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Theorem (Counting Zeros: Chevalley, Warning, Ax, Katz)

Let f1,..., fr € Fylz1,...,7,], and let v := #{a € F} | fi(a) = --- = f.(a) = 0}.
Then

1. v=00rv > qn_E::l deg(fi)

Warning’s Second Theorem (1935); improvements by Heath-Brown (2001)
and Moreno and Moreno (1995)

{n—ELl deg(f;

)
max,; e, y 1 H H
q m*ielr eV divides v.

Ax (1964) and Katz (1971); improvements by Moreno and Moreno (1995)

Such results were used in [Kawatek and Krzaczkowski, 2020] to provide a linear
time Monte-Carlo algorithm to solve equations over nilpotent groups.
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Goal of this presentation

B We try to formulate Ax-Katz-type Theorems for mappings on abelian groups.

B We obtain results that are weaker than the Ax-Katz-Moreno-Moreno
Theorems, but some new results on the way.

B The proofs use only a modest amount of number theory.
B The technique looks promising.

2/14



Functional Degree

A, B ...abelian groups, f: A — B
(A= F"and B = F" in Warning’s Theorem).

B Forac A Auf) (z) := f(z+a) — f(z).
B FDEG(f) := the minimal n € Ny with A, A, ---A,, ., f =0 forall
Qai,...,0p41 € A.

B Intuitive: f : R — R is a polynomial of degree < 2 < "/ = 0.
B Problems:
O Au(fog)=? (“Chain rule”)
O f:Z — Zs, f(0) =1, f(1) = 2 satisfies A, f = f. Hence FDEG(f) = oo.
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The definition of the degree

Setup: We let A, B be abelian groups, f: A — B.
Definition through an abstract version of the difference operator:
[Vaughan-Lee 1983]

B Group ring Z[A] := {3 ,c 4 #aTa | (2a)aca € ZW}.
B Z[A] acts on B4 by

(Tax f) (2) = f(z+a)
(aeazaTa) x ) (2) = Dieazaf(z+a)
(ra =D« f) (x) = flz+a)- f(2)

B In this way, B4 is a Z[A]-module.
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The definition of the degree

Setup: We let A, B be abelian groups, f : A — B.
Definition through an abstract version of the difference operator:
[Vaughan-Lee 1983]

B (o — 1) f)(2):= f(z+a) = f(z)
B ] := augmentation ideal of Z[A] = ideal generated by {7, — 1| a € A} =
{2 aca zama € ZIA] | Xgeaza =0}

Definition of the functional degree

FDEG(f) := min ({n € Ny | (Aug(Z[A]))"*! * f = 0} U {c0}).
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Maximal degree

For two abelian groups A, B, we define

8(A, B) := sup ({FDEG(f) | f € BA}).

Theorem (EA, Moosbauer 2020)

B j(A, B)<oco<=|Al=1lor|B|=1ordpecP : Ais afinite p-group and B is
a p-group of finite exponent.

B If B is of finite exponent n, then
d(A, B) = min{m € N | (Aug(Z,[A4]))™ = 0}/ -1

nilpotency index of Aug(Z,[A])
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General results on §(A, B)

8(A, B) := sup ({FDEG(f) | f € BA}).

Lemma (EA and Moosbauer 2020)
Let A, B be abelian groups.

B 5(4,2,5) < BO(A,Z,).
| 5(A1 X AQ,B) < 5(A1,B) +5(A2,B).

Theorem (Leibman 2002)
FDEG(f o g) < FDEG(f) - FDEG(g).

Self-contained proof in [EA and Moosbauer, 2020]. 7114



Known results on §(A, B)

§(A, B) == sup ({FDEG(f) | f € B*}) = (nilpotency index of Aug(Ze,(p)[A])) — 1

8/14



Known results on §(A, B)

§(A, B) == sup ({FDEG(f) | f € B*}) = (nilpotency index of Aug(Ze,(p)[A])) — 1

§(A, B) I B=17, | B=12Z

A is not a p-group 00 00

8/14



Known results on §(A, B)

§(A, B) == sup ({FDEG(f) | f € B*}) = (nilpotency index of Aug(Ze,(p)[A])) — 1

§(A, B) I B=17, | B=1Z,
A is not a p-group 00 00
A = Zpa pa — 1

Karpilovsky 1987

8/14



Known results on §(A, B)

§(A, B) == sup ({FDEG(f) | f € B*}) = (nilpotency index of Aug(Ze,(p)[A])) — 1

§(A, B) I B=17, | B=1Z,
A is not a p-group 00 00
A = Lipe p*—1 Bp* —(B—1)p* ' -1

Karpilovsky 1987 R. Wilson 2006

8/14



Known results on §(A, B)

§(A, B) == sup ({FDEG(f) | f € B*}) = (nilpotency index of Aug(Ze,(p)[A])) — 1

3(A,B) | B=2z, | B=1Z,
A is not a p-group 00 00
A= Lo =1 Bp* —(B—1p* ' =1
Karpilovsky 1987 R. Wilson 2006
A= (Zp)" n(p—1)

