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Systems of polynomial equations
A system of polynomial equations

Dy = {(a,b|a*=0b>=1,ba = a’b)
D4 = (D4, *)
Then

T1*X1 *xb*xToxx9g X X1 *a

T1*x1 *b*xToxx9g X b*xx9

is a system of 2 polynomial equations over Dy.

Does the system have a solution inside D4?
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Systems of polynomial equations

The general problem

Let s € N, and let A be a finite algebra. The decision problem s-POLSYSSAT(A)
is:

Given: 2s polynomial terms fi1,91,..., fs, gs Over A.

Asked: Does the system f; ~ g1, ..., fs = gs have a solution in A?

Complexity of s-POLSYSSAT(A)
Let s € N. Then s-POLSYSSAT(A) € NP.
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Comparison to other problems

Similar problems

B POLSAT(A) = 1-POLSYSSAT(A).
B POLSYSSAT(A) (no restriction on the number of equations).

Difficulties of these problems
POLSAT(A) = 1-POLSYSSAT(A) < 2-POLSYSSAT(A) < POLSYSSAT(A)
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Comparison between these problems

One equation — two equations — arbitrary many equations

POLSAT(A) = 1-POLSYSSAT(A) < 2-POLSYSSAT(A) < POLSYSSAT(A)

One is easier than two is easier than arbitrary many equations

B L= ({0,1},V,A): POLSAT(L) € P and 2-POLSYSSAT(L) is NP-complete
[Gorazd, Krzaczkowsi 2011].

B POLSYSSAT(D,) is NP-complete [Larose and Z&dori 2006].
B We will prove that for every s € N:

s-POLSYSSAT(D,) € P.
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Goals

B solve systems of equations over nilpotent algebras.
B discuss the meaning of nilpotent and supernilpotent.
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Nilpotent and supernilpotent algebras
Nilpotency for groups and rings

B A group Gisnilpotentif 3k e N : [G, [G, ..., [G,G]...]] = {1g}.

kil
B Aring Risnilpotentif 3k e N: R = x129 - - 2441 ~ 0.

Nilpotency for universal algebras

Nilpotency has been generalized in two ways to arbitrary algebras: there are
H nilpotent, and

B supernilpotent

algebras
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Nilpotent and supernilpotent universal algebras

Definition of nilpotency

Nilpotency is a property that can be seen from (Con(A), Vv, N, [.,.]), where [.,.] is
the term condition commutator.
Ais nilpotent if 3k e N : [1A; [1A7 000y [1,4, 1A] oG H =04.

~

-~

k+1
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Nilpotent and supernilpotent universal algebras

Definition of supernilpotency

Supernilpotency is defined through a term condition:

A is 2-supernilpotent if for all terms ¢ and for all vectors a4, as, as, by, bs, bs from A

tA(a1, a2,a3) = t*(a1,az,b3)
tA(a1, by, a3) = tA(a1, by, bs) p = tA(by, ba, az) = tA(by, ba, b3).
tA (b1, ap,a3) = tA(by1, a9, bs)

B k-supernilpotency is defined similarly through an infinite set of quasi-identities.
B Combinatorial description for finite algebras in cm varieties
A is supernilpotent <= 3p € R[z] Vn € N |Clo,(A)| < 2¢(™),
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Nilpotency vs. supernilpotency

All algebras

Supernilpotent algebras
Nilpotent algebras
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Nilpotency vs. supernilpotency

All algebras

Supernilpotent algebras
Nilpotent algebras

M ...[Moore Moorhead 2018]
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Nilpotency vs. supernilpotency

Finite algebras

Supernilpotent algebras
Nilpotent algebras

Theorem — announced by [Kearnes Szendrei 2018]

Every finite supernilpotent algebra is nilpotent.
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Nilpotency vs. supernilpotency

Algebras in congruence modular varieties

Supernilpotent algebras
Nilpotent algebras

Theorem [Wires 2019]

Every supernilpotent algebra in a congruence modular variety is nilpotent.
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Nilpotency vs. supernilpotency

Algebras in congruence permutable varieties

Supernilpotent algebras
Nilpotent algebras

Theorem [EA Mudrinski 2010]

Every supernilpotent algebra in a congruence permutable variety is nilpotent.
9/27



Nilpotency vs. supernilpotency

Algebras in congruence permutable varieties

Supernilpotent algebras
Nilpotent algebras

By = (Z4,+, 22122, 21 2223, . . .)
N¢ = (Z¢, +,(—1)").
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Nilpotency vs. supernilpotency

