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Systems of polynomial equations

A system of polynomial equations

D4 := 〈a, b | a4 = b2 = 1, ba = a3b〉
D4 := (D4, ∗).

Then
x1 ∗ x1 ∗ b ∗ x2 ∗ x2 ≈ x1 ∗ a
x1 ∗ x1 ∗ b ∗ x2 ∗ x2 ≈ b ∗ x2

is a system of 2 polynomial equations over D4.

Question

Does the system have a solution inside D4?
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Systems of polynomial equations

The general problem

Let s ∈ N, and let A be a finite algebra. The decision problem s-POLSYSSAT(A)

is:
Given: 2s polynomial terms f1, g1, . . . , fs, gs over A.
Asked: Does the system f1 ≈ g1, . . . , fs ≈ gs have a solution in A?

Complexity of s-POLSYSSAT(A)

Let s ∈ N. Then s-POLSYSSAT(A) ∈ NP.

2/27



Comparison to other problems

Similar problems

� POLSAT(A) = 1-POLSYSSAT(A).

� POLSYSSAT(A) (no restriction on the number of equations).

Difficulties of these problems

POLSAT(A) = 1-POLSYSSAT(A) ≤ 2-POLSYSSAT(A) ≤ POLSYSSAT(A)
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Comparison between these problems

One equation – two equations – arbitrary many equations

POLSAT(A) = 1-POLSYSSAT(A) ≤ 2-POLSYSSAT(A) ≤ POLSYSSAT(A)

One is easier than two is easier than arbitrary many equations

� L = ({0, 1},∨,∧): POLSAT(L) ∈ P and 2-POLSYSSAT(L) is NP-complete
[Gorazd, Krzaczkowsi 2011].

� POLSYSSAT(D4) is NP-complete [Larose and Zádori 2006].

� We will prove that for every s ∈ N:

s-POLSYSSAT(D4) ∈ P.
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Goals

� solve systems of equations over nilpotent algebras.

� discuss the meaning of nilpotent and supernilpotent.

5/27



Nilpotent and supernilpotent algebras

Nilpotency for groups and rings

� A group G is nilpotent if ∃k ∈ N : [G, [G, . . . , [G,G] . . .]]︸ ︷︷ ︸
k+1

= {1G}.

� A ring R is nilpotent if ∃k ∈ N : R |= x1x2 · · ·xk+1 ≈ 0.

Nilpotency for universal algebras

Nilpotency has been generalized in two ways to arbitrary algebras: there are

� nilpotent, and

� supernilpotent

algebras
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Nilpotent and supernilpotent universal algebras

Definition of nilpotency

Nilpotency is a property that can be seen from (Con(A),∨,∩, [., .]), where [., .] is
the term condition commutator.
A is nilpotent if ∃k ∈ N : [1A, [1A, . . . , [1A, 1A] . . .]]︸ ︷︷ ︸

k+1

= 0A.
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Nilpotent and supernilpotent universal algebras

Definition of supernilpotency

Supernilpotency is defined through a term condition:

A is 2-supernilpotent if for all terms t and for all vectors a1,a2,a3, b1, b2, b3 from A

tA(a1,a2,a3) = tA(a1,a2, b3)

tA(a1, b2,a3) = tA(a1, b2, b3)

tA(b1,a2,a3) = tA(b1,a2, b3)

 =⇒ tA(b1, b2,a3) = tA(b1, b2, b3).

� k-supernilpotency is defined similarly through an infinite set of quasi-identities.
� Combinatorial description for finite algebras in cm varieties

A is supernilpotent⇐⇒ ∃p ∈ R[x] ∀n ∈ N |Clon(A)| ≤ 2p(n).
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Nilpotency vs. supernilpotency

All algebras

Nilpotent algebras
Supernilpotent algebras

Supernilpotent algebrasSupernilpotent algebras

N6

B4M

algebras isomorphic
to direct products of
prime power order

supernilpotent
algebras

Nilpotent groups = supernilpotent groupsNilpotent rings = supernilpotent rings
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prime power order

supernilpotent
algebras

Nilpotent groups = supernilpotent groupsNilpotent rings = supernilpotent rings

M . . . [Moore Moorhead 2018]
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Nilpotency vs. supernilpotency