Karpilovski 1987

8/14



Known results on §(A, B)

§(A, B) == sup ({FDEG(f) | f € B*}) = (nilpotency index of Aug(Ze,(p)[A])) — 1

3(A,B) | B=2z, | B=1Z,
A is not a p-group 00 00
A= Lo =1 Bp* —(B—1p* ' =1
Karpilovsky 1987 R. Wilson 2006
A= (Zy,)" n(p—1) <pn(p-1)

Karpilovski 1987

8/14



Known results on §(A, B)

§(A, B) == sup ({FDEG(f) | f € B*}) = (nilpotency index of Aug(Ze,(p)[A])) — 1

3(A,B) | B=2z, | B=1Z,
A is not a p-group 00 00
A =T -1 Bp* —(B—1p* ' =1
Karpilovsky 1987 R. Wilson 2006
A= (Z,)" n(p—1) <pn(p-1)

Karpilovski 1987 B+n—-1)(p-1)

8/14



Known results on §(A, B)

§(A, B) == sup ({FDEG(f) | f € B*}) = (nilpotency index of Aug(Ze,(p)[A])) — 1

(A, B) I B=17, | B=1Z,
A is not a p-group 00 00

A= Zype P —1 Bp* = (B—1)p*~' =1

Karpilovsky 1987 R. Wilson 2006
A= (Zp)" n(p—1) < pn(p—1)
Karpilovski 1987 B+n—-1)(p-1)
A=1[L Zpei dim (pr—1)

Karpilovsky 1987

8/14



Known results on §(A, B)

§(A, B) == sup ({FDEG(f) | f € B*}) = (nilpotency index of Aug(Ze,(p)[A])) — 1

(A, B) I B=17, | B=1Z,
A is not a p-group 00 00

A= Lo P —1 Bp* = (B—1)p*~' =1

Karpilovsky 1987 R. Wilson 2006
A= (Zp)" n(p—1) < pn(p—1)
Karpilovski 1987 B+n—-1)(p-1)
A= H?:] Zpai E?:l(pai — 1) < 0

Karpilovsky 1987 OPEN

8/14



Theorem (EA, 2021)
Let 5,n € N, p a prime, and let C, be the cyclic group of order p multiplicatively
written.
| 5(Z2,Zp3) =B+n-1)(p-1).
B The nilpotency index of the augmentation ideal of Z,s[C}] is
B+n—-1)(p—1)+1.
W Let
A = (zj—1]jeln),
N = (z7—-1]j€[n]).
be ideals of Z[z1,...,x,), and p:= (8 4+n — 1)(p — 1). Then A* Z N + (p”)
and A¥t1 C N + (pf).
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Proof of A" C N + (p”).

W os(z) = .
B SheZz]): (x—1)P =2 — 14 ph(z) = s(z)(x — 1) + ph(z).
B 3gcZz]: (x— 1Pt =s(x) + pg(z).
B (v 1)"P~) = (—p)"~ls(z) + p"g(z)” (mod xP — 1). (Induction, 14 lines)
W Forallr,teNp 1<r<nandt>r—-1=
(w1 =1,y mp = DIEDHC (@f — 15 € [n]) + (7).
(Induction on r, 1 page)
B Forr:=nandt:=f+n— 1, we have AB+tn=NE-D+1 C N 4 (pf),
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Sums that are 0

Theorem (EA 2021)

Let n,3 € N with 3 < n, let B be an abelian group of exponent p®, and let
f:Zy; — B. If FDEG(f) <n(p— 1), then

> fla)=0.

a€Ly

11/14



An application

Leta,y e N, let A =73, B =17y, let fi,...,fr : A— B, letd € N be such that

maxie[r](FDEG(fi)) <d letV(fi,...,fr) ={a€ A| fila) =-- = fr(a) = 0},
and let

B:=1(5—m).

Then p? | #V (f1,..., fs).
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Proof:

mf=(fi,....fr): A— B".

B FDEG(f) = max;¢,) FDEG(f;) < d.

B x:B" — Z,s defined by x(0) = 1 and x(b) = 0 forb € B" \ {0}.

B FDEG(X) < (B+ry—1(p—1).

B By [Leibman, 2002], FDEG(x o f) < FDEG(x) - FDEG(f).

B FDEG(xo f) < (B+ry—1)(p—1)d=(
(- +l+rmy—L-1d=3(p—-1

B D cax(fla)) =0.
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Comparison to the Ax-Katz Theorem:

We compare this for the case that A = Fy, B =F, f;'s are polynomials:

B There is Moreno and Moreno’s bound (1995), which in some cases improves
the Ax-Katz Theorem. We obtain their bound in the case that all f; are of
equal p-weight degree.

B We obtain the prime field case of Ax’s Theorem (1964).
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