GROUP RINGS, FRÉCHET'S FUNCTIONAL EQUATION, AND COUNTING ZEROS

Erhard Aichinger
Institute for Algebra
Austrian Science Fund FWF P33878

Theorem (Counting Zeros: Chevalley, Warning, Ax, Katz)

Let $f_1, \ldots, f_r \in \mathbb{F}_q[x_1, \ldots, x_n]$, and let $v := \#\{a \in \mathbb{F}_q^n \mid f_1(a) = \cdots = f_r(a) = 0\}$. Then

1. v=0 or $v \ge q^{n-\sum_{i=1}^r \deg(f_i)}$.

Warning's Second Theorem (1935); improvements by Heath-Brown (2001) and Moreno and Moreno (1995)

2.

$$q^{\lceil \frac{n-\sum_{i=1}^r \deg(f_i)}{\max_i \in [r]} \frac{\deg(f_i)}{\log(f_i)} \rceil} \text{ divides } v.$$

Ax (1964) and Katz (1971); improvements by Moreno and Moreno (1995)

Such results were used in [Kawałek and Krzaczkowski, 2020] to provide a linear time Monte-Carlo algorithm to solve equations over nilpotent groups.

Goal of this presentation

- We try to formulate Ax-Katz-type Theorems for mappings on abelian groups.
- We obtain results that are weaker than the Ax-Katz-Moreno-Moreno Theorems, but some new results on the way.
- The proofs use only a modest amount of number theory.
- The technique looks promising.

Functional Degree

 $A,B\dots$ abelian groups, $f:A\to B$ ($A=F^n$ and $B=F^r$ in Warning's Theorem).

Definition

- $\blacksquare \text{ For } a \in A, \, \Delta_a(f)(x) := f(x+a) f(x).$
- FDEG(f) := the minimal $n \in \mathbb{N}_0$ with $\Delta_{a_1}\Delta_{a_2}\cdots\Delta_{a_{n+1}}$ f=0 for all $a_1,\ldots,a_{n+1}\in A$.
- Intuitive: $f: \mathbb{R} \to \mathbb{R}$ is a polynomial of degree $\leq 2 \Leftrightarrow f''' = 0$.
- **■** Problems:
 - $\square \ \Delta_a(f \circ g) = ?$ ("Chain rule")
 - $\ \square \ f: \mathbb{Z}_2 o \mathbb{Z}_3, f(0) = 1, f(1) = 2 \text{ satisfies } \Delta_1 f = f. \text{ Hence } \mathsf{FDEG}(f) = \infty.$

The definition of the degree

Setup: We let A, B be abelian groups, $f: A \to B$. **Definition through an abstract version of the difference operator:** [Vaughan-Lee 1983]

- Group ring $\mathbb{Z}[A] := \{ \sum_{a \in A} z_a \tau_a \mid (z_a)_{a \in A} \in \mathbb{Z}^{(A)} \}.$
- $\blacksquare \ \mathbb{Z}[A] \ \text{acts on} \ B^A \ \text{by}$

■ In this way, B^A is a $\mathbb{Z}[A]$ -module.

The definition of the degree

Setup: We let A, B be abelian groups, $f: A \rightarrow B$.

Definition through an abstract version of the difference operator:

[Vaughan-Lee 1983]

- $((\tau_a 1) * f)(x) := f(x + a) f(x).$
- I := augmentation ideal of $\mathbb{Z}[A] =$ ideal generated by $\{\tau_a 1 \mid a \in A\} = \{\sum_{a \in A} z_a \tau_a \in \mathbb{Z}[A] \mid \sum_{a \in A} z_a = 0\}$

Definition of the functional degree

$$\mathsf{FDEG}(f) := \min (\{ n \in \mathbb{N}_0 \mid (\mathrm{Aug}(\mathbb{Z}[A]))^{n+1} * f = 0 \} \cup \{ \infty \}).$$

Maximal degree

For two abelian groups A, B, we define

$$\delta(A, B) := \sup (\{ \mathsf{FDEG}(f) \mid f \in B^A \}).$$

Theorem (EA, Moosbauer 2020)

- $\delta(A,B) < \infty \iff |A| = 1$ or |B| = 1 or $\exists p \in \mathbb{P} : A$ is a finite p-group and B is a p-group of finite exponent.
- If B is of finite exponent n, then

$$\delta(A,B) = \underbrace{\min\{m \in \mathbb{N} \mid (\operatorname{Aug}(\mathbb{Z}_n[A]))^m = 0\}}_{\text{nilpotency index of }\operatorname{Aug}(\mathbb{Z}_n[A])} - 1.$$

General results on $\delta(A, B)$

$$\delta(A,B) := \sup \left(\{ \mathsf{FDEG}(f) \mid f \in B^A \} \right).$$

Lemma (EA and Moosbauer 2020)

Let A, B be abelian groups.