Finite algebras

Nilpotent algebras

Supernilpotent algebras

Supernilpotent algebras

Supernilpotent algebras

N6

B4M

algebras isomorphic
to direct products of
prime power order

supernilpotent
algebras

Nilpotent groups = supernilpotent groupsNilpotent rings = supernilpotent rings

Theorem – announced by [Kearnes Szendrei 2018]

Every finite supernilpotent algebra is nilpotent.
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Nilpotency vs. supernilpotency

Algebras in congruence modular varieties

Nilpotent algebras

Supernilpotent algebrasSupernilpotent algebras

Supernilpotent algebras

N6

B4M

algebras isomorphic
to direct products of
prime power order

supernilpotent
algebras

Nilpotent groups = supernilpotent groupsNilpotent rings = supernilpotent rings

Theorem [Wires 2019]

Every supernilpotent algebra in a congruence modular variety is nilpotent.
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Nilpotency vs. supernilpotency

Algebras in congruence permutable varieties

Nilpotent algebras

Supernilpotent algebrasSupernilpotent algebras

Supernilpotent algebras

N6

B4M

algebras isomorphic
to direct products of
prime power order

supernilpotent
algebras

Nilpotent groups = supernilpotent groupsNilpotent rings = supernilpotent rings

Theorem [EA Mudrinski 2010]

Every supernilpotent algebra in a congruence permutable variety is nilpotent.
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Nilpotency vs. supernilpotency

Algebras in congruence permutable varieties

Nilpotent algebras

Supernilpotent algebrasSupernilpotent algebras

Supernilpotent algebras

N6

B4

M

algebras isomorphic
to direct products of
prime power order

supernilpotent
algebras

Nilpotent groups = supernilpotent groupsNilpotent rings = supernilpotent rings

B4 = (Z4,+, 2x1x2, 2x1x2x3, . . .)

N6 = (Z6,+, (−1)x).
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Nilpotency vs. supernilpotency
Algebras in cong. mod. varieties with fin. many basic operations

Nilpotent algebras

Supernilpotent algebrasSupernilpotent algebrasSupernilpotent algebras

N6

B4M

algebras isomorphic
to direct products of
prime power order

supernilpotent
algebras

Nilpotent groups = supernilpotent groupsNilpotent rings = supernilpotent rings
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Nilpotency vs. supernilpotency
Algebras in cong. mod. varieties with fin. many basic operations

Nilpotent algebras

Supernilpotent algebrasSupernilpotent algebrasSupernilpotent algebras

N6

B4M

algebras isomorphic
to direct products of
prime power order

supernilpotent
algebras

Nilpotent groups = supernilpotent groupsNilpotent rings = supernilpotent rings

Theorem [Kearnes 1999], [Berman Blok 1987]

A in a cm variety, finitely many basic operations. Then A is supernilpotent ⇐⇒
A is nilpotent and isomorphic to a product of algebras of prime power order.
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Nilpotency vs. supernilpotency

Groups

Nilpotent algebras
Supernilpotent algebrasSupernilpotent algebrasSupernilpotent algebras

N6

B4M

algebras isomorphic
to direct products of
prime power order

supernilpotent
algebras

Nilpotent groups = supernilpotent groups

Nilpotent rings = supernilpotent rings
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Nilpotency vs. supernilpotency

Rings

Nilpotent algebras
Supernilpotent algebrasSupernilpotent algebrasSupernilpotent algebras

N6

B4M

algebras isomorphic
to direct products of
prime power order

supernilpotent
algebras

Nilpotent groups = supernilpotent groups

Nilpotent rings = supernilpotent rings
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Next Goal

� How difficult is solving polynomial systems over supernilpotent
algebras?
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Systems of equations over supernilpotent algebras

Theorem [EA 2019]

Let A be a finite supernilpotent algebra in a congruence modular variety, and let
s ∈ N. Then s-POLSYSSAT(A) is in P.