Algebras in cong. mod. varieties with fin. many basic operations

algebras isomorphic
to direct products of Nilpotent algebras
prime power order
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Nilpotency vs. supernilpotency

Algebras in cong. mod. varieties with fin. many basic operations

algebras isomorphic i

to direct products of supernilpotent Nilpotent algebras
. algebras

prime power order

Theorem [Kearnes 1999], [Berman Blok 1987]

A in a cm variety, finitely many basic operations. Then A is supernilpotent <—-

A is nilpotent and isomorphic to a product of algebras of prime power order.
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Nilpotency vs. supernilpotency

Groups

Nilpotent groups = supernilpotent groups
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Nilpotency vs. supernilpotency

Rings

Nilpotent rings = supernilpotent rings
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Next Goal

B How difficult is solving polynomial systems over supernilpotent
algebras?
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Systems of equations over supernilpotent algebras

Theorem [EA 2019]

Let A be a finite supernilpotent algebra in a congruence modular variety, and let
s € N. Then s-POLSYSSAT(A) is in P.

B G is a finite nilpotent group = POLSAT(G) € P [Horvéth, 2011]
B R is afinite nilpotent ring = POLSAT(R) € P [Horvéth, 2011]

B A is afinite supernilpotent algebra in a congruence modular variety =
POLSAT(A) e P [Kompatscher, 2018]
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Equations over supernilpotent algebras

Algorithms for one equation are based on:

Theorem [Horvath 2011, Kompatscher 2018]

Let A be a finite supernilpotent algebra in a cm variety, let o € A. Then
ddpa € N VneN Va € A" Vf € Pol,(A) FJye A" :

f(y) = f(a), and y has at most da entries different from o.

Hence: if f(x) ~ b has a solution and n > da, there is one in a set C with

n
1< (1 )1ar.
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Equations over supernilpotent algebras

The exponent da

B d, is the degree of the polynomial bounding the “running time” of this
algorithm.

B Horvath and Kompatscher obtain dao by Ramsey’s Theorem.

B For nilpotent rings A, a non-Ramsey da was found in [Karolyi and Szabd,
2015].

B Faster solutions of POLSAT(A) for nilpotent groups and rings using structure
theory: [Féldvari, 2017 and 2018].
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Next Goal

B Coordinatization of a finite nilpotent algebra of prime power order using
a finite field.
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Nilpotent and supernilpotent algebras

Structure Theorem for nilpotent algebras of prime power order

[Berman Blok 1987], [Freese McKenzie 1987], [Hobby McKenzie 1988], [EA Mudrinski 2010], [EA 2018], [Wires 2019]
Let A = (A, (fi)ier) be in a cm variety, |A| = p®, with all fundamental operations
of arity at most . Let K := (u(p® — 1))*~1. TFAE:

B A is nilpotent.
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Next Goal

B solve polynomial systems over supernilpotent algebras of prime power
order.
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Replacing arguments with 0

Letoe A, a = (a1,...,a,) € A", U C{1,...,n}. Then

(U),: a; |f ’lEU,
a™() { o if igU.

Hence (al,ag,ag,a4)({1’3}) = (a1, 0,as,0).
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A property of polynomial systems (prime power order)

Theorem [EA 2018], [Karolyi Szabé 2015]

Let A be in a cm variety with |A| = p® = ¢, let © be maximal arity of the basic
operations, let o be an element of A, K := (u(p® — 1))* 1. Let

ul(x1,...,2n) = vi(xr,...,Tp)

us(z1, ..., xn) = vs(x1,...,%n)

be a polynomial system over A.
Let a € A™ be a solution of this system. Then there is U C {1,...,n} with

Ul < Ksa(p—1)

such that (V) is a solution. 1807



B Using the coordinatization, our systemis fi(z) = --- =~ fs(x) ~ 0 with
fi € Flxy, ..., xy)].
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B Using the coordinatization, our systemis fi(z) = --- =~ fs(x) ~ 0 with
fi € Flxy, ..., xy)].

B All f;’s have width < K.

B [T, (- fi(a)t) £0.

B Q(z)=[[_,(1 - fi(z)?1) has width < Ks(g — 1) and Q(a) # 0.
B rem(Q(z), (21 — =, ..., 2} — x)) has width < Ks(q — 1).

19/27



B Using the coordinatization, our systemis fi(z) = --- =~ fs(x) ~ 0 with
fi € Flxy, ..., xy)].

B All f;’s have width < K.

W [T, (1 fi(a))) £0.

B Q(z) = [[._,(1 - fi(z)¢!) has width < Ks(g — 1) and Q(a) # 0.
B rem(Q(z), (21 — =, ..., 2} — x)) has width < Ks(q — 1).

