CLONES OF POLYNOMIALS

Erhard Aichinger Institute for Algebra Austrian Science Fund FWF P29931

Clones of polynomials

We represent the functions in a **clone** by polynomials $f \in \mathbb{K}[x_1, \ldots, x_n, \ldots]$ over a field \mathbb{K} .

Goal:

■ Use the structure of $f \in \mathbb{K}[x_1, \dots, x_n]$ to get better information on the clone.

Usefulness:

- Bounding the supernilpotency degree and the free spectrum.
- Solving systems of equations over supernilpotent algebras.

Clones of polynomials

For $A, B \subseteq \mathbb{K}[x_i \mid i \in \mathbb{N}] = \bigcup_{n \in \mathbb{N}} \mathbb{K}[x_1, \dots, x_n]$, we define (following [Couceiro, Foldes 2009])

 $AB = \{p(q_1,\ldots,q_n) \mid n \in \mathbb{N}, p \in A \cap \mathbb{K}[x_1,\ldots,x_n], q_1,\ldots,q_n \in B\}.$

 $C \subseteq \mathbb{K}[x_i \mid i \in \mathbb{N}]$ is a **clone of polynomials** if for each $i \in \mathbb{N}$, $x_i \in C$ and $CC \subseteq C$. A polynomial *f* is **homovariate** if all of its monomials contain the same variables.

■ $5x_1x_2^3x_4 - 2x_1^{17}x_2x_4^3 + x_1^6x_2^3x_4^{20}$, $x_2 + 6x_2^4$, and 2 are all homovariate. ■ None of $x_1 + x_2$, $1 + 3x_1^3 + x_1^5$ is homovariate.

Clones of polynomials

The function defined by

$$f(x_1, x_2, x_4) := 5x_1 x_2^3 x_4 - 2x_1^{17} x_2 x_4^3 + x_1^6 x_2^3 x_4^{20}$$

is absorbing, meaning that f(0, y, z) = f(x, 0, z) = f(x, y, 0) = 0 for all x, y, z.

Theorem

Let \mathbb{K} be a field, let $F \subseteq \mathbb{K}[x_i \mid i \in \mathbb{N}]$, $totdeg(f) \leq n$ for all $f \in F$. Let $L := Clop(\{x_1 + x_2, -x_1, 0\})$. Then there exists a set $H \subseteq \mathbb{K}[x_1, \ldots, x_n]$ of homovariate polynomials such that

$$L \operatorname{Clop}(H) = \operatorname{Clop}(F \cup \{x_1 + x_2, -x_1, 0\})$$

and $totdeg(h) \le n$ for all $h \in H$.

Nilpotency and Supernilpotency

Let *C* be a clone of polynomials on \mathbb{K} that contains $x_1 + x_2$ and $-x_1$. Let $H \subseteq \mathbb{K}[x_1, \ldots, x_n]$ be such that all $h \in H$ are homovariate, and $L \operatorname{Clop}(H) = C$.

- If the algebra $\mathbf{K} = (\mathbb{K}, \overline{C})$ is *k*-nilpotent, then each function in $\overline{\mathrm{Clop}(H)}$ depends on $\leq n^{k-1}$ arguments.
- The algebra $\mathbf{K} = (\mathbb{K}, \overline{C})$ is *s*-supernilpotent if each absorbing polynomial function of \mathbf{K} depends on $\leq s$ arguments.

On the implication nilpotent \Rightarrow supernilpotent

Let *C* be a clone of polynomials on \mathbb{K} that contains $x_1 + x_2$ and $-x_1$. Let $H \subseteq \mathbb{K}[x_1, \dots, x_n]$ be such that all $h \in H$ are homovariate, and $L \operatorname{Clop}(H) = C$.

Then:

 $\mathbf{K} = (\mathbb{K}, \overline{C})$ is *k*-nilpotent

- \Rightarrow each function in $\overline{\operatorname{Clop}(H)}$ depends on $\leq n^{k-1}$ arguments
- ⇒ each absorbing polynomial function of $\mathbf{K} = (K, \overline{L \operatorname{Clop}(H)})$ depends on $\leq n^{k-1}$ arguments ⇒ \mathbf{K} is n^{k-1} -supernilpotent.

Expansions of additive groups of fields

Theorem

Let (A, +, *) be a field, and let $\mathbf{A} = (A, +, -, 0, (f_i)_{i \in I})$ be an algebra. Assume

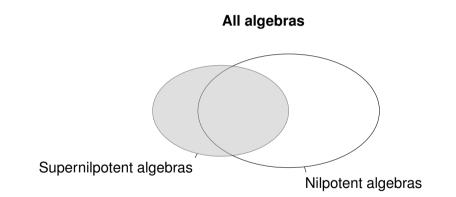
- For each $i \in I$, $totdeg(f_i) \leq n$,
- **A** is nilpotent of class at most k.

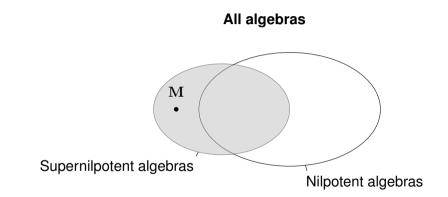
Then all absorbing polynomial functions of A are of essential arity at most n^{k-1} .