Theorem (Leibman 2002)

 $\mathsf{FDEG}(f \circ g) \leq \mathsf{FDEG}(f) \cdot \mathsf{FDEG}(g).$

$$\delta(A,B) := \sup \left(\{ \mathsf{FDEG}(f) \mid f \in B^A \} \right) = (\mathsf{nilpotency} \ \mathsf{index} \ \mathsf{of} \ \operatorname{Aug}(\mathbb{Z}_{\exp(B)}[A])) - 1$$

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B = \mathbb{Z}_{p^{\beta}}$

$$\delta(A,B) := \sup \left(\{ \mathsf{FDEG}(f) \mid f \in B^A \} \right) = (\mathsf{nilpotency} \ \mathsf{index} \ \mathsf{of} \ \operatorname{Aug}(\mathbb{Z}_{\exp(B)}[A])) - 1$$

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B = \mathbb{Z}_{p^{\beta}}$
A is not a p -group	∞	∞

$$\delta(A,B) := \sup \left(\{ \mathsf{FDEG}(f) \mid f \in B^A \} \right) = (\mathsf{nilpotency} \ \mathsf{index} \ \mathsf{of} \ \operatorname{Aug}(\mathbb{Z}_{\exp(B)}[A])) - 1$$

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B = \mathbb{Z}_{p^{\beta}}$
A is not a p -group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	
	$p^{lpha}-1$ Karpilovsky 1987	

$$\delta(A,B) := \sup \left(\{ \mathsf{FDEG}(f) \mid f \in B^A \} \right) = \left(\mathsf{nilpotency index of } \, \operatorname{Aug}(\mathbb{Z}_{\exp(B)}[A]) \right) - 1$$

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B = \mathbb{Z}_{p^{\beta}}$
A is not a p -group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006

$$\delta(A,B) := \sup \left(\{ \mathsf{FDEG}(f) \mid f \in B^A \} \right) = (\mathsf{nilpotency} \ \mathsf{index} \ \mathsf{of} \ \operatorname{Aug}(\mathbb{Z}_{\exp(B)}[A])) - 1$$

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B=\mathbb{Z}_{p^{eta}}$
A is not a p -group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006
$A = (\mathbb{Z}_p)^n$	n(p-1)	
	Karpilovski 1987	

$$\delta(A,B) := \sup \left(\{ \mathsf{FDEG}(f) \mid f \in B^A \} \right) = \left(\mathsf{nilpotency index of } \, \operatorname{Aug}(\mathbb{Z}_{\exp(B)}[A]) \right) - 1$$

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B=\mathbb{Z}_{p^{eta}}$
A is not a p -group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006
$A = (\mathbb{Z}_p)^n$	n(p-1)	$\leq \beta n(p-1)$
	Karpilovski 1987	

$$\delta(A,B) := \sup \left(\{ \mathsf{FDEG}(f) \mid f \in B^A \} \right) = (\mathsf{nilpotency} \ \mathsf{index} \ \mathsf{of} \ \operatorname{Aug}(\mathbb{Z}_{\exp(B)}[A])) - 1$$

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B=\mathbb{Z}_{p^{eta}}$
A is not a p -group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006
$A = (\mathbb{Z}_p)^n$	n(p-1)	$\leq \beta n(p-1)$
	Karpilovski 1987	$(\beta + n - 1)(p - 1)$

$$\delta(A,B) := \sup \left(\{ \mathsf{FDEG}(f) \mid f \in B^A \} \right) = (\mathsf{nilpotency} \ \mathsf{index} \ \mathsf{of} \ \operatorname{Aug}(\mathbb{Z}_{\exp(B)}[A])) - 1$$

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B = \mathbb{Z}_{p^{\beta}}$
A is not a p -group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006
$A = (\mathbb{Z}_p)^n$	n(p-1)	$\leq \beta n(p-1)$
	Karpilovski 1987	$(\beta + n - 1)(p - 1)$
$A = \prod_{i=1}^{n} \mathbb{Z}_{p^{\alpha_i}}$	$\sum_{i=1}^{n} (p^{\alpha_i} - 1)$	
	Karpilovsky 1987	

$$\delta(A,B) := \sup \left(\{ \mathsf{FDEG}(f) \mid f \in B^A \} \right) = (\mathsf{nilpotency} \ \mathsf{index} \ \mathsf{of} \ \operatorname{Aug}(\mathbb{Z}_{\exp(B)}[A])) - 1$$

$\delta(A,B)$	$B = \mathbb{Z}_p$	$B = \mathbb{Z}_{p^{\beta}}$
A is not a p -group	∞	∞
$A = \mathbb{Z}_{p^{\alpha}}$	$p^{\alpha}-1$	$\beta p^{\alpha} - (\beta - 1)p^{\alpha - 1} - 1$
	Karpilovsky 1987	R. Wilson 2006
$A = (\mathbb{Z}_p)^n$	n(p-1)	$\leq \beta n(p-1)$
	Karpilovski 1987	$(\beta + n - 1)(p - 1)$
$A = \prod_{i=1}^{n} \mathbb{Z}_{p^{\alpha_i}}$	$\sum_{i=1}^{n} (p^{\alpha_i} - 1)$	< ∞
	Karpilovsky 1987	OPEN

Theorem (EA, 2021)

Let $\beta, n \in \mathbb{N}$, p a prime, and let C_p be the cyclic group of order p multiplicatively written.

