operations) and
� {xi : i ∈ N} (input)

and one output each.
� Asked: Is there an assignment xi 7→ ai such that
F (a1, a2, . . .) = G(a1, a2, . . .)?

For A := ({0, 1};∨,∧,¬), the problem CSAT(A) is NP-complete.

For A := ({0, 1}; + mod 2, 1) = (Z2; +, 1), the problem CSAT(A) is in P.
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Overview of the results

Two computational problems are associated with every algebra A and every
s ∈ N:

1. s-POLSYSSAT(A): Does a given system of s polynomial equations have a
solution in A?

2. s-SCSAT(A): Given 2s circuits f1, g1, . . . , fs, gs, is there an assignment a to
the input variables such that

∧s
i=1 fi(a) = gi(a)?

We provide a polynomial time algorithm for these problems provided that

A is a supernilpotent algebra of finite type in a congruence modular
variety.

Such algebras exist, have been studied, and include many familiar algebraic
structures, such as nilpotent groups, nilpotent rings, and nilpotent loops of prime
power order.
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Which algebras are considered?

A supernilpotent algebra in a congruence modular variety is an algebra A that

1. has a Mal’cev operation d(a, a, b) = d(b, b, a) = a among its term operations,

2. has a k ∈ N such that for all n ≥ k, every n-ary polynomial function p, and all
a1, b1, . . . , an, bn ∈ A,
the value of

p(b1, . . . , bn)

is determined by the 2n − 1 values

p(a1, . . . , an), p(a1, . . . , an−1, bn), . . . , p(b1, . . . , bn−1, an).

(2n − 1 vertices of a hypercube determine the remaining one.)

4/18



An instance of 2-POLSYSSAT(D4)

A system of polynomial equations

D4 := 〈a, b | a4 = b2 = 1, b ∗ a = a3 ∗ b〉
D4 := (D4; ∗).

Then
x1 ∗ x1 ∗ b ∗ x2 ∗ x2 ≈ x1 ∗ a
x1 ∗ x1 ∗ b ∗ x2 ∗ x2 ≈ b ∗ x2

is a system of 2 polynomial equations over D4.

Question

Does the system have a solution inside D4?
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Comparison to other problems

Similar problems

� POLSAT(A) = 1-POLSYSSAT(A).

� POLSYSSAT(A) (no restriction on the number of equations).

Difficulties of these problems

POLSAT(A) = 1-POLSYSSAT(A) ≤ 2-POLSYSSAT(A) ≤ POLSYSSAT(A)
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Comparison between these problems

One equation – two equations – arbitrary many equations

POLSAT(A) = 1-POLSYSSAT(A) ≤ 2-POLSYSSAT(A) ≤ POLSYSSAT(A)

One is easier than two is easier than arbitrary many equations

� L = ({0, 1};∨,∧): POLSAT(L) ∈ P and 2-POLSYSSAT(L) is NP-complete
[Gorazd, Krzaczkowsi 2011].

� POLSYSSAT(D4) is NP-complete [Goldmann, Russell, 2002].

� We will prove that for every s ∈ N:

s-POLSYSSAT(D4) ∈ P.
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Systems of equations over supernilpotent algebras

History

� G is a finite nilpotent group⇒ POLSAT(G) ∈ P [Goldmann, Russell, 2002]
and [Horváth, 2011]

� R is a finite nilpotent ring⇒ POLSAT(R) ∈ P [Goldmann, Russell, 2002]
and [Horváth, 2011]

� A is a finite supernilpotent algebra of finite type in a congruence modular
variety⇒ POLSAT(A) ∈ P [Kompatscher, 2018]
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Equations over supernilpotent algebras

Algorithms for one equation are based on:

Theorem [Goldmann, Russell, 2002; Horváth 2011; Kompatscher 2018]

Let A be a finite supernilpotent algebra in a cm variety, let o ∈ A. Then
∃dA ∈ N ∀n ∈ N ∀a ∈ An ∀f ∈ Poln(A) ∃y ∈ An :

f(y) = f(a), and y has at most dA entries different from o.

Hence: if f(x ) ≈ b has a solution and n ≥ dA, there is one in a hitting set C with

|C| ≤
(
n

dA

)
|A|dA .
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Equations over supernilpotent algebras

The exponent dA

� dA is the degree of the polynomial bounding the “running time” of this
algorithm.