History

� G is a finite nilpotent group⇒ POLSAT(G) ∈ P [Horváth, 2011]

� R is a finite nilpotent ring⇒ POLSAT(R) ∈ P [Horváth, 2011]

� A is a finite supernilpotent algebra in a congruence modular variety⇒
POLSAT(A) ∈ P [Kompatscher, 2018]
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Equations over supernilpotent algebras

Algorithms for one equation are based on:

Theorem [Horváth 2011, Kompatscher 2018]

Let A be a finite supernilpotent algebra in a cm variety, let o ∈ A. Then
∃dA ∈ N ∀n ∈ N ∀a ∈ An ∀f ∈ Poln(A) ∃y ∈ An :

f(y) = f(a), and y has at most dA entries different from o.

Hence: if f(x ) ≈ b has a solution and n ≥ dA, there is one in a set C with

|C| ≤
(
n

dA

)
|A|dA .
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Equations over supernilpotent algebras

The exponent dA

� dA is the degree of the polynomial bounding the “running time” of this
algorithm.

� Horváth and Kompatscher obtain dA by Ramsey’s Theorem.

� For nilpotent rings A, a non-Ramsey dA was found in [Károlyi and Szabó,
2015].

� Faster solutions of POLSAT(A) for nilpotent groups and rings using structure
theory: [Földvári, 2017 and 2018].

13/27



Equations over supernilpotent algebras

The exponent dA

� dA is the degree of the polynomial bounding the “running time” of this
algorithm.

� Horváth and Kompatscher obtain dA by Ramsey’s Theorem.

� For nilpotent rings A, a non-Ramsey dA was found in [Károlyi and Szabó,
2015].

� Faster solutions of POLSAT(A) for nilpotent groups and rings using structure
theory: [Földvári, 2017 and 2018].

13/27



Next Goal

� Coordinatization of a finite nilpotent algebra of prime power order using
a finite field.
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Nilpotent and supernilpotent algebras

Structure Theorem for nilpotent algebras of prime power order
[Berman Blok 1987], [Freese McKenzie 1987], [Hobby McKenzie 1988], [EA Mudrinski 2010], [EA 2018], [Wires 2019]

Let A = (A, (fi)i∈I) be in a cm variety, |A| = pα, with all fundamental operations
of arity at most µ. Let K := (µ(pα − 1))α−1. TFAE:

� A is nilpotent.

� There is a binary + on A such that
A′ = (A,+, (fi)i∈I) is nilpotent and
(A,+) ∼= (Zp × Zp × · · · × Zp,+).

� There is a field F := (A,+, ·) such
that Pol(A) ⊆ {pF | n ∈ N, p ∈
F[x1, . . . , xn], wid(p) ≤ K}.

� A has small free spectrum:
∃p ∈ R[x] : ∀n ∈ N : |Clon(A)| ≤
2p(n).

� A is supernilpotent.

� A is K-supernilpotent.

wid(p) . . . maximal number of variables
in one monomial
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Next Goal

� solve polynomial systems over supernilpotent algebras of prime power
order.
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Replacing arguments with 0

Definition

Let o ∈ A, a = (a1, . . . , an) ∈ An, U ⊆ {1, . . . , n}. Then

a (U)(i) =

{
ai if i ∈ U,
o if i 6∈ U.

Hence (a1, a2, a3, a4)
({1,3}) = (a1, o, a3, o).
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A property of polynomial systems (prime power order)

Theorem [EA 2018], [Károlyi Szabó 2015]

Let A be in a cm variety with |A| = pα = q, let µ be maximal arity of the basic
operations, let o be an element of A, K := (µ(pα − 1))α−1. Let

u1(x1, . . . , xn) ≈ v1(x1, . . . , xn)
...

us(x1, . . . , xn) ≈ vs(x1, . . . , xn)

be a polynomial system over A.
Let a ∈ An be a solution of this system. Then there is U ⊆ {1, . . . , n} with

|U | ≤ Ksα(p− 1)

such that a (U) is a solution. 18/27



Proof:

� Using the coordinatization, our system is f1(x ) ≈ · · · ≈ fs(x ) ≈ 0 with
fi ∈ F[x1, . . . , xn].

� All fi’s have width ≤ K.

�
∏s
i=1(1− fi(a)q−1) 6= 0.

� Q(x ) =
∏s
i=1(1− fi(x )q−1) has width ≤ Ks(q − 1) and Q(a) 6= 0.

