WHEN IS THE VALUE OF A POLYNOMIAL DETERMINED BY THE VALUE OF OTHER POLYNOMIALS?

Erhard Aichinger, Institute for Algebra, Johannes Kepler University Linz Supported by the Austrian Science Fund FWF: P33878 DMV-ÖMG Annual Conference 2021, Passau, September 2021

Outline

- We will investigate polynomials $g(t_1, ..., t_n)$ over algebraically closed fields whose values $g(\mathbf{a})$ are fully determined by the values $f_1(\mathbf{a}), ..., f_m(\mathbf{a})$ of some given polynomials.
- Often g is then a polynomial or rational function in f_1, \ldots, f_m .
- We are going to specify "often".

Determined Polynomials

Determined Polynomials

k field, $m, n \in \mathbb{N}$, $g, f_1, \ldots, f_m \in k[t_1, \ldots, t_n]$.

Definition. g is determined by $f = (f_1, \dots, f_m)$ if for all $a, b \in k^n$:

$$f_1(\boldsymbol{a}) = f_1(\boldsymbol{b}) \wedge \cdots \wedge f_m(\boldsymbol{a}) = f_m(\boldsymbol{b}) \implies g(\boldsymbol{a}) = g(\boldsymbol{b}).$$

Hence g is determined by f if and only if $\exists h: k^m \to k$ such that

$$g(\boldsymbol{a}) = h(f_1(\boldsymbol{a}), \dots, f_m(\boldsymbol{a}))$$
 for all $\boldsymbol{a} \in k^n$.

 $\blacksquare t_1(t_1t_2)^2 - 3t_1^2(t_1t_2)$ is determined by (t_1, t_1t_2) .

- $\blacksquare t_1(t_1t_2)^2 3t_1^2(t_1t_2)$ is determined by (t_1, t_1t_2) .
- Every $g \in k[f_1, \ldots, f_m]$ is (f_1, \ldots, f_m) -determined.

- $\blacksquare t_1(t_1t_2)^2 3t_1^2(t_1t_2)$ is determined by (t_1, t_1t_2) .
- Every $g \in k[f_1, ..., f_m]$ is $(f_1, ..., f_m)$ -determined.
- $(k=\mathbb{C})$: $\frac{(t_1t_2)^2}{t_1} = t_1t_2^2$ is determined by (t_1, t_1t_2) . In[1]:= GroebnerBasis [{a1 - b1, a1*a2 - b1*b2, -1 + (a1*a2^2 - b1*b2^2)*z}] Out[1]= {1}

- $\blacksquare t_1(t_1t_2)^2 3t_1^2(t_1t_2)$ is determined by (t_1, t_1t_2) .
- \blacksquare Every $q \in k[f_1, \ldots, f_m]$ is (f_1, \ldots, f_m) -determined.
- $(k = \mathbb{C})$: $\frac{(t_1t_2)^2}{t_1} = t_1t_2^2$ is determined by (t_1, t_1t_2) . In[1]:= GroebnerBasis [$\{a1 - b1, a1*a2 - b1*b2, -1 + (a1*a2^2 - b1*b2^2)*z\} \}$ Out[1]= {1}
- \blacksquare $(k = \mathbb{C})$: $\frac{t_1 t_2}{t_1} = t_2$ is not determined by $(t_1, t_1 t_2)$ $In[2] := GroebnerBasis [{a1 - b1, a1 a2 - b1 b2, -1 + (a2 - b2) z}]$ $Out[2] = \{-1 + a2 z - b2 z, b1, a1\}$ a = (0,0), b = (0,1) are witnesses.

- $\blacksquare t_1(t_1t_2)^2 3t_1^2(t_1t_2)$ is determined by (t_1, t_1t_2) .
- Every $g \in k[f_1, \ldots, f_m]$ is (f_1, \ldots, f_m) -determined.

- $\blacksquare g \in k(f_1,\ldots,f_m) \cap k[t_1,\ldots,t_n]$ provides no verdict on determinateness.

 \blacksquare $(k = \mathbb{R})$: t is determined by t^3 .

- \blacksquare $(k = \mathbb{R})$: t is determined by t^3 .
- \blacksquare (k algebraically closed, characteristic p > 0): $t^2 + 1$ is determined by $(t^2 + 1)^p$.