- The nilpotency index of the augmentation ideal of $\mathbb{Z}_{p^{\beta}}[C_p^n]$ is $(\beta + n 1)(p 1) + 1$.
- Let

$$A = \langle x_j - 1 \mid j \in [n] \rangle,$$

$$N = \langle x_j^p - 1 \mid j \in [n] \rangle.$$

be ideals of $\mathbb{Z}[x_1,\ldots,x_n]$, and $\mu:=(\beta+n-1)(p-1)$. Then $A^{\mu} \subseteq N+\langle p^{\beta} \rangle$ and $A^{\mu+1} \subseteq N+\langle p^{\beta} \rangle$.

Proof of $A^{\mu+1} \subseteq N + \langle p^{\beta} \rangle$.

- $\blacksquare \ s(x) := \sum_{i=0}^{p-1} x^i.$
- $\blacksquare \ \exists h \in \mathbb{Z}[x] : (x-1)^p = x^p 1 + ph(x) = s(x)(x-1) + ph(x).$
- $\exists g \in \mathbb{Z}[x] : (x-1)^{p-1} = s(x) + pg(x).$
- $\blacksquare (x-1)^{n(p-1)} \equiv (-p)^{n-1}s(x) + p^ng(x)^n \pmod{x^p-1}$. (Induction, 14 lines)
- For all $r, t \in \mathbb{N}_0$: $1 \le r \le n$ and $t \ge r 1 \Rightarrow \langle x_1 1, \dots, x_r 1 \rangle^{t(p-1)+1} \subseteq \langle x_j^p 1 \mid j \in [n] \rangle + (p^{t-r+1})$. (Induction on r, 1 page)
- lacksquare For r:=n and $t:=\beta+n-1$, we have $A^{(\beta+n-1)(p-1)+1}\subseteq N+(p^{\beta}).$

Sums that are 0

Theorem (EA 2021)

Let $n, \beta \in \mathbb{N}$ with $\beta \leq n$, let B be an abelian group of exponent p^{β} , and let $f: \mathbb{Z}_p^n \to B$. If $\mathsf{FDEG}(f) < n(p-1)$, then

$$\sum_{a \in \mathbb{Z}_p^n} f(a) = 0.$$

An application

Theorem

Let $\alpha, \gamma \in \mathbb{N}$, let $A = \mathbb{Z}_p^{\alpha}$, $B = \mathbb{Z}_p^{\gamma}$, let $f_1, \ldots, f_r : A \to B$, let $d \in \mathbb{N}$ be such that $\max_{i \in [r]} (\mathsf{FDEG}(f_i)) \le d$, let $V(f_1, \ldots, f_r) := \{a \in A \mid f_1(a) = \cdots = f_r(a) = 0\}$, and let

$$\beta := \lceil \left(\frac{\alpha}{d} - r\gamma \right) \rceil.$$

Then $p^{\beta} \mid \#V(f_1,\ldots,f_s)$.

Proof:

- $\blacksquare f := (f_1, \dots, f_r) : A \to B^r.$
- $FDEG(f) = \max_{i \in [r]} FDEG(f_i) \le d$.
- $\blacksquare \ \chi: B^r \to \mathbb{Z}_{p^\beta}$ defined by $\chi(0) = 1$ and $\chi(b) = 0$ for $b \in B^r \setminus \{0\}$.
- $FDEG(\chi) \le (\beta + r\gamma 1)(p 1)$.
- By [Leibman, 2002], $FDEG(\chi \circ f) \leq FDEG(\chi) \cdot FDEG(f)$.
- $$\begin{split} \blacksquare \ \, \mathsf{FDEG}(\chi \circ f) & \leq (\beta + r\gamma 1)(p-1)d = (\lceil (\frac{\alpha}{d} r\gamma) \rceil + r\gamma 1)(p-1)d < \\ & (\frac{\alpha}{d} r\gamma + 1 + r\gamma 1)(p-1)d = \frac{\alpha}{d}(p-1)d = \alpha(p-1). \end{split}$$
- $\blacksquare \sum_{a \in A} \chi(f(a)) = 0.$

Comparison to the Ax-Katz Theorem:

We compare this for the case that $A = \mathbb{F}_q^n$, $B = \mathbb{F}_q$, f_i 's are polynomials:

- There is Moreno and Moreno's bound (1995), which in some cases improves the Ax-Katz Theorem. We obtain their bound in the case that all f_i are of equal p-weight degree.
- We obtain the prime field case of Ax's Theorem (1964).