B “Hence” there is U with |U| < Ks(¢ — 1) and Q(a'Y)) # 0.

19/27



B Using the coordinatization, our systemis fi(z) ~ --- = fs(x) ~ 0 with
fi € Flxy, ..., xy)].

B All f;’s have width < K.

[T, (1— fi(a)7!) #0.

B Q(z) = [[_,(1 - fi(z)7") has width < K's(g — 1) and Q(a) # 0.

B rem(Q(z), (21 — =, ..., 2} — x)) has width < Ks(q — 1).

B “Hence” there is U with |U| < Ks(¢ — 1) and Q(a'Y)) # 0.

B Then oY) is a solution.

19/27



B Using the coordinatization, our systemis fi(z) ~ --- = fs(x) ~ 0 with
fi € Flxy, ..., xy)].

B All f;’s have width < K.

[T, (1— fi(a)7!) #0.

B Q(z) = [[_,(1 - fi(z)7") has width < K's(g — 1) and Q(a) # 0.

B rem(Q(z), (21 — =, ..., 2} — x)) has width < Ks(q — 1).

B “Hence” there is U with |U| < Ks(¢ — 1) and Q(a'Y)) # 0.

B Then oY) is a solution.

19/27
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B “Hence” there is U with |U| < Ks(¢ — 1) and Q(a'Y)) # 0.
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Remark

Ksa(p—1) < Ks(¢g—1) = Ks(p* —1).
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A property of polynomial systems (prime power order)

Theorem [EA 2019], [Karolyi Szabé 2015]

Let A be in a cm variety with |A| = p® = ¢, let © be maximal arity of the basic
operations, let o be an element of A, K := (u(p® — 1))* 1. Let

ul(x1,...,2n) = vi(xr,...,Tp)

us(z1, ..., xn) = vs(x1,...,%n)

be a polynomial system over A.
Let a € A™ be a solution of this system. Then there is U C {1,...,n} with

Ul < Ksa(p—1)

such that (V) is a solution. o0/7



Next Goal

B Drop “prime power order” restriction.
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Supernilpotent algebras

Theorem [Kearnes 1999]

Every finite supernilpotent algebra in a cm variety is a direct product of su-
pernilpotent algebras of prime power order.

Theorem [EA 2019]

Let A be supernilpotent in a cm variety with all basic operations of arity < u. Let
F: A" — A’ with F' € Pol,, s(A) be a polynomial map, and let z € A.

Then
Va € A™ dy € A" such that
F(y) = F(a) and #{j € n.: y(j) # 2} < s|A|os2(0Hosa(14D+1,
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Complexity of solving polynomial systems

Theorem [EA 2018]

Let A be a finite supernilpotent algebra in a congruence modular variety, and let

s € N. Let
p— S|A|logz(u)+logz(|A\)+1.

Then there exist ca € N and an algorithm that decides s-POLSYSSAT(A) using
at most ca - n¢ evaluations of the system, where n is the number of variables.
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Next Goal

B Relate to “circuit satisfiability”.
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Circuit satisfiability

Definition [ldziak Krzaczkowski 2018]

Problem SCSAT(A).

Given: An even number of “circuits” f1, g1, ..., fm,9n Whose gates are taken
from the basic operations on A with n input variables.

Asked: Ja € A" : fi(a) = gi(a),..., fm(a) = gm(a).

A restriction to the input

s-SCSAT(A) : 2s circuits.
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Circuit satisfiability

Theorem (Complexity of circuit satisfaction)

Let A be a finite algebra of finite type in a cm variety.

B SCSAT(A) € P if A is abelian [Larose Zadori 2006].
B SCsAT(A) is NP-complete if A is not abelian [Larose Z&dori 2006].

B A is supernilpotent = 1-SCSAT(A) € P [Goldmann Russell Horvath
Kompatscher 2018].

B A has no homomorphic image A’ for which 1-SCSAT(A’) is NP-complete =
A = N x D with N nilpotent and D is a subdirect product of 2-element
algebras that are polynomially equivalent to the two-element lattice. [Idziak
Krzaczkowski 2017].
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Complexity of s-SCSAT(A)

Theorem [EA 2019]

Let A be a finite algebra in a cm variety, s € N.

B A supernilpotent = s-SCSAT(A) € P.

B A has no homomorphic image A’ for which 2-SCSAT(A’) is NP-complete =
A is nilpotent.
(Corollary of [Gorazd Krzaczkowski 2011] and [Idziak Krzaczkowski 2017].)
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