Determined ⇒ rational function

Determined ⇒ rational function

Theorem (EA 2015)

k ac field of char $0, m, n \in \mathbb{N}, f_1, \dots, f_m \in k[t_1, \dots, t_n]$ algebraically independent over k. Then every (f_1, \dots, f_m) -determined polynomial g lies in

$$k(f_1,\ldots,f_m)\cap k[t_1,\ldots,t_n].$$

Proof

- \blacksquare $P = \{(f_1(a), \dots, f_m(a)) \mid a \in k^n\}$ is Zariski-dense in k^m ,
- $D = \{(f_1(\boldsymbol{a}), \dots, f_m(\boldsymbol{a}), g(\boldsymbol{a})) \mid \boldsymbol{a} \in k^n\}$ satisfies $\dim(\overline{D}) = m$. We use that g is \boldsymbol{f} -determined and that $\overline{D} = D \cup W$, where W is algebraic and $\dim(W) \leq m - 1$ (Closure Theorem).
- The minimal polynomial of g over $k[f_1, \ldots, f_m]$ has degree 1. Geometric intuition: degree of \overline{D} should be 1.

Determined ⇒ rational function

Theorem (EA 2015)

k ac field of char p > 0, $m, n \in \mathbb{N}$,

 $f_1, \ldots, f_m \in k[t_1, \ldots, t_n]$ algebraically independent over k.

Then for every (f_1,\ldots,f_m) -determined polynomial g there is $u\in\mathbb{N}$ with

$$g^{p^{\nu}} \in k(f_1,\ldots,f_m) \cap k[t_1,\ldots,t_n].$$

Proof

- Additional case: The minimal polynomial μ of g over $k[f_1, \ldots, f_m]$ may have degree > 1.
- Then $\mu \in k[t^p]$.
- Repeat for g^p (induction).

$Determined \Rightarrow polynomial$

Determined ⇒ **polynomial**

- Limitation: $g = \frac{(t_1t_2)^2}{t_1} = t_1t_2^2$ is determined by (t_1, t_1t_2) , but $g \notin \mathbb{C}[t_1, t_1t_2]$.
- lacksquare Reason: Each monomial μ in a $p \in \mathbb{C}[t_1,\,t_1t_2]$ satisfies $\deg_{t_1}(\mu) \geq \deg_{t_2}(\mu)$.
- The mapping $f:(x_1,x_2)\mapsto (x_1,\,x_1x_2)$ satisfies

$$\begin{split} \operatorname{range}(f) &= \mathbb{C}^2 \setminus \Big(\{(0,y) \mid y \in \mathbb{C}\} \setminus \{(0,0)\} \Big), \\ \mathbb{C}^2 \setminus \operatorname{range}(f) &= \{(0,y) \mid y \in \mathbb{C}\} \setminus \{(0,0)\}), \\ \dim(\mathbb{C}^2 \setminus \operatorname{range}(f)) &= 1 \not\leq 0. \end{split}$$

■ Key property: $\dim(\mathbb{C}^m \setminus \operatorname{range}(f)) \leq m - 2$.

Almost surjective maps

Definition. k ac field, $f = (f_1, \ldots, f_m) \in (k[t_1, \ldots, t_n])^m$. f is almost surjective on $k : \iff \dim(\overline{k^m \setminus \operatorname{range}(f)}) \le m - 2$.

Almost surjective maps exist:

- \blacksquare $(t_1^3, t_2^2 t_2 + 1)$ is surjective $(\dim(\emptyset) := -1)$, hence almost surjective.
- \blacksquare $(k = \mathbb{C})$: (t_1, t_1t_2) is not almost surjective.
- $(f_1, ..., f_m)$ almost surjective $\Longrightarrow (f_1, ..., f_m)$ are algebraically independent over k, and range(f) is Zariski-dense in k^m .

$\textbf{Determined} \Rightarrow \textbf{polynomial}$

Theorem (EA 2015)

k ac field of char 0, $m, n \in \mathbb{N}$, $f = (f_1, \ldots, f_m) \in k[t_1, \ldots, t_n]^m$ algebraically independent over k. TFAE:

- 1. Every f-determined polynomial g lies in $k[f_1, \ldots, f_m]$.
- 2. f is almost surjective.

Proof of $(2) \Rightarrow (1)$:

- From above: $g \in k(f_1, \ldots, f_m)$.
- lacksquare Main Lemma: f almost surjective \Longrightarrow

$$k(f_1,\ldots,f_m)\cap k[t_1,\ldots,t_n]=k[f_1,\ldots,f_m].$$

Adaption of [van den Essen (2000), Theorem 4.2.1].

There is a version for characteristic p.

Compositions that are polynomials

Compositions that are polynomials

Corollary (Folklore) Let $h: \mathbb{C} \to \mathbb{C}$ be an arbitrary function, and let $f \in \mathbb{C}[t]$ nonconstant.

If $h \circ f$ is a polynomial function, then h is a polynomial function.

