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Does L force nilpotency?

Question

I Given: A modular lattice L.
I Asked: Is there an algebra A

in a congruence modular
variety with Con(A) ∼= L such
that A is not nilpotent?
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Towards a purely lattice theoretic viewpoint

What a non-nilpotent algebra does to a finite lattice
If there is a non-nilpotent A in a cm variety with Con(A) = L,
then the binary commutator operation of A

[., .] : L× L→ L

satisfies
I ∀x , y : [x , y ] = [y , x ] ≤ x ∧ y ,
I ∀x , y , z : [x , y ∨ z] = [x , y ] ∨ [x , z]

and there is a nilpotency killer ρ ∈ L with
I ρ > 0.
I [1, ρ] = ρ.



Lattice theoretic question

An obvious dichotomy
Given a lattice L,

I there exists a commutative, join distributive,
“subintersective” binary operation [., .] that has a ρ ∈ L with
[1, ρ] = ρ > 0, or

I there is no such operation.

Definition
A finite lattice L forces nilpotent type if there are no [., .] and ρ
such that

I [., .] is commutative, join distributive, subintersective (i.e.,
[., .] is a commutator multiplication), and

I [1, ρ] = ρ > 0.



Lattice theoretic question

Goal
Characterize those finite modular lattices that force nilpotent type.

Very short history

I G. Birkhoff (1948) defined commutation lattices (L,∨,∧, (xy)).
Proved: if lower central series is finite, then the upper central
series has the same length.

I J. Czelakowski (2008) defined commutator lattices
(L,∨,∧, [x , y ]) and investigated the relation of [x , y ] with

(a : b) = largest c with [c,b] ≤ a.

I At AAA92 (2016), we saw a condition (C) such that every finite
modular lattice with (C) forces nilpotent type.

I Today, we prove the converse and thereby finish the
characterization for finite modular lattices.



Construction of a commutator multiplication

Task
I Given: L.
I Asked: A multiplication [., .] and

a nilpotency killer ρ.

Finding [., .] and ρ

I We try this ρ.
I We want a multiplication [., .] with

[1, ρ] = ρ.
I Not possible because:

[α, ρ] ≤ α ∧ ρ = 0 and
[β, ρ] ≤ β ∧ ρ = 0 and hence
[1, ρ] = [α ∨ β, ρ] =
[α, ρ] ∨ [β, ρ] = 0 ∨ 0 = 0.
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Construction of a commutator multiplication

Task
I Asked: A multiplication [., .] and

a nilpotency killer ρ.

Finding [., .] and ρ

I We try this ρ.
I Now we will succeed!
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Construction of the multiplication

I Find all intervals projective to
I[0, ρ].

I Find all meet irreducibles η with
I[η, η+] ! I[0, ρ]

I Let Γ be their join.
I Find all join irreducibles ν with

I[ν−, ν] ! I[0, ρ].
I Let ∆ be their join.
I Let Θ be the congruence of L

generated by (∆,1).
I Define s(x) :=

∧
{z | (z, x) ∈ Θ}.
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Construction of the multiplication

The multiplication

I Define [x , y ] := 0 if x ≤ Γ and
y ≤ Γ.

I Define [x , y ] := s(x ∧ y)
otherwise.

Properties of the multiplication

I [., .] is commutative, below meet.
I [., .] is join distributive.
I We have [1, ρ] = ρ.
I Conclusion: L does not force

nilpotent type.
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Lattices with only nilpotent commutator multiplications

The general content
This construction was possible because
there were:

I a join irreducible ρ ∈ L with
Γ = Γ(ρ−, ρ) < 1, where

Γ =
∨
{η | η m.i. andI[ρ−, ρ] ! I[η, η+]}.
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Theorem
Let L be a modular lattice of finite height. TFAE:

I L allows a non-nilpotent commutator multiplication.
I ∃α ≺ β ∈ L such that Γ(α, β) < 1.
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The largest commutator multiplication

Lemma (Czelakowski)
The join of commutator multiplications is again a commutator
multiplication. Hence on a given lattice, there is one largest
commutator multiplication.
Czelakowski: “The characterization of the operation •Ω in
modular algebraic lattices is an open and challenging problem.”

Description of the largest commutator multiplication
Let d., .e denote the largest commutator multiplication on L.

I We have no description of dx , ye yet.
I We have no description of the associated residuation

(x : y) =
∨
{z | dz, ye ≤ x} either.

I We can describe (x : y) if x ≺ y !



The largest commutator operation

Theorem
Let L be a bialgebraic modular lattice,
and let (x : y) be the residuation
operation associated with the largest
commutator multiplication. Let α, β ∈ L
be such that α ≺ β. Then

(α : β) = Γ(α, β).

Γblue

Γred
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Open problem

Definition
L forces abelian type if [x , y ] = 0 is the only commutator
multiplication on L.

Problem
Characterize those modular lattices of finite height that force
abelian type.

Theorem
Let L be a complete lattice. If L has a complete (0,1)-sublattice
K that is algebraic, modular, simple, complemented, and has at
least 3 elements, then L forces abelian type.



References

I G. Birkhoff, Lattice Theory, AMS, editions 1948 and 1967.
I J. Czelakowski, Additivity of the commutator and

residuation, Reports on Mathematical Logic (2008), no. 43,
109–132.

I J. Czelakowski, The equationally-defined commutator,
Birkhäuser/Springer, Cham, 2015.

I E. Aichinger, Congruence lattices forcing nilpotency, arXiv,
to appear in Journal of Algebra and its Applications.


	Drawings