� rem(Q(x ), 〈xq1 − x, . . . , x
q
n − x〉) has width ≤ Ks(q − 1).

� “Hence” there is U with |U | ≤ Ks(q − 1) and Q(a (U)) 6= 0.

� Then a (U) is a solution.

Remark

Ksα(p− 1) ≤ Ks(q − 1) = Ks(pα − 1).
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i=1(1− fi(x )q−1) has width ≤ Ks(q − 1) and Q(a) 6= 0.

� rem(Q(x ), 〈xq1 − x, . . . , x
q
n − x〉) has width ≤ Ks(q − 1).

� “Hence” there is U with |U | ≤ Ks(q − 1) and Q(a (U)) 6= 0.

� Then a (U) is a solution.

Remark

Ksα(p− 1) ≤ Ks(q − 1) = Ks(pα − 1).
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A property of polynomial systems (prime power order)

Theorem [EA 2019], [Károlyi Szabó 2015]

Let A be in a cm variety with |A| = pα = q, let µ be maximal arity of the basic
operations, let o be an element of A, K := (µ(pα − 1))α−1. Let

u1(x1, . . . , xn) ≈ v1(x1, . . . , xn)
...

us(x1, . . . , xn) ≈ vs(x1, . . . , xn)

be a polynomial system over A.
Let a ∈ An be a solution of this system. Then there is U ⊆ {1, . . . , n} with

|U | ≤ Ksα(p− 1)

such that a (U) is a solution. 20/27



Next Goal

� Drop “prime power order” restriction.
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Supernilpotent algebras

Theorem [Kearnes 1999]

Every finite supernilpotent algebra in a cm variety is a direct product of su-
pernilpotent algebras of prime power order.

Theorem [EA 2019]

Let A be supernilpotent in a cm variety with all basic operations of arity ≤ µ. Let
F : An → As with F ∈ Poln,s(A) be a polynomial map, and let z ∈ A.

Then
∀a ∈ An ∃y ∈ An such that

F (y) = F (a) and #{j ∈ n : y(j) 6= z} ≤ s|A|log2(µ)+log2(|A|)+1.
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Complexity of solving polynomial systems

Theorem [EA 2018]

Let A be a finite supernilpotent algebra in a congruence modular variety, and let
s ∈ N. Let

e := s|A|log2(µ)+log2(|A|)+1.

Then there exist cA ∈ N and an algorithm that decides s-POLSYSSAT(A) using
at most cA · ne evaluations of the system, where n is the number of variables.
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Next Goal

� Relate to “circuit satisfiability”.
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Circuit satisfiability

Definition [Idziak Krzaczkowski 2018]

Problem SCSAT(A).
Given: An even number of “circuits” f1, g1, . . . , fm, gm whose gates are taken
from the basic operations on A with n input variables.
Asked: ∃a ∈ An : f1(a) = g1(a), . . . , fm(a) = gm(a).

A restriction to the input

s-SCSAT(A) : 2s circuits.
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Circuit satisfiability

Theorem (Complexity of circuit satisfaction)

Let A be a finite algebra of finite type in a cm variety.

� SCSAT(A) ∈ P if A is abelian [Larose Zádori 2006].

� SCSAT(A) is NP-complete if A is not abelian [Larose Zádori 2006].

� A is supernilpotent⇒ 1-SCSAT(A) ∈ P [Goldmann Russell Horváth
Kompatscher 2018].

� A has no homomorphic image A′ for which 1-SCSAT(A′) is NP-complete⇒
A ∼= N×D with N nilpotent and D is a subdirect product of 2-element
algebras that are polynomially equivalent to the two-element lattice. [Idziak
Krzaczkowski 2017].

26/27



Complexity of s-SCSAT(A)

Theorem [EA 2019]

Let A be a finite algebra in a cm variety, s ∈ N.

� A supernilpotent⇒ s-SCSAT(A) ∈ P.

� A has no homomorphic image A′ for which 2-SCSAT(A′) is NP-complete⇒
A is nilpotent.
(Corollary of [Gorazd Krzaczkowski 2011] and [Idziak Krzaczkowski 2017].)
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