� Horváth and Kompatscher obtain dA by Ramsey’s Theorem.

� For nilpotent rings A, a non-Ramsey dA was found in [Károlyi and Szabó,
2015].

� Faster solutions of POLSAT(A) for nilpotent groups and rings using structure
theory: [Földvári, 2017 and 2018].
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Systems of equations over supernilpotent algebras

Our contribution:

1. We improve the exponent dA and obtain dA := |A|log2(µ)+log2(|A|)+1.

2. We generalize from 1 equation to s equations.

The main techniques are:

1. A description of supernilpotent algebras using the arithmetic of polynomials
over finite fields (“Coordinatization”).

Mainly done in [EA 2019, Bounding the
free spectrum . . . ].

2. An argument used by [Károlyi Szabó 2015] for solving equations in finite
nilpotent rings. They use additive combinatorics and Alon’s Combinatorial
Nullstellensatz.

Generalized and presented in [EA 2019, MFCS 44].
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Replacing arguments with 0

Definition

Let o ∈ A, a = (a1, . . . , an) ∈ An, U ⊆ {1, . . . , n}. Then

a (U)(i) =

{
ai if i ∈ U,
o if i 6∈ U.

Hence (a1, a2, a3, a4)
({1,3}) = (a1, o, a3, o).
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A property of polynomial systems (prime power order)

Theorem [EA 2019], [Károlyi Szabó 2015]

Let A be in a cm variety with |A| = pα = q, let µ be maximal arity of the basic
operations, let o be an element of A, K := (µ(pα − 1))α−1. Let

u1(x1, . . . , xn) ≈ v1(x1, . . . , xn)
...

us(x1, . . . , xn) ≈ vs(x1, . . . , xn)

be a polynomial system over A.
Let a ∈ An be a solution of this system. Then there is U ⊆ {1, . . . , n} with

|U | ≤ Ksα(p− 1)

such that a (U) is a solution. 13/18



We can drop the prime power order restriction:

Theorem [EA 2019]

Let A be supernilpotent in a cm variety with all basic operations of arity ≤ µ. Let
F : An → As with F ∈ (Poln(A))s be a polynomial map, and let z ∈ A.

Then
∀a ∈ An ∃y ∈ An such that

F (y) = F (a) and #{j ∈ n : y(j) 6= z} ≤ s|A|log2(µ)+log2(|A|)+1.
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Complexity of solving polynomial systems

Theorem [EA 2018]

Let A be a finite supernilpotent algebra in a congruence modular variety, and let
s ∈ N. Let

e := s|A|log2(µ)+log2(|A|)+1.

Then there exist cA ∈ N and an algorithm that decides s-POLSYSSAT(A) using
at most cA · ne evaluations of the system, where n is the number of variables.
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Circuit satisfiability

Definition [Idziak Krzaczkowski 2018]

Problem SCSAT(A).
Given: An even number of “circuits” f1, g1, . . . , fm, gm whose gates are taken
from the basic operations on A with n input variables.
Asked: ∃a ∈ An : f1(a) = g1(a), . . . , fm(a) = gm(a).

A restriction to the input

s-SCSAT(A) : 2s circuits.
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Circuit satisfiability

Theorem (Complexity of circuit satisfaction)

Let A be a finite algebra of finite type in a cm variety.

� SCSAT(A) ∈ P if A is abelian [Larose Zádori 2006].

� SCSAT(A) is NP-complete if A is not abelian [Larose Zádori 2006].

� A is supernilpotent⇒ 1-SCSAT(A) ∈ P [Goldmann Russell Horváth
Kompatscher 2018].

� A has no homomorphic image A′ for which 1-SCSAT(A′) is NP-complete⇒
A ∼= N×D with N nilpotent and D is a subdirect product of 2-element
algebras that are polynomially equivalent to the two-element lattice. [Idziak
Krzaczkowski 2017].
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Complexity of s-SCSAT(A)

Theorem [EA 2019]

Let A be a finite algebra in a cm variety, s ∈ N.

� A supernilpotent⇒ s-SCSAT(A) ∈ P.

� A has no homomorphic image A′ for which 2-SCSAT(A′) is NP-complete⇒
A is nilpotent.
(Corollary of [Gorazd Krzaczkowski 2011] and [Idziak Krzaczkowski 2017].)
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