Corollary

Let $\mathbb{A} = (A, +, *)$ be a field, and let $\mathbf{A} = (A, +, -, 0, (f_i)_{i \in I})$ be an expansion of (A, +) with polynomial functions of \mathbb{A} of total degree $\leq n$. Then:

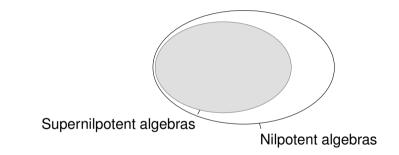
If A is k-nilpotent, it is n^{k-1} -supernilpotent.





M ... [Moore Moorhead 2018]

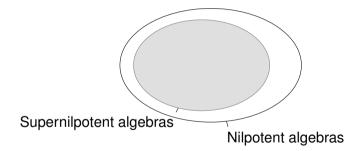
Finite algebras



Theorem – announced by [Kearnes Szendrei 2018]

Every finite supernilpotent algebra is nilpotent.

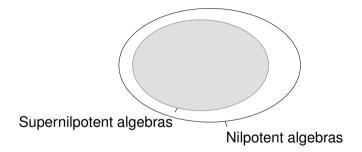
Algebras in congruence modular varieties



Theorem [Wires 2019]

Every supernilpotent algebra in a congruence modular variety is nilpotent.

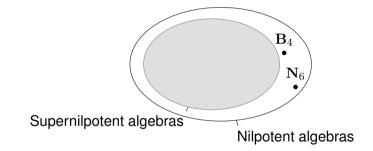
Algebras in congruence permutable varieties



Theorem [EA Mudrinski 2010]

Every supernilpotent algebra in a congruence permutable variety is nilpotent.

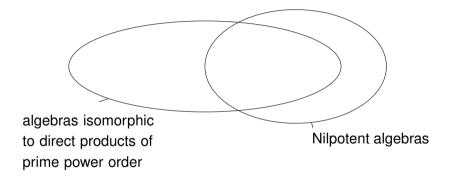
Algebras in congruence permutable varieties



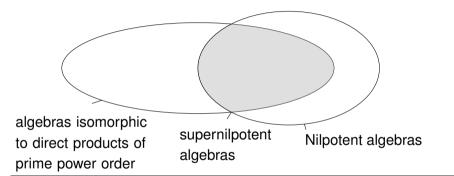
$$\mathbf{B}_4 = (\mathbb{Z}_4, +, 2x_1x_2, 2x_1x_2x_3, \ldots)$$

$$\mathbf{N}_6 = (\mathbb{Z}_6, +, (-1)^x).$$

Algebras in cong. mod. varieties with fin. many basic operations

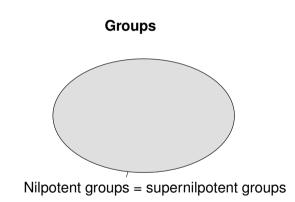


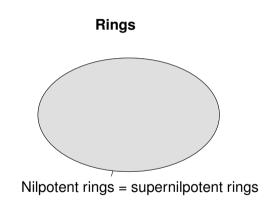
Algebras in cong. mod. varieties with fin. many basic operations



Theorem [Kearnes 1999], [Berman Blok 1987]

A in a cm variety, finitely many basic operations. Then A is supernilpotent \iff A is nilpotent and isomorphic to a product of algebras of prime power order.





We have seen a result on the structure of **nilpotent expansions of** $((\mathbb{Z}_p)^n, +)$.

It would be nice to have a result on **nilpotent algebras of prime power order in congruence modular varieties**.

To this end, we will expand such algebras with a group operation.

Coordinatization

Theorem. Let $\mathbf{A} = (A, (f_i)_{i \in \mathbb{N}})$ be a nilpotent algebra in a congruence modular variety, $|A| = p^n$ with p prime.

Then there exists $+ : A \times A \rightarrow A$ and $* : A \times A \rightarrow A$ such that

$$\blacksquare (A, +, *) \text{ is a field and hence } (A, +) \cong (\mathbb{Z}_p^n, +).$$

A' = $(A, (f_i)_{i \in \mathbb{N}}, +)$ is nilpotent.

Structure of nilpotent algebras

Theorem

Let A be a finite nilpotent algebra in a congruence modular variety that is a direct product of algebras of prime power order, with all fundamental operations of arity at most m, |A| > 1. Let

$$s := \left(m(|A| - 1) \right)^{(\log_2(|A|) - 1)}.$$

Then A is *s*-supernilpotent and there is a polynomial $p \in \mathbb{R}[x]$ of degree $\leq s$ such that the free spectrum satisfies

$$f_{\mathbf{A}}(n) = \mathsf{Clo}_n(\mathbf{A}) = 2^{p(n)}$$
 for all $n \in \mathbb{N}$.

Solving systems of equations

Theorem

Let A be supernilpotent in a cm variety with all basic operations of arity $\leq \mu$. Let $F: A^n \to A^t$ with $F \in \mathsf{Pol}_n(\mathbf{A})^t$ be a polynomial map, and let $z \in A$.

Then

 $orall a \in A^n \exists y \in A^n \text{ such that}$ $F(y) = F(a) \text{ and } \#\{j \in \underline{n} : y(j) \neq z\} \leq t|A|^{\log_2(\mu) + \log_2(|A|) + 1}.$ Hence systems of t polynomial equations over supernilpotent algebras can be solved in polynomial time.

For one equation: [Kompatscher, 2018] with a different bound.

Theorem was proved by extending [Károlyi and Szabó, 2015] from nilpotent rings to supernilpotent algebras in cmv.