■ Hence $\sqrt[3]{x} \circ x^{12} = x^4$ works in \mathbb{R} , but not in \mathbb{C} .

Theorem (EA 2015)

k ac field of char 0, $m, n \in \mathbb{N}$, $f = (f_1, \ldots, f_m) \in k[t_1, \ldots, t_n]^m$ such that f is almost surjective,

 $h:k^m\to k$ arbitrary mapping.

If $h \circ f$ is a polynomial function (from k^n to k), then h is a polynomial (on the range of f).

Theorem (EA 2015)

k ac field of char p > 0, $m, n \in \mathbb{N}$, $f = (f_1, \dots, f_m) \in k[t_1, \dots, t_n]^m$ such that f is almost surjective,

 $h: k^m \to k$ arbitrary mapping.

If $h \circ f$ is a polynomial function (from k^n to k), then there is a polynomial $H(x_1, \ldots, x_m) \in k[x_1, \ldots, x_m]$ and $\nu \in \mathbb{N}$ such that

$$h(\boldsymbol{b}) = \sqrt[p^{\nu}]{H(\boldsymbol{b})} \text{ for all } \boldsymbol{b} \in k^m.$$

Didactical application

Corollary. If $f \in \mathbb{C}[t_1, t_2, t_3]$ satisfies $f(t_1, t_2, t_3) = f(t_{\pi(1)}, t_{\pi(2)}, t_{\pi(3)})$ for all $\pi \in S_3$, then there is $p \in \mathbb{C}[x_1, x_2, x_3]$ such that $f = p(t_1 + t_2 + t_3, t_1t_2 + t_1t_3 + t_2t_3, t_1t_2t_3)$.

Proof.

$$\mathbf{I} \quad s = \begin{pmatrix} t_1 + t_2 + t_3 \\ t_1t_2 + t_1t_3 + t_2t_3 \\ t_1t_2t_3 \end{pmatrix} \text{ is surjective:}$$
 for finding the pre-image of $(\gamma_1, \gamma_2, \gamma_3)$, factor $x^3 + \gamma_1 x^2 + \gamma_2 x + \gamma_3$ into $(x + \tau_1)(x + \tau_2)(x + \tau_3)$.

- Since f is symmetric, f is determined by $(t_1 + t_2 + t_3, t_1t_2 + t_1t_3 + t_2t_3, t_1t_2t_3)$.
- Hence $\exists p \in \mathbb{C}[x_1, x_2, x_3] : f = p \circ s$.

Further development: when the range of f is not dense

Open questions

Can "algebraic independence" be dropped? (Jaime Gutierrez)

Lemma (EA 2021)

k ac field, let $m, n \in \mathbb{N}$, and let $f_1, \ldots, f_m, g \in k[t_1, \ldots, t_n]$. We assume that for all $(y_1, \ldots, y_m) \in k^m$, the set

$$\{g(\mathbf{a}) \mid \mathbf{a} \in k^n, f_1(\mathbf{a}) = y_1, \dots, f_m(\mathbf{a}) = y_m\}$$

is finite. Then g is algebraic over $k[f_1, \ldots, f_m]$.

Question: Is the following true (in char 0)?

If all the sets have at most 1 element, then $g \in k(f_1, \ldots, f_m)$.

Question with probably known answer

The example of an almost surjective and not surjective mapping was $\mathbb{C}^4 o \mathbb{C}^3$,

$$(t_1, t_2, t_3, t_4) \mapsto \begin{pmatrix} t_1 \\ t_2 \\ t_1 t_3 + t_2 t_4 \end{pmatrix}.$$

Question: Is there an almost surjective and not surjective polynomial mapping from \mathbb{C}^m to \mathbb{C}^m ? (This means $\dim(\mathbb{C}^m \setminus \operatorname{range}(f)) \leq m-2$.)

Question with probably known answer

The example of an almost surjective and not surjective mapping was $\mathbb{C}^4 o \mathbb{C}^3$,

$$(t_1, t_2, t_3, t_4) \mapsto \begin{pmatrix} t_1 \\ t_2 \\ t_1 t_3 + t_2 t_4 \end{pmatrix}.$$

Question: Is there an almost surjective and not surjective polynomial mapping from \mathbb{C}^m to \mathbb{C}^m ? (This means $\dim(\mathbb{C}^m \setminus \operatorname{range}(f)) \leq m-2$.)

Partial answers:

- \blacksquare No for m=1.
- For m=2, we would need a mapping $f: \mathbb{C}^2 \to \mathbb{C}^2$ with cofinite range.

Written Material

Most results in this talk can be found in

E. Aichinger. On function compositions that are polynomials. *Journal of Commutative Algebra*, **7**(3): 303-315, 2015.